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Abstract: Virtual analog modeling of audio effects consists of emulating the sound of an audio1

processor reference device. This digital simulation is normally done by designing mathematical2

models of these systems. It is often difficult because it seeks to accurately model all components3

within the effect unit, which usually contains various nonlinearities and time-varying components.4

Most existing methods for audio effects modeling are either simplified or optimized to a very specific5

circuit or type of audio effect and cannot be efficiently translated to other types of audio effects.6

Recently, deep neural networks have been explored as black-box modeling strategies to solve this7

task, i.e. by using only input-output measurements. We analyse different state-of-the-art deep8

learning models based on convolutional and recurrent neural networks, feedforward WaveNet9

architectures and we also introduce a new model based on the combination of the aforementioned10

models. Through objective perceptual-based metrics and subjective listening tests we explore the11

performance of these models when modeling various analog audio effects. Thus, we show virtual12

analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such13

as a transistor-based limiter; and nonlinear time-varying effects, such as the rotating horn and rotating14

woofer of a Leslie speaker cabinet.15

Keywords: black-box modeling, nonlinear, time-varying, audio effects, deep learning, tube amplifier,16

transistor-based limiter, Leslie speaker.17

1. Introduction18

Modeling of virtual analog audio effects is the process of emulating an audio effect unit and seeks19

to recreate the sound, behaviour and main perceptual features of an analog reference device [1]. Audio20

effect units are analog or digital signal processing systems that transform certain characteristics of21

the sound source. These transformations can be linear or nonlinear, time-invariant or time-varying22

and with short-term and long-term memory. Most typical audio effect transformations are based on23

dynamics, such as compression; tone such as distortion; frequency such as equalization; and time such24

as artificial reverberation or modulation based audio effects.25

Nonlinear audio effects: These effects are widely used by musicians and sound engineers and can26

be classified into two main types of effects: dynamic processors such as compressors or limiters; and27

distortion effects such as tube amplifiers [2]. Distortion effects are mainly used for aesthetic reasons28

and are usually applied to electric musical instruments such as electric guitar, bass guitar, electric piano29

or synthesizers. The main sonic characteristic of these effects is due to their nonlinearities and the most30

common processors are overdrive, distortion pedals, tube amplifiers and guitar pickup emulators.31

Dynamic range processors are nonlinear time-invariant audio effects with long temporal32

dependencies, and their main purpose is to alter the variation in volume of the incoming audio.33
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This is achieved with a varying amplification gain factor, which depends on an envelope follower34

along with a waveshaping nonlinearity. These effects tend to introduce a low amount of harmonic35

distortion, while for tube amplifiers a strong distortion is desired [2].36

Thus, distortion effects and dynamic range processors are based on the alteration of the waveform37

which leads to various degrees of amplitude and harmonic distortion. The nonlinear behavior of38

certain components of the effects’ circuit performs this alteration, which can be seen as a waveshaping39

nonlinearity applied to the amplitude of the incoming audio signal in order to add harmonic and40

inharmonic overtones. For example, a waveshaping transformation depends on the amplitude of the41

input signal and consists in using a nonlinear function, such as an hyperbolic tangent, to distort the42

shape of the incoming waveform [3].43

Modulation based audio effects: Modulation based or time-varying audio effects involve audio44

processors that include a modulator signal within their analog or digital implementation [4]. These45

modulator signals are in the low frequency range (usually below 20 Hz). Their waveforms are based46

on common periodic signals such as sinusoidal, squarewave or sawtooth oscillators and are often47

referred to as a Low Frequency Oscillator (LFO). The LFO periodically modulates certain parameters48

of the audio processors altering the timbre, frequency, loudness or spatialization characteristics of the49

audio. Based on how the LFO is employed and the underlying signal processing techniques used50

when designing the effect units, we can classify modulation based audio effects into time-varying filters51

such as phaser or wah-wah; delay-line based effects such as flanger or chorus; and amplitude modulation52

effects such as tremolo or ring modulator [2].53

The Leslie speaker cabinet is a type of modulation based effect that combines amplitude, frequency54

and spatial modulation. It consists of a vacuum-tube amplifier and crossover filter followed by55

a rotating horn and rotating woofer inside a wooden cabinet. This effect can be interpreted as a56

combination of tremolo, Doppler effect and reverberation [5].57

Audio effects modeling: Modeling these types of effect units or analog circuits has been heavily58

researched and remains an active field, see Section 2 for more details. Virtual analog methods for59

modeling nonlinear and time-varying audio effects mainly involve circuit modeling and optimization60

for specific analog components such as vacuum-tubes, operational amplifiers or transistors. This often61

requires models that are too specific for a certain circuit or making certain assumptions when modeling62

specific nonlinearities. Therefore such models are not easily transferable to different effects units since63

expert knowledge of the type of circuit being modeled is always required. Also, musicians tend to64

prefer analog counterparts because their digital implementations may lack the broad behaviour of the65

analog reference devices.66

Recently, deep learning architectures have been explored for black-box modeling of audio effects.67

In previous works, we explored convolutional neural networks (CNN) to model linear effect units,68

such as equalization [6]; nonlinear effects with short-term memory, such as distortion, overdrive and69

amplifier emulation [7]. Furthermore, in [8], the later architecture was extended with recurrent neural70

networks (RNN) in order to model linear and nonlinear, time-varying and time-invariant audio effects71

with long temporal dependencies, such ring modulation or multiband compression. Also, in [9],72

Damskägg et al explored variants of the WaveNet architecture [10] in order to model nonlinear effects73

such as a tube amplifier.74

In this work, we analyse and compare the deep learning architectures from [7–9] and we propose75

a new model based on the combination of the convolutional and dense architectures from [8] with the76

feedforward WaveNet from [9]. Therefore, we explore whether a latent-space based on WaveNet can77

learn long temporal dependencies such as those learned by the Bidirectional Long-Short Term Memory78

(Bi-LSTM) layers from [8].79

We show the models performing virtual analog modeling of the Universal Audio vacuum-tube80

preamplifier 610-B, the Universal Audio transistor-based limiter amplifier 1176LN and the rotating horn81

and rotating woofer of a 145 Leslie speaker cabinet. We measure the performance of the models82

via perceptually-based objective metrics and through a subjective listening test. We report that83
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convolutional and feedforward WaveNet architectures perform similarly when modeling nonlinear84

audio effects without memory and with long temporal dependencies, but fail to model time-varying85

tasks such as the Leslie speaker. On the other hand, and across all tasks, the models that incorporate86

RNNs or WaveNet architectures to explicitly learn long temporal dependencies, tend to outperform87

objectively and subjectively the rest of the models.88

The paper is structured as follows. In Section 2 we present the relevant literature related to89

modeling nonlinear and time-varying audio effects and Table 1 summarizes the different approaches.90

Section 3 provides the description of the different deep learning models and Section 4 the experimental91

procedures. Sections 5, 6 and 7 respectively show the obtained results, discussion and conclusions.92

Table 1. Summary of approaches for virtual analog modeling of audio effects.

