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Abstract 

 

Sand dune movements can be effectively monitored through the comparison of multi-

temporal satellite images. However, not all remote sensing platforms are suitable to 

study sand dunes. This study compares coarse (Landsat 7 and 8) and fine (Worldview 

2) resolution platforms, specifically focussing on sand dunes within the Ubārī Sand Sea 

(Libya), and identified the average migration rate and direction for the linear dunes 

within a section of the Ubārī sand sea for the time period from 2002-2015 with the use 

of Landsat imagery.  

Two band combinations were compared with the use of two supervised classifications. 

The best combination was found to be red, green, blue and near-infrared band 

combination and the maximum likelihood classifier. 

The dune features, namely the crest, slope and interdunal areas were successfully 

classified based on both the coarse and fine resolution imagery, but the accuracy with 

which it can be classified are different between the two resolutions. The classifications 

based on the Worldview 2 imagery had overall accuracies ranging from 55.43 - 60.83% 

with kappa values of 0.3486 – 0.4225 compared to the overall accuracies and kappa 

values of the classifications based on the Landsat 8 imagery ranging from 52.11 – 

64.67% and 0.3878 – 0.4927 respectively. An average migration rate of 8.64 (± 4.65) 

m/yr in a generally north western direction was calculated based on the analysis of 

remote sensing data with some variations in this rate and the size and shape of the 

dunes. 

It was found that although Worldview 2 imagery provides more accurate and precise 

mensuration data, and smaller dunes identified from Worldview data were not 

delineated clearly on the Landsat imagery. Landsat imagery is sufficient for the studying 

of dunes at a regional scale. This means that for studies concerned with the dune 

patterns and movements within sand seas, Landsat is sufficient. In studies where the 

specific dynamics of specific dunes are to be selected, a finer resolution is required; 

platforms such as Worldview are needed in order to gain more detailed insight and to 

link the past and present day climate and environmental change.  
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1. Chapter 1: Introduction 

1.1 Introduction  

Sand dunes (and draa or mega dunes) are one of the most significant features 

created by wind driven deposition (Blumberg, 2006). For sand dunes to form, a 

delicate balance between the sediment supply, microtopology and boundary layer 

climate is needed (Tsoar, 2001). Usually sand dune formation requires an ample 

supply of loose sand, little or no vegetation cover, strong winds (of which the velocity 

has to be above the threshold velocity of the grain size) as well as unidirectional and 

long duration winds; and topography that is of such a nature that it favours the 

sedimentation process (deposition of the grains) (Tsoar, 2001; du Pont, 2015; Telfer et 

al., 2015).  

When considering the global context, inland dunes are concentrated within the mid-

latitudes, two “rings” of aridity form at around 30˚ north and south of the equator, and 

are often found in structural basins where the sand accumulate (du Pont, 2015). This 

can be mainly attributed to the descending arid air associated with the descending 

arm of the Hadley Cell (of the global air circulation pattern) (du Pont, 2015), 

precipitation in these areas is rare contributing to the aridity of the area. This aridity in 

combination with the high temperatures that occur there has led to a decrease in 

vegetation cover which in turn also contributes to the high temperatures and overall 

aridity of the area (rocks and bare soil lose moisture more readily and also experience 

faster changes in temperature than vegetation) (Hermas et al., 2012). 

Inland dunes are often concentrated within larger areas called sand seas (also known 

as ergs) (Blumberg, 2006). Dune areas are of a dynamic nature, as dunes change 

location by migration, can extend or grow (in length and height), or can change form 

depending on the wind direction and strength (Levin et al., 2004; Blumberg, 2006; 

Howari et al., 2007). 

Dune patterns can be identified within dune fields/sand seas (Blumberg, 2006; Al-

Masrahy & Mountney, 2013). In some cases the dunes have a spatial regularity or one 

or more defining attributes and may change gradually in a specific direction or may be 

controlled by the climate, topography and geology of the area in combination (Al-

Masrahy & Mountney, 2013).  
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In hot desert areas (e.g. Egypt, Libya) sand dune movement is a hazardous 

phenomenon and can pose a major threat to modern anthropogenic activities, 

developmental plans as well as existing land use and land cover, and to the survival of 

archaeological sites and ancient places (Hermas et al., 2012; El-Magd et al., 2013; 

Sparavinga, 2013). Determining the rates of sand dune movements and their spatial 

variations can be useful in order to protect both anthropogenic and natural resources 

(Hermas et al., 2012; El-Magd et al., 2013). 

In order to enable mitigation and/or prevention of this damage, dune migration rates 

and direction need to be studied (Sparavinga, 2013). This is not an easy task as 

dunes often cover large areas and are located in remote and/or inaccessible areas 

(Paisley et al., 1991; Howari et al., 2007; El-Magd et al., 2013). Previous research 

focussing on the measuring and detection of sand dune movements in desert areas 

has utilized conventional ground based techniques (steel and iron rods, sand traps, 

fluorescent dye, and geomorphological mapping) (e.g. Paisley et al., 1991; Levin et 

al., 2004; Hermas et al., 2012; El-Magd et al., 2013). These methods may be more 

accurate than remote sensing methods at the mesoscale but lack the ability to cover 

large areas easily (they provide measurements at smaller temporal and spatial 

scales), and are expensive and time consuming (Hermas et al., 2012; Mohamed & 

Verstraeten, 2012; El-Magd et al., 2013). Due to the difficulties and expense that 

accompany extensive field surveys of dunes, these studies cannot be repeated often 

enough to capture the dynamics that potentially occur within dune fields (Yao et al., 

2007; Hermas et al., 2012; El-Magd et al., 2013). 

Remote sensing has been suggested as a possible solution to this problem (Yao et 

al., 2007; Hermas et al., 2012), as it can cover large and remote areas (Hermas, et al., 

2012; El-Magd et al., 2013) and today remote sensing data are available for most of 

the world’s land surfaces.  

 

Sand dune movements can be effectively monitored through multi-temporal satellite 

images (Hermas et al., 2012; El-Magd et al., 2013). Remotely sensed data show 

regular/multi-temporal and wide/large area coverage for analysis and measurements 

at relatively low costs, unlike field measurements (Hermas et al., 2012; El-Magd et al., 

2013).  
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Several studies have used remote sensing to study the morphology and migration of 

single dunes (White et al., 1997; Al-Dabi et al., 1998; Levin et al., 2004) and some 

research studied parts or entire dune fields (composed of several dunes) (Janke, 

2002; Levin et al., 2006; Mohamed & Verstraeten, 2012). However, Hermas et al. 

(2012) and El-Magd et al. (2013) stated that individual sand dune boundary 

classification is highly affected by satellite geometry, sensor parameters and 

illumination conditions, which require complex pre-processing of imagery, these 

boundaries are sometimes even difficult to map in the field. 

 

There are several different satellite remote sensing platforms available that have 

different spatial and spectral resolutions as well as different revisit times (temporal 

resolution, number of days before the sensor captures the same area) (see Table 1.1 

for a few examples). Not all remote sensing platforms are suitable to study sand dunes 

and their movement. Spatial scale and spectral resolution play an important role, and 

are also connected to the expense concerned with acquiring remotely sensed data 

(the higher the resolution, the more expensive the data becomes). Spatial resolution of 

a platform refers to the pixel size and influences the smallest feature that can be 

detected. The spectral resolution is the number of bands and the wavelengths of these 

bands that the sensor can record, per pixel (Aldossary, 2012). A coarse resolution can 

also be described as a low resolution and a fine resolution as a high resolution. 

“Coarse and Fine” resolution and “Low and High” resolution are used interchangeable 

(respectively) within this research.  

If the same patterns can be detected at a coarser spatial resolution as at a finer spatial 

resolution, future studies may avoid unneeded high costs associated with high spatial 

resolution data, unless very detailed data are needed (for example when small, and/ 

or superimposed dunes are the focus of the research). Similarly, high spectral 

resolution imagery (e.g. hyperspectral imagery) may be required in studies concerned 

with the composition of the sediment on the surface of the dunes/ area in question 

(Minu et al., 2016).  
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Table 1.1: Commonly used satellite remote sensing platforms, their resolutions and average 

revisit times. 

Platform 
Typical Spatial 

Resolution* 

Temporal Resolution 

(Average Revisit Time)* 
Active period 

Landsat 30 – 120 m 16 – 18 days 1972 – present 

IKONOS 0.8 – 4 m 3 days 1999 – present 

SPOT (5-7) 2.2 – 20 m 1 – 5 days 2002 – present 

Quickbird 0.6 – 2.4 m 1 – 3.5 days 2001 – present 

Worldview 2 0.46 – 2.4 m 1.1 – 3.7 days 2009 – present 

Corona 1.22 – 12.19 m Unknown 1960 – 1972 

ASTER 30 - 90 m 16 days 1999 – present 

SRTM 90 m Unknown 2000 

*These may vary per mission 

 

Al-Dabi et al. (1998) and Yao et al. (2007) concluded that Landsat imagery is a useful 

tool in the tracking of dune migration and pattern identification. This conclusion was 

made based not only on the results from their own analyses but also on the successes 

of previous studies that used Landsat imagery for the study of sand dunes and 

desertification. These studies were able to monitor desertification and study dune 

migration rates among other things in San Luis, Argentina (Collado et al., 2002), 

classify dunes as active or inactive (Mojave Desert, California) based on spectral 

brightness (inactive sands where found to be darker than finer than active sands) 

(Paisley et al., 1991); to monitor spatial and temporal changes in dune patterns 

(Kuwait) as well as identifying rates of dune movement and development (Al-Dabi et 

al., 1997); characterizing the distribution of minerals in sand seas and the identification 

of sediment transport pathways (from Oman’s Wahiba Sand Sea); to distinguish 

between different geomorphic regions in a dune field and deduce the origins of some 

of the deposited sediments to just name a few (Pease et al., 1999) (more examples 

can be seen in Al-Dabi et al. (1998) and Yao et al. (2007)). More recent research 

includes (but is not limited to); the comparison of dune dynamics within five dune fields 

(Mohamed & Verstraeten, 2012); tracking dune encroachment in California (Lam et al., 

2011); quantifying sand dune movement in Egypt (El-Magd et al., 2013); and 
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quantifying the spatial relationship between dune and interdune areas in the Rub’ Al-

Khali (Al-Masrahay & Mountney, 2013). 

The Ubārī Sand Sea (Libya) has gone relatively unnoticed by these studies, but due to 

its location and climate it is ideal for remote sensing studies. In this research, coarse 

and fine spatial resolution imagery are compared with relation to their usability in the 

identification of desert dunes and dune patterns as well as studying dune migration in 

the aforementioned area. Landsat and Worldview imagery and a digital elevation 

model (DEM) derived from Shuttle Radar Topography Mission (SRTM) data were used 

to study a section within the Ubārī Sand Sea (Libya).  

 

1.2 Aims 

The main aim of this study was to determine if similar dune spatial patterns can be 

detected at different spatial resolutions, and to ultimately study dune migration within a 

section of the Ubārī Sand Sea to determine if this is a suitable alternative to the 

traditional field-based measurement of dune migration. The following research 

questions were identified to guide the study: (1) Can similar dune patterns be detected 

at different spatial resolutions? And (2) what is the net direction and rate of dune 

movement within a section in the Ubārī Sand Sea (over a time period of 13 years from 

2002 to 2015, calculated with the use of Landsat imagery)? 

 

1.3 Objectives 

The objectives of this study were as follow: 

1. Produce maps of sand dunes within the study area at a coarse/ low (Landsat 8) 

and fine/ high resolution (Worldview 2) (Images from September 2014). 

- Identify, describe and map the spatial patterns of the dunes within the 

subsection at a coarse resolution (Landsat 8, SRTM), with the use of 

unsupervised and supervised classifications and imagery from September 

2014. 

- Identify, describe and map the spatial patterns and geomorphic attributes of 

the dunes within the same subsection at a fine resolution (Worldview 2), 
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with the use of unsupervised and supervised classifications and imagery 

from September 2014. 

2. Compare the spatial patterns of the dunes at a coarse/ low (Landsat 8) and 

fine/ high (Worldview 2) spatial resolution 

(Images from September 2014). 

- Use the sand dune maps (produced in objectives 1) to compare the spatial 

patterns from the coarse resolution to those from the fine resolution, with 

the use of visual interpretation, classification, accuracy assessment and 

image differencing 

3. Evaluate the dune “migration” (rate and direction/ changes in shape and size) 

within a section of the Ubārī Sand Sea, from 2002 to 2015 with the use of 

Landsat 7 and Landsat 8 imagery. 

- Temporal changes: Identify the net rate and direction of dune movement 

within a section of the Ubārī Sand Sea, for the time period of 2002-2015. 

- Spatial changes: Determine the changes in the dune location, size and 

shape over time, for the time period of 2002-2015.  

- Objective 3 was achieved by comparing multi-temporal Landsat images (for 

the time period 2002-2015) with the use of change detection modules (Envi 

v5.1), on-screen digitizing and vector subtraction (ArcGIS v10.3).   

 

1.4 Study Area 

1.4.1 Introduction 

The region considered for this study is the Ubārī Sand Sea (Fig. 1.1) located in the 

Libyan Fazzān in Southwestern Libya (Central Sahara). It covers an area of 

approximately 61 000 km2 and is located north of the Murzuq Sand Sea. Limited 

studies of the Ubārī Sand Sea have been conducted but due to its location and 

climate, it is ideal to study via remote sensing methods.  
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Figure 1.1: Location map of the Ubārī, Murzuq and Uan Kasa Sand Seas, the locations of the 

towns Sabhā and Ubārī and the Al Qarqaf Arch, Messak Plateau and Acacus 

Tadrart (the “subset” is the area which was zoomed in on in this study). 

 

1.4.2 Location 

The Ubārī Sand Sea (from here on referred to as “the sand sea”) can be found 

byween the Wādī ash-Shātī and Wādī al-Ajāl and forms part of the Murzuq Basin 

(Tawardos, 2001). The Basin is bordered by the Tibesti (south-east) and Hoggar 

(south-west) Massifs, by the Al Qarqaf Arch to the north and by the Tadrart Akākūs 

range to the east, and is separated from its western extension, the Illizii basin 

(Algeria), by the Tihemboka anticline (a late Caledonian and Middle Devonian uplift) 

(Goudarzi, 1980; Lorenz, 1980; Tawardos, 2001; Hallett, 2002) (Figures 1.1 & 1.2). 

The sand sea has predominantly linear dune ridges orientated southwest to northeast 

(Goudarzi, 1970; White et al., 2006) that can exceed 200 m in height, often with 

barchan-like dunes on the surface (McKee, 1979); star-dunes can be seen in the 

central part of the sand sea (McKee, 1979). Seasonal and perennial lakes can be 

seen in some interdune corridors (indicating the high seasonal water table in those 

areas), and several oases can also be found in the southern section of the sand sea 
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(Goudarzi, 1970; White et al., 2006). Duricrust deposits (consisting of calcium 

carbonate, silica and gypsum with abundant root casts) can also be found on the 

slopes and interdune areas. Lithic artefacts are often associated with duricrust 

outcrops, suggesting that these areas have been important at some stages of human 

occupation of these landscapes (White et al., 2006). The sand sea is bordered to the 

northeast by the Al Qarqaf Arch (aka Gargaf Arch), that reaches a height of 

approximately 700 m asl, and by the Massak Escarpment (also known as Āl-Hamāda 

Murzuq or Massak Plateau, consisting of Nubian sandstone) to the south, that also 

reaches a height of approximately 700 m asl and separates the Ubārī and Murzuq 

sand seas that are approximately 400 and 650 m asl respectively (Lorenz, 1980) 

(Figure 1.3 & 1.4).  

 

1.4.3 Geology 

Limited subsurface data are available for the Murzuq Basin area; however, close to 

the centre of the basin the Precambrian basement is about 3000 m bsl (Goudarzi, 

1980). At the base of the Mesozoic rocks a rise can be seen from 1500 m bsl, at the 

centre of the basin, to over 280 m asl at the basin rim (Goudarzi, 1980). 
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Figure 1.2: Geological map of Libya, showing the Ubārī (outlined: red dashed line) and 

Murzuq (outlined: green dashed line) sand seas (Adapted from: Hallett, 2002). 

 

Figure 1.3: Topographic map of Libya, with the subsets for phase 1 (boxed in red) and phase 

2 (boxed in green). 
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The Murzuq basin (from here on referred to as the basin) consists primarily of 

Paleozoic to Mesozoic sandstones and shale (Cremaschi & Zerboni, 2009). The base 

of the basin is mainly composed of continental sandstones (Cambrian and Ordovician 

age) and is overlain by Paleozoic rocks (mostly sandstones). These are in turn 

overlain by shallow-water and/or continental sediments of Jurassic and Lower 

Cretaceous age (see Figure 1.4). A large part of the area is covered in recent 

windblown sand separated by isolated bedrock hills (Sinha & Pandey, 1980). 

A  

Figure 1.4: (A) The stratigraphic sequences and the lithology within the Murzuq Basin 

(Goudarzi, 1980: Figure 9, pp 889). 
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B  

Figure 1.4: (B) N-S schematic cross-section, western Libya (Tawardos, 2001). 

 

Sediments of the basin’s south and east margins consist of conglomerate alluvial-fan 

type deposits.  Only the coarser fraction of the deposited sediments was retained in 

the basin due to the differing rates of uplift and subsidence of the Tibetsi Massif and Al 

Qarqaf arch respectively (Bellini & Massa, 1980). Of this coarse sediment only a 

portion was permanently deposited in the basin, the rest was deposited as the Klkla 

and Cabao Formation of Tripolotania (Bellini & Massa, 1980). 

The Sahara was glaciated during the late Ordovician period which left striations, tillites 

and erratics as evidence (Grove, 1980). Marine transgressions followed in the Silurian 

and Mesozoic, interspersed with periods of continental erosion and basin filling 

(Goudarzi, 1980; Thomas, 1997; Tawardos, 2001). The Al Qarqaf Arch (also known as 

the Gargaf Arch) was also formed during the Paleozoic. Subaerial weathering and 

erosion marked the Cenozoic (in North Africa, particularly the southern Sahara), and 

led to the development of silicate karst landscapes (Thomas, 1997). During this time 

the escarpment to the east (Fig. 2.4) formed and continental brackish water sediments 

filled the depressions (Goudarzi, 1980; Tawardos, 2001). This was followed by a dry 

period that persists to the present (Goudarzi, 1980; Tawardos, 2001) 

1.4.4 Quaternary Climate 

The Quaternary period was characterised by successive humid and arid phases in the 

Sahara region (Edmunds and Wright, 1979; White et al., 2006; Biagetti and Di Lernia, 

2013) (Table 1.2). During this period there have been variations in climate especially 
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in the mean annual temperature and the precipitation amount and intensity. Several 

shorter humid phases separated by arid intervals have occurred since the end of the 

Pleistocene period (11 700 years BP). A general rise in temperature (increasing 

aridity) starting approximately 14 000 years BP is supported by several lines of 

evidence including radiocarbon dating of lacustrine carbonates and shells, mammal 

remains and soil pedestal wood samples. Two short humid phases can be 

distinguished during the Holocene (a rainfall maxima approximately 8500 and 5500 

years BP) with one arid phase interval that occurred around 7000 years BP. An 

increase in aridity has been noted since 4800 years BP, no significant humid phase 

has occurred since 3500 years BP (Edmunds and Wright, 1979; White et al., 2006). 

Table 1.2: Quaternary period climatic timeline of the Saharan region, and indicative references 

Date Arid/Humid Evidence/ Other Information 

35-13 ka BP Humid Uninterrupted cold wet period with average mean annual 

temperature of 16˚C during cold period (5˚C increase in 

Holocene) (Giraudi et al., 2012) 

13 – 11 ka BP Arid Enhanced aeolian transport; sporadic fluvial floods 

resulting in increased transport of coarse material 

(Swezey, 2001; Giraudi, 2005) 

10.5 – 8.7 ka BP Humid Aquifers risen, fluctuation of ecological conditions from 

fresh to eusaline water (increase in salinity due to 

increased evaporation from continental water); 

stratigraphic record – indicating high water table position 

and sea level, and pollen analyses (Fontes & Gasse, 

1991; Swezey, 2001, 2009; Giraudi et al., 2012) 

9 - 6 ka BP Arid Based on data from lake levels (Fontes & Gasse, 1991) 

6 - 4.8 ka BP Humid Increased rainfall (Edmunds & Wright, 1979) (mean 

annual rainfall approximately 300-400 mm/yr - enough to 

sustain savannah vegetation) based on radiocarbon 

dating and pollen analyses (Swezey, 2001) 

4 – 3 ka BP Arid Arid conditions re-established – resulting in changes in 

human occupation and habits in the area (based on 

archaeological evidence from excavations in the area) 

(Biagetti & di Lernia, 2013), and fluctuations in lake levels 

(Fontes & Gasse, 1991) 

3 ka BP - Present 

day 

Extremely 

Arid 

Based on analysis of soil pedestal wood samples, 

terrestrial dust concentrations, lacustrine data sets and 

climatic modelling (Cremaschi et al., 2006) 
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1.4.5 Present Climate 

The present climate of the area is arid (Biagetti and di Lernia, 2013) and characterised 

by the harmattan (north eastern trade winds) that prevails across the Sahara; these 

winds extend to the Inter Tropical Convergence Zone (ITCZ) at the surface and carry 

dust (Laity, 2008).  The desert climates in the Sahara can mainly be attributed to the 

Subtropical high pressure cell that covers a large area of the African continent 

(Thomas, 1997; Mamtimin et al., 2011). The Central Sahara has been described as 

being the most arid sector within the Sahara, however occasionally moisture enters 

this area and the mountains in the area orographically enhance rainfall (White et al., 

2006).  

Cremaschi and Zerboni (2009) stated that the climate of the south western Fazzān is 

hyper arid, with a mean annual temperature of 30 ˚C and mean annual precipitation of 

0-20 mm. These precipitation values correspond with a study by Mercuri (2008) who 

found mean annual precipitations of approximately 10 (19) mm and mean annual 

temperatures of 23.4 (26.6) ˚C with mean maximum temperatures ranging from 30.6 

(34.0) ˚C in June and mean minimum temperatures of 12.8 (13) ˚C in January from 

weather stations in the towns Sabhā and (Ghat). In a more recent study by Mamtimin 

et al. (2011) mean annual temperatures of 23.3, 22.4 and 23.4 ˚C and mean annual 

rainfall totals of 1.8, 7.13 and 8.08 mm were recorded at three weather stations 

representative of the hot desert type in Libya. 

The average summer (winter) temperature and precipitation (2005-2014) within Sabhā 

and Ubārī (two of the towns) located at the edges of the Ubārī Sand Sea are 31 (15) 

˚C, with an average rainfall of 1.7 (1.9) mm in Ubārī (26˚34'59'' N; 12˚45'59'' E; 463 m 

a.s.l.; Fig. 1.1). Similarly Sabhā (27˚02'19'' N; 14˚25'35'' E; 432 m a.s.l.; Fig. 2.1) has 

average summer (winter) temperatures of 31 (14) ˚C but no precipitation was recorded 

for a ten year period within this time series. The average wind speed for these two 

areas ranges between 6.5-8.3 km/h (winter and summer respectively) in a dominantly 

Easterly direction (Ubārī) and 15.7-20.1 km/h (winter and summer respectively) in a 

dominantly East to North-East direction (Sabhā) (WeatherOnline, 2014a; 2014b; 

Weatherbase, 2015a; 2015b). 
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1.4.6 Sand Dunes of the Central Sahara 

Within Saharan sand seas the most common dune type is linear dunes (with no sand 

in the interdunal areas). These dunes have a well-defined wavelength and are 

arranged in parallel ridges (this is true mostly for the large dunes; smaller linear dunes 

generally do not have a well-defined wave length). These dunes are up to 200 m in 

height and several hundred kilometres in length (along the crest), and are often 

superimposed by transverse and/ or barchans dunes. It can be inferred that a change 

occurred in the wind regime based on the variation in dune scale and orientation that 

appear to coexist. The huge linear dunes then serve as the erodible bed from which 

the instability develops (du Pont, 2015). 

Within the Central Sahara desert there are several sand seas, including the Ubārī, 

Murzuq and Uan Kasa sand seas (Figure 1.1).  

Sand seas typically consist of complex dune patterns, in which two or more dune 

types have joined together or are superimposed (du Pont, 2015). A complex dune 

pattern usually forms over several generations of formation in which the larger, slower 

dunes are surpassed by smaller, faster moving dunes (du Pont, 2015). Holocene 

dunes are typically superimposed on Pleistocene linear megadunes (draa) (Bubenzer 

& Bolten, 2008; Mercuri, 2008). The linear megadunes where most likely formed 

during the hyper-arid Last Glacial Maximum (more than 20 ka cal BP), as a result of 

the increase in the wind velocity (due to the enhanced pressure gradient between the 

larger cold polar region and the tropics (Bubenzer & Bolten, 2008; Mercuri, 2008).  

