149 research outputs found

    Contribution à la caractérisation de sites sableux : signature spectro-directionnelle, distribution en taille et minéralogie extraites d'échantillons de sables

    Get PDF
    International audienceThe characterization of sands detailed in this paper has been performed in order to support the in-flight radiometric performance assessment of space-borne optical sensors over so-called Pseudo-Invariant Calibration Sites (PICS). Although the physical properties of PICS surface are fairly stable in time, the signal measured from space varies with the illumination and the viewing geometries. Thus there is a need to characterize the spectro-directional properties of PICS. This can be done, at a broad scale, thanks to multi-spectral multi-directional space-borne sensors such as the POLDER instrument (with old data). However, interpolating or extrapolating the spectro-directional reflectances measured from space to spectral bands of another sensor is not straightforward. The hyperspectral characterization of sand samples collected within or nearby PICS can contribute to a solution. In this context, a set of 31 sand samples was compiled. The BiConical Reflectance Factor (BCRF) was measured between 0.4 and 2.5 µm, over a quarter hemisphere when the amount of sand in the sample was large enough and for only a single fixed angular configuration for small samples. These optical measurements were complemented by grain size distribution measurements and mineralogical analysis and compiled together with previously published measurements in the so-called PICSAND database, freely available on line.La caractérisation des sables détaillée dans cet article a été faite en soutien à l'estimation en vol des performances radiométriques des capteurs optiques spatiaux à partir des sites appelés PICS pour Pseudo-Invariant Calibration Sites. Bien que les propriétés physiques des PICS soient relativement stables dans le temps, le signal mesuré depuis l'espace varie en fonction des géométries d'illumination et d'observation. De ce fait, il est nécessaire de caractériser les propriétés spectro-directionnelles des PICS. Ceci peut être fait, à une grande échelle, à partir de capteurs spatiaux multi-spectraux et multi-directionnels tels que le capteur POLDER (avec des données anciennes). Cependant, l'interpolation ou l'extrapolation des réflectances spectro-directionnelles obtenues depuis l'espace aux bandes spectrales d'un autre capteur est délicate. La caractérisation hyperspectrale d'échantillons de sable issus de PICS ou de leur voisinage peut participer à une solution. Dans ce contexte, 31 échantillons de sable ont été collectés. Le Facteur de Reflectance BiConique (BCRF) a été mesuré entre 0,4 et 2,5 µm, pour une demi-hémisphère lorsque la quantité de sable était suffisante, et pour une seule géométrie pour les échantillons plus petits. Ces mesures optiques ont été complétées par des mesures de distribution en taille et par une analyse minéralogique, et mises dans une base de données appelée PICSAND avec d'autres mesures publiées dans la littérature. Cette base de donnée est en libre accès en ligne

    The applications of neural network in mapping, modeling and change detection using remotely sensed data

    Full text link
    Thesis (Ph.D.)--Boston UniversityAdvances in remote sensing and associated capabilities are expected to proceed in a number of ways in the era of the Earth Observing System (EOS). More complex multitemporal, multi-source data sets will become available, requiring more sophisticated analysis methods. This research explores the applications of artificial neural networks in land-cover mapping, forward and inverse canopy modeling and change detection. For land-cover mapping a multi-layer feed-forward neural network produced 89% classification accuracy using a single band of multi-angle data from the Advanced Solidstate Array Spectroradiometer (ASAS). The principal results include the following: directional radiance measurements contain much useful information for discrimination among land-cover classes; the combination of multi-angle and multi-spectral data improves the overall classification accuracy compared with a single multi-angle band; and neural networks can successfully learn class discrimination from directional data or multi-domain data. Forward canopy modeling shows that a multi-layer feed-forward neural network is able to predict the bidirectional reflectance distribution function (BRDF) of different canopy sites with 90% accuracy. Analysis of the signal captured by the network indicates that the canopy structural parameters, and illumination and viewing geometry, are essential for predicting the BRDF of vegetated surfaces. The inverse neural network model shows that the R2 between the network-predicted canopy parameters and the actual canopy parameters is 0.85 for canopy density and 0.75 for both the crown shape and the height parameters. [TRUNCATED

    The Characterization of Earth Sediments using Radiative Transfer Models from Directional Hyperspectral Reflectance