Type Audio effect Approach Reference

tube amplifier static waveshaping [11]

tube amplifier dynamic nonlinear filters [12]

distortion static waveshaping & numerical methods [13]

distortion circuit simulation K-method & WDF [14]

distortion circuit simulation Nodal DK [15]

speaker, amplifier analytical method Volterra series [16]

Moog ladder filter analytical method Volterra series [17]

nonlinear power amplifier black-box Wiener & Hammerstein [18]

with short-term memory distortion black-box Wiener [19]

tube amplifer black-box Wiener-Hammerstein [20]

equalization black-box end-to-end DNN [6]

tube amplifier black-box end-to-end DNN [21]

tube amplifier black-box end-to-end DNN [22]

equalization & distortion black-box end-to-end DNN [7]

tube amplifier black-box end-to-end DNN [9]

tube amplifier, distortion black-box end-to-end DNN [23]

distortion circuit simulation & DNN [24]

compressor circuit simulation state-space [25]

time-dependent nonlinear compressor black-box system-identification [26]

compressor gray-box system-identification [27]

compressor gray-box end-to-end DNN [28]

ring modulator static waveshaping [29]

phaser circuit simulation numerical methods [30]

phaser circuit simulation Nodal DK [31]

modulation based with OTAs circuit simulation WDF [32]

flanger with BBDs circuit simulation Nodal DK [33]

modulation based with BBDs circuit simulation & system-identification [32]

time-varying Leslie speaker horn digital filter-based & system identification [34]

Leslie speaker horn & woofer digital filter-based [35]

Leslie speaker horn & woofer digital filter-based [36]

flanger, chorus digital filter-based [30]

modulation based with BBDs digital filter-based [37]

modulation based gray-box system-identification [38]

modulation based & compressor black-box end-to-end DNN [8]
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2. Background93

2.1. Modeling of nonlinear audio effects94

Since a nonlinear system cannot be characterized by its impulse response, frequency response95

or transfer function [1], digital emulation of distortion effects have been extensively researched96

[39]. Different methods have been proposed such as memoryless static waveshaping [11], where97

system-identification methods are used to approximate the nonlinearity; dynamic nonlinear filters98

[12], where the waveshaping curve changes its shape as a function of the input signal or system-state99

variables; circuit simulation techniques [13–15], where a complete study of the analog circuitry is100

performed and nonlinear filters are derived from the differential equations that describe the circuit;101

and analytical methods [16,17], where the nonlinearity is modeled via Volterra series theory or nonlinear102

black-box approaches such as Wiener and Hammerstein models [18–20].103

Modeling of dynamic range processors, such as compressors, has been based on white-box104

methods such as circuit simulation, where a complete study of the internal circuit is carried out; and105

black-box methods such as system identification techniques, where a model is structured using only106

the measurements of the input and output signals. In [25], state-space models are used to simulate107

the circuit of an specific analog guitar compressor. Black-box [26] and gray-box [27] modeling of108

general-purpose dynamic range compressors has been investigated via input-output measurements109

and optimization routines. The latter differs from black-box modeling, since gray-box approaches use110

some information about the circuit together with input-output signals.111

Generalization among different audio effect units is usually difficult since these methods are often112

either simplified or optimized to a very specific circuit. This lack of generalization is accentuated when113

we consider that each audio processor is also composed of components other than the nonlinearity.114

These components also need to be modeled and often involve filtering before and after the nonlinearity,115

as well as short and long temporal dependencies such as hysteresis or attack and release gates.116

2.2. Modeling of time-varying audio effects117

Most research for modeling time-varying audio effects has been explored via white-box methods.118

In order to model the various analog components that characterize the circuitry of this type of119

effects, circuit simulation approaches are based on diodes [29], transistors [30,31], operational120

transconductance amplifiers (OTAs) [32] or integrated circuits such as Bucket Brigade Delay (BBD)121

chips [33,37,40]. Common methods for circuit simulation include the nodal DK-method [41] and Wave122

Digital Filters (WDF) [42]. By assuming linear behaviour or by omitting certain nonlinear circuit123

components, most of these effects can be implemented directly in the digital domain through the use of124

digital filters and delay lines. In [38], based on all-pass filters and multiple measurements of impulse125

responses, a gray-box modeling method for linear time-varying audio effects is proposed.126

The Leslie speaker cabinet represents a special case of modulation based audio effects, since127

amplitude and frequency modulation occur along with the reverberation and structural resonance of128

the wooden cabinet. In [34], the rotating horn of the Leslie speaker is modeled via varying delay-lines,129

artificial reverberation and physical measurements from the rotating loudspeaker. Likewise, [35,36]130

modeled the Leslie speaker horn and woofer through time-varying spectral delay filters and time-varying131

FIR filters respectively. In these Leslie speaker emulations, various physical characteristics of the effect132

are not taken into account, such as the frequency-dependent directivity of the loudspeakers or the133

effect of the wooden cabinet.134

2.3. Deep learning for audio effects modeling135

Deep learning architectures for audio processing tasks, such as audio effects modeling, have been136

investigated as end-to-end methods or as parameter estimators of audio processors [43,44]. End-to-end137

deep learning architectures, where raw audio is both the input and the output of the system, follow138
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black-box modeling approaches where an entire problem can be taken as a single indivisible task which139

must be learned from input to output. The desired output is obtained by learning and processing140

directly from the incoming raw audio, thus reducing the amount of required prior knowledge and141

minimizing the engineering effort [45].142

End-to-end deep neural networks (DNNs) for audio effects modeling have been recently143

explored for linear and nonlinear, time-varying and time-invariant audio effects with long temporal144

dependencies. Equalization matching is achieved in [6] and nonlinear modeling in [7], where the145

network is capable of modeling an arbitrary combination of linear and nonlinear audio effects with146

short-term memory. Nevertheless, the network of [7] does not generalize to transformations with147

long temporal dependencies such as modulation based audio effects. The model is divided into three148

parts: adaptive front-end, latent-space and synthesis back-end, and follows an adaptive convolutional149

architecture together with dense layers and trainable activation functions as nonlinear waveshapers.150

