309 research outputs found

    Temporal overdrive recurrent neural network

    Get PDF
    In this work we present a novel recurrent neural network architecture designed to model systems characterized by multiple characteristic timescales in their dynamics. The proposed network is composed by several recurrent groups of neurons that are trained to separately adapt to each timescale, in order to improve the system identification process. We test our framework on time series prediction tasks and we show some promising, preliminary results achieved on synthetic data. To evaluate the capabilities of our network, we compare the performance with several state-of-the-art recurrent architectures

    Deep Learning for Black-Box Modeling of Audio Effects

    Get PDF
    Virtual analog modeling of audio effects consists of emulating the sound of an audio processor reference device. This digital simulation is normally done by designing mathematical models of these systems. It is often difficult because it seeks to accurately model all components within the effect unit, which usually contains various nonlinearities and time-varying components. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. Recently, deep neural networks have been explored as black-box modeling strategies to solve this task, i.e., by using only input–output measurements. We analyse different state-of-the-art deep learning models based on convolutional and recurrent neural networks, feedforward WaveNet architectures and we also introduce a new model based on the combination of the aforementioned models. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Thus, we show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating woofer of a Leslie speaker cabinet

    Deep Learning for Audio Effects Modeling

    Get PDF
    PhD Thesis.Audio effects modeling is the process of emulating an audio effect unit and seeks to recreate the sound, behaviour and main perceptual features of an analog reference device. Audio effect units are analog or digital signal processing systems that transform certain characteristics of the sound source. These transformations can be linear or nonlinear, time-invariant or time-varying and with short-term and long-term memory. Most typical audio effect transformations are based on dynamics, such as compression; tone such as distortion; frequency such as equalization; and time such as artificial reverberation or modulation based audio effects. The digital simulation of these audio processors is normally done by designing mathematical models of these systems. This is often difficult because it seeks to accurately model all components within the effect unit, which usually contains mechanical elements together with nonlinear and time-varying analog electronics. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. This thesis aims to explore deep learning architectures for music signal processing in the context of audio effects modeling. We investigate deep neural networks as black-box modeling strategies to solve this task, i.e. by using only input-output measurements. We propose different DSP-informed deep learning models to emulate each type of audio effect transformations. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Also, we analyze how the given tasks are accomplished and what the models are actually learning. We show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter; and electromechanical nonlinear time-varying effects, such as a Leslie speaker cabinet and plate and spring reverberators. We report that the proposed deep learning architectures represent an improvement of the state-of-the-art in black-box modeling of audio effects and the respective directions of future work are given

    A general-purpose deep learning approach to model time-varying audio effects

    Get PDF
    Audio processors whose parameters are modified periodically over time are often referred as time-varying or modulation based audio effects. Most existing methods for modeling these type of effect units are often optimized to a very specific circuit and cannot be efficiently generalized to other time-varying effects. Based on convolutional and recurrent neural networks, we propose a deep learning architecture for generic black-box modeling of audio processors with long-term memory. We explore the capabilities of deep neural networks to learn such long temporal dependencies and we show the network modeling various linear and nonlinear, time-varying and time-invariant audio effects. In order to measure the performance of the model, we propose an objective metric based on the psychoacoustics of modulation frequency perception. We also analyze what the model is actually learning and how the given task is accomplished

    Audio signal modelling using neural networks

    Get PDF
    Neuronové sítě vycházející z architektury WaveNet a sítě využívající rekurentní vrstvy jsou v současnosti používány jak pro syntézu lidské řeči, tak pro „black box“ modelování systémů pro úpravu akustického signálu – modulační efekty, nelineární zkreslovače apod. Úkolem studenta bude shrnout dosavadní poznatky o možnostech využití neuronových sítí při modelování akustických signálů. Student dále implementuje některý z modelů neuronových sítí v programovacím jazyce Python a využije jej pro natrénování a následnou simulaci libovolného efektu nebo systému pro úpravu akustického signálu. V rámci semestrální práce vypracujte teoretickou část práce, vytvořte zvukovou databázi pro trénování neuronové sítě a implementujte jednu ze struktur sítí pro modelování zvukového signálu. Neuronové sítě jsou v průběhu posledních let používány stále více, a to víceméně přes celé spektrum vědních oborů. Neuronové sítě založené na architektuře WaveNet a sítě využívající rekurentních vrstev se v současné době používají v celé řadě využití, zahrnující například syntézu lidské řeči, nebo napřklad při metodě "black-box" modelování akustických systémů, které upravují zvukový signál (modulačí efekty, nelineární zkreslovače, apod.). Tato akademická práce si dává za cíl poskytnout úvod do problematiky neuronových sítí, vysvětlit základní pojmy a mechanismy této problematiky. Popsat využití neuronových sítí v modelování akustických systémů a využít těchto poznatků k implementaci neuronových sítí za cílem modelování libovolného efektu nebo zařízení pro úpravu zvukového signálu.Neural networks based upon the WaveNet architecture and recurrent neural networks are nowadays used in human speech synthesis and other various tasks such as "black-box" modeling systems for acoustic signals alteration (modulation effects, non-linear distortion units, etc.). This work aims, to sum up existing methods of neural network use in acoustic signal modeling. Next, the student is to implement chosen model of neuron network Python and will train this architecture to perform a simulation of desirable sound effect or acoustic alteration system. The task for this semester is, to sum up existing knowledge concerning neural networks. Training database of sound samples and implementation of a sound modeling neural net is to be created as well. Through recent years, neural networks have been used more and more extensively across many science fields. Neural networks based upon the WaveNet architecture and recurrent neural networks are nowadays used in human speech synthesis and other various tasks such as "black-box" modeling systems for acoustic signals alteration (modulation effects, non-linear distortion units, etc.). This academic work provides a brief introduction to the neural network terminology and common practice, elaborates on several types of neural network types, the main focus on DeepMind's WaveNet. Furthermore describes and compares results of experimental implementation of WaveNet and other types of neural network in audio signal "black-box" modeling tasks.

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system
    • …
    corecore