    Get PDF
    Remote sensing techniques are continuously being developed to extract physical information about the Earth’s surface. Over the years, space-borne and airborne sensors have been used for the characterization of surface sediments. Geophysical properties of a sediment surface such as its density, grain size, surface roughness, and moisture content can influence the angular dependence of spectral signatures, specifically the Bidirectional Reflectance Distribution Function (BRDF). Models based on radiative transfer equations can relate the angular dependence of the reflectance to these geophysical variables. Extraction of these parameters can provide a better understanding of the Earth’s surface, and play a vital role in various environmental modeling processes. In this work, we focused on retrieving two of these geophysical properties of earth sediments, the bulk density and the soil moisture content (SMC), using directional hyperspectral reflectance. We proposed a modification to the radiative transfer model developed by Hapke to retrieve sediment bulk density. The model was verified under controlled experiments within a laboratory setting, followed by retrieval of the sediment density from different remote sensing platforms: airborne, space-borne and a ground-based imaging sensor. The SMC was characterized using the physics based multilayer radiative transfer model of soil reflectance or MARMIT. The MARMIT model was again validated from experiments performed in our controlled laboratory setting using several different soil samples across the United States; followed by applying the model in mapping SMC from imagery data collected by an Unmanned Aerial System (UAS) based hyperspectral sensor

    Tracking sand dune movements using multi-temporal remote sensing imagery: a case study of central Sahara (Libyan Fazzan / Ubari Sand Sea)

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the Degree of Master of Science. Johannesburg, 20 January 2017.Sand dune movements can be effectively monitored through the comparison of multitemporal satellite images. However, not all remote sensing platforms are suitable to study sand dunes. This study compares coarse (Landsat 7 and 8) and fine (Worldview 2) resolution platforms, specifically focussing on sand dunes within the Ubārī Sand Sea (Libya), and identified the average migration rate and direction for the linear dunes within a section of the Ubārī sand sea for the time period from 2002-2015 with the use of Landsat imagery. Two band combinations were compared with the use of two supervised classifications. The best combination was found to be red, green, blue and near-infrared band combination and the maximum likelihood classifier. The dune features, namely the crest, slope and interdunal areas were successfully classified based on both the coarse and fine resolution imagery, but the accuracy with which it can be classified are different between the two resolutions. The classifications based on the Worldview 2 imagery had overall accuracies ranging from 55.43 - 60.83% with kappa values of 0.3486 – 0.4225 compared to the overall accuracies and kappa values of the classifications based on the Landsat 8 imagery ranging from 52.11 – 64.67% and 0.3878 – 0.4927 respectively. An average migration rate of 8.64 (± 4.65) m/yr in a generally north western direction was calculated based on the analysis of remote sensing data with some variations in this rate and the size and shape of the dunes. It was found that although Worldview 2 imagery provides more accurate and precise mensuration data, and smaller dunes identified from Worldview data were not delineated clearly on the Landsat imagery. Landsat imagery is sufficient for the studying of dunes at a regional scale. This means that for studies concerned with the dune patterns and movements within sand seas, Landsat is sufficient. In studies where the specific dynamics of specific dunes are to be selected, a finer resolution is required; platforms such as Worldview are needed in order to gain more detailed insight and to link the past and present day climate and environmental change.MT201

    Image-based terrain modeling with thematic mapper applied to resolving the limit of Holocene Lake expansion in the Great Salt Lake Desert, Utah, part 1

    Get PDF
    The LANDSAT Thematic Mapper (TM) scanner records reflected solar energy from the earth's surface in six wavelength regions, or bands, and one band that records emitted energy in the thermal region, giving a total of seven bands. Useful research was extracted about terrain morphometry from remote sensing measurements and this information is used in an image-based terrain model for selected coastal geomorphic features in the Great Salt Lake Desert (GSLD). Technical developments include the incorporation of Aerial Profiling of Terrain System (APTS) data in satellite image analysis, and the production and use of 3-D surface plots of TM reflectance data. Also included in the technical developments is the analysis of the ground control point spatial distribution and its affects on geometric correction, and the terrain mapping procedure; using satellite data in a way that eliminates the need to degrade the data by resampling. The most common approach for terrain mapping with multispectral scanner data includes the techniques of pattern recognition and image classification, as opposed to direct measurement of radiance for identification of terrain features. The research approach in this investigation was based on an understanding of the characteristics of reflected light resulting from the variations in moisture and geometry related to terrain as described by the physical laws of radiative transfer. The image-based terrain model provides quantitative information about the terrain morphometry based on the physical relationship between TM data, the physical character of the GSLD, and the APTS measurements