Several linear and nonlinear time-varying and time-invariant audio effects were modeled in [8],151

following the adaptive convolutional architecture from [7]. The structure of the synthesis back-end is152

modified and RNNs are incorporated into the latent-space in order to explore their capabilities when153

learning transformations with long temporal dependencies.154

Also, based on [46], a feedforward variant of the WaveNet architecture is proposed in [9], where a155

nonlinear audio effect and its controls are emulated. This network outperforms current state-of-the-art156

analytical methods for nonlinear black-box modeling such as the block-oriented Wiener models157

presented in [19].158

In [28], gray-box modeling is proposed for nonlinear effects with long temporal dependencies159

such as compressors. The architecture is based on U-Net [47] and Time-Frequency [48] networks,160

where using input-output measurements and knowledge of the attack and release gate times are used161

to emulate different compressors and their respective controls. Similarly, RNNs for real-time black-box162

modeling of tube amplifiers and distortion pedals were explored in [23] and static configurations of163

tube amplifiers in [21,22]. A gray-box method is explored in [24], where a DNN is used to model the164

state-space system of nonlinear distortion circuits.165

3. Methods166

In this section we present the architecture of the different black-box audio effects modeling167

networks: the deep convolutional audio effects modeling architecture (CAFx) from [7], the feedforward168

WaveNet from [9] and the convolutional and recurrent audio effects modeling architecture (CRAFx)169

from [8]. Also, we introduce CWAFx, a combination of the convolutional, dense and activation layers170

from CRAFx together with a latent-space based WaveNet. All the models are based entirely in the171

time-domain and end-to-end; with raw audio as the input and processed audio as the output. Code is172

availabe online1. Also, Appendix A shows the number of parameters and processing times across all173

models.174

3.1. Convolutional audio effects modeling network - CAFx175

The model is divided into three parts: adaptive front-end, synthesis back-end and latent-space176

DNN. The architecture is designed to model nonlinear audio effects with short-term memory and is177

based on a parallel combination of cascade input filters, trainable waveshaping nonlinearities, and178

output filters. All convolutions are along the time dimension and all strides are of unit value. This179

means, during convolution, we move the filters one sample at a time. The model is depicted in Figure180

1 and its structure is described in detail in Table 2. We use an input frame of size 4096 and sampled181

with a hop size of 2048 samples.182

1 https://mchijmma.github.io/DL-AFx/
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Figure 1. Block diagram of CAFx; adaptive front-end, synthesis back-end and latent-space DNN.

Table 2. Detailed architecture of CAFx with an input frame size of 4096 samples.

Layer Output shape Weights Output

Input (4096, 1) . x
Conv1D (4096, 128) 128(64) X1
Residual (4096, 128) . R

Abs (4096, 128) . .
Conv1D-Local (4096, 128) 128(128) X2

MaxPooling (64, 128) . Z

Dense-Local (128, 64) 64(128) .
Dense (128, 64) 64 Ẑ

Unpooling (4096, 128) . X̂2
R× X̂2 (4096, 128) . X̂1
Dense (4096, 128) 128 .
Dense (4096, 64) 64 .
Dense (4096, 64) 64 .
Dense (4096, 128) 128 .
SAAF (4096, 128) 128(25) X̂0

deConv1D (4096, 1) . ŷ

The adaptive front-end consists of a convolutional encoder. It contains two CNN layers, one
pooling layer and one residual connection. The first convolutional layer is followed by the absolute
value as nonlinear activation function and the second convolutional layer is locally connected. This
means we follow a filterbank architecture since each filter is only applied to its corresponding row
in the input feature map. This layer is followed by the softplus nonlinearity. The max-pooling layer
is a moving window of size 64, where the maximum value within each window corresponds to the
output and the positions of the maximum values are stored and used by the back-end. The operation
performed by the first layer can be described by (1):

X1 = x ∗W1 (1)

Where ∗ denotes the convolution operator, W1 is the kernel matrix from the first layer, and X1183

is the feature map after the input audio x is convolved with W1. The weights W1 consist of 128184

one-dimensional filters of size 64. The residual connection R is equal to X1, which corresponds to the185

frequency band decomposition of the input x.186

The operation performed by the second layer is described by (2):

X2 = softplus(|X1| ∗W2) (2)

Where X2 is the second feature map obtained after the locally connected convolution with W2, the187

kernel matrix of the second layer which has 128 filters of size 128.188

The adaptive front-end performs time-domain convolutions with the raw audio and is designed to189

learn a latent representation for each audio effect modeling task. It also generates a residual connection190

which is used by the back-end to facilitate the synthesis of the waveform based on the specific audio191

effect transformation. By using the absolute value as activation function of the first layer and by having192
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larger filters W2, we expect the front-end to learn smoother representations of the incoming audio,193

such as envelopes [49].194

The latent-space DNN contains two layers. Following the filter bank architecture, the first layer195

is based on locally connected dense layers and the second layer consists of a fully connected (FC) layer.196

The DNN modifies the latent representation Z into a new latent representation Ẑ which is fed into the197

synthesis back-end. The first layer applies a different dense layer to each row of the matrix Z and the198

second layer is applied to each row of the output matrix from the first layer. In both layers, all dense199

layers have 64 hidden units, are followed by the softplus function and are applied to the complete latent200

representation rather than to the channel dimension.201

The synthesis back-end accomplishes the nonlinear task by the following steps. First, X̂2, the202

discrete approximation of X2, is obtained via unpooling the modified envelopes Ẑ. Then the feature203

map X̂1 is the result of the element-wise multiplication of the residual connection R and X̂2. This204

can be seen as an input filtering operation, since a different envelope gain is applied to each of the205

frequency band decompositions obtained in the front-end.206

The second step is to apply various waveshapping nonlinearities to X̂1. This is achieved with a207

a DNN with smooth adaptive activation functions (DNN-SAAF). The DNN-SAAF consists of 4 FC208

dense layers. All dense layers are followed by the softplus function with the exception of the last layer.209