Due to the limited amount of studies conducted in the Ubārī Sand Sea little information 

is available on the dunes in the area. Therefore the dune patterns and origins of the 

Great Sand Sea of Egypt and the Uan Kasa Sand Sea will be briefly discussed. Both 

sand seas occur within the wider Central Sahara desert (Bubenzer & Bolten, 2008; 

Cremaschi & Zerboni, 2009). 

Within the Great Sand Sea of Egypt the linear megadunes were formed by strong 

trade winds during the last glacial maximum (Bubenzer & Bolten, 2008). Strong, dry 

westerlies deposited sand further south on the eastern slopes of the megadunes at 

the end of the Pleistocene. The upper parts of the megadunes were reactivated 

approximately 7 ka cal BP (with the onset of the modern hyper aridity), due to the 

decrease in the velocity of the wind the bodies of the megadunes remained stable – 
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resulting in active dunes that reach heights of 5 – 30 m superimposed on the stable 

linear megadunes that reach heights of 50 m (Bubenzer & Bolten, 2008).  

The Uan Kasa sand sea (Figure 1.1) is north-south orientated and 200 km in length. It 

is made up of linear dunes that are parallel aligned, exceeding 100 m in height, with 

interdune corridors that are wide and flat. The hydromorphic conditions of the area 

resulted in accumulation of saprolite (friable weathered sand stone) and etiolated sand 

(bleached and mottled sand) at the base of the dunes. A rise in the water table and 

the storage of rain water in the intergranular pore spaces of the sand due to enhanced 

water supply resulted in an increase in the water availability. This water availability led 

to an increase in weathering of the dune slopes and resulted in the formation of deep 

soils. Small, shallow lakes and ponds formed in areas with suitable geomorphologic 

conditions and outcrop aquifers – a phenomenon that can also occur in the Murzuq 

sand sea (coinciding with 8000 years BP dry event) (Cremaschi & Zerboni, 2009). 

The general dune type within most parts of the Central Sahara is linear dunes. From 

the Landsat satellite image (Figure 1.5) it can be seen that the dominant dune type 

within the Ubārī Sand Sea is also linear dunes. These dunes have been described as 

having heights of approximately 100 m and lengths of 100 km and covered by barchan 

dunes on the surface (McKee, 1979). These superimposed barchans are believed to 

be a result of modern aeolian activity, whereas the large primary dunes were most 

likely formed by aeolian activities of the past (McKee, 1979). In the northern and 

western part of the sand sea some star dunes can also be seen, as described by 

McKee (1979) the linear ridges combine forming a star dune field in the centre of the 

sand sea (Figure 1.5). 
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Figure 1.5: Mosaic image of six Landsat 8 tiles covering the Ubārī Sand Sea (October 2015), 

depicting the following types of dunes: (A) star dunes (three individual star dunes 

are circled in yellow), (B) linear dunes (three individual linear dunes are circled in 

red)

Bedrock Uplands 

Bedrock Uplands 
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2. Chapter 2: Literature review 

2.1 Introduction 

Sand dunes (both coastal and inland) cover approximately 10% of the land area 

between 30˚ north and south latitudes (Levin et al., 2004) and 14.2% of the land 

surface of Earth (Badescu et al., 2008). Dune heights generally range from 30 cm to 

over 300 m, but their extent is usually more accurately known than the height (Levin et 

al., 2004).  

 

Dune movement or migration occurs when individual grains are transported by the 

wind. This movement (stability of the sand dune) is influenced by the wind strength, 

duration and direction; erosion (extent and rate), distance from the source, grain size, 

topography and the texture of the surface, it is also influenced by vegetation cover and 

surface moisture (El-Baz, 2000; Badescu et al., 2008; Flagg et al., 2014).  

 

This chapter will explore the formation and migration of sand dunes specifically within 

arid environments as well as the possibilities of using remotely sensed satellite 

imagery (specifically multispectral imagery) in combination with a GIS to study these 

dunes and their movement.  

 

2.2 Sand dunes and dune migration in arid environments 

2.2.1 Sand dunes in arid environments 

Sand dunes are “heaps of sand” that are formed by the transport and deposition of 

sand grains, in arid environments dunes are usually seen in sand sea systems (or 

Ergs) (du Pont, 2015).  

These grains are deposited (where they then accumulate) either when faced by an 

obstruction/ obstacle (rock, tree, etc) or if the wind velocity no longer exceeds the 

grain size threshold velocity (thus the wind is not strong enough to carry the grains) 

(Goudarzi, 1970; du Pont, 2015). Sand dunes usually consist of a windward slope, a 

crest and a lee- / slipface (avalanche face). The crest is the break of slope between 

the windward slope and slipface. The windward slope is usually characterised as 

longer with gradual gradient whilst the slipface usually has a steep gradient and 
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regularly has a concave shape (Fig. 2.1).  The heavier grains are deposited on the 

windward slope and the smaller/ lighter grains are transported further up the slope, as 

it passes the crest due to gravity and decreased wind speed the deposition rate 

increases and grain flow results from overloading at the brink point.  

(a)  

(b)  

(c)  

Figure 2.1: (a) Sketch of a cross section of a sand dune, showing the windward slope, crest 

and slipface, (b) Satellite image of a section of the Rub’Al-Khali sand sea showing 

the dune morphology from above and (c) a cross section of the same section 

within the dune field showing the dune and interdune areas, dune wavelength and 

spacing (Al-Masrahy & Mountney, 2013: their Figure 4, p. 161). 
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2.2.2 Dune Morphology 

There are several different types of dunes: Barchan dunes, transverse dunes, linear 

dunes, star dunes and parabolic dunes. Based on the wind directionality, sediment 

supply (Mainguet & El-Baz, 1986; du Pont et al., 2014) and topography of the area 

(Goudarzi, 1970; du Pont, 2015), dunes can be classified into three groups (those that 

form in a monodirectional, bidirectional and multidirectional wind regime) and six types 

based on the shape and orientation of the resulting dune crest (Barchan, Transverse, 

Star, Linear and Parabolic dunes, see Figures 2.2 and 2.3) (Mainguet & El-Baz, 1986; 

du Pont et al., 2014; du Pont, 2015). In areas with a larger supply of sand combined 

with a unimodal wind regime, transverse or barchans dunes are usually the results. 

Similarly, in areas with smaller sand supply and accompanied by a multidirectional or 

complex wind regime star dunes usually occur (Huggett, 2007) (Figure 2.3). 

 

Barchan Dunes Transverse Dunes 

Linear Dunes Star Dunes 

Figure 2.2: Sand dune types and their dominant wind direction (show with black arrows) 

(McKee, 1979: his Figures 3-5, 11, pp. 11 & 13) 
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Figure 2.3: Dune types in relation to the variability of wind direction and sand supply 

(Huggett, 2007: his Figure 12.4, p. 303). 

 

Uni-directional wind regimes results in dunes with crest orientations that are 

perpendicular to the wind direction. Bi- and multi-directional wind regimes result in an 

“averaged” crest orientation maximizing the normal transport of sand to the dune crest 

as winds from different directions and strengths each contributes to the dune’s 

development over time (du Pont, 2015). 

 

3.2.2.1 Uni-directional wind regime: 

a.  Barchan dunes 

Barchan dunes are thought to be the “elementary dune form” and forms in areas with 

moderate sediment supply and wind velocity. This dune type most commonly occurs in 

isolation on a non-erodible surface. When viewed from above the dunes have a 

crescent shape with two arms extending in the downwind direction (Fig. 2.4). The 

crescent shape of the dune develops under a uniform wind approaching the dune but 

due to the increased height of the centre (compared to the sides) of the barchans the 

grains in the centre have to be transported higher (and further) than those at the sides. 

This results in faster transport of grains along the sides/arms than the centre of the 

dune resulting in the crescent shape of barchans (du Pont, 2015). The slipface of 
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barchan dunes are on the concave side of the dune (Mainguet & El-Baz, 1986; 

Livingstone, et al., 2007; du Pont et al., 2014; du Pont, 2015) (Fig. 2.2 and 2.4). 

Barchan dunes range in height from 1 to 50 m and between 10 to 500 m range in 

length and width. These dunes typically migrate fast at a rate ranging from 1 to 70 

m/year (depending on wind strength and dune size) (du Pont, 2015). 

(a)  (b)  

(c)  

(d)  

Figure 2.4: (a) Google Earth image of a Mega Barchan dune in Morocco (du Pont, 2015: his 

Figure 3d, p. 126); (b)  satellite image of mega-barchan dunes in the north eastern 

section of the Rub’ Al-Khali sand sea (Saudi Arabia); (c) satellite image of complex 

barchans dunes with superimposed dunes on the northern section of Rub’ Al-Khali 

sand sea (Saudi Arabia) (Al-Masrahy & Mountney, 2013: their Figures 6a and b, p. 

163); and (d) Photo of a Barchan dune in the vicinity of Tarfaya (Morocco) 

(du Pont, 2015: his Figure 3a, p. 126).   
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b. Transverse dunes 

Transverse dunes are found in arid areas with a unidirectional wind regime on a 

erodible surface (du Pont, 2015). Transverse ridges can also form when the sand 

supply increases to such an extent that migrating barchan dunes link into barchanoid 

ridges and then form transverse ridges (dunes). These dune crests form perpendicular 

to the dominant wind direction and are usually long linear dunes (Figure 3.2 and 3.5). 

This type of dune is commonly found in dune fields with a well-defined wavelength 

(Livingstone, et al., 2007; du Pont, 2015). Transverse dunes are also commonly found 

superimposed upon larger dunes or draa (du Pont, 2015). 

(a)  (b)  

Figure 2.5: Google Earth images of transverse dunes in (a) Morocco and (b) Mocamedes 

desert (Angola) (du Pont, 2015: his Figures 4a and b, p. 128). 

 

3.2.2.2 Bidirectional wind regime 

a. Linear (seif) dunes 

Linear dunes can be identified as straight dunes, parallel to the dominant wind regime, 

and are usually smaller in width than length (Fitzsimmons et al., 2007; Telfer et al., 

2015) (Figures 2.2 and 2.6). These dunes occur in regions with a bimodal wind regime 

(with an obtuse angle between the two wind directions) (Livingstone et al., 2007; du 

Pont et al., 2014; Telfer et al., 2015). The bimodal wind regime is not necessarily 

symmetrical resulting in an asymmetrical development of the dune (Livingstone et al., 

2007).  

The crests of simple linear dunes are sharp and the orientation of the slipface may 

change (as a result of the bidirectional winds) but the crests can also be broad with 
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superimposed dunes (Livingstone et al., 2007; du Pont et al., 2014; Telfer et al., 2015) 

and in some areas linear dunes may have more than one crest line (e.g. Great Sandy 

Desert in Australia). Although individual dunes are sometime only ~10 m high and 

~100 m wide, they can range in length from ~10-100 km (Telfer et al., 2015). Linear 

dunes are usually evenly spaced resulting in highly organized linear dune fields (major 

dune fields contain thousands of dunes) (Telfer et al., 2015). Patterning in the 

dunefield can occur as the dunes coalesce and bifurcate resulting in an irregular 

spread of dunes and interdunes. This patterning is subjective to the interactions of the 

individual dunes based on the area and or site specific boundary conditions (Telfer et 

al., 2015).  

     

(a)  (b)  

(c)  (d)  

Figure 2.6: Google Earth images of (a) Seif dunes in Niger (b) Linear dune fields (top) and 

superimposed dunes (bottom) in the Rub’Al-Khali sand sea (Saudi Arabia); and (c) 

dunes in the Mu Us Desert (China) (du Pont, 2015: his Figures 5b, c and e, p. 

130); and (d) a satellite image of compound linear ridges from the southern section 

of the Rub’ Al-Khali sand sea (Al-Masrahy & Mountney, 2013: their Figure 6c, p. 

163). 
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3.2.2.3 Multidirectional wind regime  

a. Star dunes 

Star dunes can be identified by their multiple radiating arms from the massive 

pyramidal centre (Figures 2.2 and 2.7) and are formed under multidirectional wind 

regimes (resulting in a small overall sand flux) (Mainguet & El-Baz, 1986; du Pont et 

al., 2014; du Pont, 2015). These dunes can usually be found at the boundaries of 

sand seas especially close to topographic boundaries and are most commonly seen at 

high pressure belt latitudes (du Pont, 2015). Initially the dune grows by sand 

accumulating at the centre of the dune pile, only when a maximum height and length 

has been reached does the radiating arms start to grow. These dunes are relatively 

large (as a result of the small overall sand flux) and can be approximately 1 km wide 

and 100 m high. These dunes appear to interact with their radiating arms forming a 

regular network (du Pont, 2015). 

(a)  (b)  

(c)  (d)  

Figure 2.7: (a) Photo of a star dune in the Rub Al-Khali sand sea, (b & c) Google Earth images 

of star dunes in Algeria (du Pont, 2015: his Figures 6a, b and c, p.132); and (d) 

satellite image of star dunes in the central section of the Rub’ Al-Khali sand sea 

(Al-Masrahy & Mountney, 2013: their Figure 6d, p. 163). 
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2.2.3 Sand seas 

Some desert dunes can be found in seclusion but are more often clustered together in 

groups (in some cases thousands of dunes), these dune groups are referred to as 

sand seas (dune-fields or ergs) (Al-Masrahy & Mountney, 2013; du Pont, 2015; Telfer 

et al., 2015). Within these sand seas both systematic patterns and a certain degree of 

spatial uniformity can be found (Al-Masrahy & Mountney, 2013; Telfer et al., 2015). 

The dunes present within these sand seas may merge or split apart forming new 

patterns. This patterning is a result of self-organizing systems with complex 

interactions with the regional atmospheric boundary layer and sediment source (Al-

Masrahy & Mountney, 2013; Telfer et al., 2015). Du Pont et al. (2014) stated that sand 

seas exhibit a great variety of dune shapes, sizes and orientations as a result of the 

wide variety of wind directionality and velocities (in relation to seasonality and long 

term climate changes) that are experienced within most of the sand seas.  

Sand seas are not completely covered in active sand dunes, other morphological 

bodies (interdunes, soil cover, sand sheets, fluvial systems and lacustrine systems) 

may also be present (Al-Masrahy & Mountney, 2013). The formation of sand seas and 

the spatial variations therein are influenced by several factors including: sediment 

supply and availability and wind strength, these factors influence the time and place 

where growth may occur (Al-Masrahy & Mountney, 2013; du Pont, 2015).  

Because dunes only migrate in the presence of wind, if there is no wind there is no 

movement and therefore dunes represents the wind regime over long periods and not 

just the present wind regimes, thus superimposed patterns are formed with a range of 

shapes and sizes. This information is used to predict climatic conditions on other 

planetary bodies where similar dune patterns are found (du Pont, 2015). Large dunes 

represent the different wind regimes of its past and shows this hierarchy of 

superimposed dunes starting from its elementary length (~20 to 30 m) (du Pont, 

2015). It has been found that primary linear dune trends do not always correspond to 

the modern wind regime (the orientation of the superimposed dunes that are younger 

than the primary dunes do match the modern wind regime). This can be attributed to 

the age of the primary dunes (the wind regimes may have changed since the 

formation of the primary dunes) (Mainguet & El-Baz, 1986; Fitzsimmons et al., 2007; 

du Pont et al., 2014; du Pont, 2015). Fitzsimmons et al. (2007) stated that fully 
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stabilised dune field are considered to preserve periods of past aridity and desert 

expansion more effectively than semi-active dunes in the arid core.  

Several sand seas occur within the Sahara (see Figure 2.8). 

 

Figure 2.8: Sand Seas of the Sahara, 1. Grand Erg Occidental; 2. Grand Erg Oriental; 3. 

Ubārī; 4. Murzuk; 5. Calanscio; 6. Great Sand Sea; 7. Selima; 8. Fachi-Bilma & 

Te’ne’re’; 9. Majabat al Koubra; 10. Aouker; 11. Akchar; 12. Iguidi; 13. Chech 

(from Badescu et al., 2008: their Figure 1, p. 2). 

2.2.4 Sand dune migration in arid environments 

Sand dune migration is the process where the sand particles are transported (usually 

includes grains eroded from the windward slope) by the wind across the dune where it 

falls down the slip face and settles. The next set of grains is also transported across 

the dune and settles on top of the previously transported grains. This process 

continues as long as there is wind and so the dune migrates grain by grain in the 

direction of the wind transport (see Figure 2.9). 
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Figure 2.9: The downwind progress of a transverse dune (Adapted from Huggett, 2007: his 

Figure 12.3, p.303). 

The transportation of sand grains can be divided in to three groups: 1. Saltation, 2. 

Creep, and 3. Suspension (du Pont, 2015; See Figure 2.10). Saltation is characterised 

by “jumping” grains, creep by rolling grains (that are often dislodged by saltating 

grains), and suspended grains are those that are “air borne” and can be transported 

over long distances. Only saltation and creep modes of transport are relevant to dune 

dynamics (Masselink et al., 2011; du Pont, 2015). 

 

Figure 2.10: A schematic representation of the different modes of transport of sand grains 

(Adapted from Masselink et al., 2011).  

Different dune types have different characteristics that influence their rate and 

direction of migration. Tsoar et al. (2004) and El-Magd et al. (2013) classified dunes 

into three distinct groups: net migrating (transverse and barchan dunes), net 

elongating (linear dunes), and net accumulating (star dunes) dunes, based on the 

wind regime and topography (Mainguet & El-Baz, 1986; Tsoar et al., 2004; du Pont et 

al., 2014). In the case where the entire body of the dune moves with little/no change in 

the shape and dimensions of the dune it is known as a migrating dune (Tsoar et al., 

2004; El-Magd et al., 2013). Migrating dunes are the most active group of dunes and 

can pose a threat to infrastructure and land cover/use, e.g. covering fertile soil with 
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sand (Ghadiry et al., 2012; El-Magd et al., 2013). Elongating dunes are dunes that 

experience an increase in length (as the migration occurs parallel to the wind 

direction) over time. Accumulating dunes (e.g. star dunes) may grow in height not 

necessarily in width or displacement (Mainguet & El-Baz, 1986; Tsoar et al., 2004; El-

Magd et al., 2013). Transverse dunes typically migrate perpendicular to the orientation 

of the dune crest in the direction of the dominant wind regime, whilst linear dunes 

extends (migrating parallel with the crest orientation in the direction the direction of the 

dominant wind regime) and oblique dunes (barchans) both migrate and extend (du 

Pont, 2015). 

Due to the dynamic nature of dunes, the different types of dunes change and/ or 

migrate at different rates, for example barchan dunes (reaching heights of 50 m or 

more) from Ceara, Brazil, move at an average rate of 17.5 m/year (Levin et al., 2004) 

whereas the seif dunes from the Negev Desert migrated laterally at an average rate of 

0.3 m/year over a 26 year period (1973-1999) (Rubin et al., 2008) (these values are 

averages over several years, the annual migration rates varies from year to year). 

Refer to Table 2.1 for more examples.  
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Table 2.1: Dune migration rates per dune type from the literature. 

Dune Type Location Migration 

Rate (m/yr) 

Method Source 

Linear 
Qaidam Pendi, NW 

China 
1.3 

Aerial 

photography 
Livingstone et al., 2007 

Linear 
NW Sinai (Bir El Abd 

& Wadi El Gady) 

0.7 & 2 

(lateral) 
Field Study Phillip et al., 2004 

Linear 
NW Sinai (Bir El Abd 

& Wadi El Gady) 

2.25 & 13 

(elongation) 
Field Study Phillip et al., 2004 

Barchan  Toshka Depression 1.3-19.3 
OSD* 

(Landsat) 
El-Magd et al., 2012 

Barchan  
NW Sinai (Wadi El 

Massaged) 
3.5 Field Study Phillip et al., 2004 

Barchan  Daklha Oasis, Egypt 3-9 SPOT Ghadiry et al., 2012 

Combination 

(Linear, 

Barchan, 

Transverse) 

Great kobuk Sand 

Dunes 
0.5-3.8 

SPOT & 

ASTER 
Necsoiu et al., 2009 

*OSD – on screen digitization 

 

Sediment mobility is usually related to precipitation and surface moisture (sand 

mobility is decreased with increased moisture content), evaporation, wind magnitude, 

sediment supply, grain size properties and vegetation cover (increased vegetation 

cover inhibits sediment movement) (Walsh et al., 1988; Levin et al., 2004, 2006). 

Several wind parameters need to be considered including wind velocity and direction, 

these parameters can be influenced by the topography, vegetation cover, biogenic 

crust, surface moisture content, water table position and deposition of fine particles 

(Walsh et al., 1988; Levin et al., 2004, 2006, 2012). Dune mobility indices are usually 

based on climatic variables such as temperature, evapotranspiration, wind energy, 

rainfall and sediment supply (Levin et al., 2012). 
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Ramsey et al. (1999) stated that sediment weathering, transport and erosion are 

ongoing processes within active sediment transport pathways in arid environments. 

They also stated that the analysis of dune-fields (composition and movement) is a 

critical component for interpreting past climatic conditions, local geology, and future 

desertification potential. 

 

2.2.5 Studying sand dunes and sand dune migration  

In order to develop models with which the principal controls on the distribution of 

desert dunes can be explained, it is important to understand the morphology and 

distribution of dune deposits and interdune areas (Al-Masrahy & Mountney, 2013). 

Establishing spatial trends in dune morphology and understanding the morphological 

complexity of modern systems can also assist in the reconstruction of 

palaeoenvironments and predictions of subsurface strata successions (Al-Masrahy & 

Mountney, 2013) and wind patterns (Varma et al., 2014). It has become important to 

be able to accurately map and monitor deserts and desert environments in order to 

employ the correct management actions (e.g. if the dunes are migrating in the 

direction of populated or agricultural areas, it would be necessary to take immediate 

steps) (Varma et al., 2014).  

Various challenges and problems (including dune formation, desertification, land-

degradation, climate change, water shortages, urbanization and management 

concerns regarding waste, land and vegetation shortages) are faced by urban areas, 

engineering practices and humans in desert cities (Badescu et al., 2008; Aldossary, 

2012). Within Mauritania, good examples of urban areas affected by dune migration 

can be found, where in the ancient city Chinguetti, several of the homes on the edge 

of the city were abandoned due to the invasion of desert sands (Badescu et al., 2008). 

 

2.3 Remote sensing and GIS in relation to sand dunes and sand dune 

migration 

2.3.1 Introduction 

Satellites acquire images of the earth’s surface by measuring the energy (reflected 

from the earth’s surface) in different spectral bands. The physical and chemical 
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properties of materials absorb, reflect and emit electromagnetic energy in different 

parts of the Electromagnetic (EM) spectrum. The amounts of energy measured can be 

used to deduce information about the object being observed (Kennedy et al., 2009). 

 

Mohamed & Verstraeten (2012) state that several factors influence the 

electromagnetic spectrum (EMS) of dunes and should be taken into account when 

using satellite remote sensing to analyze dunes. Vegetation cover, biogenic-soil crust, 

moisture content, dune texture, morphological parameters and dune sand 

mineralogical composition are some of the relevant factors (Ramsey et al., 1999; 

Howari et al., 2007; Mohamed & Verstraeten, 2012). 

Several remote sensing platforms have been used to study different aspects of sand 

dunes/seas (See Table 2.2). The most common platform used is Landsat (Pease et 

al., 1999; Mohamed & Verstraeten, 2012; Al-Masrahy & Mountney, 2013), DEMs 

derived from ASTER and SRTM (Warren & Allison, 1998; Levin et al., 2004; Necsoiu 

et al., 2009) and some high resolution platforms such as SPOT (Ayad, 2005; Necsoiu 

et al., 2009; Ghadiry et al., 2012) and Quickbird (Hesse, 2009; Levin et al., 2012). 

Several types of geomorphological analyses (including area change, elevation change 

maps, elevation profiles, volumetric change calculations, identification of areas of net 

erosion and deposition, geomorphological mapping) can be done with the use of a 

Digital Elevation Model (DEM). In conclusion, using satellite imagery can enhance our 

understanding of dune processes and enable analysis of larger areas (Levin et al., 

2004; El-Magd et al., 2013). 
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Table 2.2: Examples of remote sensing data that have been used for sand dune 

characterization from the literature 

Remote Sensing Platform Studied Reference 

ASTER Global Digital 

Elevation Model (GDEM) Dune Morphometric Analysis Bullard et al., 2011 

Landsat Dune Dynamics at the Dune Field Scale 

Mohammed & 

Verstraeten, 2012 

Landsat & SRTM Spatial Variability of Dune and Interdune 

Al-Masrahy & 

Mountney, 2013 

Landsat TM Mapping Sand Dune Patterns Al-Dabi et al., 1998 

Landsat TM 

Mineralogical Characterization & 

Transport Pathways of Sand Dunes Pease et al., 1999 

Landsat TM 

Dune Size and its relation to to the 

environment 

Warren & Allison, 

1998 

Landsat TM & ETM+ Dune Characterization Levin et al., 2004 

Quickbird Determining Dune Age Hesse, 2009 

SAR  

Linear Dune Identification & 

Characterization Qong, 2000 

SAR (Polametric Synthetic 

Aparture Data) Dune type identification Blumberg, 1998 

SPOT 

Land use change in relation to dune 

migration Ayad, 2005 

SPOT Sand dune encroachment Ghadiry et al., 2012 

SPOT & ASTER GDEM Monitoring Migration of Dunes 

Necsoiu et al., 

2009 

SRTM Dune Field Characterization Bishop, 2010 

 

2.3.2 The use of remote sensing and GIS in the study of sand dunes and dune 

migration in arid environments 

The availability of high resolution satellite imagery has resulted in significant advances 

being made in the understanding of the spatial arrangement of dune patterns (Al-

Masrahy & Mountney, 2013). Satellite remote sensing in combination with a 

geographic information system (GIS) can be used for the examination of spatial 

relationships at different scales that would be difficult to do with the use of only 

fieldwork or traditional aerial photography. Traditional methods are limited spatially 
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and is time consuming and very expensive for a small amount of data. Satellite remote 

sensing can cover larger areas in less time, is less expensive and several different 

processing techniques can be applied to the data to differentiate the multitemporal 

information (Paisley et al., 1991; Levin et al., 2004; Aldossary, 2012; El-Magd et al., 

2013). Remotely sensed data of any point on earth are collected every time from the 

same reference point and through the same sensors (Collado et al., 2002). Remotely 

sensed data can also be used to explore spatial distributions and temporal trends of 

the earth’s surface (Collado et al., 2002; Aldossary, 2012).  

