12,655 research outputs found

    The role of human body movements in mate selection

    Get PDF
    It is common scientific knowledge, that most of what we say within a conversation is not only expressed by the words meaning alone, but also through our gestures, postures, and body movements. This non-verbal mode is possibly rooted firmly in our human evolutionary heritage, and as such, some scientists argue that it serves as a fundamental assessment and expression tool for our inner qualities. Studies of nonverbal communication have established that a universal, culture-free, non-verbal sign system exists, that is available to all individuals for negotiating social encounters. Thus, it is not only the kind of gestures and expressions humans use in social communication, but also the way these movements are performed, as this seems to convey key information about an individuals quality. Dance, for example, is a special form of movement, which can be observed in human courtship displays. Recent research suggests that people are sensitive to the variation in dance movements, and that dance performance provides information about an individuals mate quality in terms of health and strength. This article reviews the role of body movement in human non-verbal communication, and highlights its significance in human mate preferences in order to promote future work in this research area within the evolutionary psychology framework

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    Effects of obesity on walking patterns and adaptability during obstacle crossing

    Full text link
    Obesity is a worldwide public health epidemic with no sign of yet abating. Although previous studies have examined the impact of obesity on walking, little is known about the effects of practice on walking patterns in individuals with obesity. The purpose of this current study was to evaluate whether an obstacle-crossing task may detect walking deficits in a group of adults electing to undergo bariatric surgery. With a cross-sectional design, we collected walking parameters as 24 adults (M age= 46.19, SD= 12.90) with obese body mass index (BMI) scores (M BMI= 41.68, SD= 5.80) and 26 adults (M age= 21.88, SD= 3.48) with normal BMI scores (M BMI= 23.09, SD= 4.47) walked in 5 conditions for 5 trials each: on flat ground, crossing over low, medium, and high obstacles, and again on flat ground. The timing and distance of participants' steps were collected with a mechanized gait carpet (GAITRite, Inc.). We conducted 5 (condition) repeated measures (RM) ANOVAs on our main dependent variables, which measured how fast (velocity) and long (step length) participants' steps were and how much time they spent with one (single limb support time) versus two (double limb support time) feet on the ground. The results showed within session improvements in participants' walking patterns. Comparisons of the first and last trials on flat ground showed that participants took longer, faster steps by increasing step length and velocity (ps<.01). They also spent more time with one versus two feet on the ground via increased single limb support time and decreased double limb support time (ps<.001). Our findings suggest that an obstacle-crossing task may help spur improvements in walking patterns even before adults elect to undergo bariatric surgery

    Kinematic assessment for stroke patients in a stroke game and a daily activity recognition and assessment system

    Get PDF
    Stroke is the leading cause of serious, long-term disabilities among which deficits in motor abilities in arms or legs are most common. Those who suffer a stroke can recover through effective rehabilitation which is delicately personalized. To achieve the best personalization, it is essential for clinicians to monitor patients' health status and recovery progress accurately and consistently. Traditionally, rehabilitation involves patients performing exercises in clinics where clinicians oversee the procedure and evaluate patients' recovery progress. Following the in-clinic visits, additional home practices are tailored and assigned to patients. The in-clinic visits are important to evaluate recovery progress. The information collected can then help clinicians customize home practices for stroke patients. However, as the number of in-clinic sessions is limited by insurance policies, the recovery information collected in-clinic is often insufficient. Meanwhile, the home practice programs report low adherence rates based on historic data. Given that clinicians rely on patients to self-report adherence, the actual adherence rate could be even lower. Despite the limited feedback clinicians could receive, the measurement method is subjective as well. In practice, classic clinical scales are mostly used for assessing the qualities of movements and the recovery status of patients. However, these clinical scales are evaluated subjectively with only moderate inter-rater and intra-rater reliabilities. Taken together, clinicians lack a method to get sufficient and accurate feedback from patients, which limits the extent to which clinicians can personalize treatment plans. This work aims to solve this problem. To help clinicians obtain abundant health information regarding patients' recovery in an objective approach, I've developed a novel kinematic assessment toolchain that consists of two parts. The first part is a tool to evaluate stroke patients' motions collected in a rehabilitation game setting. This kinematic assessment tool utilizes body-tracking in a rehabilitation game. Specifically, a set of upper body assessment measures were proposed and calculated for assessing the movements using skeletal joint data. Statistical analysis was applied to evaluate the quality of upper body motions using the assessment outcomes. Second, to classify and quantify home activities for stroke patients objectively and accurately, I've developed DARAS, a daily activity recognition and assessment system that evaluates daily motions in a home setting. DARAS consists of three main components: daily action logger, action recognition part, and assessment part. The logger is implemented with a Foresite system to record daily activities using depth and skeletal joint data. Daily activity data in a realistic environment were collected from sixteen post-stroke participants. The collection period for each participant lasts three months. An ensemble network for activity recognition and temporal localization was developed to detect and segment the clinically relevant actions from the recorded data. The ensemble network fuses the prediction outputs from customized 3D Convolutional-De-Convolutional, customized Region Convolutional 3D network and a proposed Region Hierarchical Co-occurrence network which learns rich spatial-temporal features from either depth data or joint data. The per-frame precision and the per-action precision were 0.819 and 0.838, respectively, on the validation set. For the recognized actions, the kinematic assessments were performed using the skeletal joint data, as well as the longitudinal assessments. The results showed that, compared with non-stroke participants, stroke participants had slower hand movements, were less active, and tended to perform fewer hand manipulation actions. The assessment outcomes from the proposed toolchain help clinicians to provide more personalized rehabilitation plans that benefit patients.Includes bibliographical references