Locally connected Smooth Adaptive Activation Functions (SAAFs) [50] are used as the nonlinearity210

for the last layer. SAAFs consist of piecewise second order polynomials which can approximate any211

continuous function and are regularized under a Lipschitz constant to ensure smoothness. Overall,212

each function is locally connected and composed of 25 intervals between −1 to 1.213

We tested different standard and adaptive activation functions, such as the parametric and214

non parametric rectifier linear unit (ReLU), hyperbolic tangent, sigmoid and fifth order polynomials.215

Nevertheless, we found stability problems and non optimal results when modeling nonlinear effects.216

Since each SAAF explicitly acts as a waveshaper, the DNN-SAAF is constrained to behave as a set of217

trainable waveshaping nonlinearities, which follow the filter bank architecture and are applied to the218

channel dimension of the modified frequency decomposition X̂1.219

Finally, the last layer corresponds to the deconvolution operation, which can be implemented220

by transposing the first layer transform. This layer is not trainable since its kernels are transposed221

versions of W1. In this way, the back-end reconstructs the audio waveform in the same manner that the222

front-end decomposed it. The complete waveform is synthesized using a hann window and constant223

overlap-add gain.224

3.2. Feedforward WaveNet audio effects modeling network - WaveNet225

The WaveNet architecture corresponds to a feedforward variation of the original autoregressive226

model. For a regression task, such as nonlinear modeling, the predicted samples are not fed back227

into the model, but through a sliding input window, where the model predicts a set of samples in a228

single forward propagation. The feedforward Wavenet implementation is based on the architecture229

proposed in [9] and [46]. The model is divided into two parts: stack of dilated convolutions and a230

post-processing block. The model is depicted in Figure 2 and its structure is described in Table 3.231

We use 2 stacks of 8 dilated convolutional layers with a dilation factor of 1,2,...,128 and 16 filters232

of size of 3. From Figure 1, prior to the stack of dilated convolutions, the input x is projected into 16233

channels via a 3x1 convolution. This in order to match the number of channels within the feature maps234

of the dilated convolutions.235

The stack of dilated convolutions processes the input feature map Rin with 3x1 gated
convolutions and exponentially increasing dilation factors. This operation can be described by:

z = tanh(W f ∗ Rin) · σ(W g ∗ Rin) (3)
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Figure 2. Block diagram of the feedforward WaveNet; stack of dilated convolutional layers and the
post-processing block.

Table 3. Detailed architecture of WaveNet with input and output frame sizes of 5118 and 4096 samples
respectively.

Layer - Output shape - Weights Output

Input (5118, 1) x
Conv1D (5118, 16) - 16(3) Rin

Dilated conv (5118, 16) - 16(3) Dilated conv (5118, 16) - 16(3) .
Tanh (5118, 16) Sigmoid (5118, 16) . .

Multiply (5118, 16) z
Conv1D (5118, 16) - 16(1) Conv1D (5118, 16) - 16(1) Rout S

Add (4096, 16) .
ReLU (4096, 16) .

Conv1D (4096, 2048) - 2048(3) .
ReLU (4096, 16) .

Conv1D (4096, 256) - 256(3) .
Conv1D (4096, 1) - 1(1) ŷ

Where W f and W g are the filter and gated convolutional kernels, tanh and σ the hyperbolic tangent236

and sigmoid functions and ∗ and · the operators for convolution and element-wise multiplication. The237

residual output connection Rout and the skip conection S are obtained via a 1x1 convolution applied to238

z. Thus, S is sent to the post-processing block and Rout is added to the current input matrix Rin, thus,239

resulting in the residual input feature map of the next dilated convolutional layer.240

The post-processing block consists in summing all the skip connections S followed by a ReLU.241

Two final 3x1 convolutions are applied to the resulting feature map, which contain 2048 and 256 filters242

and are separated by a ReLU. As a last step, a 1x1 convolution is introduced in order to obtain the243

single-channel output audio ŷ.244

Since the receptive field of the model is of 1022 samples, in order to output frames of 4096 samples,245

the input presented to the model consists of sliding frames of 5118 samples.246

3.3. Convolutional recurrent audio effects modeling network - CRAFx247

The CRAFx model builds on the CAFX architecture and is also divided into three parts: adaptive248

front-end, latent-space and synthesis back-end. A block diagram can be seen in Figure 3 and its249

structure is described in detail in Table 4. The main difference is the incorporation of Bi-LSTMs into the250

latent-space and the modification of the synthesis back-end structure. This in order to allow the model251

to learn nonlinear transformations with long temporal dependencies. Also, instead of 128 channels,252

due to the training time of the recurrent layers, this model uses 32 channels.253

In order to allow the model to learn long-term memory dependencies, the input consists of the
current audio frame x concatenated with the 4 previous and 4 subsequent frames. These frames are of
size 4096 and sampled with a hop size τ = 2048 samples. The input x is described by:

x = x(t + jτ), j = −4, ..., 4 (4)



Version January 16, 2020 submitted to Journal Not Specified 9 of 23

Conv1D
Conv1D

Local

Max

Pool

Adaptive Front-end

Bi-LSTM

SAAF

Input

audio

Output 

audio

deConv1DUnpool

Synthesis Back-end

DNN

SAAF

SE

Figure 3. Block diagram of CRAFx; adaptive front-end, latent-space Bi-LSTM and synthesis back-end.

Table 4. Detailed architecture of a model with input frame size of 4096 samples and ±4 context frames.

Layer Output shape Weights Output

Input (9, 4096, 1) . x
Conv1D (9, 4096, 32) 32(64) X1
Residual (4096, 32) . R

Abs (9, 4096, 32) . .
Conv1D-Local (9, 4096, 32) 32(128) X2

MaxPooling (9, 64, 32) . Z

Bi-LSTM (64, 128) 2(64) .
Bi-LSTM (64, 64) 2(32) .
Bi-LSTM (64, 32) 2(16) .