Satellite remote sensing has been used over the past several decades to study 

desertification and sand dune morphology (Ramsey et al., 1999; Collado et al., 2002). 

Desert dunes have been termed an “ideal target” for monitoring (due to their 

remoteness and general lack of data; low cloud cover; uniform surfaces and low 

vegetation and urban cover) with the use of satellite remote sensing (Ramsey et al., 

1999). In some cases, actual sand dune migration rates can be measured from 

satellite imagery (Ramsey et al., 1999; Ghadiry et al., 2012; Mohamed & Verstraeten, 

2012; El-Magd et al., 2013). This can give geologists a summarized view of large 

aeolian systems and their sediment sources (Ramsey et al., 1999). Satellite imagery 

has also enabled a the study of the Toshka Depression (Egypt) on a wider scale and 

the determination of dune migration rates (El-Magd et al., 2013), identifying and 

characterizing sand dunes and their dynamic nature (Collado et al., 2002). Collado et 

al. (2002) made the observation that in order to discriminate sand bodies most authors 

rely on analysing the visible reflectence (0.4 – 0.7 μm), because it has been found that 

bare soil effectively reflect the visible bands (Collado et al., 2002).  

2.3.3 Limitations associated with the use of remote sensing and GIS in sand 

dune and sand dune migration studies 

The main limitation associated with the study of sand dunes (especially in desert 

areas) with the use of multispectral remotely sensed data is the difficulty to discern the 

different parts of the dunes based on the spectral response alone, as the different 

parts of a dune (that are mainly made up of the same substance = sand) may have 

similar spectral signatures (Varma et al., 2014). However, Mohamed & Verstraten 

(2012) noted that there may be different brightness patterns in the different parts of 

the dunes. This limitation may be overcome by combining multispectral and elevation 

data in order to assist in defining training data. Another possible solution to this is the 
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use of high spectral resolution data and/ or high resolution elevation data from active 

sensors, however, the costs related to this kind of data may outweigh the advantages 

associated with it.  

 

2.4 Previous Research 

Within this section previous research concerned with multi-spectral data will be 

reviewed with the focus placed on the influence of spatial resolution specifically on the 

analysis of dunes in arid regions.  

2.4.1 Coarse spatial resolution imagery studies 

In this study a coarse spatial resolution will be considered as a pixel size of 30 x 30 m 

or larger. Landsat is one of the most common forms of coarse resolution satellite 

imagery that has previously been used in sand dune studies (Paisley et al., 1991; Al-

Dabi et al., 1998; Pease et al., 1999; Ramsey et al., 1999; Lam et al., 2011; Mohamed 

& Verstraeten, 2012; Al-Masrahy & Mountney, 2013; Telfer et al., 2015). This can be 

attributed to it often being public and freely available, has a wide temporal coverage 

and has a reasonable ground resolution for detecting dune system changes as well as 

limited radiometric and geometric problems (Mohamed & Verstraeten, 2012). The 

images are taken at Nadir and the sand cover can be identified through the spectral 

reflectance, it can easily be used for mapping dune patterns and therefore the 

movement of dunes (Al-Dabi et al., 1998; Ramsey et al., 1999). 

Previous research using Landsat have been concerned with (1) determining sediment 

pathways (Pease et al., 1999), (2) dune migration and migration rates (monitoring 

spatial and temporal changes in dune patterns) (Al-Dabi et al., 1998; Mohamed & 

Verstraeten, 2012), (3) tracking desertification and dune encroachment processes 

(Lam et al., 2011), (4) documenting the spatial variability of dune and interdune 

morphology in dune systems (Al-Masrahy & Mountney, 2013; Telfer et al., 2015), (5) 

discriminating between different sand size populations (Paisley et al., 1991; Lam et al., 

2011), and (6) monitoring desertification and dune encroachment (Paisley et al., 

1991). These studies have been conducted on the Wahiba Sand Sea (Pease et al., 

1999), South-Rayon Dune Field, Namib Sand Sea, White Sand Dune Field, Gran 

Desierto Sand Sea, Rub’ Al-Khali, Great Linear Dunes (Mohamed & Verstraeten, 

2012), Kelso Dunes (Mojave Desert) (Paisley et al., 1991; Lam et al., 2011), northwest 
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Kuwait (Al-Dabi et al, 1998), Rub’ Al-Khali (Al-Masrahy & Mountney, 2012) and the 

Great Sandy Desert, the Kalahari, Simpson Desert and Strzelecki (Telfer, et al., 2015). 

Pease et al. (1999) used Landsat TM data to propose sediment transport pathways in 

the Wahiba Sand Sea based on mineralogy spatial patterns. They found that Landsat 

TM data were valuable in the geomorphic interpretation of the desert, to discriminate 

different minerals found in the Wahiba area.  They used different band combinations 

to discriminate between the different minerals (quartz, mafic- and carbonate minerals 

with the use of bands 6 and 4 (thermal infrared and infrared respectively) for example, 

the minerals were discriminated based on the variation in temperatures (the 

temperature variations were caused by the variation in the absorption and emission of 

energy by the different minerals). 

Another study by Mohamed & Verstraeten (2012) stated that the crest of the dune 

appears brighter than the rest of the dune (due to its higher reflectance) in the 

Thematic Mapper’s Near-Infrared (TM-NIR) images.  They made use of this to develop 

a quick method of examining dune migration for large areas based on dune-crest/ 

slipface migration (identified as a “spectrally-stable and easy-to-detect feature”). A 

combination of Bi-Temporal Layer stacking and RGB-Clustering was used to produce 

a preliminary, fast understanding of the dune dynamics without any preceding 

fieldwork or knowledge. It was concluded that this approach could be used as an initial 

step to detect areas where migration/change is occurring, in order to provide a starting 

point for further analysis (Mohamed & Verstraeten, 2012), in this case assessing the 

rate of crest migration.  

Paisley et al. (1991) and Lam et al. (2011) also found that dunes are characteristically 

unique with regards to their spectral brightness, and this could be used to differentiate 

between different sand populations (based on spectral brightness). They stated that 

inactive dune sands reflect less electromagnetic radiation than active dunes; active 

dunes thus appear brighter than inactive dunes. This was attributed to the higher 

albedo of active sand surfaces (Lam et al., 2011) due to the presence of a higher 

amount of quartz sand-size grains than darker inactive sands (Paisley et al., 1991). 

Based on this albedo difference, active sand surfaces were successfully traced on 

Landsat TM data to track the desertification/ dune encroachment process of the Kelso 
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dunes (Lam et al., 2011). The discrimination of active and inactive sands can help to 

assess sand transport and to interpret regional geologic history (Paisley et al., 1991).  

Al-Dabi et al. (1998) used multi-date Landsat TM images to monitor the temporal and 

spatial changes in the sand dune patterns in northwest Kuwait. They were able to 

detect migration of the dunes as well as changes in the overall shape of the dune field. 

They used Landsat band 2 (green), 4 (NIR) and 7 (short wave infra-red) – these were 

selected because they show high reflectance variability of the desert surface. The 

images were processed and enhanced with several different methods after which the 

dunes were mapped with a technique called on-screen-digitizing to create dune 

density maps.  They excluded dunes that were smaller than the pixel resolution 

(30 m), hidden by topographic shadows or next to a major road.  

Al-Masrahy & Mountney (2013) attempted to quantitatively document the spatial 

variability of dune forms and interdune morphology from the centres of the aeolian 

dune-field systems to their margins (Rub’ Al-Khali, Saudi Arabia). They used multi-

spectral Landsat data (spatial resolution of 15 m per pixel derived from 15-30 m 

resolution Landsat MSS pansharpened with panchromatic Landsat image processing 

software; and Landsat 7 near-infrared band) and derived elevation data from SRTM 

data (absolute vertical accuracy of 16 m and relative vertical accuracy of 10 m). The 

resultant net direction of sediment transport was identified from the analysis of dune 

bedform type and slipface orientation and through reference to the Resultant Drift 

Direction calculations.  

ASTER and SRTM images have been used to construct global DEMs (Blumberg, 

2006; Bullard et al., 2011). From these DEMs, elevation and sand volume data can be 

extracted (Blumberg, 2006; Hesse, 2009; Al-Masrahy & Mountney, 2013). Al-Masrahy 

& Mountney (2013) derived elevation data from SRTM data (absolute vertical and 

horizontal accuracy of 16 m and relative vertical accuracy of 10 m). Blumberg (2006) 

attempted to use SRTM DEM data (C-band and X-band) to characterize and map the 

spacing and height of dunes within large sand seas. It was found that only larger dune 

forms could be mapped reliably and that the dune height and spacing extracted from 

the SRTM DEMs were generally similar to those reported in the literature (Blumberg, 

2006). A comparison of the C- and X-band data led Blumberg to conclude that X-band 
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data showed the dune height better and is more sensitive to smaller scale undulations 

on large dunes with smaller superimposed dunes. 

Limitations of coarse resolution imagery and derived products (DEMs) 

The most pronounced limitation of a coarse spatial resolution (especially in change 

analysis) is that it is not useful where the amount of change is smaller than the pixel 

size. Another limitation of coarse spatial resolution data is that geo-rectification errors 

are greater and may result in a lower geometric accuracy than higher spatial resolution 

data.  

Landsat has a relatively coarse spatial resolution (between 15 and 120 m, depending 

on the mission) (Levin et al., 2004) and steep topography can result in specular 

reflectance areas (Birnie et al., 1989).  

ASTER DEMs are unsuitable for quantitative analysis of dune morphometry where 

dune heights are less than 20-30 m, but may be applicable where dunes are spatially 

larger (due to the low resolution of the DEM) (Hugenholtz & Barchyn, 2010; Bullard et 

al., 2011). It has limited value for differentiating small, simple dune forms and small-

scale superimposed dunes and the Global DEM is not suitable for small or closely 

spaced dunes (Bullard et al., 2011). The same is true for SRTM data 

(Bullard et al., 2011). 

SRTM DEMs are only suitable for the detection of large dunes (heights of 50 m or 

more and spacing of 1.5 km) due to its low horizontal resolution and vertical accuracy 

(Bullard et al., 2011). 

2.4.2 Fine spatial resolution imagery studies 

Fine spatial resolution in terms of this study will be considered as an image pixel size 

smaller than 30 x 30 m (for example Spot, Ikonos, Worldview and RapidEye). Very few 

studies (Ghadiry et al., 2012) utilized fine resolution data only. This could possibly be 

attributed to the small areal and temporal coverage that is currently available for high 

resolution data. The measurement of slow migration rates (e.g. glacier flow, mass 

movements, dune migration and other local processes) have been made possible with 

the use of fine resolution imagery accompanied by the appropriate analytical methods 

(e.g. COSI-Corr technique) (Necsoiu et al., 2009).  
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Several studies on sand dunes (in particular) have used a combination of coarse 

(especially DEMs) and fine spatial resolution imagery (e.g. SPOT, IKONOS and 

Quickbird) (Hesse, 2009; Necsoiu et al., 2009; Effat et al., 2012; El-Magd et al., 2013). 

These studies mostly used combinations of fine resolution imagery (e.g. SPOT, 

IKONOS, Quickbird) and coarser resolution digital elevation models (DEMs) (ASTER 

& SRTM) to (1) identify and estimate sand dune migration rates and age based on 

terminal sand volume and sand flux (Hesse, 2009; Necsoiu et al., 2009), and (2) 

assess the potential risk associated with the movement of the dunes (by tracing dune 

morphology and determining the position of the crests on succeeding images) (Effat et 

al., 2012; El-Magd et al., 2013). These studies were focused on the Great Kobuk Sand 

Dunes (Necsoiu et al., 2009), Peruvian-Chilean coastal desert (Hesse, 2009), Sinai 

Peninsua (Effat et al., 2012) and the Toshka Depression, Egypt (El-Magd et al., 2013). 

Ghadiry et al. (2012) used two SPOT images to study dune encroachment in the 

Dakhla Oases (Egypt), and to develop a user friendly tool (integrating both remote 

sensing and GIS) for automated feature extraction that enables the quantification of 

dune migration rates. The results showed that the dune migration rate in the area 

ranged between 3-9 m per year. The majority of sand dunes had a migration rate 

between 0-6 m/year and very few dunes had a migration rate of more than 6 m/year. 

Necsoiu et al. (2009) stated that the COSI-Corr technique has proven to be a reliable 

technique for measuring dune migration rates. A combination of ASTER Visible and 

Near Infrared (VNIR) and SPOT Panchromatic images was used to estimate unbiased 

velocity magnitudes of the Great Kobuk Sand Dunes (Necsoiu et al., 2009). It was 

estimated that these dunes migration rates vary from 0.5 m to 1.5 m/year with peak 

velocities up to 3.8 m/year (with an uncertainty of approximately 0.16 m/year) (Necsoiu 

et al., 2009).  

Hesse (2009) made use of DEMs derived from both SRTM and ASTER satellite 

imagery as well as Landsat and Quickbird imagery to determine dune migration rates 

and age based on the terminal sand volume of the dunes and the sand flux associated 

with those dunes in the Peruvian-Chilean coastal desert, Dunas Pampa Blanca. The 

migration rate of the transverse dunes calculated by Hesse (2009) was lower than the 

migration rate Gay (1999) calculated for the barchans dunes of the Pampa de Jaguay 

(approximately 90 km away from the Dunas Pampa Blanca of Hesse (2009)).These 
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differences were attributed to the number of independent factors (e.g. dune type, 

different sediment supplies and wind regimes) (Hesse, 2009). 

El-Magd et al. (2013) made use of Landsat TM and SPOT imagery to determine the 

sand dune movements and trace dune morphology to provide a baseline for the 

operational system to assess the hazard associated with sand dunes in the study area 

(Toshka depression, southwestern Desert of Egypt). It was stated that such a tool is 

needed to enable wide coverage in order to assist decision makers and planners to 

reduce the risk associated with this natural hazard (dune migration). Satellite imagery 

enabled a wider understanding of the dune system of the Toshka Depression area 

and determination of dune migration rates and thus potential hazard threats. 

Sand dune encroachment threatens the development of countries in arid zones (Effat 

et al., 2012). Effat et al. (2012) modelled the potential risk of the movement of sand 

dunes in the Sinai Peninsula, Egypt. SPOT 4 imagery was used along with SRTM data 

and wind direction and speed data to identify the dune bodies from the Sinai desert. 

There data was used to create a sand dune migration risk map for the area. 

 

Limitations of Fine Resolution Imagery 

Fine resolution imagery is expensive and usually associated with a time lag due to the 

processing time of imagery orders. It also has a limited historical temporal coverage 

(mostly only the past decade) as the earliest high resolution sensor was only launched 

in the late 1990’s compared to Landsat (for example) that was launched in the 1970’s, 

this is a limitation for time series studies and not necessarily other studies concerned 

with the present day only. However, the small temporal scale may not be as big a 

limitation for time series analyses – since the higher spatial resolution may allow for 

time series analysis on a shorter time scale than was previously possible. Another 

limitation that has to be considered is the amount of disk space it requires not only for 

storing the raw data but also for the analyses of the data – since the resolution 

(whether considering spatial and/ or spectral resolution) the higher the resolution the 

higher the disk space and processing capabilities that are required. 
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2.5 Remote Sensing Analysis Methods 

2.5.1 Pre-Processing of Satellite Imagery 

Pre-processing of imagery is necessary to avoid or minimize the effects related to the 

different platforms and/or sensors and different atmospheric conditions during the 

acquisition date and time of the images. When comparing multispectral images from 

different sensors and/or different times, it is advisable to perform corrections 

(regarding illumination, sensor calibration and atmospheric conditions) and geometric 

registration of the images as much as possible in order to prevent or limit false 

differences (Canty, 2010) due to pixel misalignment (for example), especially if the 

analyses are performed on a pixel-by-pixel basis.  

2.5.2 Radiometric and Atmospheric Corrections 

The main aim of the radiometric calibration is to minimize the scene-to-scene 

radiometric variability and to decrease the effect of shadow as it corrects for different 

sun zenith angles due to different acquisition times (Mohamed & Verstraeten, 2012). 

The reflectance result as received on the sensor is dependent upon (1) the dune 

surface characteristics; (2) the relative angles between the sensor, sun and surface; 

and (3) attenuation produced by the atmosphere (Ramsey et al., 1999). 

Radiometric and atmospheric correction is the process of converting digital numbers to 

radiance or surface reflectance, to enable the quantitative analyses of multi-temporal 

images. Without these corrections, variations may be detected due to differences in 

lighting conditions such as change in solar angle or changes in cloud, haze and 

atmospheric conditions (including aerosols and moisture content) (Collado et al., 2002; 

Kennedy et al., 2009; Aldossary, 2012). 

Radiometric calibration is the process of removing radiometric differences (not related 

to the surface) that are a result of images that were acquired at two different times or 

by two different sensors (Kennedy et al., 2009; Aldossary, 2012). Thus the purpose of 

radiometric calibration is to let the images appear as though they were acquired at the 

same time with the same sensor, same illumination and same atmospheric conditions. 

This will ensure that the changes in pixel value that are detected are the actual 

changes that occurred on the surface (it also improves the accuracy of the analysis) 

(Kennedy et al., 2009; Aldossary, 2012). Several different techniques to correct for 
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atmospheric and radiometric conditions have been developed and include relative 

calibration and dark object subtraction (Kennedy et al., 2009; Aldossary, 2012). 

The Bidirectional Reflectance Distribution Function (BRDF) also need to be taken into 

account, as this influences the reflectance of sand and plays an important role at solar 

zenith angles greater than 30˚ (Ramsey et al., 1999). These BRDF effects are 

characterized by two specific areas of minimum and maximum reflectance and are 

governed by the sun-object geometry. A “hotspot” effect occurs when the scattering 

angle is zero, thus the area appears brighter than the rest of the image and a dark 

area is found at large scattering angles (Ramsey et al., 1999).  

 

Imagery collected by satellites is subject to modification or changes in solar radiation 

reflected by the earth’s surface due to scattering and absorption of the radiation by 

particles in the atmosphere. The aim of atmospheric correction is to eliminate the 

effect of the atmosphere and recover the true surface reflectance values 

(characterizing the physical parameters of the surface of the earth) (Hadjimitsis et al., 

2010). Radiometric calibration and atmospheric correction consist of the conversion of 

radiance values into top-of-atmosphere reflectance values, after which the effects of 

the atmosphere are removed from the image with an atmospheric correction algorithm. 

 

2.5.3 Panchromatic Sharpening 

Several of the satellite platforms are accompanied by a co-registered panchromatic 

image. These panchromatic images have higher spatial resolution than the 

multispectral bands (an increase in spatial resolution results in a decrease in the 

spectral resolution of images, and vice versa). Panchromatic sharpening (Pan-Sharp) 

can be used to combine the panchromatic image with the multispectral image in order 

to increase the spatial resolution of the multispectral image (a downside to this method 

is the resulting decrease in spectral resolution of the multispectral data) (Canty, 2010).  

 

2.5.4 Co-Registration/Geometric Correction 

An essential undertaking in remote sensing data processing is the process of image 

registration or co-registration, especially if two images from different platforms are 
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compared or multi temporal or time-series analysis are done, and is necessary for 

georeferencing. Image registration can be done from one image to a map or to 

another image (Canty, 2010; Asha et al., 2013). The process of aligning two or more 

images geometrically is also known as image co-registration, this is done to integrate 

or fuse corresponding pixels representing the same features. This is necessary to 

minimize the detection of false change/difference between the two images due to 

pixels that were misaligned (Canty, 2010; Asha et al., 2013). 

2.5.5 Image Classification (Feature Extraction), using a Supervised Classification 

A supervised classification is a classification based on predefined training areas or 

areas or interest, and clusters pixels into classes (Devi & Baboo, 2011).  

 

Minimum Distance and Maximum Likelihood Classification 

The minimum distance classification calculates the spectral distance between the 

measurement vector for the candidate pixel and the average vector for each sample 

(Pernuman & Bhaskaran, 2010; Devi & Baboo, 2011). The algorithm is based on a 

Euclidian distance equation. The pixels in question are assigned to the class that has 

the minimum spectral distance (Pernuman & Bhaskaran, 2010; Devi & Baboo, 2011). 

The maximum likelihood classification algorithm is one of the most widely used 

classifications in remote sensing (Pernuman & Bhaskaran, 2010; Devi & Baboo, 

2011). The algorithm is based on the Bayesian probability theory, and the assumption 

that each pixel fits in a specific class (Pernuman & Bhaskaran, 2010; Devi & Baboo, 

2011). This algorithm classifies a pixel based on the probability that it fits within a 

specified class (Devi & Baboo, 2011). The algorithms used within the ENVI v5.1 

environment can be found in Table 2.3. 
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Table 2.3: Algorithms used in ENVI for the different classification modules (Canty, 2010). 

Classification module Algorithm (ENVI) 

Minimum Distance 

                
 

 

   

 

 

  = spectral signature vector of pixel 

  = spectral signature vector of training area 

  = number of image bands 

Maximum Likelihood 
                 

 

 
        

 

 
              

  

 
 

 

   = land cover class k 

  = spectral signature vector of pixel 

         = probability that correct class is    

     = determinant of the covariance matrix 

∑k
-1= inverse of covariance matrix 

  = spectral signature vector of class k 

 

Accuracy Assessment 

Accuracy assessments are used show how closely the classified image represents 

what is actually found in the field (Foody, 2002). The confusion (error) matrix gives 

information on the overall accuracy, producer’s accuracy, user’s accuracy, and a 

Kappa coefficient. Accuracy assessments are crucial to the evaluation of the results 

and then ultimately using these results in further analysis and/ or management 

strategies (Aldossary, 2012). The producer accuracy gives an indication of how well 

the training samples are classified and the user accuracy gives an indication of the 

probability that a pixel belongs to the class it was assigned (represents that class in 

reality). The kappa value is used to determine if there is a significant difference 
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between two confusion matrices (Congalton & Green, 2009; Peruman & Bhaskaran, 

2010; de Souza et al., 2013).  

 

2.6 Conclusions 

Based on the previous research the different attributes of dunes and their migration 

would be better analyzed with different platforms. For example if the interest of the 

research is on the composition of the sediment that make up the dunes it would be 

best to use hyperspectral data, and the analyses of the height and changes in the 

volume of the dunes a DEM would be best. A platform with a high temporal resolution 

and wide temporal coverage is required for time series analysis, especially in dune 

migration analysis (which occurs over long time periods). 

Ideally a combination of high spatial and spectral resolution data with a long temporal 

scale (of at least 10-15 years or more) accompanied by high resolution digital 

elevation models with extensive ground truthing would result in the highest accuracy of 

both dune morphology mapping and migration rate calculations – especially since 

some dunes have a very low migration rate – which may often be missed on low 

spatial resolution data. 

A combination of different bands will have to be tested – no definite consensus was 

found in the literature – however the most common band combinations that were used 

included the visible (red, green and blue) and near infrared bands and in some 

instances the thermal band was found to be useful. 

A low spatial resolution may result in the overestimation of dune size, length and width 

as well as the overestimation and/ or underestimation of the dune migration rate. 

A higher spectral resolution may assist in better defining (and identifying) the different 

dune features more easily and more accurately as well as the determination of the 

composition of the dune sands. 

A fully automated, self-learning algorithm may decrease the processing time – 

especially compared to on-screen digitization. 

Based on what is currently freely available and easy to come by a combination of a 

moderate spatial resolution (like Landsat) and DEMs would have to suffice until the 
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high resolution imagery (both spatial and spectral) are more freely available and have 

been around for a longer time period (in the case of time-series analysis). For current 

time dune morphology studies high spatial resolution data is recommended. 
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3. Chapter 3: Materials and Methods 

3.1 Introduction 

The main aim of this study is to identify the most suitable spatial resolution at which to 

study sand dunes (with heights of 100 m or more) in the arid areas of the Ubārī Sand 

Sea, Central Sahara (Libya), in order to determine the net direction and rate of dune 

movement. Unfortunately no ground truthing could be done as this area is currently 

inaccessible due to safety concerns.  

