14,490 research outputs found

    Temporal Properties of Liquid Crystal Displays: Implications for Vision Science Experiments

    Get PDF
    Liquid crystal displays (LCD) are currently replacing the previously dominant cathode ray tubes (CRT) in most vision science applications. While the properties of the CRT technology are widely known among vision scientists, the photometric and temporal properties of LCDs are unfamiliar to many practitioners. We provide the essential theory, present measurements to assess the temporal properties of different LCD panel types, and identify the main determinants of the photometric output. Our measurements demonstrate that the specifications of the manufacturers are insufficient for proper display selection and control for most purposes. Furthermore, we show how several novel display technologies developed to improve fast transitions or the appearance of moving objects may be accompanied by side–effects in some areas of vision research. Finally, we unveil a number of surprising technical deficiencies. The use of LCDs may cause problems in several areas in vision science. Aside from the well–known issue of motion blur, the main problems are the lack of reliable and precise onsets and offsets of displayed stimuli, several undesirable and uncontrolled components of the photometric output, and input lags which make LCDs problematic for real–time applications. As a result, LCDs require extensive individual measurements prior to applications in vision science

    Misspecifications of Stimulus Presentation Durations in Experimental Psychology: A Systematic Review of the Psychophysics Literature

    Get PDF
    BACKGROUND: In visual psychophysics, precise display timing, particularly for brief stimulus presentations, is often required. The aim of this study was to systematically review the commonly applied methods for the computation of stimulus durations in psychophysical experiments and to contrast them with the true luminance signals of stimuli on computer displays. METHODOLOGY/PRINCIPAL FINDINGS: In a first step, we systematically scanned the citation index Web of Science for studies with experiments with stimulus presentations for brief durations. Articles which appeared between 2003 and 2009 in three different journals were taken into account if they contained experiments with stimuli presented for less than 50 milliseconds. The 79 articles that matched these criteria were reviewed for their method of calculating stimulus durations. For those 75 studies where the method was either given or could be inferred, stimulus durations were calculated by the sum of frames (SOF) method. In a second step, we describe the luminance signal properties of the two monitor technologies which were used in the reviewed studies, namely cathode ray tube (CRT) and liquid crystal display (LCD) monitors. We show that SOF is inappropriate for brief stimulus presentations on both of these technologies. In extreme cases, SOF specifications and true stimulus durations are even unrelated. Furthermore, the luminance signals of the two monitor technologies are so fundamentally different that the duration of briefly presented stimuli cannot be calculated by a single method for both technologies. Statistics over stimulus durations given in the reviewed studies are discussed with respect to different duration calculation methods. CONCLUSIONS/SIGNIFICANCE: The SOF method for duration specification which was clearly dominating in the reviewed studies leads to serious misspecifications particularly for brief stimulus presentations. We strongly discourage its use for brief stimulus presentations on CRT and LCD monitors

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988

    Humans perceive flicker artifacts at 500 Hz.

    Get PDF
    Humans perceive a stable average intensity image without flicker artifacts when a television or monitor updates at a sufficiently fast rate. This rate, known as the critical flicker fusion rate, has been studied for both spatially uniform lights, and spatio-temporal displays. These studies have included both stabilized and unstablized retinal images, and report the maximum observable rate as 50-90 Hz. A separate line of research has reported that fast eye movements known as saccades allow simple modulated LEDs to be observed at very high rates. Here we show that humans perceive visual flicker artifacts at rates over 500 Hz when a display includes high frequency spatial edges. This rate is many times higher than previously reported. As a result, modern display designs which use complex spatio-temporal coding need to update much faster than conventional TVs, which traditionally presented a simple sequence of natural images

    Ultrasound Tomography for control of Batch Crystallization

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 299)

    Get PDF
    This bibliography lists 96 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1987
    corecore