SAAF (64, 32) 32(25) Ẑ

Unpooling (4096, 32) . X̂3
Multiply (4096, 32) . X̂2

Dense (4096, 32) 32 .
Dense (4096, 16) 16 .
Dense (4096, 16) 16 .
Dense (4096, 32) 32 .
SAAF (4096, 32) 32(25) X̂′

1
Abs (4096, 32) . .

Global Average (1, 32) . .
Dense (1, 512) 512 .
Dense (1, 32) 32 se

X̂′
1 × se (4096, 32) . X̂1

X̂1 + X̂2 (4096, 32) . X̂0
deConv1D (4096, 1) . ŷ

The adaptive front-end is exactly the same as the one from CAFx, but its layers are time254

distributed, i.e. the same convolution or pooling operation is applied to each of the 9 input frames. In255

this model, R is the corresponding row in X1 for the frequency band decomposition of the current256

input frame x. Thus, the back-end does not directly receive information from the past and subsequent257

context frames.258

The latent-space consists of three Bi-LSTM layers of 64, 32, and 16 units respectively. Bi-LSTMs259

are a type of RNN that can access long-term context from both backward and forward directions [51].260

Bi-LSTMs are capable of learning long temporal dependencies when processing time series where the261

context of the input is needed [52].262

The Bi-LSTMs process the latent-space representation Z, which is learned by the front-end and263

contains information regarding the 9 input frames. These recurrent layers are trained to reduce the264

dimension of Z, while also learning the modulators Ẑ. This new latent representation is fed into265

the synthesis back-end in order to reconstruct an audio signal that matches the modeling task. Each266

Bi-LSTM has dropout and recurrent dropout rates of 0.1 and the first two layers have tanh as activation267

function. Also, the nonlinearities of the last recurrent layer are locally connected SAAFs.268

The synthesis back-end accomplishes the reconstruction of the target audio by processing the269

frequency band decomposition R and the nonlinear modulation Ẑ. The new structure of the back-end270

incorporates a Squeeze-and-Excitation (SE) [53] layer after the DNN-SAAF block (DNN-SAAF-SE).271

The SE block explicitly models interdependencies between channels by adaptively scaling the272

channel-wise information of feature maps [53]. Thus, we propose a SE block which applies a dynamic273
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Figure 4. Block diagram of CWAFx; adaptive front-end, latent-space WaveNet and synthesis back-end.

Table 5. Detailed architecture of the latent-space WaveNet.

Layer - Output shape - Weights Output

Z (576, 32) .
Conv1D (576, 32) - 32(3) Rin

Dilated conv (576, 32) - 32(3) Dilated conv (576, 32) - 32(3) .
Tanh (576, 32) Sigmoid (576, 32) . .

Multiply (576, 32) .
Conv1D (576, 32) - 32(1) Conv1D (576, 32) - 32(1) Rout S

Add (576, 32) .
ReLU (576, 32) .

Conv1D (576, 32) - 32(3) .
ReLU (576, 32) .

Conv1D (576, 32) - 32(3) .

Dense (32, 64) - 64 Ẑ

gain to each of the feature map channels and follows the structure from [54]. It consists of a global274

average pooling operation followed by two FC layers. The FC layers are followed by ReLU and sigmoid275

activation functions accordingly. Since the feature maps of the model are based on time-domain276

waveforms, we incorporate an absolute value layer before the global average pooling operation.277

Following the filter bank architecture, the back-end matches the time-varying task by the following278

steps. First, an upsampling operation is applied to the learned modulators Ẑ which is followed by an279

element-wise multiplication with the residual connection R. This can be seen as a frequency dependent280

amplitude modulation to each of the channels or frequency bands of R. This is followed by the281

nonlinear waveshaping and channel-wise scaled filters from the DNN-SAAF-SE block.282

Thus, the modulated frequency band decomposition X̂2 is processed by the learned waveshapers283

from the DNN-SAAF layers and further scaled by the frequency dependent gains from the SE284

layers. The resulting feature map X̂1 can be seen as modeling the nonlinear short-term memory285

transformations within the audio effects modelling tasks. Then, X̂1 is added back to X̂2, acting as a286

nonlinear feedforward delay line. The structure of the back-end is informed by the general architecture287

in which the modulation based effects are implemented in the digital domain, through the use of LFOs,288

digital filters and delay lines.289

Finally, the complete waveform is synthesized in the same way as in CAFx, where the last layer290

corresponds to the transposed and non-trainable deconvolution operation.291

3.4. Convolutional and WaveNet audio effects modeling network - CWAFx292

We propose a new model based on the combination of the convolutional and dense architectures293

from CRAFx with the dilated convolutions from WaveNet. Since the Bi-LSTM layers in the former294

were in charge of learning long temporal dependencies from the input and context audio frames,295

we replace these recurrent layers with a feedforward WaveNet. As it has been shown that dilated296

convolutions outperform recurrent approaches when learning sequential problems [55], such as in297

[56], where Bi-LSTMs are successfully replaced with this type of temporal convolutions.298
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Thus, we investigate whether a latent-space based on stacked dilated convolutions can learn299

frequency-dependent amplitude modulation signals. The model is depicted in Figure 4 and the300

structure of the latent-space WaveNet is described in detail in Table 5. The adaptive front-end and301

synthesis back-end are the same as the ones presented in CRAFx.302

The latent representation Z from the front-end corresponds to 9 rows of 64 samples and 32303

channels, which can be unrolled into a feature map of 576 samples and 32 channels. Thus, we304

approximate these input dimensions with a latent-space WaveNet with receptive and target fields of305

510 and 64 samples respectively. We use 2 stacks of 7 dilated convolutional layers with a dilation factor306

of 1,2,...,64 and 32 filters of size 3. Also, we achieved better fitting by keeping the dimensions of the307

skip connections S and by replacing the final 1x1 convolution with a FC layer. The latter has 64 hidden308

units followed by the tanh activation function and is applied along the latent dimension.309

4. Experiments310

4.1. Training311

The training of the CAFX, CRAFx and CWAFx architectures includes an initialization step. This312

pretraining stage consists in optimizing a network formed solely by the convolutional and pooling313

layers of the front-end and back-end. This pretraining allows to have a better fitting when training314

for the nonlinear or time-varying tasks. Thus, within an unsupervised learning task, this network315

is trained to process and reconstruct both the dry audio x and target audio y. Only during this step316

the unpooling layer of the back-end uses the time positions of the maximum values recorded by the317

max-pooling operation.318

Once the front-end and back-end are pretrained, the rest of the convolutional, recurrent, dense319

and activation layers are incorporated into the respective models, and all the weights are trained320

following an end-to-end supervised learning task. The WaveNet model is trained directly following321

this second step. Since small amplitude errors are as important as large ones, the loss function to be322

minimized is the mean absolute error between the target and output waveforms.323

For both training steps, Adam [57] is used as optimizer and we use an early stopping patience of324