This chapter outlines the methods used for this study, including the process of 

acquiring suitable satellite imagery, the pre-processing of this imagery, the comparison 

of imagery with two different spatial resolutions, and finally a time series change 

analysis to determine dune movement. A workflow of the methods used in this study 

can be seen in Figure 3.1, this workflow gives an overall idea of the sequence and 

type of analyses that was used in this research.  

 

Figure 3.1: Flow diagram of the methods used for the image processing and change analysis. 

 

Data 
Acquisition 

• LANDSAT  7 & 8: 2014, 2002 & 2015 

• Worldview 2 : 2014 

• SRTM (2001) 

Pre-
Processing 

• Radiometric Calibration 

• Atmospheric Corrections 

• Co-registration 

• Pan-Sharpening 

• Image Mosaicing 

Feature 
Extraction/ 

Classification 

• Classifications: 

• Unsupervised: K-Means 

• Supervised: Minimum Distance & Maximum Likelihood 

• Accuracy Assessment (User and Producer accuracies, Kappa Coefficiant and Overall 
Accuracy) 

Comparison  

• Pixel resizing 

• Image Differencing (Change Difference Map & Change Map Statistics) 

• Confusion Matrix 

Change 
Analysis 

• Change Detection Difference Map 

• Change Detection Statistics 

• Classification to Vector 

• On Screeen Digitizing 

• Image Overlay 

• Image Differencing (Vector Subtraction) 
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3.2 Imagery Acquisition and Scenes Used 

In this study, images from two satellite imaging platforms, one of high resolution and 

the other of medium resolution, were used, these being Worldview 2 and Landsat 

(7 and 8) respectively. The Landsat images were acquired from the USGS Earth 

Explorer website and the Worldview images were acquired courtesy of a Digital Globe 

Foundation Imagery Grant. The characteristics of the chosen images are found in 

Tables 3.1a, b & c.  
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Table 3.1a: Detailed information (criteria) on the imagery that were chosen for the spatial resolution comparison section (phase 1) of this 

research. 

Phase 1: Comparison Analysis 

Platform Source Imagery Dates 
Spatial 

Resolution 

Spectral 

Resolution 

Cloud Cover 

(%) 

Scenes Acquired (Path Row 

according to WRS-2) 

Landsat 8 
US Geological 

Survey 

20 September 

2014 
30 m 11 Bands < 5 187 041; 187 042 

Worldview 2 
Digital Globe 

(Imagery Grant) 

20 September 

2014 
2 m 8 Bands < 5 P001 - P003 

SRTM DEM 
US Geological 

Survey 
2000 90 m - < 5 - 

Table 3.1b: Detailed information (criteria) on the imagery that were chosen for the time series analysis section (phase 2) of this research. 

Phase 2: Time Series Analysis 

Platform Source Imagery Dates 
Spatial 

Resolution 
Cloud Cover (%) 

Spectral 

Resolution 

Scenes Acquired (Path Row 

according to WRS-2) 

Landsat 7 - ETM 
US Geological 

Survey 
September 2002 30 m < 5 8 bands 

187, 041; 

187, 042 

Landsat 8 - OLI 
US Geological 

Survey 
September 2015 30 m < 5 11 bands 

187, 041; 

187, 042 

 



49 
 

Table 3.1c: The band numbers, designations, wavelengths and resolutions for the three platforms that 

were used in this research. 

Platform Band Number (Designation) Wavelength (μm) Resolution (m) 

Landsat 7 - ETM + 1 (blue) 

2 (green) 

3 (red) 

4 (near infrared) 

5 (short wave infrared) 

6 (thermal infrared) 

7 (short wave infrared) 

8 (panchromatic) 

0.45 – 0.52 

0.52 – 0.60 

0.63 – 0.69 

0.77 – 0.90 

1.55 – 1.75 

10.40 – 12.50 

2.09 – 2.35 

0.52 – 0.90 

30 

30 

30 

30 

30 

60 (30*) 

30 

15 

Landsat 8 - OLI 1 (coastal aerosol) 

2 (blue) 

3 (green) 

4 (red) 

5 (near infrared) 

6 (short wave infrared - 1) 

7 (short wave infrared - 2) 

8 (panchromatic) 

9 (cirrus) 

10 (thermal infrared - 1) 

11 (thermal infrared - 2) 

0.43 – 0.45 

0.45 – 0.51 

0.53 – 0.59 

0.64 – 0.67 

0.85 – 0.88 

1.57 – 1.65 

2.11 – 2.29 

0.50 – 0.68 

1.36 – 1.38 

10.60 – 11.19 

11.50 – 12.51 

30 

30 

30 

30 

30 

30 

30 

15 

30 

100 (30*) 

100 (30*) 

Worldview 2 1 (coastal) 

2 (blue) 

3 (green) 

4 (yellow) 

5 (red) 

6 (red edge) 

7 (near infrared - 1) 

8 (near infrared - 2) 

Panchromatic 

0.40 – 0.45 

0.45 – 0.51 

0.51 – 0.58 

0.58 – 0.62 

0.63 – 0.69 

0.70 – 0.74 

0.77 – 0.79 

0.86 – 1.04 

0.45 – 0.80 

1.85 – 2.07 

1.85 – 2.07 

1.85 – 2.07 

1.85 – 2.07 

1.85 – 2.07 

1.85 – 2.07 

1.85 – 2.07 

1.85 – 2.07 

0.45 – 0.52 

*after 25 February 2010 the resolution of these bands improved to the values stated in 

brackets. 
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The study was carried out in two phases: 1. the comparison of the spatial resolution of 

Worldview and Landsat in sand dune morphology analysis, and 2. a time series 

analysis of the net dune movement and direction within the Ubārī Sand Sea.  

For the section on the comparison of two spatial resolutions, Landsat 8 and Worldview 

2 imagery covering a subset of the Ubārī Sand Sea was used (Figure 3.2a), both sets 

of imagery were acquired for September 2014 and the SRTM DEM data were 

acquired for 2001. Only a subset of the Ubārī Sand Sea was covered in this section of 

the study due to the area restriction associated with the Worldview imagery grant, and 

the cost related to acquiring additional high resolution imagery.  

 

Figure 3.2a: Location map of the Ubārī Sand Sea with the study area for phase 1 (the 

comparison of spatial resolutions) boxed in solid red. 

 

Following the development of phase one (the comparison of the two spatial 

resolutions), which proved that the coarse spatial resolution imagery yields reliable 

sand dune morphology results (See Section 4.2), Landsat 7 and 8 imagery were used 

for the time-series comparison (Table 3.1) covering a larger subset of the sand sea 
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(Figure 3.2b). There were no restrictions in terms of financing for the Landsat imagery 

as it is freely available but in order to minimize the processing time required due to the 

time constraints associated with a Masters project, a subset of the Ubārī Sand Sea 

was used for phase 2 (Figure 3.2b).  

 

Figure 3.2b: Location map of the Ubārī Sand Sea and the study area for phase 2 (time series 

analysis) boxed in solid red. 

 

3.3 Pre-Processing of Satellite Imagery 

Pre-processing of imagery is necessary to avoid or minimize the effects related to the 

different platforms and/or sensors and different atmospheric conditions during the 

acquisition date and time of the images.  

3.3.1 Radiometric and Atmospheric Corrections 

The main aim of the radiometric calibration was to minimize the scene-to-scene 

radiometric variability and to decrease the effect of shadow as it corrects for different 

sun zenith angles due to different acquisition times (Mohamed & Verstraeten, 2012). 
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Within this study each tile’s (both Landsat and Worldview) digital number values were 

converted into radiance-at-sensor and then into reflectance values with the use of the 

Radiometric Calibration function in ENVI v5.1. The tiles were then atmospherically 

corrected with the use of the Fast Light-of-Sight Atmospheric Analysis of Hypercubes 

(FLAASH) algorithm as described in the Atmospheric Correction Model within ENVI 

v5.1 (based on MODTRAN 4 code). The parameters reported in Table 3.2. were used 

(these parameters were optimized based on the environment and location of the study 

area).  FLAASH is a physics based algorithm used for atmospheric corrections of the 

visible to infrared spectrum.  

 

Table 3.2: FLAASH Atmospheric Correction Model Parameters used in the correction of 

Landsat imagery. 

Parameter Used 

Ground Elevation 500 m a.s.l. 

Atmospheric Model Tropical 

Aerosol Model Rural 

Aerosol Retrieval 2-Band (K-T) 

Water Column Multiplier 1 

Initial Visibility 40 km 

Multispectral Settings Kaufmann-Tanre Aerosol 

Retrieval Over-Land Retrieval Standard (660-2100 nm) 

 

3.3.2 Panchromatic Sharpening 

There are several different methods by which panchromatic sharpening can be done, 

in this study the “SPEAR Pan-Sharpen” method (available in ENVI v5.1) was used. 

The pan-sharpening process was only applied to the Worldview 2 imagery, in order to 

make the identification of the different features in the area easier when creating the 

training samples. The resulting pan-sharpened images were used exclusively for the 
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identification of training samples, no further analyses or classifications were conducted 

on these. 

3.3.3 Co-Registration/Geometric Correction 

Both sets of imagery (for the comparison of the different platforms as well as for the 

time series change analysis) were co-registered with the “Geometric Correction” – 

“Registration” tool within ENVI v5.1. This tool uses area-based matching to identify tie-

points automatically.  

3.3.4 Mosaicing 

Mosaicing is the process in which two or more images are combined into one 

composite image. The Seamless Mosaic function (with a nearest neighbour re-

sampling method) within ENVI v5.1 was used to mosaic the atmospherically corrected 

images of both the Landsat tiles (of corresponding dates) and Worldview strips, 

respectively, to form one image of the area in question. These mosaic images were 

the input images for the subsequent classifications. 

 

3.4 Image Classification (Feature Extraction) 

3.4.1 Auto Feature Extraction / Image Classification 

A range of classification modules (available in ENVI v5.1) were explored as described 

herein.  An unsupervised classification module (K-Means clustering) was used to 

determine if the different dune features (especially the dune crest and interdune area) 

can be identified based on spectral information only. After this procedure, two 

supervised classifications (maximum likelihood and minimum distance) were 

performed in order to verify and/or assess the reliability of the classifications from the 

unsupervised module. 

Band Combinations 

All the classification modules were performed on both the Landsat and Worldview 

imagery. The classifications were performed on the bands of the visible range (red 

green and blue) and near infrared (NIR) (see Table 3.1c). These bands were chosen 

as they are present in both the Landsat and Worldview images and were the most 

common bands used in previous research (Al-Dabi et al., 1998; Collado et al., 2002; 

Necsoiu et al., 2009; Al-Masrahay & Mountney, 2013; Telfer et al., 2015).  
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The focus of this study was to determine what influence the spatial resolution of 

different platforms has on the identification and study of desert dunes, therefore the 

same spectral resolution had to be used for both sets of imagery. This resulted in the 

exclusion of the thermal and short-wave infrared bands of the Landsat 8 imagery as 

these bands are not present in the Worldview 2 imagery (refer to Table 3.1c for a 

review of the bands and their properties). 

 

4.4.1.1 Unsupervised Classification 

The K-Means unsupervised classification module was performed on both the Landsat 

and Worldview mosaiced images, to test if the different dune features are identifiable 

based on the spectral signatures alone. A 5% change threshold, which is the “point” at 

which the iterative process is stopped when the pixels in a class changes by less than 

the threshold, was used. Two band combinations were used in this classification, 

these band combinations were: 1. red and near-infrared and 2. red, green, blue and 

near-infrared. Nine classes were used in order to allow for the identification of both 

dune features as well as other features present in the area (e.g. settlements, 

vegetation, water, etc.). These features were identified with the visual inspection of the 

RGB images to identify what features are present in the study area. This allows for the 

exclusion of the features not associated with the dunes. 

 

4.4.1.2 Supervised Classification 

A supervised classification is a classification based on predefined training areas or 

areas or interest, and clusters pixels into classes (Devi & Baboo, 2011). Two 

supervised classifications (Minimum Distance and Maximum Likelihood) were 

performed on the red, green, blue and infrared bands of both the Landsat and 

Worldview mosaiced images. Training samples for the supervised classification were 

developed (with the use of the Regions of Interest tool available in ENVI v5.1) based 

on the pan-sharpened higher spatial resolution Worldview mosaiced image overlain 

onto a SRTM DEM of the area. The Worldview image was overlain over the SRTM 

DEM in order to help identify the crest of the dunes and the interdunes (highest and 

lowest areas). A total of 9 training classes (or Regions of Interests) was identified 

(Table 3.3).  
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A mixed classification of the surface features and their morphology (which is assumed 

affects the reflectance characteristics) was used. The training classes represent mixed 

feature classes, some classes depict surface features (i.e., vegetation and rocky 

outcrops) and other classes depict the morphology (i.e. dune crest and slope). The 

dune feature was separated into three separate classes based on the morphology of 

the dune: crest, slope and interdune. These classes consist of the same material but 

the assumption is made that due to the dune morphology they have different 

reflectance characteristics. Surface features were also used as means of excluding 

these features later on. 

Table 3.3: Training classes, their feature descriptions and number of Regions of Interest 

Class Feature Description 

Number of Regions of Interest (Reference Data 

Polygons) 

Training Data 

Set (70 %) 

Test Data Set 

(30 %) 

 

Total 

1 Water (lakes) 95 41 136 

2 Gypsum Deposits 180 80 260 

3 Urban 132 60 192 

4 Vegetation 123 55 178 

5 Rocky Outcrops 140 60 200 

6 Soil (non dune) 182 79 261 

7 Inter-dune 105 45 150 

8 Dune Crest 113 49 162 

9 Dune Slope 110 48 158 

 

Regions of Interest – ENVI Procedure 

Regions of interest (ROIs) were created with the Regions of Interest Tool in 

ENVI v5.1. In order to limit the number of vertices that have to be specified, square 



 
 

56 
 

ROIs were created at a size of 64 x 64 pixels (corresponds to 128 m x 128 m or 

16 384 m2). These ROIs must be uniform and homogeneous and representative of the 

class/category under investigation. A minimum of one hundred regions of interest were 

created per class (Table 3.3).  

The “uniqueness” of each class (separability between classes) was tested with the use 

of the “ROI separability” function in ENVI v5.1. This test gives an indication of the 

uniqueness and homogeneity of the classes – a high separability value indicates that 

the classes have unique spectral signatures thus easing the classification process. 

The resulting Jeffries-Matusita Distance (JM Distance) values (range 0-2) can be seen 

in Table 3.4. It can be seen that there is less separability between the three classes 

that are representative of the dunes (the crest, slope and interdune classes – with JM 

Distance values close to 0) indicating that there is less difference between these three 

classes. There is however a higher separabilty (JM Distance values close to 2) 

between the three dune classes and the other identified classes – thus having unique 

spectral signatures leading to the conclusion that the classification modules would 

most likely successfully separate the dune features from the other features that were 

identified. 
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Table 3.4: Matrix of the J-M Distance values comparing the ROIs, resulting from the ROI separability test. 

 Crest Gypsum Interdune Rocky Outcrop Slope Soil Urban Vegetation Water 

Water - - - - - - - - - 

Vegetation - - - - - - - - 2.0000 

Urban - - - - - - - 1.9575 1.9440 

Soil - - - - - - 1.5137 1.9977 1.6941 

Slope - - - - - 1.9977 1.9747 2.0000 1.9989 

Rocky Outcrop - - - - 2.0000 1.9821 1.8295 1.9520 1.9995 

Interdune - - - 2.0000 0.5960 1.9961 1.9615 2.0000 1.9959 

Gypsum - - 1.6119 2.0000 1.5463 1.7535 1.8453 2.0000 1.9324 

Crest - 1.6944 0.7389 2.0000 0.1395 1.9995 1.9844 2.0000 1.9998 
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A very low separability between the three dune feature classes (crest, slope and 

interdune) was found. This would result in a lower accuracy in terms of the 

classification of the different dune features. However, compared to the other six 

classes a high separability value was found, thus the accuracy of classifications of the 

other classes should be high and should be relatively well defined – allowing the 

exclusion of these classes – thus the overall dune should be clearly defined.  

The ROIs were separated into “test ROIs” and “training ROIs”. Of the total amount of 

samples; 20% of the samples from each class were assigned as “test ROIs” (for use in 

the accuracy assessment) and the remaining 80% were assigned as the “training 

ROIs” (used in the supervised classifications). 

Minimum Distance and Maximum Likelihood Classification 

The “training ROIs” were used in the minimum distance and maximum likelihood 

classifications of both the Worldview and Landsat images. The Minimum Distance and 

Maximum Likelihood Classification modules in ENVI v5.1 were used.  

The following processes were applied on both the Landsat and Worldview images: 

The minimum distance module was activated with the pre-processed Worldview-2 

image as the input. The regions of interest that were previously identified were loaded 

and the classification was executed. A similar process was used for the Minimum 

distance classification of the Landsat 8 Images and the Maximum Likelihood 

classifications of both the Worldview-2 and Landsat 8 images. The algorithms used 

within the ENVI v5.1 environment can be found in Table 2.3. 

 

Accuracy Assessment 

The accuracy of the supervised classifications was assessed with the use of the test 

data set (30% of the total dataset). The confusion matrix module within ENVI v5.1. 

was used to construct a confusion matrix in order to calculate the overall accuracy, 

overall accuracy, producer’s accuracy, user’s accuracy, and a Kappa coefficient. The 

producer accuracy gives an indication of how well the training samples are classified 

and the user accuracy gives an indication of the probability that a pixel belongs to the 

class it was assigned (represents that class in reality). The kappa value is used to 
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determine if there is a significant difference between two confusion matrices 

(Congalton & Green, 2009; Peruman & Bhaskaran, 2010; de Souza et al., 2013).  

3.4.2 Pixel Resizing 

In both phase one and two of the study change detection analyses were performed. 

Within phase 1 imagery from different sensors (Landsat 8 and Worldview 2) were 

compared. Due to the difference in the pixel size between these two sets of imagery, 

pixel-resizing was required in order to allow for the comparison of these images. The 

change detection analysis is performed on a pixel-by-pixel basis (Ghadiry et al., 2012), 

thus pixel resizing was applied to the classified Landsat 8 image (with a nearest 

neighbour resampling) to reduce the pixel size from 30 m to 2 m to match the pixel 

size of the classified Worldview 2 image using the “resize data” tool available in ENVI 

v5.1. 

3.5 Comparison of Coarse and Fine Resolution Imagery / Post-Classification 

Change Analysis 

Based on the outcome of the previous section – the comparison of classification 

methods across the two platforms – the most accurate classification (Maximum 

Likelihood in this case) was used to compare the two platforms.  

A simple comparison of the classified Worldview and the re-sampled classified 

Landsat images was made on a subset of the study area with the Change Detection 

Difference Map and the Change Detection Statistics models in ENVI v5.1.  

The change detection area map results in a difference map that allows for visualisation 

of the location and amount of difference/change between the two platforms. This map 

shows changes in ranges or brackets of percentage change (see Table 3.5). The 

change detection statistics model compares the area classified as specific features 

between the two images (based on paired samples specified by the user). The results 

show a statistical comparison of the differences between the platforms in the form of 

percentage and squared kilometre change in the total area of the specified features. 

The following features were compared: dune slope, interdune area, lake area, 

vegetation, and settlements not located within the sand sea.  



 
 

60 
 

Table 3.5: Percentage change ranges shown on the change detection area map. 

Label Percentage  change 

Change (+3) x > 67 

Change (+2) 33 < x ≤ 67 

Change (+1) 0 < x ≤ 33 

No Change x = 0 

Change (-1) 0 > x ≥ - 33 

Change (-2) -33 > x ≥ - 67 

Change (-3) x < - 67 

 

3.6 Time Series Analysis (Dune Migration) 

The maximum likelihood classification as described in section 3.4 was applied to 

Landsat tiles 187041 and 188041 for October 2002 and 2015 respectively (see Table 

4.1b). The accuracy of the two time series classifications were assessed with the 

confusion matrix as described in section 3.4.  

Due to the size of the Ubārī sand sea and the time needed to process the amount of 

data associated with such an area, a subset was used (see Figure 3.2b). The subset 

was chosen because change analysis or migration rates analysis are best done on 

dunes that are linear which are moving in a single direction. Star dunes’ “migration” 

occurs in more than one direction and more commonly as changes in height and 

volume, not location. The analysis of migration in star dunes would be better analysed 

with the use of DEM data. 

To determine the general locations where change in the position and orientation of the 

dunes within the sand sea occurred, the two sets of classified Landsat images 

(Landsat 7: 2002 and Landsat 8: 2015) were used as input images in the Change 

Detection Difference Map, Thematic Change Workflow and Change Detection 

Statistics module of ENVI v5.1. The resulting images were used to identify areas 

where change occurred and to quantify the change in the shape, area, width and 

location of 39 dunes (figure 3.3) identified within the subsection of the Ubārī and Sea 
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(those dunes that were not entirely within the boundaries of the subsection were 

excluded).  

 

Figure 3.3: Linear Dunes (39 dune bases outlined in black) used for the analysis of dune 

migration 

 

Dune Digitizing 

In order to measure the length, width and area of the dunes, the selected dunes were 

digitized to form definite polygons, as the classifications are pixel based and difficult to 

use to measure the parameters of dunes. The dunes were digitized by placing a 30 m 

grid over the slope classification class and digitizing the dunes by “circling” the clusters 

of pixels classified as slope and crest (as the base can be delineated as the pixels 

immediately down slope and the crest as the pixels immediately upslope) (Figure 3.4). 

Those pixels within one grid square of the clusters were included in the polygon and 

those within and further than two grid squares were excluded from the polygons. The 
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final polygons were smoothed with the use of the “Smooth Polygon” function in ArcGIS 

with the Bezier-interpolation. 

(a)  

(b)  

Figure 3.4: Google Earth image of a linear dune within the Ubārī Sand Sea showing the 

morphology of a dune as (a) a cross section and (b) view from above 

 

This was done for the same 39 dunes digitized from the 2002 and 2015 imagery – 

thus two sets of 39 dunes were digitized (see section 4.2). 

 

Dune Shape and Orientation 

A visual comparison of the dune shape and orientation was made by placing the 

digitized dune base layer from 2015 over the digitized dune base layer from 2002 

(Figure 4.12). The change in the orientation of the dunes was determined by visually 

comparing the crest lines of the two sets of digitized dunes (Figure 4.6).  
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Dune area, length and width 

The dune crest was delineated and used as a measure of dune length and change in 

dune orientation as well as dune migration in relation to the dune base (Fig. 3.5). For 

each dune, transect lines (Fig. 3.5) were inserted perpendicular to the orientation of 

the dune at 300 m intervals in order to measure the width of each dune – an average 

of dune width was used. The dune area was also calculated within ArcGIS and 

compared. 

(a)  

(b)  

Figure 3.5: (a) The transect lines (purple lines) used in the measurements of the width of the 

dunes (outlined in black); (b) Crest lines (red) used in the measurement of the 

length of the dunes (outlined in black). 
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Dune Location  

In order to quantify the “migration” that occurred between 2002 and 2015, the vectors 

of the digitized dunes and from 2015 was subtracted from the vectors of the digitized 

dunes of 2002 in order to determine the change in location of the windward slopes 

base. The polygons resulting from the subtraction were measured at 300 m intervals, 

perpendicular to the orientation of the dunes (Fig 3.6). These values were used to 

calculate the average migration rate of each individual dune and also to calculate an 

overall migration rate of the linear dunes within the subsection. 

 

Figure 3.6: Migration measurement transect lines (red lines) at 300 m intervals perpendicular 

to the orientation of the dune. 
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4. Chapter 4: Results 

 

4.1 Introduction 

This results section comprises of two sections: Phase 1: a comparison of the coarse 

(Landsat 8) and fine (Worldview 2) spatial resolution imagery and a comparison of the 

two supervised classification methods (minimum distance and maximum likelihood) 

and the band combinations that were used to perform these. Phase 2: An analysis of 

dune migration within a subset of the Ubārī Sand Sea with the use of Landsat 

imagery. These analyses (of both phase 1 and 2) were conducted on atmospherically 

corrected imagery (both fine and coarse spatial resolution imagery as defined 

previously). The images acquired from the Landsat and Worldview sensors were pre-

processed as described in section 3.3, the resulting images can be seen in Figure 4.1. 

Figure 4.1 A1 (Landsat 8, coarse spatial resolution) and A2 (Worldview 2, fine spatial 

resolution) show the atmospherically corrected imagery for the study area of phase 1. 

On these images the linear dunes are clearly visible. Figure 4.1 B1 (Landsat 7, image 

from 2002) and B2 (Landsat 8, image from 2015) show the atmospherically corrected 

images depicting the entire Ubārī sand sea, with a zoomed in section on the study 

area for time series analyses of phase 2. 