    Spectral reflectance in the Tunesian desert

    Get PDF
    .Satellites provide the possibility to give a synoptical view of the earth surface at regular time intervals. Satellites operating in the optical wavelengths have however as disadvantage that monitoring of the surface characteristics becomes impossible as soon as clouds are present. Deserts and desert margins are for that reason much more appropriate for monitoring by optical satellites than temperate and wet tropical areas. Potential hazards, possibilities and often inaccessibility makes use of optical remote sensing very reasonable.Landsat Thematic Mapper (TM) satellites provide a much better spectral resolution than other satellites at reasonable spatial and temporal resolution. Ile presented research was hence focused on the spectral possibilities of Landsat Thematic Mapper for determining surface characteristics and their dynamics in desert areas. Field measurements of reflectance in different seasons were performed to evaluate the effect of different factors and their dynamics on reflectance. A field radiometer (MMR) with TM compatible bands was used. The study was performed in southern Tunisia in an area with large variation: footslopes, dunes and dynamical salt plains, all with few or absent vegetation cover. Dominant mineralogy is representative for many and areas and comprises gypsum, carbonate, quartz and halite.In order to compare results of field reflectance measurements with Landsat Thematic Mapper data, adequate processing of both data sets is necessary.General accepted assumptions that reference plates are ideal reflectors have to be rejected. Both wavelength and insolation angle dependant reflectance of the panel has to be determined. For large solar zenith angles also corrections have to be made for influence of diffuse irradiation (Chapter 2).Use of calibration coefficients given for Landsat Thematic Mapper data processed in Fucino will cause large errors in calculating reflectance data. It turned out that these coefficients were not updated for deterioration of the sensors during the flight and that calculations were made based on two different definitions of bandwidth. In order to achieve adequate values of reflectance these errors were evaluated and corrected (Chapter 8).The evaluation of factors affecting field reflectance can be separated in external and internal ones.The influence of external factors, solar zenith angle and atmosphere was evaluated (Chapter 3-4). Solar zenith angle dependant reflectance turned out to be limited for this area, if measurements are performed with solar zenith angles up to 65 degrees. In spring on the footslopes reflectance values at noon were about 10% higher than those at 65 degrees. Differences on the playa were even less. Both based on accuracy and applicability of the results (observations of this area at these latitudes with Landsat TM take place with angles ranging between 28 in June and 63 degrees in December), 65 degrees can be considered as a useful limit for performing adequate measurements.Influence of atmosphere on field reflectance is limited. The evaluation of the external factors leads to the conclusion that all measurements with a solar zenith angle less than 65 degrees and on clear days could be used for obtaining a field data reference set.Field measurements showed that Landsat TM-like bands are very useful in detecting the surface characteristics ( internal factors ) in this area (Chapters 5 - 7).Gypsum has absorption bands in both middle infrared bands (comparable with TM bands 6 and 7) and carbonate in TM band 7. Since on footslopes and in dunes quartz is the other important mineral, a high reflectance in these bands points to presence of quartz. Standard field reflectance measurements showed that on footslopes gypsum, quartz and carbonate dominated areas have a different spectral signature. Differences in eolian deposits are even more clear: relations between gypsum content and indices derived from spectral reflectance could be established under field conditions.Presence of halite on the playas could be detected by relatively high reflectance in the visible part of the spectrum, especially in the blue band. Field reflectance on plots showed that moisture content induces a relatively low reflectance in all bands with an extra low reflectance in the middle infrared bands. Linear relations between volumetric moisture content and reflectance in individual bands in near and middle infrared turned out to be feasible.Most dynamical parts of the area turned out to be the playas, where after storms moisture contents of the top layer were affected for a long time and halite efflorescences occurred shortly after the storms. Although dust slowly covering the surface, even in spring plots with higher halite content could be derived from the spectral signature. Field plots in dune parts showed a large variation in reflectance between November and May too due to changes by wind. Dynamics on footslopes were much less important than in other areas. Variation in vegetation appears to be relatively small, while also effect of storms was not visible for more than a few days after a storm.Results of field reflectance were extrapolated to Landsat TM satellite data (Chapter 9). It was possible to derive directly from Landsat TM data a number of useful classes for playas, footslopes and eolian material, having variation in surface mineralogy (gypsum, carbonate, quartz, halite) and variation in surface type. Also dynamics of factors like moisture and halite could be derived using multitemporal Landsat TM data.The presented methodology, implementing an extensive field reflectance measurement campaign, gives insight in possibilities of Landsat TM under a range of conditions. It corroborates that for operational application in and areas Landsat TM data will be a useful source of information in addition to other types of remote sensing as for instance aerial photography