25 epochs, i.e. training stops if there is no improvement in the validation loss. The model is fine-tuned325

further with the learning rate reduced by a factor of 4 and also a patience of 25 epochs. The initial326

learning rate is 1e− 4 and the batch size consists of the total number of frames per audio sample. On327

average, the total number of epochs is approximately 750. We select the model with the lowest error328

for the validation subset (see Section 4.2). For the Leslie speaker modeling tasks, the early stopping and329

model selection procedures were based on the training loss. This is explained in more detail in Section330

6.331

4.2. Dataset332

Raw recordings of individual 2-second notes of various 6-string electric guitars and 4-string bass333

guitars are obtained from the IDMT-SMT-Audio-Effects dataset [58]. We use the 1250 unprocessed334

recordings of electric guitar and bass to obtain the wet samples of the respective audio effects modeling335

tasks. The raw recordings are amplitude normalized and for each task the test and validation samples336

correspond to 5% of this dataset each. After the analog audio processors were sampled with the raw337

notes, all the recordings were downsampled to 16 kHz. The dataset is available online1.338

4.2.1. Universal Audio vacuum-tube preamplifier 610-B339

This microphone tube preamplifier (preamp) is sampled from a 6176 Vintage Channel Strip unit.340

In order to obtain an output signal with high harmonic distortion, the preamp is overdriven with the341

following settings: gain +10 dB, level 6, line impedance and high and low boost/cut 0 dB.342
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4.2.2. Universal Audio transistor-based limiter amplifier 1176LN343

Similarly, the wildly used field-effect transistor limiter 1176LN is sampled from the same 6176344

Vintage Channel Strip unit. The limiter samples are recorded with the following settings: attack 800345

µs, release 1100 ms, input level 4, output level 7 and ratio ALL. We use the slowest attack and release346

settings in order to further test the long-term memory of the models. The compression ratio value of347

ALL corresponds to all the ratio buttons of an original 1176 being pushed simultaneously. Thus, this348

setting also introduces distortion due to the variation of attack and release times.349

4.2.3. 145 Leslie speaker cabinet350

The output samples from the rotating horn and woofer of a 145 Leslie speaker cabinet are recorded351

with a AKG-C451-B microphone. Each recording is done in mono by placing the condenser microphone352

perpendicularly to the horn or woofer and 1 meter away. Two speeds are recorded for each rotating353

speaker; tremolo for a fast rotation and chorale for a slow rotation. The rotation frequency of the horn is354

approximately 7 Hz and 0.8 Hz for the tremolo and chorale settings respectively, while the woofer has355

slower speed rotations [36].356

Since the horn and woofer speakers are preceded by a 800 Hz crossover filter, we apply a highpass357

FIR filter with the same cutoff frequency to the raw notes of the electric guitar and use only these358

samples as input for the horn speaker. Likewise, for the woofer speaker we use a lowpass FIR filter to359

preprocess the raw bass notes. The audio output of both speakers is filtered with the respective FIR360

filters. This in order to reduce mechanical and electrical noise and also to focus the modeling tasks on361

the amplitude and frequency modulations. Also, the recordings are amplitude normalized.362

4.3. Objective metrics363

Three metrics are used when testing the models with the various modeling tasks. Since the mean364

absolute error depends on the amplitude of the output and target waveforms, before calculating this365

metric, we normalize the energy of the target and the output and define it as the energy-normalized366

mean absolute error (mae).367

As an objective evaluation for the Leslie speaker time-varying tasks, we propose an objective metric368

which mimics human perception of amplitude and frequency modulation. The modulation spectrum369

uses time-frequency theory integrated with the psychoacoustics of modulation frequency perception,370

thus, providing long-term knowledge of temporal fluctuation patterns [59]. The modulation spectrum371

mean squared error (ms_mse) is based on the audio features from [60] and [61] and is defined as follows:372

• A Gammatone filter bank is applied to the target and output entire waveforms. In total we use 12373

filters, with center frequencies spaced logarithmically from 26 Hz to 6950 Hz.374

• The envelope of each filter output is calculated via the magnitude of the Hilbert transform and375

downsampled to 400 Hz.376

• A Modulation filter bank is applied to each envelope. In total we use 12 filters, with center377

frequencies spaced logarithmically from 0.5 Hz to 100 Hz.378

• The Fast Fourier Transform (FFT) is calculated for each modulation filter output of each379

Gammatone filter. The energy is summed across the Gammatone and Modulation filter banks and380

the ms_mse metric is the mean squared error of the logarithmic values of the FFT frequency bins.381

The evaluation for the nonlinear tasks with short-term and long-term memory corresponds to382

mfcc_cosine: the mean cosine distance of the Mel-frequency cepstral coefficients (MFCCs). This metric383

is calculated as follows:384

• A log-power-melspectogram is computed from the energy-normalized waveforms. This is385

calculated with 40 mel-bands and audio frames of 4096 samples and 50% hop size.386

• 13 MFCCs are computed using the discrete cosine transform and the mfcc_cosine metric is the387

mean cosine distance across the MFCC vectors.388
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Figure 5. mae, mfcc_cosine and ms_mse values with the test dataset for all the modeling tasks.