 

 

 

 



 
 

66 
 

(a1)  (a2)  

(b1)  (b2)  

Figure 4.1: Atmospherically corrected images for Phase 1 (the comparison of the spatial 

resolutions and classification methods): Landsat 8 (a1), Worldview 2 (a2), and 

Phase 2 (the time series analysis): Landsat 7 (b1) and Landsat 8 (b2), with the 

study areas boxed in red. 

 

Phase 1: 

The results from Phase 1 address Aim 1 of the project (Refer to section 1.2)  

4.1.1 Unsupervised Classification 

Visual Results: 

The analysis was initiated with an unsupervised classification (K-Means, with 9 

classes, refer to section 3.4.1) - on both the Landsat 8 and Worldview 2 images; with 

two band combinations (see section 3.4.1) - to determine if dune features can be 

distinguished based on spectral signatures alone. Since an unsupervised classification 

classifies pixels into classes based on their spectral signature alone, the resulting 

classes were assigned to predefined dune features as can be seen in Table 4.1). The 

classes that did not represent dune features were not assigned to predefined features 
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as the goal of the unsupervised classification was to determine if dune features can be 

identified based on spectral signature alone. From Figure 4.2 it can be seen that some 

of dune features are distinguished – e.g. the interdune areas. The crests and slopes 

however are less defined and some overlap occurs between these two feature 

classes. Within the Landsat images (Figure 4.2 A1 and A2) the crest is represented by 

class 9, the slope by classes 6-8 and the interdune by classes 3-5 – there are thus 

several combined classes that represent a feature whereas on the Worldview 2 

images the three dune features are more defined and represented by only one class 

each (in two out of the three features); the crest is represented by class 9, the slopes 

by class 8 and the interdunes by class 6 and class 7. The use of Worldview 2 resulted 

in a “cleaner” classified image (fewer classes per feature, see Table 4.1) – the 

features being better defined/ classified when compared to the result from the Landsat 

imagery. 

Table 4.1: The classes resulting from the unsupervised K-Means classification were assigned 

to predefined features as follows: 

Landsat 8 Worldview 2 

K-Means Class Assigned Feature K-Means Class Assigned Feature 

Unclassified Not Applicable Unclassified Not Applicable 

1 Not Applicable 1 Not Applicable 

2 Not Applicable 2 Not Applicable 

3 Interdune 3 Not Applicable 

4 Interdune 4 Not Applicable 

5 Interdune 5 Not Applicable 

6 Dune Slopes 6 Interdunes 

7 Dune Slopes 7 Interdunes 

8 Dune Slopes 8 Dune Slopes 

9 Dune Crest 9 Dune Crest 

The band combinations does not seem to have a big effect on the classification as 

both combinations resulted in a similarly classified image both with the Landsat and 

Worldview 2 imagery (Figure 4.2).  
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(a1)

 

(a2)

 

(b1)

 

(b2)

 

Figure 4.2: The resulting images from the unsupervised classification module (K-Means) for 

Landsat 8 (for band combinations: (a1): R+NIR; (a2): RGB+NIR) and Worldview 2 

(for band combinations: (b1): R+NIR; (b2): RGB+NIR). 
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From the change detection map (Figure 4.3) and change detection statistics (Table 

4.2) it can be seen that there is some variation between the classifications resulting 

from the two band combinations. The variations in the Landsat images are located 

mainly on the dune features, with small variations in the boundary areas. The area 

changes ranged from increases of 7.37 km2 (for class 6 - slope) and decreases of 5.68 

km2 (for class 8 - slope). The crest (class 9) showed a decrease in area of 2.34 km2, 

which is smaller than the difference in the crest class for the Worldview classifications 

(with a decrease in area of 12.34 km2). The variations in the Worldview images are 

mainly located in the boundary areas, and the changes in the dune features were 

more concentrated (than the changes in the Landsat classifications which were spread 

out) but the amount of change was more (with respect to the area of change). The 

changes in area ranged from increasing areas of 13.6 km2 (for class 8 -slope) and 

decreasing areas of 12.34 km2 (for class 9 - crest). Thus there is less variability 

between the two band combinations for the Landsat classified Landsat images 

compared to the Worldview classified images. 

 

(a)  (b)  

Figure 4.3: The resulting change maps of the comparison of the two band combinations used 

in the unsupervised classification module (K-Means) for (a) Landsat 8 and (b) 

Worldview 2. 
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Table 4.2: The change in area (km2) per class from the (R+NIR) band combination to the (RGB+NIR) band combination – of the K-Means 

(unsupervised classification) images for Landsat 8 and Worldview 2, respectively. 

 Landsat 8 - Bands R+NIR (Initial State) 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 

L
a
n

d
s

a
t 

8
 -

 B
a

n
d

s
 R

G
B

+
N

IR
 (

F
in

a
l 

S
ta

te
) 

Class 1 37.31 0.25 0 0 0 0 0 0 0 

Class 2 1.22 24.47 1.69 0 0 0 0 0 0 

Class 3 0 1.13 8.88 0.29 0 0 0 0 0 

Class 4 0 0 1.81 20.36 1.7 0 0 0 0 

Class 5 0 0 0 4 52.97 4.68 0 0 0 

Class 6 0 0 0 0 3.63 114.83 13.51 0 0 

Class 7 0 0 0 0 0 5.1 135.1 12.99 0 

Class 8 0 0 0 0 0 0 4.97 96.06 4.46 

Class 9 0 0 0 0 0 0 0 2.12 35.52 

Class Total 38.53 25.85 12.38 24.65 58.31 124.61 153.58 111.18 39.98 

Class Changes 1.22 1.38 3.51 4.29 5.33 9.78 18.48 15.12 4.46 

Image Difference -0.97 +1.54 -2.08 -0.77 +3.34 +7.37 -0.39 -5.68 -2.34 
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Table 4.2 continued 

    Worldview 2- Bands R+NIR (Initial State) 

    Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 

W
o

rl
d

v
ie

w
 
2

 
- 

B
a

n
d

s
 
R

G
B

+
N

IR
 

(F
in

a
l 

S
ta

te
) 

Class 1 0.02 0 0 0 0 0 0 0 0 

Class 2 0 1.37 0 0 0 0 0 0 0 

Class 3 0 1.44 8.38 0.01 0 0 0 0 0 

Class 4 0 0 3.61 9.18 0.04 0 0 0 0 

Class 5 0 0 0 2.32 11.6 0 0 0 0 

Class 6 0 0 0 0 4.12 34.3 0 0 0 

Class 7 0 0 0 0 0 5.44 96.42 2.06 0 

Class 8 0 0 0 0 0 0 3.32 314.61 13.57 

Class 9 0 0 0 0 0 0 0 1.23 75.84 

Class Total 0.03 2.81 11.98 11.51 15.76 39.74 99.74 317.9 89.42 

Class Changes 0 1.44 3.61 2.33 4.17 5.44 3.32 3.29 13.57 

Image Difference 0 -1.44 -2.15 +1.32 -1.85 -1.31 +4.18 +13.6 -12.34 
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4.1.2 Supervised Classification 

The results from the supervised classifications, performed on both the Landsat 8 and 

Worldview 2 (refer to section 3.4.1) can be seen in Figures 4.4 and 4.5. From these 

images it can be seen that the dunes at the edge of the sand sea (lower part of the 

images) are less defined than the dunes located in the centre (this could be due to 

less sand availability and or the presence of bedrock), irrespective of the platform and 

or the band combination used. Similar to the unsupervised classifications’ results the 

dune features can be identified – in particular the crest and interdunal areas. The dune 

features appears to be better defined in the images obtained from the RGB and NIR 

band combination than those from the R and NIR combination, this may be an artefact 

from the classification but the accuracy assessment supports a higher accuracy of the 

RGB and NIR bands, therefore it will be used for further analysis (no additional ground 

truthing could be conducted to confirm this).  
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A1  A2  

B1  B2  

Figure 4.4: Minimum Distance Supervised Classification Images: Landsat 8 (A1: R+NIR; A2: 

RGB+NIR) and Worldview 2 (A3: R+NIR; A4: RGB+NIR). 
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A1  A2  

B1  B2  

Figure 4.5: Maximum Likelihood Supervised Classification Images: Landsat 8: (A1: R+NIR; 

A2: RGB+NIR); Worldview 2 (A3: R+NIR; A4: RGB+NIR). 
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4.1.3 Accuracy Assessment 

In order to compare the two classification methods and band combinations the amount 

of error associated with each classification module was calculated with the use of a 

confusion matrix performed on the two sets of imagery (Table 4.4). The results of the 

confusion matrices (kappa, overall accuracy and user accuracy) are shown in Tables 

4.3 and 4.4.  

The maximum likelihood classifier (Landsat image) and the RGB and NIR band 

combination resulted in the highest overall accuracy – with a value of 64.667% - and 

the highest kappa coefficient – with a value of 0.5355, followed by the maximum 

likelihood with the red and NIR band combination (Landsat image) with an overall 

accuracy value of 57.42% (and a kappa of 0.4575); maximum likelihood classifier 

(Worldview image) with the RGB and NIR band combination with an overall accuracy 

of 60.83% (and a kappa of 0.4225) and minimum distance (Worldview image) with the 

RGB and NIR band combination with an overall accuracy of 59.42% (and a kappa of 

0.3913). This indicates that the maximum likelihood classifier (with the RGB and NIR 

band combination) performed better than the other combinations on both the 

Worldview 2 and Landsat 8 imagery. These accuracy and Kappa values are, however, 

very low compared to the accuracies of classifications in vegetated environments 

(which are usually approximately 80% and higher) (Adelabu et al., 2013), but these 

are acceptable for the arid desert (a relatively homogeneous environment; thus the 

different classes having similar spectral signatures/ behaviour). It is also important to 

note that the three dune feature classes are arbitrary classes, and if the error matrix is 

performed on only the arbitrary classes (thus excluding classes such as vegetation 

and urban) the accuracy and Kappa values are even lower (Table 4.5 and 4.6). 

The user accuracy of the four classification combinations of the three dune feature 

classes for the Worldview image is as follows in descending order of accuracy:  

1. Crest: maximum likelihood (RGB+NIR bands) (77.54%); maximum likelihood 

(R+NIR bands) (76.26%); minimum distance (RGB+NIR bands) (73.75%) and 

minimum distance (R+NIR bands) (72.59%);  

2. Slope: maximum likelihood (R+NIR) (48.91%); minimum distance (R+NIR) 

(46.22%);  minimum distance (RGB+NIR) (45.70%) and maximum likelihood 

(RGB+NIR) (45.48%); and  
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3. Interdune: maximum likelihood (R+NIR) (46.48%); minimum distance (R+NIR) 

(40.38%); minimum distance (RGB+NIR) (38.75%) and maximum likelihood 

(RGB+NIR) (33.76%) 

The user accuracy of the four classification combinations of the three dune feature 

classes for the Landsat image is as follows in descending order of accuracy:  

1. Crest: maximum likelihood (R+NIR bands) (76.26%);  maximum likelihood 

(RGB+NIR bands) (74.52%); minimum distance (RGB+NIR bands) (70.83%) 

and minimum distance (R+NIR bands) (69.37%);  

2. Slope: maximum likelihood (R+NIR) (48.91%); maximum likelihood (RGB+NIR) 

(48.26%);  minimum distance (R+NIR) (40.79%) and minimum distance 

(RGB+NIR) (38.41%); and  

3. Interdune: maximum likelihood (R+NIR) (46.48%); maximum likelihood 

(RGB+NIR) (46.02%); minimum distance (R+NIR) (45.24%) and minimum 

distance (RGB+NIR) (44.53%) 

 

There is some confusion between the classes. On both the Landsat and Worldview 

images the least confusion between classes occurs with the maximum likelihood 

classification on the RGB and NIR band combination. The confusion occurs between 

the crest, interdune and slope classes and then there are small amounts of confusion 

between the gypsum and slope classes, the soil and water classes, urban and soil 

classes and the water and gypsum classes. The least amount of confusion occurs in 

the vegetation class (this class is thus well defined and spectrally unique compared to 

the other classes) as is to be expected. There is a high value of confusion between 

the crest and slope classes – this may be due to poor training samples resulting from 

the difficulty of identifying the crest of the dunes on the imagery.    

Based on these results further analyses were performed with the use of the maximum 

likelihood classification and the RGB and NIR band combination.  
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Table 4.3: The error matrix for the Minimum Distance and Maximum Likelihood classifications across the two spatial resolutions (Landsat & 

Worldview) and band combinations (red & near infrared;  and red, green, blue & near infrared) . 

Landsat - Minimum Distance - Red & Near Infrared 

  Test Data 

Total 
User's Accuracy (%)  Class Crest Gypsum Interdune Rocky 

Outcrop 

Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 
351 1 0 0 154 0 0 0 0 506 69.37 

Gypsum 
71 7 29 0 46 0 0 0 0 153 4.58 

Interdune 
63 2 95 0 28 21 0 1 0 210 45.24 

Rocky Outcrop 
0 0 0 75 0 5 11 1 0 92 81.52 

Slope 
171 5 4 0 124 0 0 0 0 304 40.79 

Soil 
1 0 3 3 4 62 7 1 3 84 73.81 

Urban 
0 0 0 30 0 17 41 3 1 92 44.57 

Vegetation 
0 0 0 0 0 0 4 35 0 39 89.74 

Water 
0 0 0 3 0 19 13 2 0 37 0.00 

Total 657 15 131 111 356 124 76 43 4 1517  

Producer's Accuracy (%) 53.42 46.67 72.52 67.57 34.83 50 53.95 81.4 0   

 Overall Accuracy = 52.08% 
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Table 4.3 continued 

Landsat - Minimum Distance - Red, Green, Blue & Near Infrared 

  Test Data 

Total User’s Accuracy 
(%) 

 
Class Crest Gypsum Interdune 

Rocky 

Outcrop 
Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 369 1 0 0 151 0 0 0 0 521 70.83 

Gypsum 8 11 5 0 25 22 0 0 0 71 15.49 

Interdune 89 1 114 0 51 0 0 1 0 256 44.53 

Rocky Outcrop 0 0 0 75 0 8 10 0 0 93 80.65 

Slope 191 2 9 0 126 0 0 0 0 328 38.41 

Soil 0 0 3 4 3 58 13 1 1 83 69.88 

Urban 0 0 0 31 0 8 45 3 1 88 51.14 

Vegetation 0 0 0 0 0 4 5 36 0 45 80 

Water 0 0 0 1 0 24 3 2 2 32 6.25 

Total 657 15 131 111 356 124 76 43 4 1517  

Producer's Accuracy (%) 56.16 73.33 87.02 67.57 35.39 46.77 59.21 83.72 50  

Overall Accuracy = 55.11%  
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Table 4.3 continued 

Landsat - Maximum Likelihood - Red & Near Infrared 

  Test Data 

Total 
User's Accuracy 

(%)  
Class Crest Gypsum Interdune 

Rocky 

Outcrop 
Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 426 0 0 0 167 0 0 0 0 593 71.84 

Gypsum 121 13 27 0 78 2 0 0 0 241 5.39 

Interdune 63 1 100 0 34 0 0 0 0 198 50.51 

Rocky Outcrop 0 0 0 91 0 1 5 0 0 97 93.81 

Slope 47 1 1 0 74 2 0 0 0 125 59.2 

Soil 0 0 3 4 3 75 8 2 0 95 78.95 

Urban 0 0 0 16 0 19 53 1 0 89 59.55 

Vegetation 0 0 0 0 0 2 4 35 0 41 85.37 

Water 0 0 0 0 0 23 6 5 4 38 10.53 

Total 657 15 131 111 356 124 76 43 4 1517  

Producer's Accuracy (%) 64.84 86.67 76.34 81.98 20.79 60.48 69.74 81.4 100 

 
 

 Overall Accuracy= 57.42%   
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Table 4.3 continued 

Landsat - Maximum Likelihood - Red, Green, Blue & Near Infrared 

  Test Data 

Total 
User's 

Accurac
y (%) 

 Class Crest Gypsum Interdune Rocky 

Outcrop 

Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 427 1 0 0 145 0 0 0 0 573 74.52 

Gypsum 4 12 11 0 15 4 0 1 0 47 25.53 

Interdune 79 0 104 0 43 0 0 0 0 226 46.02 

Rocky Outcrop 0 0 0 94 0 0 1 0 0 95 98.95 

Slope 147 1 16 0 153 0 0 0 0 317 48.26 

Soil 0 1 0 6 0 86 5 2 0 100 86 

Urban 0 0 0 10 0 4 64 1 0 79 81.01 

Vegetation 0 0 0 1 0 2 4 37 0 44 84.09 

Water 0 0 0 0 0 28 2 2 4 36 11.11 

Total 657 15 131 111 356 124 76 43 4 1517  

Producer's Accuracy (%) 64.99 80 79.39 84.68 42.98 69.35 84.21 86.05 100   

 Overall Accuracy = 64.67%   
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Table 4.3 continued 

Worldview - Minimum Distance - Red & Near Infrared 

  Test Data 

Total User's 
Accuracy (%) 

 
Class Crest Gypsum Interdune 

Rocky 

Outcrop 
Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 70640 157 403 0 25994 0 125 0 0 97319 72.59 

Gypsum 8151 124 2039 0 5875 0 42 0 0 16231 0.76 

Interdune 11362 53 12118 0 5077 809 586 0 7 30012 40.38 

Rocky Outcrop 0 0 31 7885 0 392 946 248 0 9502 82.98 

Slope 17150 145 1519 0 16178 0 7 0 0 34999 46.22 

Soil 920 0 136 51 341 3103 199 1 38 4789 64.79 

Urban 4 0 72 590 0 1210 583 6 0 2465 23.65 

Vegetation 0 0 2 0 0 0 2 3671 0 3675 99.89 

Water 3663 0 683 1 820 1660 448 3 74 7352 1.01 

Total 111890 479 17003 8527 54285 7174 2938 3929 119 206344  

Producer's Accuracy (%) 63.13 25.89 71.27 92.47 29.8 43.25 19.84 93.43 62.18  

 Overall Accuracy = 55.43%   
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Table 4.3 continued 

Worldview - Minimum Distance - Red, Green, Blue & Near Infrared 

  Test Data 

Total User's 

Accuracy (%) 
 

Class Crest Gypsum Interdune 
Rocky 

Outcrop 
Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 71673 23 478 0 25008 0 3 0 0 97185 73.75 

Gypsum 120 392 106 0 210 595 845 0 0 2268 17.28 

Interdune 13307 30 13041 0 7021 236 1 0 6 33642 38.76 

Rocky Outcrop 0 0 47 7971 0 459 937 228 0 9642 82.67 

Slope 22307 34 2489 0 20896 0 0 0 0 45726 45.7 

Soil 0 0 7 60 0 3684 367 1 0 4119 89.44 

Urban 0 0 23 496 0 808 769 1 0 2097 36.67 

Vegetation 0 0 4 0 0 0 4 3692 0 3700 99.78 

Water 4483 0 808 0 1150 1392 12 7 113 7965 1.42 

Total 111890 479 17003 8527 54285 7174 2938 3929 119 206344  

Producer's Accuracy (%) 64.06 81.84 76.7 93.48 38.49 51.35 26.17 93.97 94.96  

 Overall Accuracy = 59.24%   
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Table 4.3 continued 

Worldview - Maximum Likelihood - Red & Near Infrared 

  Test Data 

Total User's 

Accuracy (%) 
 

Class Crest Gypsum Interdune 
Rocky 

Outcrop 
Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 66076 24 311 0 20231 0 3 0 0 86645 76.26 

Gypsum 17074 413 2789 0 8846 187 106 0 0 29415 1.4 

Interdune 6659 10 10410 0 5089 211 3 0 17 22399 46.48 

Rocky Outcrop 0 0 5 7925 0 5 330 1 0 8266 95.87 

Slope 17056 22 2553 0 18795 0 1 0 0 38427 48.91 

Soil 3064 1 591 135 989 3634 700 8 22 9144 39.74 

Urban 11 9 135 452 11 436 1744 33 0 2831 61.6 

Vegetation 0 0 14 0 0 1 30 3886 0 3931 98.86 

Water 1950 0 195 15 324 2700 21 1 80 5286 1.51 

Total 111890 479 17003 8527 54285 7174 2938 3929 119 206344  

Producer's Accuracy (%) 59.05 86.22 61.22 92.94 34.62 50.66 59.36 98.91 67.23 

 

 Overall Accuracy = 54.75%  
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Table 4.3 continued 

Worldview - Maximum Likelihood - Red, Green, Blue & Infrared 

  

Test Data 

Total User's Accuracy 

(%) 

 

Class Crest Gypsum Interdune 
Rocky 

Outcrop 
Slope Soil Urban Vegetation Water 

C
la

s
s

if
ic

a
ti

o
n

 I
m

a
g

e
 

Crest 66857 2 263 0 19106 0 0 0 0 86228 77.54 

Gypsum 605 385 505 0 949 272 4 0 22 2742 14.04 

Interdune 15580 3 11030 0 6054 0 1 2 0 32670 33.76 

Rocky Outcrop 0 0 4 7761 0 2 53 0 0 7820 99.25 

Slope 28686 54 4937 0 28094 0 0 0 0 61771 45.48 

Soil 2 3 70 172 3 5072 526 7 2 5857 86.6 

Urban 159 32 176 594 77 366 2313 18 0 3735 61.93 

Vegetation 0 0 17 0 0 3 35 3902 0 3957 98.61 

Water 1 0 1 0 2 1459 6 0 95 1564 6.07 

Total 111890 479 17003 8527 54285 7174 2938 3929 119 206344  

Producer's Accuracy (%) 59.75 80.38 64.87 91.02 51.75 70.7 78.73 99.31 79.83 

 

 

Overall Accuracy = 60.83% 
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Table 4.4: The Kappa Coefficient Statistic values for the minimum distance and maximum 

likelihood classifications of the two platforms and two sets of band combinations, 

resulting from the Confusion (Error) Matrix. 

Imagery Classification 

Module 

Band Combination Kappa 

Coefficient 

Landsat 8 Minimum Distance Red, Near-Infrared 0.3878 

  Red, Green, Blue, Near-Infrared 0.4191 

 Maximum Likelihood Red, Near-Infrared 0.4575 

  Red, Green, Blue, Near-Infrared 0.5355 

Worldview 2 Minimum Distance Red, Near-Infrared 0.3486 

  Red, Green, Blue, Near-Infrared 0.3913 

 Maximum Likelihood Red, Near-Infrared 0.3628 

  Red, Green, Blue, Near-Infrared 0.4225 

 

Table 4.5: The error matrix for the Minimum Distance and Maximum Likelihood classifications 

across the two spatial resolutions (Landsat & Worldview) and band combinations 

(red & near infrared;  and red, green, blue & near infrared), based only on the three 

dune feature classes that were identified (i.e. crest, slope and interdune). 

Landsat - Minimum Distance - Red & Near Infrared 

  
Test Data 

Total User's Accuracy (%) 

 
Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o
n

 

Im
a
g

e
 

Crest 351 0 154 505 69.50 

Interdune 63 95 28 186 51.08 

Slope 171 4 124 299 41.47 

Total 585 99 306 990  

Producer's Accuracy (%) 60.00 95.96 40.52 
 

 

Overall Accuracy = 57.58% 
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Table 4.5 continued 

Landsat - Minimum Distance - Red, Green, Blue & Near Infrared 

  
Test Data 

Total 
User's 

Accuracy 
(%)  

Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o
n

 

Im
a
g

e
 

Crest 369 0 151 520 70.96 

Interdune 89 114 51 254 44.88 

Slope 191 9 126 326 38.65 

Total 649 123 328 1100  

Producer's Accuracy (%) 56.86 92.68 38.41 
 

 
Overall Accuracy = 55.36%  

Landsat - Maximum Likelihood - Red & Near Infrared  

  
Test Data 

Total 
User's 

Accuracy 
(%)  

Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o

n
 I
m

a
g

e
 Crest 

889 2 312 1203 
73.90 

Interdune 
121 220 48 389 

56.56 

Slope 
102 6 171 279 

61.29 

Total 
1112 228 531 1871 

 

Producer's Accuracy (%) 79.95 96.49 32.2 
 

 
Overall Accuracy = 68.41%  

Landsat - Maximum Likelihood - Red, Green, Blue & Near Infrared  

  
Test Data 

Total 
User's 

Accuracy 
(%)  

Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o

n
 I
m

a
g

e
 Crest 

427 0 145 572 
74.65 

Interdune 
79 104 43 226 

46.02 

Slope 
147 16 153 316 

48.42 

Total 
653 120 341 1114 

 

Producer's Accuracy (%) 65.39 86.67 44.87 
 

 
Overall Accuracy = 61.40%  

Worldview - Minimum Distance - Red & Near Infrared  

  
Test Data 

Total 
User's 

Accuracy 
(%)  

Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o

n
 I
m

a
g

e
 Crest 70640 403 25994 97037 72.80 

Interdune 11362 12118 5077 28557 42.43 

Slope 17150 1519 16178 34847 46.43 

Total 
99152 14040 47249 160441 

 

Producer's Accuracy (%) 71.24 86.31 34.24 
 

 
Overall Accuracy = 61.67% 
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Table 4.5 continued 

Worldview - Minimum Distance - Red, Green, Blue & Near Infrared 

  Test Data 
Total 

User's 
Accuracy 

(%) 
 Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o
n

 

Im
a
g

e
 

Crest 
71673 478 25008 97159 

73.77 

Interdune 
13307 13041 7021 33369 

39.08 

Slope 
22307 2489 20896 45692 

45.73 

Total 
107287 16008 52925 176220  

Producer's Accuracy (%) 66.8 81.47 39.48   

Overall Accuracy = 59.93% 

Worldview - Maximum Likelihood - Red & Near Infrared 

  Test Data 

Total 
User's 

Accuracy 
(%) 

 Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o
n

 

Im
a
g

e
 

Crest 
66076 311 20231 86618 

76.28 

Interdune 
6659 10410 5089 22158 

46.98 

Slope 
17056 2553 18795 38404 

48.94 

Total 
89791 13274 44115 147180 

 

Producer's Accuracy (%) 73.59 78.42 42.6   

Overall Accuracy = 64.74%  

Worldview - Maximum Likelihood - Red, Green, Blue & Near Infrared 

  Test Data 
Total 

User's 
Accuracy 

(%) 
 Class Crest Interdune Slope 

C
la

s
s

if
ic

a
ti

o
n

 

Im
a
g

e
 

Crest 66857 263 19106 86226 
77.54 

Interdune 15580 11030 6054 32664 
33.77 

Slope 28686 4937 28094 61717 
45.52 

Total 
111123 16230 53254 180607 

 

Producer's Accuracy (%) 60.16 67.96 52.75 
 

 

Overall Accuracy = 58.68% 
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Table 4.6: The Kappa Coefficient Statistic resulting from the Confusion (Error) Matrix module, 

based on only the three dune feature classes (crest, slope and interdune). 