    Refinement of the method for using pseudo-invariant sites for long term calibration trending of Landsat reflective bands

    Get PDF
    The long term calibration history of the Landsat 5 TM instrument has recently been defined using a time series of desert sites in Northern Africa. This correction is based on the assumption that the atmosphere is invariant and the reflectance of each site is approximately constant and Lambertian over time. As a result, the top of the atmosphere reflection is assumed constant when corrected for variations in the solar elevation angle and earth-sun distance. While this is true to first order and is the basis for all current temporal calibration, there are multiple known sources of residual error in the data. A methodology is presented for reducing the variation in pseudo-invariant site trending data based on correction for the BRDF. This work establishes a means to use DIRSIG to model the L5 calibration site. It combines a digital elevation map and desert atmosphere with a surface BRDF to reduce the residual errors in the calibration data. A set of Landsat 7 ETM+ calibration days is utilized to optimize the surface reflectance properties used in DIRSIG. These optimized parameters are then used to model the L5 TM calibration days. The results of the DIRSIG modeling are compared to the solar elevation angle and time of year trends of the original data and analyzed for their effectiveness at describing and reducing the residual errors. A major goal of this effort is to understand the contribution that BRDFs make to the current calibration errors and to develop methods that are robust enough to be applicable to a wider range of sites to enable extension of the methodology to earlier data sets (e.g. Landsat MSS). Additionally, while Landsat has a 30 m reflective resolution, the pseudo-invariant site calibration approach is valid for all spatial resolutions. Depending on another instrument\u27s field of view, the BRDF error reduction technique used by L5 TM could either be used on the same desert calibration site or on a subsection of the area

    AEOLIAN SYSTEM DYNAMICS DERIVED FROM THERMAL INFRARED DATA

    Get PDF
    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a new application. Supporting data from AERONET and other orbital data enabled study of net radiative forcing

    Airborne remote sensing of estuarine intertidal radionuclide concentrations

    Get PDF
    The ability to map industrial discharges through remote sensing provides a powerful tool in environmental monitoring. Radionuclide effluents have been discharged, under authorization, into the Irish Sea from BNFL (British Nuclear Fuels Plc.) sites at Sellafield and Springfields since 1952. The quantitative mapping of this anthropogenic radioactivity in estuarine intertidal zones is crucial for absolute interpretations of radionuclide transport. The spatial resolutions of traditional approaches e.g. point sampling and airborne gamma surveys are insufficient to support geomorphic interpretations of the fate of radionuclides in estuaries. The research presented in this thesis develops the use of airborne remote sensing to derive high-resolution synoptic data on the distribution of anthropogenic radionuclides in the intertidal areas of the Ribble Estuary, Lancashire, UK. From multidate surface sediment samples a significant relationship was identified between the Sellafieldderived 137Cs & 241Am and clay content (r2=0.93 & 0.84 respectively). Detailed in situ, and laboratory, reflectance (0.4-2.5mn) experiments demonstrated that significant relationships exist between Airborne Thematic Mapper (ATM) simulated reflectance and intertidal sediment grain-size. The spectral influence of moisture on the reflectance characteristics of the intertidal area is also evident. This had substantial implications for the timing of airborne image acquisition. Low-tide Daedalus ATM imagery (Natural Environmental Research Council) was collected of the Ribble Estuary on May 30th 1997. Preprocessing and linear unmixing of the imagery allowed accurate sub-pixel determinations of sediment clay content distributions (r2=0.8 1). Subsequently, the established relationships between 137Cs & 241Am and sediment grain-size enabled the radionuclide activity distributions across the entire intertidal area (92km2) to be mapped at a geomorphic scale (1.75m). The accuracy of these maps was assessed by comparison with in situ samples and the results of previous radiological studies within the estuary. Finally, detailed conclusions are made regarding radionuclide sinks and sources, and surface activity redistribution within the Ribble Estuary environment
    corecore