4.4. Listening test389

Thirty participants between the ages of 23 and 46 took part in the experiment which was conducted390

at a professional listening room at Queen Mary University of London. The Web Audio Evaluation Tool391

[62] was used to set up the test and participants used Beyerdynamic DT-770 PRO studio headphones.392

The subjects were among musicians, sound engineers or experienced in critical listening. The393

listening samples were obtained from the test subsets and each page of the test contained a reference394

sound, i.e. a recording from the original analog device. The aim of the test was to identify which sound395

is closer to the reference, and participants rated 6 different samples according to the similarity of these396

in relation to the reference sound.397

Therefore, participants were informed what modeling task they were listening to, and were asked398

to rate the samples from ‘least similar’ to ‘most similar’. This in a scale of 0 to 100, which was then399

mapped into a scale of 0 to 1. The samples consisted of a dry sample as anchor, outputs from the 4400

different models and a hidden copy of the reference.401

5. Results402

The training procedures were performed for each architecture and each modeling task: preamp403

corresponds to the vacuum-tube preamplifier, limiter to the transistor-based limiter amplifier, horn404

tremolo and horn chorale to the Leslie speaker rotating horn at fast and slow speeds respectively, and405

woofer tremolo and woofer chorale to the rotating woofer at the corresponding speeds. Then, the models406

were tested with samples from the test subset and the audio results are available online1.407

Figure 5 shows the mae, mfcc_cosine and ms_mse for all the test subsets. It can be seen that the mae408

models’ performance is similar within each modeling tasks with limiter having the lowest error. Also,409

CAFx presents the largest errors, with the Leslie speaker chorale settings being the highest.410

In terms of perceptually-based metrics such as the mfcc_cosine and ms_mse, the CRAFx and CWAFx411

models achieved the best scores. This with the exception of the woofer chorale task, where the CWAFx412

model did not manage to accomplish the task. Overall, CRAFx and CAFx correspond to the highest413

and lowest scoring models respectively.414

The results of the listening test for all modeling tasks can be seen in Figure 6 as notched box415

plots. The end of the notches represents a 95% confidence interval and the end of the boxes represent416
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the first and third quartiles. Also, the green lines illustrate the median rating and the purple circles417

represent outliers. In general, both anchors and hidden references have the lowest and highest median418

respectively. The perceptual findings match closely the objective metrics from Figure 5, since the419

architectures that explicitly learn long-temporal dependencies, such as CRAFx and CWAFx outperform420

the rest of the models. Furthermore, for the woofer chorale task, the unsuccessful performance of the421

latter is also evidenced in perceptual ratings. This indicates that the latent-space WaveNet fails to learn422

low-frequency modulations such as the woofer chorale rotating rate.423

For selected test samples of the preamp and limiter tasks and for all the different models, Figure 7424

shows the input, reference, and output waveforms together with their respective spectrogram. Both in425

the time-domain and in the frequency-domain, it is observable that the waveforms and spectrograms426

are in line with the objective and subjective findings. To more closely display the performance of these427

nonlinear tasks, Figure 8 shows a segment of the respective waveforms. It can be seen how the different428

models match the waveshaping from the overdriven preamp as well as the attack waveshaping of the429

limiter when processing the onset of the test sample.430

Regarding the Leslie speaker modeling task, Figures 9-12 show the different waveforms together431

with their respective modulation spectrum and spectrogram: Figure 9 horn-tremolo, Figure 10432

woofer-tremolo, Figure 11 horn-chorale and Figure 12 woofer-chorale. From the spectra, it is noticeable that433

CRAFx and CWAFx introduce and match the amplitude and frequency modulations of the reference,434

whereas CAFX and WaveNet fail to accomplish the time-varying tasks.435

6. Discussion436

6.1. Nonlinear task with short-term memory - preamp437

The architectures that were designed to model nonlinear effects with short-term memory, such438

as CAFx and WaveNet, were outperformed by the models that incorporate temporal dependencies.439

With CRAFx and CWAFx being the highest scoring model both objectively and perceptually. Although440

this task does not require a long-term memory, the context input frames and latent-space recurrent441

and WaveNet layers from CRAFx and CWAFx respectively, benefited the modeling of the preamp. This442

performance improvement could be on account of the temporal behaviour present on the vaccum-tube443

amplifier, such as hysteresis or attack and release timings, although additional tests on the preamp444

might be required.445

Given the successful results reported in [7] and [9], which represent the state-of-the-art for446

nonlinear audio effects modeling, it is remarkable that the performance of these architectures (CAFx447

and WaveNet) is exceeded by CRAFx and CWAFx. It is worth noting that the [7] model is trained with448

input frame sizes of 1024 samples, which could indicate a decrease in modeling capabilities when449

handling larger input frame sizes, such as 4096 samples. Similarly, the model from [9] included 1 stack450

of dilated convolutions whereas the WaveNet architecture used 2.451

Nevertheless, from Figure 6a, we can conclude that all models successfully accomplished the452

modeling of the preamp. Most of the output audio is only slightly discernible from their target453

counterparts, with CRAFx and CWAFx being virtually indistinguishable form the real analog device.454

6.2. Time-dependent nonlinear task - limiter455

Since the limiter task includes long temporal dependencies such as a 1100 ms release gate, as456

expected, the architectures that include memory achieved a higher performance both objectively457

and subjectively. From Figure 7d it can be seen that CAFx and WaveNet introduce high frequency458

information that is not present in the reference spectrogram. This could be an indication that the459

models compensate for their limitations when modeling information beyond one input frame, such as460

the distortion tone characteristic due to the long release time together with the variable ratio of the461

limiter. Furthermore, from Figure 8b it is noticeable how each architecture models the attack behavior462

of the limiter.463
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Figure 6. Box plot showing the rating results of the listening tests. 6a) preamp, 6b) limiter, 6c) Leslie
speaker horn-tremolo, 6d) Leslie speaker woofer-tremolo, 6e) Leslie speaker horn-chorale and 6f)
Leslie speaker woofer-chorale.
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Figure 7. Results with selected samples from the test dataset for the tasks: 7a-7b) preamp and 7c-7d)
limiter. The waveforms and their respective spectrograms are shown and vertical axes represent
amplitude and frequency (Hz) respectively.
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Figure 8. For the test samples from Figure 7, a segment of the respective waveforms: 8a) preamp task
and 8b) limiter task when processing the onset of the input audio. Vertical axes represent amplitude.
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Figure 9. Results with selected samples from the test dataset for the Leslie speaker horn-tremolo
tasks. 9a) Waveform, 9b) modulation spectrum and 9c) spectrogram. Vertical axes represent amplitude,
Gammatone frequency (Hz) and FFT frequency (Hz) respectively.