Imagery 

Classification 

Module Band Combination 

Kappa 

Coefficient 

Landsat 8 Maximum Likelihood Red, Green, Blue, Near-Infrared 0.3461 

 
 Red, Near-Infrared 0.4259 

 
Minimum Distance Red, Green, Blue, Near-Infrared 0.2645 

 
 Red, Near-Infrared 0.2766 

Worldview 2 Maximum Likelihood Red, Green, Blue, Near-Infrared 0.2988 

 
 Red, Near-Infrared 0.3579 

 
Minimum Distance Red, Green, Blue, Near-Infrared 0.2961 

 
 Red, Near-Infrared 0.2988 

 

4.1.4 Comparison of Mapped Dunes Based on the Spatial Resolution of 

Imagery 

The maximum likelihood classification was used in the comparison of the spatial 

resolution of Landsat 8 and Worldview 2 in the use in arid desert environments. In 

Table 4.6 and Figure 4.5 the differences and/ or changes that are present between the 

two images can be seen.  

Firstly in Figure 4.5 (a change detection map) indicates the areas where differences 

between the two images are present, these differences fall within the “Change (+1)” 

class that range from 0-7.5 %. These changes/ differences between the images are 

mostly located at the dune crest and slope areas (Figure 4.6) and thus relate to the 

width and roundness of the dunes. Visually, the dune orientation, appear to be similar 

for both 2002 and 2015 (Figure 4.8). There are limited changes in the classification 

classes bordering the sand sea (those classes not located within the sand sea, 

including the urban, soil and vegetation classes) (Figure 4.6).   
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Table 4.7a and b gives a more quantifiable image of the differences between the two 

classified images. There has been a 20% or more change in the area per class in all 

classes from the Worldview 2 to Landsat 8 image, this change is most likely related to 

the coarser resolution of the Landsat 8 image. These changes vary from 0.77 km2 (for 

the water class) to 112.05 km2 change in area for the crest class. Thus even although 

the percentages appear high in most classes the actual area that has changed is not 

as high in all instances. For example a 25.43% increase in area for the water class 

equates to 0.77 km2, and a 55.53% increase in area for the interdune class equates to 

an increase in area of 55.69 km2. It can also be seen that 25% of the area that was 

classified as crest on the Worldview 2 image was classified as slope on the Landsat 8 

image, as well as 8.9% as interdunal area. Similarly of the area classified as slope on 

the Worldview 2 images 22.92% was classified as crest on the Landsat 8 image and 

22.62% as interdune. The areas classified as interdune on the Worldview 2 image was 

also classified slightly different on the Landsat 8 image, 14.31% was classified as 

crest and 27.14% as slope (Figure 4.7).  

The increase in area from the Worldview 2 to the Landsat 8 classifications may be an 

indication that the Worldview 2 imagery may be more accurate in terms of 

mensuration – however without ground truthing this cannot be proven or disproven.  

Therefore, even although this indicates that the Wordlview 2 imagery may be “better” 

than the Landsat 8 imagery the accuracy assessment indicated that the classification 

of the Landsat 8 image was “better” than that of the Wordlview 2 image (refer to 

section 3.4.1) and thus these differences may also be attributable to the decreased 

accuracy of the classification of the Worldview image compared to the Landsat 8 

classification.  
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Figure 4.6: Change detection map indicating the areas of difference between the Worldview 2 

and Landsat 8 Maximum Likelihood classifications; zoomed in section on the 

edges of the sand sea – showing the smaller amount of change that occurred. 

 

 

Figure 4.7: Flow diagrams of the changes that occurred in the dune feature classes from the 

Worldview 2 image to the Landsat 8 Image. 
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(a)  (b)  

(c)  

Figure 4.8: The dune outlines and crest lines for (a) 2002 (dune outline: solid and crest: 

dashed red lines); (b) 2015 (dune outline: solid and crest: dashed blue lines) and 

(c) the crest lines from 2002 over laid over those from 2015 
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Table 4.7a: The change in area (km2) per class from the Wordlview 2 to Landsat 8 Maximum Likelihood Classification Images 

 
 Worldview 2 (Initial State) 

 
 Crest Gypsum Interdune Rocky Outcrop Slope Soil Urban Vegetation Water 

L
a
n

d
s
a
t 

8
 (

F
in

a
l 

S
ta

te
) 

Crest 111.83 2.86 14.36 0 48.36 0.01 0.09 0 0.01 

Gypsum 3.52 11.14 2.2 0.01 9.33 0.39 0.43 0.14 0.21 

Interdune 15.75 0.75 55.65 0 47.67 0.08 0.64 0.11 0.01 

Rocky 

Outcrop 
0 0.01 0 26.05 0 1.63 6.62 0.02 0.07 

Slope 45.36 5.9 27.14 0 104.95 0.14 0.74 0.01 0.08 

Soil 0.05 2.04 0.05 0.39 0.13 23.88 3.32 1.02 1.67 

Urban 0 0.03 0.01 1.06 0 6.61 4.56 1.69 0.11 

Vegetation 0.09 0.79 0.71 0.09 0.39 2.98 3.31 6.99 0.1 

Water 0 0.23 0.08 0.13 0.01 5.69 1.38 1.18 0.77 

Class Total 100.00 176.6 23.76 100.19 27.96 210.84 41.47 21.29 11.15 

Class 

Changes 
36.62 64.77 12.62 44.54 1.92 105.89 17.59 16.73 4.16 

Image 

Difference 
+0.56 +0.93 +3.60 +20.49 +6.42 -26.52 -8.91 -7.22 +4.29 
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Table 4.7b: The percentage change per class from the Wordlview 2 to Landsat 8 Maximum Likelihood Classification Images 

  Worldview 2 (Initial State) 

  Crest Gypsum Interdune Rocky Outcrop Slope Soil Urban Vegetation Water 

L
a
n

d
s
a

t 
8
 (

F
in

a
l 
S

ta
te

) 

 

Crest 63.32 12.05 14.34 0.00 22.94 0.03 0.43 0.04 0.23 

Gypsum 1.99 46.89 2.19 0.02 4.43 0.94 2.00 1.23 6.78 

Interdune 8.92 3.17 55.54 0.01 22.61 0.21 3.02 1.01 0.44 

Rocky 

Outcrop 
0.00 0.03 0.00 93.14 0.00 3.92 31.09 0.14 2.26 

Slope 25.69 24.85 27.09 0.00 49.78 0.33 3.46 0.06 2.63 

Soil 0.03 8.59 0.05 1.41 0.06 57.59 15.59 9.11 55.22 

Urban 0.00 0.12 0.01 3.78 0.00 15.95 21.44 15.14 3.74 

Vegetation 0.05 3.34 0.71 0.34 0.18 7.18 15.54 62.71 3.17 

Water 0.00 0.96 0.08 0.47 0.00 13.72 6.48 10.57 25.51 

Class Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class 

Changes 
36.62 36.68 53.11 44.46 6.86 50.22 42.41 78.56 37.29 

Image 

Difference 
+0.56 +0.52 +15.14 +20.45 +22.95 -12.58 -21.48 -33.92 +38.50 
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Phase 2: 

The results from Phase 2 address Aim 2 of the project (Refer to section 1.2). 

4.2 Dune Migration 

Landsat 7 (September 2002) and Landsat 8 (September 2015) Imagery was used to 

do a preliminary analysis on the migration, within a subsection (Figure 4.9) of the 

Ubārī Sand Sea, by quantifying the changes in the dune boundaries – specifically the 

base boundary of the windward slope and the orientation of the dune (refer to 

section 3.5).  

 

4.2.1 Supervised Classification 

The resulting maximum likelihood classification images (refer to section 3.4) can be 

seen in Figure 4.8. The Kappa coefficient (Table 4.8) for the Landsat 7 and Landsat 8 

classified images are 0.5032 and 0.5937 respectively indicating an acceptable 

accuracy level of the overall classification. The user accuracy of the three dune feature 

classes for the Landsat 7 image (2002) were as follows: Crest (71.12%); Slope 

(51.22%) and Interdune (48.04%). Of these classes the crest was sometimes 

confused with the slope and interdune classes, the interdune was mostly only 

confused with the slope and gypsum classes. The slope class however was often 

confused with the crest, gypsum and interdune classes. The user accuracy for the 

Landsat 8 (2015) image was as follows: Crest (75.78%); Slope (55.16%) and 

Interdune (54.57%). On the Landsat 8 image there were also confusion of classes, the 

crest and interdune classes showed some confusion as well as the interdune and 

slope classes – this confusion is most likely due to the similar spectral behaviour of the 

three dune feature classes as mentioned before.  
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A  

 

B  
 

Figure 4.9: The resulting maximum likelihood classified images for A: 2002 (Landsat 7) and B: 

2015 (Landsat 8) (zoomed in on study area - right) 
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Table 4.8: Error Matrix for the Maximum Likelihood Classification for; (a) Landsat 7 (2002) and (b) Landsat 8 (2015) imagery.  

(a) Test Data 

 
Class Crest Gypsum Interdune 

Rocky 

Outcrop 
Slope Soil Urban Vegetation Water Total User Accuracy (%) 

C
la

s
s

if
ie

d
 I
m

a
g

e
 

Crest 953 2 0 0 385 0 0 0 0 1340 71.12 

Gypsum 25 80 18 0 111 3 0 2 0 239 33.47 

Interdune 164 9 245 0 91 0 0 1 0 510 48.04 

Rocky Outcrop 0 0 0 252 0 1 5 1 0 259 97.30 

Slope 136 3 21 0 168 0 0 0 0 328 51.22 

Soil 0 1 0 1 0 70 7 32 0 111 63.06 

Urban 0 0 0 18 0 24 60 14 1 117 51.28 

Vegetation 0 0 5 0 0 18 7 49 3 82 59.76 

Water 0 0 0 1 0 44 3 20 40 108 37.04 

Total 1278 95 289 272 755 160 82 119 44 3094 

 Producer Accuracy 

(%) 
74.57 84.21 84.78 92.65 22.25 43.75 73.17 41.18 90.91 

  

Overall Accuracy = 61.96% 

Kappa Coefficient = 0.50 
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Table 4.8 continued 

(b) Test Data 

 
Class Crest Gypsum Interdune 

Rocky 

Outcrop 
Slope Soil Urban Vegetation Water Total 

User Accuracy 

(%) 

C
la

s
s

if
ie

d
 I
m

a
g

e
 

Crest 881 0 2 0 280 0 0 0 0 1163 75.75 

Gypsum 8 85 2 0 20 8 0 6 0 129 65.89 

Interdune 123 6 233 0 65 0 0 0 0 427 54.57 

Rocky Outcrop 0 0 0 253 0 1 3 0 0 257 98.44 

Slope 266 1 50 0 390 0 0 0 0 707 55.16 

Soil 0 3 0 4 0 112 4 7 0 130 86.15 

Urban 0 0 0 15 0 16 68 22 0 121 56.2 

Vegetation 0 0 2 0 0 11 5 70 1 89 78.65 

Water 0 0 0 0 0 12 2 14 43 71 60.56 

Total 1278 95 289 272 755 160 82 119 44 3094 

 Producer Accuracy (%) 68.94 89.47 80.62 93.01 51.66 70.00 82.93 58.82 97.73 
  

Overall Classification = 69.01% 

Kappa Coefficient = 0.59 
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4.2.2 Change Analysis 

With the use of a change detection map the area used to estimate the migration rate 

was identified (Figure 4.10). The changes from 2002 to 2015 were mostly located 

within the central areas of the sand sea, where the dunes are most likely more active. 

The changes appear to be localized along the dunes. The least amount of change 

occurred at the boundaries of the sand sea, changes at the boundaries may also be 

related to anthropogenic activity (Figure 4.10).  

The results from the change detection statistics module (Table 4.9) gives a more 

quantifiably image of the amount of change that occurred per feature class. There was 

an overall decrease of 41.90 % (1704.42 km2) in the slope areas, and an increase of 

22.95 % (73.57 km2) in the crest area, and 48.12 % (119.33 km2) in the interdune area 

in the subset over the time period of 2002-2015. This is indicative that dune migration 

occurred in that time period. 

 

Figure 4.10: A change detection map superimposed on the atmospherically corrected image 

from 2015 – indicating the areas where change occurred and finally the subsection 

(boxed) that was used in the analyses (where no change occurred there is no 

colour - it is transparent). 
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Table 4.9a: The overall change in area (km2) per class for the time period of 2002-2015. 

  Initial State (2002) 

  Crest Gypsum Interdune Slope Soil Urban Vegetation Water 

F
in

a
l 
S

ta
te

 (
2

0
1
5

) 

Crest 73.57 105.52 30.61 110.63 0.01 0.09 1.44 0.56 

Gypsum 12.83 7165.3 22.21 1693.77 5.46 0.01 809.57 887.55 

Interdune 110.51 695.23 119.33 530.57 0.03 0.67 3.61 14.06 

Slope 120.75 1217.09 72.19 1704.42 0 0.58 3.35 22.6 

Soil 0 176.08 0.01 0.1 5.04 0 210.34 33.16 

Urban 0 0.06 0 0 0 0 0.57 0.02 

Vegetation 2.93 408.02 3.53 25.84 5.62 0 532.25 164.9 

Water 0.02 139.65 0.13 2.94 0.03 0 26.38 101.01 

Class Total 320.61 9907.46 248.01 4068.27 16.38 2.6 1590.61 1224.2 

Class Changes 247.04 2742.16 128.68 2363.85 11.34 2.6 1058.37 1123.19 

Image Difference 1.83 689.24 1226 -927.29 408.36 -1.95 -447.52 -954.02 
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Table 4.9b: The overall percentage change per class for the time period of 2002-2015 

  

Initial State (2002) 

  

Crest Gypsum Interdune Slope Soil Urban Vegetation Water 

F
in

a
l 
S

ta
te

 (
2

0
1
5

) 

Crest 22.95 1.07 12.34 2.72 0.06 3.57 0.09 0.05 

Gypsum 4.00 72.32 8.95 41.63 33.30 0.56 50.90 72.50 

Interdune 34.47 7.02 48.12 13.04 0.16 25.86 0.23 1.15 

Slope 37.66 12.29 29.11 41.90 0.01 22.15 0.21 1.85 

Soil 0.00 1.78 0.01 0.00 30.77 0.00 13.22 2.71 

Urban 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00 

Vegetation 0.92 4.12 1.42 0.64 34.28 0.00 33.46 13.47 

Water 0.01 1.41 0.05 0.07 0.20 0.00 1.66 8.25 

Class Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Class Changes 77.05 27.68 51.89 58.11 69.23 100.00 66.54 91.75 

Image Difference 0.57 6.96 48.12 -22.79 2492.47 -75.08 -28.14 -77.93 
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4.2.3 Changes in Dune Morphology (Shape, Size, Length, Width) 

The overall morphological changes in the selected dunes over the period of 2002-

2015 can be seen in Figures 4.11 – 4.13 and Table 4.10 (refer to section 3.6 to review 

how this was done). The general shape of the dunes remained the same during this 

period, but there were some changes in the crest length, dune width and area of the 

dunes in question. The crest lengths for 2002 ranged from 1.90 km – 36.50 km; for 

2015 the crest lengths ranged from 2.40 km – 36.10 km and from 2002 to 2015 varied 

from decreasing lengths of 13.70 km and increases in length of 16.40 km. The width of 

the dunes also showed small variations from decreasing widths of 0.35 km and 

increasing widths of 0.02 km. The changes in the total area of the dunes were more 

pronounced, ranging from decreases in the area of 8.05 km2 to increases in the dune 

area of .15 km2. Of the 39 dunes in question, 17 dunes showed a decrease in crest 

length and 37 of the dunes showed a decrease in width and/ or area respectively 

(Table 4.10). 

 

 

Figure 4.11: The isolated dune classes extracted from the maximum likelihood classification 

images for A: 2002 and B: 2015.  
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A  B  

Figure 4.12: The isolated dune classes extracted from the maximum likelihood classification 

images for A: 2002 and B: 2015 with the overlay of the digitized dunes (outlined in 

red (A) and blue (B)) 

 

 

A  B  

Figure 4.13: Digitized dunes from 2002 (blue) superimposed on top of the digitized dunes from 

2015 (red); A: the 39 dunes that were used for the migration analysis and B: 

zoomed in section 
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A  B  

Figure 4.14: Sand dune movement map - resulting areas of change (green polygons) from the 

subtraction of the digitized dunes of 2015 from the digitized dunes of 2002; A: the 

dunes used in the analysis of the dune migration and B: zoomed in section 

 

4.2.4 Changes in Location 

Figure 4.14 and Table 4.11 gives an estimate of the changes in the physical location 

(refer to section 3.6 to review how this was accomplished) of the dunes in question, 

based on the position of the windward slope boundary. For the 39 dunes migration 

distances from 2002 to 2015 ranged from 29.79 (± 17.25) m to 316.65 (± 146.76) m. 

Overall the dunes migrated an average total of 112.33 (± 60.64) m in the time period 

and resulting in an average yearly migration rate of 8.64 (± 4.65) m.  
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Table 4.10: Changes in dune crest length, dune width and area from 2002-2015. 

Dune # (See Fig 4.13) 
 

Crest Length (km) Average Width (km) Area (km2) 

2002 2015 Difference (2015-02) 2002 2015 Difference (2015-02) 2002 2015 Difference (2015-02) 

1 17.40 18.10 0.70 1.60 1.48 -0.12 33.77 31.12 -2.65 

2 36.50 36.10 -0.40 1.75 1.72 -0.03 65.01 63.94 -1.07 

3 8.50 9.20 0.70 1.99 1.84 -0.15 18.39 17.02 -1.37 

4 3.10 2.60 -0.50 1.23 1.10 -0.12 3.48 3.18 -0.30 

5 2.10 2.40 0.30 2.06 1.95 -0.12 15.98 14.81 -1.17 

6 2.30 5.10 2.80 1.81 1.71 -0.10 21.64 19.94 -1.69 

7 4.10 5.90 1.80 1.36 1.16 -0.20 4.33 3.70 -0.63 

8 5.90 2.80 -3.10 1.78 1.61 -0.16 4.80 4.53 -0.27 

9 20.70 7.00 -13.70 1.97 1.73 -0.24 6.80 5.97 -0.83 

10 11.30 11.60 0.30 1.41 1.38 -0.03 8.08 7.85 -0.23 

11 1.90 2.40 0.50 1.75 1.41 -0.34 41.53 33.48 -8.05 

12 5.90 22.30 16.40 1.49 1.42 -0.07 11.06 10.81 -0.25 

13 7.20 6.70 -0.50 2.23 1.97 -0.26 15.69 14.28 -1.42 

14 9.20 7.70 -1.50 1.89 1.69 -0.21 34.41 31.06 -3.35 

15 4.70 8.40 3.70 2.04 1.80 -0.24 16.47 15.19 -1.29 

16 5.40 5.20 -0.20 1.91 1.72 -0.19 12.72 11.55 -1.17 

17 17.50 17.30 -0.20 1.98 1.63 -0.35 35.23 28.92 -6.31 

18 16.80 16.90 0.10 1.56 1.54 -0.03 15.41 14.82 -0.59 

19 23.80 23.90 0.10 1.93 1.83 -0.11 47.54 44.78 -2.76 

20 7.40 7.10 -0.30 1.32 1.23 -0.09 13.74 12.92 -0.83 

21 9.20 11.10 1.90 1.76 1.70 -0.06 18.16 17.30 -0.86 

22 4.10 20.40 16.30 1.79 1.43 -0.35 10.30 8.32 -1.99 

23 6.10 9.00 2.90 1.78 1.80 0.01 22.07 21.76 -0.31 

24 3.20 4.00 0.80 2.09 1.99 -0.10 43.42 39.81 -3.61 
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Table 4.10 Continued    

Dune # (See Fig 4.13) 
 

Crest Length (km) Average Width (km) Area (km2) 

2002 2015 Difference (2015-02) 2002 2015 Difference (2015-02) 2002 2015 Difference (2015-02) 

25 11.30 4.40 -6.90 1.76 1.78 0.02 7.71 7.68 -0.02 

26 19.90 6.60 -13.30 1.86 1.73 -0.12 50.98 47.68 -3.31 

27 26.10 27.30 1.20 1.69 1.53 -0.16 17.13 15.52 -1.61 

28 9.40 9.80 0.40 1.90 1.83 -0.08 27.15 26.10 -1.05 

29 8.20 7.90 -0.30 2.12 1.93 -0.19 18.58 16.83 -1.74 

30 13.40 7.70 -5.70 1.92 1.81 -0.12 23.44 22.49 -0.94 

31 10.90 3.40 -7.50 1.86 1.84 -0.01 15.43 15.59 0.15 

32 7.50 13.70 6.20 1.99 1.88 -0.12 8.68 8.05 -0.63 

33 2.80 11.30 8.50 1.87 1.72 -0.15 13.84 12.65 -1.19 

34 6.30 6.10 -0.20 2.05 2.03 -0.02 20.92 21.03 0.11 

35 8.40 8.20 -0.20 1.80 1.74 -0.06 10.70 10.42 -0.28 

36 4.20 4.80 0.60 1.68 1.58 -0.09 10.41 9.83 -0.58 

37 6.90 6.70 -0.20 2.00 1.79 -0.21 15.94 14.17 -1.77 

38 4.50 5.20 0.70 1.96 1.92 -0.04 15.25 15.02 -0.23 

39 6.70 7.50 0.80 1.73 1.57 -0.16 12.38 11.54 -0.83 

SD* 7.55 7.54 5.61 0.23 0.23 0.09 14.03 13.10 1.66 

*SD = Standard Deviation 
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Table 4.11: The average distance each of the sample dunes migrated (m) for the time series (13 years), as well as the average migration rate 

per dune per year (m/yr) and the overall migration distance (m) and migration rate (m/yr) for the dunes in question 

Dune # (See Fig 4.13) Average Migration per Dune (m) Standard Deviation Average Migration Rate per Dune per Year (m/yr) 

1 111.81 80.98 8.60 

2 65.94 47.03 5.07 

3 143.66 88.06 11.05 

4 79.32 41.50 6.10 

5 103.20 50.69 7.94 

6 129.03 83.66 9.93 

7 134.37 57.50 10.34 

8 159.34 73.43 12.26 

9 316.65 146.76 24.36 

10 118.87 77.18 9.14 

11 59.30 25.67 4.56 

12 135.17 72.41 10.40 

13 76.50 62.74 5.88 

14 47.00 15.95 3.62 

15 212.86 91.41 16.37 

16 42.89 50.07 3.30 

17 77.21 40.29 5.94 

18 146.40 70.32 11.26 

19 92.90 82.93 7.15 

20 57.48 28.66 4.42 

21 117.20 80.76 9.02 

22 293.80 109.89 22.60 

23 100.02 63.66 7.69 

24 109.69 78.96 8.44 
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Table 4.11 Continued    

Dune # (See Fig 4.13) Average Migration per Dune (m) Standard Deviation Average Migration Rate per Dune per Year (m/yr) 

25 56.58 17.12 4.35 

26 101.84 65.70 7.83 

27 115.55 94.86 8.89 

28 88.87 53.22 6.84 

29 196.29 71.52 15.10 

30 29.79 17.32 2.29 

31 79.40 37.66 6.11 

32 71.95 38.81 5.53 

33 67.20 23.38 5.17 

34 118.38 89.11 9.11 

35 112.08 76.05 8.62 

36 116.24 15.37 8.94 

37 151.15 123.99 11.63 

38 71.25 40.89 5.48 

39 73.64 50.41 5.66 

Overall Average Dune Migration (m) 112.33 (± 60.46) 

Overall Average Dune Migration Rate per Year (m/yr) 8.64 (± 4.65) 
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4.3 Key Findings 

In general the dune features can be identified/ discriminated based on the spectral 

signature alone (Figure 4.2). The dune features, namely the crest, slope and 

interdunal areas were successfully classified based on both the coarse and fine 

resolution imagery, but the accuracy with which it can be classified are different 

between the two resolutions (Figure 4.3). The classifications based on the Worldview 

2 imagery had overall accuracies ranging from 55.43 - 60.83% with kappa values of 

0.3486 – 0.4225 compared to the overall accuracies and kappa values of the 

classifications based on the Landsat 8 imagery ranging from 52.11 – 64.67% and 

0.3878 – 0.4927 respectively. 