    Swayed by sound: sonic guidance as a neurorehabilitation strategy in the cerebellar ataxias

    Get PDF
    Cerebellar disease leads to problems in controlling movement. The most common difficulties are dysmetria and instability when standing. Recent understanding of cerebellar function has expanded to include non -motor aspects such as emotional, cognitive and sensory processing. Deficits in the acquisition and processing of sensory information are one explanation for the movement problems observed in cerebellar ataxia. Sensory deficits result in an inability to make predictions about future events; a primary function of the cerebellum. A question therefore, is whether augmenting or replacing sensory information can improve motor performance in cerebellar disease. This question is tested in this thesis by augmenting sensory information through the provision of an auditory movement guide.A variable described in motor control theory (tau) was used to develop auditory guides that were continuous and dynamic. A reaching experiment using healthy individuals showed that the timing of peak velocity, audiomotor coordination accuracy, and velocity of approach, could be altered in line with the movement parameters embedded in the auditory guides. The thesis then investigated the use of these sonic guides in a clinical population with cerebellar disease. Performance on neurorehabilitation exercises for balance control was tested in twenty people with cerebellar atrophy, with and without auditory guides. Results suggested that continuous, predictive, dynamic auditory guidance is an effective way of improving iii movement smoothness in ataxia (as measured by jerk). In addition, generating and swaying with imaginary auditory guides was also found to increase movement smoothness in cerebellar disease.Following the tests of instantaneous effects, the thesis then investigated the longterm consequences on motor behaviour of following a two -month exercise with auditory guide programme. Seven people with cerebellar atrophy were assessed pre - and post -intervention using two measures, weight -shifting and walking. The results of the weight -shifting test indicated that the sonic -guide exercise programme does not initiate long -term changes in motor behaviour. Whilst there were minor, improvements in walking, because of the weight -shifting results, these could not be attributed to the sonic guides. This finding confirms the difficulties of motor rehabilitation in people with cerebellar disease.This thesis contributes original findings to the field of neurorehabilitation by first showing that on -going and predictive stimuli are an appropriate tool for improving motor behaviour. In addition, the thesis is the first of its kind to apply externally presented guides that convey continuous meaningful information within a clinical population. Finally, findings show that sensory augmentation using the auditory domain is an effective way of improving motor coordination in some forms of cerebellar disease

    Annotated Bibliography: Anticipation

    Get PDF

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Non-Invasive Investigation of Human Foot Muscles Function

    Get PDF
    Appropriate functioning of the human foot is fundamental for good quality of life. The intrinsic foot muscles (IFM) are a crucial component of the foot, but their natural behaviour and contribution to good foot health is currently poorly understood. Recording muscle activation from IFM has been attempted with invasive techniques, but these generally only allow assessment of one muscle at a time and are not much used in many clinical populations (e.g. children, patients with peripheral neuropathy or on blood thinning medication). Here a novel application of multi-channel surface electromyography (sEMG) electrodes is presented to non-invasively, record sEMG and quantify activation patterns of IFMs from across the plantar region of the foot. sEMG (13×5 array), kinematics and force plate data were recorded from 30 healthy adult volunteers who completed six postural balance tasks (e.g. bipedal stance, one-foot stance, two-foot tip-toe). Linear (amplitude based) and non-linear (entropy based) methodologies were used to evaluate the physiological features of the sEMG, the patterns of activation, the association with whole body and foot biomechanics and the neuromuscular drive to the IFM. EMG signals features (amplitude and frequency) were shown to be in the physiological ranges reported in the literature (Basmajian and De Luca, 1985), with spatially clustered patterns of high activation corresponding to the Flexor digitorum brevis muscle. IFMs responded differently based on the direction of postural sway, with greater activations associated with sways in the mediolateral direction. Entropy based, non-linear analysis revealed that neuromuscular drive to IFM depends on the balance demand of the postural task, with greater drive evident for more challenging tasks (i.e. standing on tiptoe). Combining non-invasive measures of IFM activation and entropy based assessment of temporal organisation (or structure) of EMG signal variability is therefore revealing of IFM function and will enable a more detailed assessment of IFM function across healthy and clinical populations
    corecore