We can conclude that although all networks closely matched the reference target, it is CRAFx and464

CWAFx which achieved the exact saturation waveshaping characteristic of the audio processor. The465

latter is accentuated with the perceptual results from Figure 6b, where CRAFx and CWAFx are again466

virtually indistinguishable from the reference target. While CAFx and WaveNet are ranked behind due467

to the lack of long-term memory capabilities, it is noteworthy that these models closely accomplished468

the desired waveform.469

6.3. Time-varying task - Leslie speaker470

With respect to the horn tremolo and woofer tremolo modeling tasks, it can be seen that for both471

rotating speakers, CRAFx and CWAFx are rated highly whereas CAFx and WaveNet fail to accomplish472

these tasks. Thus, the perceptual findings from Figures 6c-6d confirm the results obtained with the473

ms_mse metric and overall, the woofer task has a better matching that the horn task. Nevertheless, for474

CRAFx and CWAFx, the objective and subjective ratings for the horn tremolo task do not represent475

a significant decrease of performance and it can be concluded that both time-varying tasks were476

successfully modeled by these architectures.477

CRAFx is perceptually ranked slightly higher than CWAFx. This indicates a closer matching of478

the reference amplitude and frequency modulations, which can be seen in the respective modulation479

spectra and spectrograms from Figure 9 and Figure 10.480
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Figure 10. Results with selected samples from the test dataset for the Leslie speaker woofer-tremolo
tasks. 10a) Waveform, 10b) modulation spectrum and 10c) spectogram. Vertical axes represent
amplitude, Gammatone frequency (Hz) and FFT frequency (Hz) respectively.

For the horn chorale and woofer chorale modeling tasks, CRAFx and CWAFx successfully modeled481

the former while only CRAFx accomplished the woofer chorale task. Since the woofer chorale task482

corresponds to modulations lower than 0.8 Hz, we can conclude that Bi-LSTMs are more adequate483

than a latent-space WaveNet when modeling such low-frequency modulations.484

In general, from Figure 9 to Figure 12, it is observable that the output waveforms do not match485

the waveforms of the references. This shows that the models are not overfitting to the waveforms of486

the training data and that the successful models are learning to introduce the respective amplitude487

and frequency modulations. The models cannot replicate the exact reference waveform since the488

phase of the rotating speakers varies across the whole dataset. For this reason, the early stopping and489

model selection procedures of these tasks were based on the training loss rather than the validation490

loss. This is also the reason of the high mae scores across the Leslie speaker modeling tasks, due to491

these models applying the modulations yet without exactly matching their phase in the target data.492

Further exploration of a phase-invariant cost function could improve the performance of the different493

architectures.494

CAFx and WaveNet were not able to accomplish these time-varying tasks. It is worth noting that495

both architectures try to compensate for long-term memory limitations with different strategies. It is496

suggested that CAFx wrongly introduces several amplitude modulations, whereas WaveNet tries to497

average the waveform envelope of the reference. This results in output audio significantly different498
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Figure 11. Results with selected samples from the test dataset for the Leslie speaker horn-chorale tasks.
11a) Waveform, 11b) modulation spectrum and 11c) spectogram. Vertical axes represent amplitude,
Gammatone frequency (Hz) and FFT frequency (Hz) respectively.

from the reference, with WaveNet being perceptually rated as the lowest for the horn tremolo and499

horn chorale tasks. This also explains the ms_mse results from Figure 5 for the woofer chorale task,500

where WaveNet achieves the best score since averaging the target waveform could be introducing the501

low-frequency amplitude modulations present in the reference audio.502

7. Conclusion503

In this work, we explored different deep learning architectures for black-box modeling of audio504

effects. Using raw audio and a given audio effects modeling task, we explored the capabilities of505

end-to-end DNNs to process the audio accordingly. We tested the models when modeling nonlinear506

effects with short-term and long-term memory such as a tube preamp and a transistor-based limiter;507

and nonlinear time-varying processors such as the rotating horn and woofer of a Leslie speaker cabinet.508

Through objective perceptual-based metrics and subjective listening tests we found that across all509

modeling tasks, the architectures that incorporate Bi-LSTMs or, to a lesser extent, latent-space dilated510

convolutions to explicitly learn long temporal dependencies, outperform the rest of the models. With511

these architectures we obtain results that are virtually indistinguishable from the analog reference512

processors. Also, state-of-the-art DNN architectures for modeling nonlinear effects with short-term513

memory perform similarly when matching the preamp task and considerably approximate the limiter514

task, but fail when modeling the time-varying Leslie speaker tasks.515
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Figure 12. Results with selected samples from the test dataset for the Leslie speaker woofer-chorale
tasks. 12a) Waveform, 12b) modulation spectrum and 12c) spectogram. Vertical axes represent
amplitude, Gammatone frequency (Hz) and FFT frequency (Hz) respectively.

The nonlinear amplifier, rotating speakers and wooden cabinet from the Leslie speaker were516

successfully modeled. Nevertheless, the crossover filter was bypassed in the modeling tasks since the517

dry and wet audio were filtered accordingly. This was due to the limited frequency bandwidth of the518

bass and guitar samples, thus, this modeling task could be further explored with a more appropriate519

dataset such as Hammond organ recordings.520

As future work, a cost function based on both time and frequency can be used to further improve521

the modeling capabilities of the models. In addition, since the highest ranked architectures use past522

and subsequent context input frames, more research is needed on how to adapt these architectures to523

overcome this latency. Thus, real-time applications would benefit significantly from the exploration524

of end-to-end DNNs that include long-term memory without resorting to large input frame sizes525

and the need for past and future context frames. Also, an end-to-end WaveNet architecture with a526

receptive field as large as the context input frames from CRAFx and CWAFx could also be explored for527

the time-varying modeling tasks.528

Modeling of artificial reverberators such as plate or spring can also be explored. Moreover, as529

shown in [9], the introduction of controls as a conditioning input to the networks can be investigated,530

since the models are currently learning a static representation of the audio effect. Finally, applications531

beyond virtual analog can be investigated, for example, in the field of automatic mixing the models532

could be trained to learn a generalization from mixing practices.533
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Appendix A544

Table A1 shows the number of trainable parameters and processing times across all the models.545

The latter was calculated for a Titan XP GPU and an Intel Xeon E5-2620 CPU and corresponds to the546

time the model takes to process one batch, i.e. the total number of frames within a 2 second audio547

sample. GPU and CPU times are reported using the non real-time optimized python implementation.548

Table A1. Number of parameters and processing times across various models.

model number of parameters GPU time (s) CPU time (s)

CAFx 604,545 0.0842 1.2939
WaveNet 1,707,585 0.0508 1.0233
CRAFx 275,073 0.4066 2.8706
CWAFx 205,057 0.0724 2.9552
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