 

From the resulting images and measurements it can be argued that similar dune 

patterns and crest orientations can be identified from the different spatial resolution 

data sources (refer to section 4.2.4). However, it can be suggested that the accuracy, 

precision and ease with which the dune features can be defined increases with the 

use of a finer spatial resolution. The smaller pixel size of higher resolution imagery 

may result in increased precision as the features can be more closely defined. 

Landsat is sufficient in mapping the general dune patterns, orientation and size, 

however other features (such as ripples and superimposed dunes) that are clearly 

visible on the Worldview 2 imagery is less defined if at all visible on the Landsat 8 

image (see Figure 5.1). For the purposes of this study, the Landsat imagery was 

sufficient in determining the overall migration rate and direction of the dunes present in 

the Ubārī Sea.  

There is dune migration present within the Ubārī Sand Sea, with regards to the linear 

dunes. As mentioned previously the star dunes were not included in the scope of this 

project but it could be interesting to “play around” with those dunes as well. An 

average migration rate of 8.64 (± 4.65) m/yr was measured for the dunes within the 

subsection of the Ubārī that was analysed.  
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5. Chapter 5: Discussion 

5.1 Introduction 

Sand dune migration has been identified as one of the greatest threats to 

anthropogenic developments, agricultural activities and the preservation of historical 

sites in arid areas (such as Egypt and Libya) (Hermas et al., 2012; El-Magd et al., 

2013; Sparavinga, 2013). In order to limit and/ or prevent this threat, dune dynamics 

and dune migration rates and direction need to be studied (Sparavinga, 2013). 

Previous studies have been limited to extensive and expensive field surveys that are 

spatially and temporally (frequency of successive measurements) limited and time 

consuming (Paisley et al., 1991; Levin et al., 2004; Yao et al., 2007; Hermas et al., 

2012; Mohamed & Verstraeten, 2012; El-Magd et al., 2013). Recently, remote sensing 

and GIS has been suggested and used as a solution to overcome these limitations 

(White et al., 1997; Al-Dabi et al., 1998; Janke, 2002; Levin et al., 2004, 2006; Yao et 

al., 2007; Hermas et al., 2012; Mohamed & Verstraten et al., 2012; El-Magd et al., 

2013). Several different remote sensing platforms exist, with different specifications; 

purposes and availability (see Table 1.1), but not all of these platforms are useful for 

studies in arid environments (Hermas et al., 2012; El-Magd et al., 2013). 

This dissertation aimed at: 1. determining if Landsat 7 and 8 (a coarser spatial 

resolution) was sufficient to study arid dune environments (compared to a finer spatial 

resolution, Worldview 2 in this case) – in particular the study of dune migration. 2. To 

determine if dune migration occurred within the Ubārī Sand Sea during the time period 

of 2002-2015, and if so what the rate and direction of said migration was. Previous 

studies in this area has been limited due to its remote location, the size of the dunes 

and the extent of the sand sea which would result in very expensive expeditions to 

study the dunes and to determine the migration rates in an area that is not widely 

populated, and the sand sea is located within a basin which constricts the movement 

of the sand to a degree and lowering the immediate threat of this particular sand sea. 

This study is original in the way that it considers the identification and monitoring of 

sand dunes and sand dune migration by way of classification methods within the Ubārī 

Sand Sea. Limited sand dune studies have been conducted in this area due to its 

location and size. Results from this study contribute to our knowledge of the usability 

and effectiveness of using remote sensing platforms and automated classification 
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methods to study dunes and their migration. The results also contribute to the 

knowledge of the dynamics of linear dunes located within the Ubārī Sand Sea. 

 

5.2 Phase 1: The Comparison of Two Spatial Resolutions (Worldview 2 and 

Landsat 8 Images) 

Within this section of the research two band combinations were used to classify the 

Landsat 8 and Worldview 2 imagery with the use of the minimum distance and 

maximum likelihood classification modules. In order to compare these classifications 

an accuracy assessment was applied to each of the combinations in order to 

determine the “best” combination to study sand dunes in arid environments (refer to 

section 3.4).   

5.2.1 Band Combinations & Classification Module 

It was found that the classifications classified with the maximum likelihood 

classification algorithm on the visible (red, green, blue) and near infrared bands 

resulted in the highest overall accuracy and kappa value (Worldview 2: 60.83% & 

0.4225 and Landsat 8: 64.67% & 0.5355), respectively. The highest class accuracy for 

the crest class was achieved with the combination of the visible and near infrared 

bands and the maximum likelihood classification, and the highest class accuracy for 

the slope and interdune classes were achieved with the combination of the red and 

near infrared bands and the maximum likelihood classification. 

These resulting “best” bands combination coincides with the comment Collado et al. 

(2002) made; that most authors rely on the visible spectral range (red, green and blue 

bands) to study sand dunes, as a high reflectance of bare soil is seen in the visible 

band range. Additional analysis into the use of the panchromatic, thermal, blue and 

deep-blue (violet) bands in arid dune environments can also be considered, as some 

authors have found these bands to be useful in discriminating the different dune 

features (Pease et al., 1999; Mohamed & Verstraten, 2012; Telfer et al., 2015) (these  

bands were excluded in this research because the spatial resolution was the 

parameter being questioned not the spectral resolution, and not all of the previously 

mentioned bands are included in the Worldview 2 platform).  
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The use of automated classification methods in arid environments (particularly dune 

environments) has been very limited – it is more commonly used in vegetated and/ or 

areas with urban development. In the research of vegetated environments the 

maximum likelihood classification has also been found to be the better classifier 

(compared to minimum distance) by Maselli et al. (1990); Keuchel et al. (2003); 

Adelabu et al., 2013). Other research (Conese & Maselli, 1992; de Souza et al., 2013) 

has identified some limitations associated with the maximum likelihood classifier 

including bias in area estimates and errors in the area estimation. Bias and errors in 

the estimation of the area within this study cannot be commented on as no ground 

truthing could be done – and thus the accuracy in relation to reality cannot be 

definitively defined. De Souza et al. (2013) also noted that the ideal classification 

method will be different in each study depending on the question that needs 

answering, therefore this result of maximum likelihood being the better classifier in arid 

dune environments can be considered a pilot to further research which can consider 

other classification methods compared to the maximum likelihood classifier to better 

define dune features more efficiently and more accurately (as the accuracy of the 

maximum likelihood classifier even although it was the “best”, the accuracy was still 

very low with a kappa value of 0.5355). 

 

5.2.2 Spatial Resolution Comparison: Landsat 8 vs Worldview 2 

There was an average difference of 20% per class between the Worldview and 

Landsat classifications. This difference is assumed to be as a result of the difference 

in the spatial resolution, because the spectral resolution was constant for the two 

images. It was found that the Worldview classifications are more accurate in terms of 

measurements than the Landsat classification but the Landsat classification is 

sufficient for delineating the basic dune morphology.  

From the resulting images (Figures 4.4, 4.5, 4.6) and measurements (Tables 4.7a and 

b) it can be argued that similar dune patterns and crest orientations can be identified 

from the different spatial resolution data sources. However, it can also be suggested 

that the accuracy and ease with which the dune features can be defined increases 

with a finer spatial resolution – as the dune features are more easily defined in all their 

components. 
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Bryantt (2014) compared classifications of Landsat 8 and Worldview 2 imagery in an 

agricultural context, and found that the classifications of Landsat 8 imagery yielded in 

a higher accuracy than those of the Worldview 2 imagery. It is interesting to note that 

within the current research similar results were found (to what Bryantt, 2014 found) 

with reference to the accuracy of resulting classifications maps of Landsat 8 (at 

64.67% overall accuracy and kappa of 0.4927) being higher than that of Worldview 2 

(with an overall accuracy of 60.83% and kappa value of 0.4225) (refer to Tables 4.5 

and 4.6). It would be expected that the higher spatial resolution data would yield 

higher accuracies in classifications (as the features are better defined). However, 

Bryantt (2014) noted this “better defined features” as the cause of the lower accuracy 

– gaps in the crop cover are more defined with a higher spatial resolution thus the 

training classes are less homogeneous on the Worldview 2 image than on the Landsat 

8 image (where small differences in ground cover is lost due to the coarser spatial 

resolution). Also the area that resulted in this low accuracy value was relatively 

homogeneous in terms of spectral signature or behaviour – thus it is difficult to 

discriminate different features based on the spectral signature alone – which is similar 

to the limitations of this study due to the homogeneity of arid dune environments. 

Bryatt (2014) noted that the Worldview 2 platform resulted in classifications with higher 

accuracies than those based on Landsat 8 imagery in the more heterogeneous areas 

that were studied; and that this was most likely due to the mixed pixel effect that was 

exacerbated by the coarser pixel resolution of Landsat 8.   

 

The identification of dune crests (and slope boundaries) based solely on multispectral 

imagery (containing no data on the altitude of the features) is very difficult in some 

cases depending on the shape of the dune. Some dunes have a sharp, well defined 

crest whereas others have a more rounded, broad crest. The sharp well defined crests 

are more easily identified from multispectral imagery than the broad rounded crests. 

This could result in the misinterpretation of the data and ultimately influence the 

resulting classified images. Because of the finer spatial resolution of the Worldview 2 

imagery it may be easier to define the crests of both sharp and round crested dunes, 

but it may also result in confusion of the classes when training data based on a finer 

spatial resolution is used to classify an image with a coarser spatial resolution. 
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Landsat is sufficient in mapping the general dune patterns (crest and interdunal 

areas), orientation and size independent of the classification method, but is not 

sufficient in the detection of the ripples or smaller and/or superimposed dunes that are 

present within the study site (which is visible on the Worldview imagery, Figure 5.1). 

This finding coincides with the findings of Al-Dabi et al. (1998) and Yao et al. (2007) 

that Landsat is a useful tool for dune pattern identification and tracking dune migration. 

For the purposes of this study Landsat imagery is deemed sufficient in determining the 

overall migration rate and direction of the dunes present in the Ubārī Sand Sea. 

Studies concerned with the specific dynamics and dimensions of dunes and 

superimposed dunes (especially) should consider using higher resolution imagery.  

 

(a)  (b)  

Figure 5.1: Zoomed in area (boxed in red) of the (a) Worldview 2 image showing the better 

visibility of the superimposed dunes compared to the same zoomed in area of the 

(b) Landsat 8 image. On the Worldview 2 image (left) ripples on top of the dune 

can be seen as well as better defined urban structures (top centre) which are not 

identifiable as urban structures on the Landsat 8 image (right) 

 

5.3 Phase 2: Dune Migration within the Ubārī Sand Sea 

Dune morphology (shape and size) and the migration (location and orientation) were 

studied by digitizing dunes from the classified images of two Landsat images for the 

time period of 2002-2015 (refer to section 3.6).   
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5.3.1 Morphology 

Linear dunes within the Ubārī Sand Sea retained their general shape and crest 

orientation (SW-NE) between 2002 and 2015 (Figure 4.8 and 4.13), but there was 

some variations in the length, width and area of the dunes (Table 4.10). The length of 

the dune crests varied from 1.9 km (minimum recorded) to 36.10 km (maximum 

recorded) in 2002 and from 2.40 km to 36.10 km in 2015 respectively. Changes in the 

dune crest length varied from lengths decreasing up to 13.70 km and increasing up to 

16.40 km (increasing dune lengths were observed in 22 out of the 39 dunes).  

The average width varied from a minimum of 1.23 km and a maximum recorded 

average width of 2.23 km in 2002 and ranging from 1.10 km to 2.03 km in 2015 (Table 

4.10). Thus there was also some variation in the average width of the dunes between 

2002 and 2015, this variation ranged from average widths decreasing up to 0.35 km to 

increasing up to 0.02 km (a decrease in average width was observed in 37 of the 39 

dunes). Bolghoubra (2016) found that the barchans dunes from Erg Sidi Moussa 

ranged in widths of 50 to 335 m – these are much smaller than that of the linear dunes 

of the Ubārī, but this is expected since barchan dunes are usually smaller than linear 

dunes. 

Due to these changes in length and width there were also variations in the area (and 

most likely the height – which is beyond the scope of this research) of the dunes, the 

area of the dunes varied from 3.48 km2 to 65.01 km2 in 2002 and from 3.18 km2 to 

63.94 km2 in 2015. The variation in the area of the dunes ranged from decreases of 

8.05 km2 to increases of 0.15 km2 (Table 4.10).   

5.3.2 Location 

An overall average lateral migration of 112.33 (± 60.46) m and an average yearly 

lateral migration rate of 8.64 (± 4.65) m/yr in a general north-western direction was 

observed for the 13 year time period. The lateral migration rates per dune ranged from 

2.29 m/yr to 11.63 m/yr (Table 4.11). The lateral migration rates of these dunes are 

considerably faster than the lateral migration rates of 0.7 – 2 m/yr for two linear dunes 

in North West Sinai, Egypt, measured with conventional field measurements (Phillip et 

al., 2004). Phillip et al. (2004) also identified that the linear dunes in NW Sinai 

elongated at a much faster rate of 2.25 - 13 m/yr. This was attributed to the wind 

velocity that differs in the two main wind directions (when the wind flows parallel to the 
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dunes the wind velocity increases and when the wind is angled to the dune the 

velocity and thus the migration rate decreases) (Phillip et al., 2004), this is unlikely to 

be the case within the Ubārī as the main wind direction is East (sometimes deviating 

northeast) with a small seasonal variation in of wind velocity throughout the year (refer 

to section 1.4.5; WeatherOnline, 2014a; 2014b; Weatherbase, 2015a; 2015b). 

Bolghoubra (2016) measured the migration rates of barchans dunes in the Erg Sidi 

Moussa (Central Algeria) with the use of Google Earth imagery (Digital Globe and 

Pleiades) and found that the barchans migrate at an astonishing average rate of 12 

m/yr (range 7 – 18 m/yr). 

Traditionally, linear dunes mainly elongate parallel to the dominant wind regime 

(Fitzsimmons et al., 2007; Telfer et al., 2015), with small amounts of displacement 

occurring laterally as a result of the bimodal wind regime. The direction of the 

migration (either lateral displacement or elongation) may have an effect on the rate at 

which linear dunes migrate. Several studies found that the elongation of linear dunes 

occurs at a faster rate than lateral migration. Hermas et al. (2012) noted the average 

lateral migration rates (as determined by several different authors) ranging from 0.7 – 

10.6 m/yr; whilst the elongation in the same areas ranged from 2.3 – 27 m/yr – thus 

the elongation occurred at a faster rate than the lateral migration. Phillip et al. (2004) 

found that linear dunes elongates at a faster rate than the lateral migration that can 

occur. Lateral migration rate of 2.8-10 m/yr were measured for the complex dunes 

(barchan section and transverse section) in Jockey’s Ridge, North California (Mitasova 

et al., 2005). These migration rates are similar to the rates identified in the Ubārī sand 

sea, but these are from different dune types. Bailey & Bristow (2004) measured an 

average dune migration rate of 1.3 m/yr for the barchans dunes located at Aberffraw 

(Anglesey, north Wales).  

Other migration rates of linear dunes range from 0.7-2 m/yr (North West Sinai, Phillip 

et al., 2004); 1.3 m/yr (north west China, Livingstone et al., 2007); and average rate of 

0.5-1.5 m/yr for a combination of linear, transverse and barchans dunes were 

calculated for the Great Kobuk Sand Dunes of Alaska (Necsiou et al., 2009). These 

migration rates are much lower than those measured in this research, this could occur 

for several reasons; an overestimation could have occurred due to the spatial 

resolution of the Landsat imagery; stronger wind velocities could be present in the 

Ubārī region, as well as the difference in the climate of Libya compared to Alaska and/ 
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or the difference in the topography of the study areas. Other possible factors that 

could be considered are the methods that were used to study the migration rates 

(which ranged from field studies to point analysis compared to the windward boundary 

base that was used in this research). 

It was found that the larger dunes (for example dunes 2, 11, 14 and 17; Figure 4.14) 

had a slower migration rate; ranging from 3.62 – 5.07 m/yr (Table 4.11; Figure 5.2) 

than the smaller dunes (dunes 7 – 10 and 22; Figure 4.14); with migration rates 

ranging from 9.14 – 24.35 m/yr (Table 4.10; Figure 5.2). These results supports the 

conclusion made by Gay (1999) and Boulghobra (2016) which stated that the 

migration rate is inversely proportional to the size of the dune – thus the larger the 

dune the slower the migration rate. This occurs because large dunes have large 

volumes of sand that is transported (compared to small dunes), or is required to be 

transported for displacement to show. 

 

 

Figure 5.2: The average migration rate (m/yr) in relation to the dune width (m) with a trend line 

(dashed blue line) 
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However, there was an anomaly: dune 30 (a moderate sized dune) had a migration 

rate of 2.29 m/yr. This dune is smaller than the other dunes so it would be expected 

that it would have a faster migration rate, as found by Gay (1999) and Boulghobra 

(2016), but instead it has a slower migration rate. A possible reason for dune 30 to 

have a slower migration rate than the other smaller dunes is the presence of an oasis 

located at its windward side (Figure 5.3). This may influence the moisture content in 

the windward side of the dune restricting sand movement (Gay, 1999) and “slowing 

down” the dune’s migration. 

 

 

Figure 5.3: Zoomed in image on dune 30 showing the oasis (circled in red) on its windward 

side. 

 

The dominant wind regime in the Ubārī sand sea area is east/ north east 

(WeatherOnline, 2014a; 2014b; Weatherbase, 2015a; 2015b). The general orientation 

of the dunes does not match the current wind regime, and are thus most likely 

representations of past wind regimes. Bubenzer and Bolten (2008) also noted that 

linear dunes are sensitive to changes in the climate and record the wind regimes that 

result in their formation. Several research has considered the use of linear dunes 

(similar to those of the Ubārī Sand Sea) as proxies for quaternary climate 

reconstructions, especially of arid periods (when, where and how long it occurred; 

Thomas et al., 2000; Livingstone, 2003; Bristow et al., 2007). This is mainly because 
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linear dunes are less mobile than other dune types (such as barchans dunes) and 

thus would most likely still be present in the same areas even if they are no longer 

considered active dunes (Thomas et al., 2000). A possible explanation then for the 

dune migration direction within the Ubārī could be that the (current) incoming north 

eastern winds are deflected by the Messak Plataeu carrying the sand grains in a north 

western direction (the “ancient” linear megadunes now forming the erodible bedforms).  

Due to the coarse spatial resolution there may have been an over estimation of the 

changes in the size (width, length and area) as well as the amount of migration that 

occurred over the 13 years in question. This became apparent in the high migration 

rates obtained in this study compared to the previous research of linear dunes in arid 

environments. However, even although am over estimation may have resulted from 

the coarse spatial resolution, the occurrence of migration in the area is still apparent 

(the magnitude may just be less). 

Further analyses and ground truthing would be beneficial in order to validate these 

results. Landsat imagery is definitely beneficial in establishing areas were movement 

has occurred (refer to section 4.2.4) and can in future form a preliminary analyses to 

larger studies in order to identify areas of interest – thus narrowing down the area and 

assisting in cost saving and more efficient use of other resources (e.g. time, funding, 

high resolution imagery etc.). It is however, important to note that the use of Landsat 

imagery should be done with caution. Assessing the co-registration of the imagery is 

very important (can be done by examining hard, anthropogenic features as was done 

in this study) to ensure that the change that is observed is not artefacts resulting from 

a mis-alignment between the images. 

Several studies utilized the COSI-Corr (co-registration of optically sensed images and 

correlation) method (Necsoiu et al., 2009; Hermas et al., 2012). The COSI-Corr 

method identifies changes in the ground surface (including sand dune migration) 

based on multi-temporal imagery (Necsoiu et al., 2009; Hermas et al., 2012). It would 

be interesting apply this method to the Ubārī sand sea using the COSI-Corr method to 

see if similar results are found.  
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5.4 Limitations 

The main limitation to this research was the inability to conduct ground truthing to not 

only collect training data but also to verify the classification results that were obtained 

(especially with regards to the crests of the dunes that are difficult to identify on a two 

dimensional aerial view of the dunes). The homogeneity of the area was also a 

limitation but was managed by comparing different band combinations in order to 

determine the best combination to delineate the different dune features that were in 

question.  

The methods used also proved to be a limitation. It is very difficult to classify natural 

features based on the spectral signature as it was found that they are rarely 

homogeneous throughout an entire area. Also opting to distinguish between the crest 

and slope of the dune proved troublesome as the most confusion of classes were 

between these two. 
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6. Chapter 6: Conclusions 

The aims of this research were to 1. compare the spatial resolution of Landsat and 

Worldview imagery and 2. to determine the net migration rate and direction of the 

dunes within a subsection of the Ubārī sand sea from 2002-2015. 

It was found that the advantage of the higher spatial resolution of the Worldview 

imagery was beneficial for identifying training samples for the supervised classification 

and ultimately it would most likely result in more accurate and precise measurements 

of the dune morphology and migration. However, the classifications based on the 

Landsat imagery had a higher overall accuracy and kappa value – thus in this case for 

this area the Landsat imagery yielded better results than the Worldview imagery. it is 

important to note that the algorithms that were used for the classifications were 

designed for use on non-arid landscapes, and the uniformity of the spectral signatures 

of the land surface represent a special case, contributing to the low accuracy values 

that were obtained. Research concerned with the specific dynamics and dimensions of 

dunes (especially in the cases with superimposed dunes) should consider using higher 

resolution imagery and or active sensors (such as ASTER or SRTM or possibly even 

drone imagery). 

With the use of bi-temporal Landsat imagery it was determined that the linear dunes of 

the Ubārī sand sea migrate at an average rate of 6.32 m/yr in a north-north west 

direction. This is much faster than the average migration rates of other linear dunes 

that were previously studied - for example Phillip et al. (2004) noted a lateral migration 

rate of 0.7 – 2.0 m/yr. 

At this stage no comment can be made to the accuracy of the classifications as no 

field data could be collected to verify the classification. The future of this study might 

consider using SRTM or another DEM to verify some of the resulting classifications.  
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Recommendations for Future Research 

Future research may consider the following: 

- Testing this method in an area with known migration rates in order to 

compare the results.  

- Other classification methods including object based classifications, Support 

Vector Machine (SVM) and Random Forest (RF) methods can also be 

considered, and may even result in a higher accuracy.    

- Focussing on the dune as a whole (one feature) instead of attempting to 

classify the different features (crest, slope and interdune) may yield more 

tangible results from a supervised classification.  

- A different study area with ample historical wind climate records would also 

prove useful in the study of past and present dune migrations.   Considering 

an area with more than one dune type would also prove useful especially in 

developing a method/s with global applicability. 

- The use of active remote sensing platforms (e.g. SRTM and ASTER) to 

study dune migration may yield more tangible results as both the changes in 

location and the volume of the dunes can be studied with the use of DEM 

data. 

- Usually sand dunes are studied with remotely sensed data by the use of on-

screen digitizing of the RGB image (Al-Dabi et al., 1998; Hugenholtz et al., 

2012; El-Magd et al., 2013). The use of a classified image proves helpful in 

identifying the general dune pattern and determining the areas where the 

most and least migration occurred – the analyses can then be focused on 

these areas. The digitization process was also quicker with the use of the 

classified image, and the repeatability is higher as it is not as reliant on the 

previous knowledge of the digitizer – thus a knowledgeable person can 

assist in the identification of the training samples in order to run the 

classifications with the highest possible accuracy but thereafter the 

digitization can then probably be done by several people with similar 

resulting accuracies (as long as the digitization rule of thumb is adhered to). 

This could be useful in research concerned with very large areas that have 

thousands of dunes, where several hours of digitization by one or two 

persons can be reduced by using more people for the digitization. 



 
 

122 
 

7. References 

Adelabu, S., Mutanga, O., Adam, E., and Cho, M.A., 2013: Exploiting machine 

learning algorithms for tree species classification in semiarid woodland using 

RapidEye image, Journal of Applied Remote Sensing, 7, 1-13. 

Al-Dabi, H., Koch, M., El-Baz, F. and Al-Sawari, M., 1998: Mapping and monitoring 

sand dune patterns in northwest Kuwait using Landsat TM images. In: S. A.S. 

Omar, R. Misak and D. Al-Ajmi (eds.), Sustainable Development in Arid Zones: 

Assessment and Monitoring of Desert Ecosystems, A.A. Balkema, Rotterdam, 

Netherlands, 273-279. 

Aldossary, A., 2012: Analysis of urban change detection techniques in desert cities 

using remote sensing, unpublished paper, California State University, Northridge, 

http://hdl.handle.net/10211.2/1043. 

Al-Masrahy, M.A. and Mountney, N.P., 2013: Remote sensing of spatial variability in 

Aeolian dune and interdune morphology in the Rub’ Al-Khali, Saudi Arabia, 

Aeolian Research, 11, 155-170. 

Asha Rani, K.P, Asha, K.N., Manjunath, M., 2013: Image mosaicing and registration, 

International Journal of Computer Science Issues, 10, 534-540. 

Badescu, V., Cathcart, R.B., Bolonkin, A.A., 2008: Sand dune fixation: A solar-

powered Sahara seawater pipeline macroproject, Land Degradation & 

Development, 19, 676-691. 

Bailey, S.D., and Bristow, C.S., 2004: Migration of parabolic dunes at Abberffraw, 

Angelsey, north Wales, Geomorphology, 59, 165-174. 

Biagetti, S. and di Lernia, S., 2014: Holocene deposits of Saharan rock shelters: The 

case of Takarkori and other sites from the Tadrart Acacus Mountains (Southwest 

Libya), African Archaeological Review, 30, 305-338. 

Birnie, R.W., Parr, J.T., Naslund, H.R., Nichols, J.D. and Turner, P.A., 1989: 

Applications of Landsat Thematic Mapper and ground based spectrometer data 

to a study of the Skaergaard and other mafic intrusions of east Greenland. 

Remote Sensing of Environment, 28, 297-304. 

http://hdl.handle.net/10211.2/1043


 
 

123 
 

Bishop, M.A., 2010: Nearest neighbour analysis of mega-barchanoid dunes, Ar Rub’ al 

Khali, sand sea: The application of geographical indices to the understanding of 

dune field self-organization, maturity and environmental change, 

Geomorphology, 120, 186-194. 

Blumberg, D.G., 1998: Remote Sensing of Desert Dune Forms Polametric Synthetic 

Aperture Radar (SAR), Remote Sesning of Environment, 65, 204-216. 

Blumberg, D.G., 2006: Analysis of large Aeolian (wind-blown) bedforms using Shuttle 

Radar Topography Mission (SRTM) digital elevation data, Remote Sensing of 

Environment, 100, 179-189. 

Boulghobra, N., 2016: Climatic data and satellite imagery for assessing the Aeolian 

sand deposit and barchans migration, as a major risk sources in the region of In-

Salah (Central Algerian Sahara), Arab Journal of Geoscience, 9, 450, 

DOI 10.1007/s12517-016-2491-x. 

Bristow, C.S., Duller, G.A.T., Lancaster, N., 2007: Age and dynamics of linear dunes 

in the Namib Desert, Geology, 35, 555-558 

Bryantt, C., 2014: Comparison of two satellite imaging platforms for use in land use/ 

land cover classification in agricultural regions, unpublished paper, Texas Tech 

University, USA. 

Bubenzer, O. and Bolten, A., 2008: The use of new elevation data (SRTM/ASTER) for 

the detection and morphometric quantification of Pleistocene megadunes (draa) 

in the eastern Sahara and the southern Namib, Geomorphology, 102, 221-231. 

Bullard, J.E., White, K. and Livingstone, I., 2011: Morphometric analysis of Aeolian 

bedforms in the Namib Sand Sea using ASTER data. Earth Surface Processes 

and Landforms, 36, 1534-1549. 

Canty, M.J., 2010: Image Analysis, Classification, and Change Detection in Remote 

Sensing. With Algorithms for ENVI/IDL, 2nd Edition. CRC Press, Taylor and 

Francis Group, USA. 



 
 

124 
 

Collado, A.D., Chuvieco, E., and Camarasa, A., 2002: Satellite remote sensing 

analysis to monitor desertification processes in the crop-rangeland boundary of 

Argentina, Journal of Arid Environments, 52, 121-133. 

Congalton, R.G., and Green, K., 2009: Assessing the Accuracy of Remotely Sensed 

Data: Principles and Practices (2nd edition), CRC Press (Taylor & Francis Group), 

USA. 

Cremaschi, M. and Zerboni, A., 2009: Early to middle Holocene landscape exploitation 

in a drying environment: Two case studies compared from the central Sahara 

(SW Fezzān, Libya). C. R. Geoscience, 341, 689-702.  

Cremaschi, M., Pelfini, M., Santilli, M., 2006: Cupressus dupreziana: a dendroclimatic 

record for the middle-late Holocene in the central Sahara, The Holocene, 16, 

293-303. 

De Souza, C.H.W., Mercante, E., Prudente, V.H.R., anad Justina, D.D.D., 2013: 

Methods of performance evaluation for the supervised classification of satellite 

imagery in determining land cover classes,  Cienca e Investigación Agraria, 40, 

419-428.  

Devi, M.R. and Baboo, S.S., 2011: Land use and land cover classification using 

RGB&L based supervised classification algorithm, International Journal of 

Computer Science and Engineering Technology, 2, 167-180. 

Du Pont, S.C., 2015: Dune Morphodynamics, Comptes Rendus Physique, 16, 118-

138. 

Du Pont, S.C., Narteau, C., Gao, X., 2014: Two modes of dune orientation, Geology, 

42, 743-746. 

Edmunds, W.M. and Wright, E.P., 1979: Groundwater recharge and paleoclimate in 

the Sirte and Kufra basins, Libya. Journal of Hydrology, 40, 215-241. 

Effat, H.A., Hegazy, M. and Behr, F.J., 2012: Cartographic modelling of potential sand 

dunes movement risk using remote sensing and geographic information systems 

in Sinai, Egypt, unpublished paper, National Authority for Remote Sensing and 

Space Sciences, 



 
 

125 
 

https://www.researchgate.net/publication/231345711_Cartographic_Modeling_of

_Potential_Sand_Dunes_Movement_Risk_Using_Remote_Sensing_and_Geogr

aphic_Information_System_in_Sinai_Egypt.  

El-Baz, 2000: Satellite observations of the interplay between wind and water 

processes in the Great Sahara, Photogrammatic Engineering & Remote Sensing, 

66, 777-782. 

El-Magd, I.A., Hassan, O. and Arafat, S., 2013: Quantification of sand dune 

movements in the south western part of Egypt, Using remotely sensed data and 

GIS, Journal of Geographic Information Systems, 5, 498-508. 

Fitzsimmons, K.E., Bowler, J.M., Rhodes, E.J., and Magee, J.M., 2007: Relationships 

between desert dunes during the late Quaternary in the Lake Frome region, 

Strzelecki Desert, Australia, Journal of Quaternary Science, 22, 549-558. 

Flagg, C.B., Neff, J.C., Reynolds, R.L., and Belnap, J., 2014: Spatial and temporal 

patterns of dust emissions (2004-2012) in semi-arid landscapes, southeastern 

Utah, USA, Aeolian Research, 15, 31-43. 

Fontes, J.Ch. and Gasse, F., 1991: PALHYDAF (Paleohydrology in Africa) program: 

objectives, methods and major results.  Palaeogeography, Palaeoclimatology, 

Palaeoecology, 84, 191-215. 

Foody, G.M., 2002: Status of land cover classification accuracy assessment, Remote 

Sensing of Environment, 80, 185-201. 

Gay Jr, S.P., 1999: Observations regarding the movement of barchan sand dunes in 

the Nazca to Tanaca area of southern Peru, Geomorphology, 27, 279–293. 

Ghadiry, M., Shalaby, A. and Koch, B., 2012: A new GIS-based model for automated 

extraction of sand dune encroachment case study: Dakhla Oases, western 

desert of Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 

15, 53-65. 

Giraudi, C., 2005: Eolian sand in peridesert northwestern Libya and implications for 

Late Pleistocene and Holocene Sahara expansions, Palaeogeography, 

Palaeoclimatology, Palaeoecology, 218, 161-173. 

https://www.researchgate.net/publication/231345711_Cartographic_Modeling_of_Potential_Sand_Dunes_Movement_Risk_Using_Remote_Sensing_and_Geographic_Information_System_in_Sinai_Egypt
https://www.researchgate.net/publication/231345711_Cartographic_Modeling_of_Potential_Sand_Dunes_Movement_Risk_Using_Remote_Sensing_and_Geographic_Information_System_in_Sinai_Egypt
https://www.researchgate.net/publication/231345711_Cartographic_Modeling_of_Potential_Sand_Dunes_Movement_Risk_Using_Remote_Sensing_and_Geographic_Information_System_in_Sinai_Egypt


 
 

126 
 

  Giraudi, C., Mercuri, A.M., Esu, D., 2012: Holocene palaeoclimate in the northern 

Sahara margin (Jefara Plain, northwestern Libya), The Holocene, 23, 339-352. 

Goudarzi, G.H., 1970. Geology and Mineral Resources of Libya – A Reconnaissance. 

United States Government Printing Office, Washington, pp. 13-18.  

Goudarzi, G.H., 1980: Structure-Libya, in M.J. Salem and M.T. Busrewil (eds), The 

Geology of Libya Vol. 3, Academic Press Inc., London, 879-892. 

Grove, A.T., 1980: Geomorphic evolution of the Sahara, in M.A.J. Williams and H. 

Faure (eds.), The Sahara and The Nile, Balkema, Netherlands, 7-16. 

Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., 

Retails, A., Michaelides, S., Chrysoulakis, N., Toulios, L., and Clayton, C.R.I., 

2010: Atmospheric correction for satellite remotely sensed data intended for 

agricultural applications: impact on vegetation indices. Natural Hazards and 

Earth System Sciences, 10, 89-95. 

Hallett, D., 2002: Petroleum Geology of Libya, Elsevier Science, Amsterdam. 

Hermas, E., Leprince, S., and El-Magd, I.A., 2012: Retrieving sand dune movements 

using sub-pixel correlation of multi-temporal optical remote sensing imagery, 

northwest Sinai Peninsula, Egypt, Remote Sensing of Environment, 121, 51-60. 

Hesse, R., 2009: Using remote sensing to quantify Aeolian transport and estimate the 

age of the terminal dune fields Dunas Pampa Blanca in southern Peru. 

Quaternary Research, 71, 426-436. 

Howari, F.M., Baghdady, A. and Goodell, P.C., 2007: Mineralogical and 

geomorphological characterization of sand dunes in the eastern part of United 

Arab Emirates using orbital remote sensing integrated with field investigations. 

Geomorphology, 83, 67-81. 

Hugenholtz, C.H. and Barchyn, T.E., 2010: Spatial analysis of sand dunes with a new 

global topographic dataset: new approaches and opportunities. Earth Surface 

Processes and Landforms, 35, 986-992. 



 
 

127 
 

Hugenholtz, C.H., Levin, N., Barchyn, T.E., Baddock, M.C., 2012: Remote sensing 

and spatial analysis of Aeolian sand dunes: A review and outlook, Earth-Science 

Reviews, 111, 318-334. 

Huggett, R.J., 2007: Fundamentals of Geomorphology Second Edition, Routledge, 

USA & Canada. 

Hussain, M., Chen, D., Cheng, A. and Stanley, D., 2013: Change detection from 

remotely sensed images: From pixel-based to object-based approaches, ISPRS 

Journal of Photogrammetry and Remote Sensing, 80, 91-106. 

Janke, J.R., 2002: An analysis of current stability of the dune fields at Great Sand 

Dunes National Monument using temporal TM imagery (1984-1998).  Remote 

Sensing of Environment, 83, 488-497. 

Kennedy, R.E., Townsend, P.A., Gross, J.E., Cohen, W.B., Bolstad, P., Wang, Y.Q., 

Adams, P., 2009: Remote sensing change detection tools for natural resource 

managers: Understanding concepts and tradeoffs in the design of landscape 

monitoring projects, Remote Sensing of Environment, 113, 1382-1396. 

Keuchel, J., Naumann, S., Heiler, M., and Sigmund, A., 2003: Automatic land cover 

analysis for Tenerife by supervised classification using remote sensed data, 

Remote Sensing of Environment, 86, 530-541. 

Laity, J., 2008: Deserts and Desert Environments, Wiley-Blackwell, Singapore.  

Lam, D.K., Remmel, T.K. and Drenzer, T.D., 2011: Tracking desertification in 

California using remote sensing: A sand dune encroachment approach. Remote 

Sensing, 3, 1-13.   

Levin, N., Ben-Dor, E. and Karnieli, A., 2004: Topographic information of sand duens 

as extracted from shading effects using Landsat images. Remote Sensing of 

Environment, 90, 190-209. 

Levin, N., Kidron, G.J. and Ben-Dor, E., 2006: The spatial and temporal variability of 

sand erosion across a stabilizing coastal dune field.  Sedimentology, 53, 697-

715. 



 
 

128 
 

Levin, N., Levental, S. and Morag, H., 2012: The effect of wildfires on vegetation cover 

and dune activity in Australia’s desert dunes; a multisensory analysis.  

International Journal of Wildland Fire, 21, 459-475. 

Livingstone, I., 2003: A twenty-one year record of surface change on a Namib linear 

dune, Earth Surface Processes and Landforms, 28, 1025-1031. 

Livingstone, I., Wiggs, G.F.S. and Weaver, C.M., 2007: Geomorphology of desert 

sand dunes: A review of recent progress, Earth-Science Reviews, 80, 239-257. 

Mainguet, M.M., El-Baz, F., 1986: Deciphering wind directions from dune orientations 

in space images of deserts and semiarid lands, unpublished paper, Twentieth 

International Symposium on Remote Sensing of Environment, Nairobi, Kenya., 

https://www.researchgate.net/publication/223036303_Dune_morphology_sand_tr

ansport_pathways_and_possible_source_areas_in_east_Thaumasia_Region_M

ars.  

Mamtimin, B., Et-Tantawi, A.M.M., Schaefer, D., Meixner, F.X. and Domroes, M., 

2011: Recent trends of temperature change under hot and cold desert climates: 

Comparing the Sahara (Libya) and Central Asia (Xinjiang, China).  Journal of 

Arid Environments, 75, 1105-1113. 

Maselli, F., Conese, C., Zipoli, G., and Pittau, M.A., 1990: Use of error probabilities to 

improve area estimates based on maximum likelihood classifications, Remote 

Sensing of Environment, 31, 155-160. 

Masselink, G., Hughes, M.G. and Knight, J., 2011: Introduction to Coastal Processes 

& Geomorphology, Hodder Education, London. 

McKee, E.D., 1979: A Study of Global Sand Sea, United States Government Printing 

Office, Washington. 

Mercuri, A. M., 2008: Human influence, plant landscape evolution and climate 

inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan 

Sahara). Journal of Arid Environments, 72, 1950-1967. 

Minu, S., Shetty, A., and Gopal, B., 2016: Review of preprocessing techniques used in 

soil property prediction from hyperspectral data, Cogent Geoscience, 2, 1-7. 

https://www.researchgate.net/publication/223036303_Dune_morphology_sand_transport_pathways_and_possible_source_areas_in_east_Thaumasia_Region_Mars
https://www.researchgate.net/publication/223036303_Dune_morphology_sand_transport_pathways_and_possible_source_areas_in_east_Thaumasia_Region_Mars
https://www.researchgate.net/publication/223036303_Dune_morphology_sand_transport_pathways_and_possible_source_areas_in_east_Thaumasia_Region_Mars


 
 

129 
 

Mitasova, H., Overton, M., and Harmon, R.S., 2005: Geospatial analysis of a coastal 

sand dune field evolution: Jockey’s Ridge, North California, Geomorphology, 72, 

204-221. 

Mohamed, I.N.L. and Verstraeten, G., 2012: Analyzing dune dynamics at the dune 

field scale assessed on multi-temporal analysis of Landsat TM images. Remote 

Sensing of Environment, 119, 105-117. 

Necsoiu, M., Leprince, S., Hooper, D.M., Dinwiddie, C.L., McGinnis, R.N. and Walter, 

G.R., 2009: Monitoring migration rates of an active subarctic dune field using 

optical imagery. Remote Sensing of Environment, 113, 2441-2447. 

Paisley, E.C.I., Lancaster, N., Gaddis, L.R. and Greeley, R., 1991: Discrimination of 

active and inactive sand from remote sensing: Kelso Dunes, Mojave Desert, 

California, Remote Sensing of Environment, 37, 153-166. 

Pease, P.P., Bierly, G.D., Tchakerian, V.P. and Tindale, N.W., 1999: mineralogical 

characterization and transport pathways of dune sand using Landsat TM data, 

Wahiba Sand Sea, Sultanate of Oman, Geomorphology, 29, 235-249. 

Perumal, K. and Bhaskaran, R., 2010: Supervised classification performance of 

multispectral images, Journal of Computing, 2, 2151-9617. 

Phillip, G., Attia, O.E.A., and El-Banna, M.S., 2004: Dynamics of sand dunes 

movement and their environmental impacts on the reclamation area in NW Sinai, 

Egypt, unpublished paper, Proceeding of the 7th Conference: Geology of Sinai for 

Development, Ismailia, 

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja

&uact=8&ved=0ahUKEwj1seO9icvOAhXrIMAKHf4vCU0QFggcMAA&url=http%3

A%2F%2Ffaculty.ksu.edu.sa%2FDr.%2520Osama%2520E.A.%2520Attia%2FPu

blications%2FDynamics%2520of%2520sand%2520dunes%2520movement.pdf&

usg=AFQjCNEVU-6jx4lEQAv_KE3iwfp7i-TrPA. 

Qong, M., 2000: Sand Dune Attributes Estimated from SAR Images, Remote Sesning 

of Environment, 74, 217-228. 

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj1seO9icvOAhXrIMAKHf4vCU0QFggcMAA&url=http%3A%2F%2Ffaculty.ksu.edu.sa%2FDr.%2520Osama%2520E.A.%2520Attia%2FPublications%2FDynamics%2520of%2520sand%2520dunes%2520movement.pdf&usg=AFQjCNEVU-6jx4lEQAv_KE3iwfp7i-TrPA
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj1seO9icvOAhXrIMAKHf4vCU0QFggcMAA&url=http%3A%2F%2Ffaculty.ksu.edu.sa%2FDr.%2520Osama%2520E.A.%2520Attia%2FPublications%2FDynamics%2520of%2520sand%2520dunes%2520movement.pdf&usg=AFQjCNEVU-6jx4lEQAv_KE3iwfp7i-TrPA
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj1seO9icvOAhXrIMAKHf4vCU0QFggcMAA&url=http%3A%2F%2Ffaculty.ksu.edu.sa%2FDr.%2520Osama%2520E.A.%2520Attia%2FPublications%2FDynamics%2520of%2520sand%2520dunes%2520movement.pdf&usg=AFQjCNEVU-6jx4lEQAv_KE3iwfp7i-TrPA
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj1seO9icvOAhXrIMAKHf4vCU0QFggcMAA&url=http%3A%2F%2Ffaculty.ksu.edu.sa%2FDr.%2520Osama%2520E.A.%2520Attia%2FPublications%2FDynamics%2520of%2520sand%2520dunes%2520movement.pdf&usg=AFQjCNEVU-6jx4lEQAv_KE3iwfp7i-TrPA
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj1seO9icvOAhXrIMAKHf4vCU0QFggcMAA&url=http%3A%2F%2Ffaculty.ksu.edu.sa%2FDr.%2520Osama%2520E.A.%2520Attia%2FPublications%2FDynamics%2520of%2520sand%2520dunes%2520movement.pdf&usg=AFQjCNEVU-6jx4lEQAv_KE3iwfp7i-TrPA


 
 

130 
 

Ramsey, M.S., Christensen, P.R., Lancaster, N. and Howard, D.A., 1999: Identification 

of sand sources and transport pathways at the Kelso Dunes, California, using 

thermal infrared remote sensing.  GSA Bulletin, 111, 646-662. 

Rubin, D.M., Tsoar, H. and Blumberg, D.G., 2008: A second look at western Sinai seif 

dunes and their lateral migration, Geomorphology, 93, 335-342. 

Sinha, S.C. and Pandey, S.M., 1980: Hydrogeological studies in a part of the Murzuq 

Basin using geophysical logs, in M.J. Salem and M.T. Busrewil (eds), The 

Geology of Libya Vol. 2, Academic Press Inc., London, 629-634. 

Sparavinga, A.C., 2013: A study of moving sand dunes by means of satellite images, 

International Journal of Sciences, 2, 32-42. 

Swezey, C., 2001: Eolian sediment responses to late Quarternary climate changes: 

temporal and spatial patterns in the Sahara, Palaeogeography, 

Palaeoclimatology, Palaeoecology, 167, 119-155. 

Swezey, C.S., 2009: Cenozoic stratigraphy of the Sahara, Northern Africa, Journal of 

African Earth Sciences, 53, 89-121. 

Tawardos, E.E., 2001: Geology of Egypt and Libya, A.A.Balkema, Netherlands. 

Telfer, M.W., Fyfe, R.M., and Lewin, S., 2015: Automated mapping of linear dunefield 

morphometric parameters from remotely-sensed data, Aeolian Research, 19, 

215-224.  

Thomas, D.S.G., 1997: Arid Zone Geomorphology: Process, form and change in 

drylands, John Wiley & Sons, England. 

Thomas, D.S.G., O’Connor, P.W., Bateman, M.D., Shaw, P.A., Stokes, S., Nash, D.J., 

2000: Dune activity as a record of late Quaternary aridity in the Northern 

Kalahari: new evidence from northern Namibia interpreted in the context of 

regional arid and humid chronologies, Palaeogeography, Palaeoclimatology, 

Palaeoecology, 156, 243-259. 

Tsoar, H., 2001: Types of Aeolian sand dunes and their formation, in N.J. Balmforth 

and A. Provenzale (eds.), Geomorphological Fluid Mechanics. Lecture Notes in 

Physics Series, vol. 582. Springer-Verlag, Berlin, 403-429. 



 
 

131 
 

Tsoar, H., Blumberg, D.G. and Stoler, Y., 2004: Elongation and migration of sand 

duens, Geomorphology, 57, 293-302. 

Varma, S., Shah, V., Banerjee, B., Buddhiraju, K.M., 2014: Change detection of desert 

sand dunes: A remote sensing approach, Advances in Remote Sensing, 3, 10-

22. 

Walsh, S.J., Butler, R., Malanson, G.P., 1998: An overview of scale, pattern, process 

relationships in geomorphology: a remote sensing and GIS perspective, 

Geomorphology, 21, 183-205. 

WeatherBase, 2015a. Sabhā, Libya 

http://www.weatherbase.com/weather/weatherall.php3?s=42126&cityname=Sab

hā%2C+Sabhā%2C+Libya&units= (accessed 16 March, 2015).  

WeatherBase, 2015b. Ubārī, Libya 

http://www.weatherbase.com/weather/weatherall.php3?s=603246&cityname=Ub

ārī%2C+Sha%27biyat+Wadi+al+Hayat%2C+Libya&units= (accessed 16 March, 

2015).  

WeatherOnline, 2014a. Weather, Ubārī 

http://www.weatheronline.in/weather/maps/city?FMM=1&FYY=2005&LMM=12&L

YY=2014&WMO=62200&CONT=afri&REGION=0011&LAND=LY&ART=TEM&R

=0&NOREGION=0&LEVEL=162&LANG=in&MOD=tab (accessed 16 March 

2015).  

WeatherOnline, 2014b. Weather, Sabhā 

http://www.weatheronline.in/weather/maps/city?FMM=1&FYY=2005&LMM=12&L

YY=2014&WMO=62124&CONT=afri&REGION=0011&LAND=LY&ART=TMX&R

=0&NOREGION=1&LEVEL=162&LANG=in&MOD=tab (accessed 16 March 

2015).  

White, K., Charlton, M., Drake, N., McLaren, S., Mattingly, D., Brooks, N., 2006: Lakes 

of the Edeyen Ubārī and the Wadi al-Hayat, in D. Mattingly, S. McLaren, E. 

Savage, Y. al-Fasatwi and K. Gadgood (eds.), The Libyan Desert: Natural 

Resources and Cultural Heritage, The Society for Libyan Studies, 123-130. 

White, K., Walde, J., Drake, N., Eckardt, F. and Settle, J., 1997: Mapping the iron 

oxide content of dune sands, Namib Sand Seas, Namibia, using Landsat 

Thematic Mapper data, Remote Sensing of Environment, 62, 30-39. 



 
 

132 
 

Yao, Z.Y., Wang, T., Han, Z.W., Zhang, W.M. and Zhao, A.G., 2007: Migration of sand 

dunes on the northern Alxa Plateau, Inner Mongolia, China, Journal of Arid 

Environments, 70, 80-93. 


