2,545 research outputs found

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Aeolian Geomorphology and Geoarchaeology of the Goshute Valley, Nevada, USA

    Get PDF
    This thesis presents new data on aeolian geomorphology, geochronology, and site formation in the Goshute Valley, Nevada. Two dune fields were the focus of this study: the Hardy Creek Dune Field in the north and White Horse Dune Field in the south. This study provides an example of the significance of geomorphological, chronological, and geoarchaeological studies of aeolian settings in the eastern Great Basin. Granulometric analysis determined the characteristics of the dunes from each field while aerial imagery and Ground Penetrating Radar (GPR) determined morphology. Optically Stimulated Luminescence (OSL) dating determined the age of representative dunes from each field. Results indicate that the lunettes in the Hardy Creek Dune Field and the weathered linear dunes in the White Horse Dune Field range in age from the middle to late Holocene. An archaeological survey in each dune field showed that people traversed the Goshute Valley throughout the Holocene. The survey also showed that people were most likely hunting seasonally in the dunes, since a considerable number of the sites were found in the dunes instead of the playa. Projectile points dating from the early to late Holocene also indicate that hunting was the primary activity within the dunes. This research shows the importance of the geochronological and geoarchaeological results from the Hardy Creek and White Horse dune fields, demonstrating the Holocene paleoclimate and human interaction with aeolian environments

    Big Hole (41TV2161): Two Stratigraphically Isolated Middle Holocene Components in Travis County, Texas Volume I

    Get PDF
    During April and May 2006, an archeological team from the Cultural Resources Section of the Planning, Permitting and Licensing Practice of TRC Environmental Corporation’s (TRC) Austin office conducted geoarcheological documentation and data recovery excavations at prehistoric site 41TV2161 (CSJ: 0440-06-006). Investigations were restricted to a 70 centimeter (cm) thick target zone between ca. 220 and 290 cm below surface (bs) on the western side of site 41TV2161 – the Big Hole site in eastern Travis County, Texas. This cultural investigation was necessary under the requirements of Section 106 of the National Historic Preservation Act (NHPA), the implementing regulations of 36CRF Part 800 and the Antiquities Code of Texas (Texas Natural Resource Code, Title 9, Chapter 191 as amended) to recover a sample of the significant cultural materials prior to destruction by planned construction of State Highway 130 (SH 130). The latter by a private construction firm – Lone Star Infrastructure. This necessary data recovery was for Texas Department of Transportation (TxDOT), Environmental (ENV) Affairs Division under a Scientific Services Contract No. 577XXSA003 (Work Authorization No. 57701SA003). Over the years since the original award, multiple work authorizations between TxDOT and TRC were implemented and completed towards specific aspects of the analyses and reporting. The final analyses and report were conducted under contract 57-3XXSA004 (Work Authorization 57-311SA004). All work was under Texas Antiquities Committee Permit No. 4064 issued by the Texas Historical Commission (THC) to J. Michael Quigg. Initially, an archeological crew from Hicks & Company encountered site 41TV2161 during an intensive cultural resource inventory conducted south of Pearce Lane along the planned construction zone of SH 130 in the fall of 2005. Following the initial site discovery, archeologists expanded their investigations to the west across the SH 130 right-of-way, and completed excavation of 10 backhoe trenches, 13 shovel tests, and 11 test units at site 41TV2161. The investigations encountered at least seven buried cultural features and 1,034 artifacts, some in relatively good context. The survey and testing report to TxDOT presented their findings and recommendations (Campbell et al. 2006). The ENV Affairs Division of TxDOT and the THC reviewed the initial findings and recommendations, and determined site 41TV2161 was eligible for listing on the National Register of Historic Places and as State Antiquities Landmark as the proposed roadway development was to directly impact this important site and further excavations were required. Subsequently, TRC archeologists led by Paul Matchen (Project Archeologist) and J. Michael Quigg (Principal Investigator) initiated data recovery excavations through the mechanical-removal of between 220 and 250 cm of sediment from a 30-by-40 meter (m) block area (roughly 3,000 m3). This was conducted to allow hand-excavations to start just above the deeply buried, roughly 70 cm thick targeted zone of cultural material. Mechanical stripping by Lone Star Infrastructure staff created a large hole with an irregular bottom that varied between 220 and 260 cmbs. To locate specific areas to initiate hand-excavations within the mechanically stripped area, a geophysical survey that employed ground penetrating radar (GPR) was conducted by Tiffany Osburn then with Geo-Marine in Plano, Texas. Over a dozen electronic anomalies were detected through the GPR investigation. Following processing, data filtering, and assessment, Osburn identified and ranked the anomalies for investigation. The highest ranked anomalies (1 through 8) were thought to have the greatest potential to represent cultural features. Anomalies 1 through 6 were selected and targeted through hand-excavations of 1-by-1 m units that formed continuous excavation blocks of various sizes. Blocks were designated A, B, C, D, E, and F. The type, nature, quantity, and context of encountered cultural materials in each block led the direction and expansion of each excavation block as needed. In total, TRC archeologists hand-excavated 38.5 m3 (150 m2) from a vertically narrow target zone within this deep, multicomponent and stratified prehistoric site. Hand-excavation in the two largest Blocks, B and D (51 m2 and 62 m2 respectively), revealed two vertically separate cultural components between roughly 220 and 290 cmbs. The younger component was restricted to Block B and yielded a Bell/Andice point and point base, plus a complete Big Sandy point. These points were associated with at least eight small burned rock features, one cluster of ground stone tools, limited quantities of lithic debitage, few formal chipped and ground stone tools, and a rare vertebrate faunal assemblage. Roughly 20 to 25 cm below the Bell/Andice component in Block B and across Block D was a component identified by a single corner-notched Martindale dart point. This point was associated with a scattered burned rocks, three charcoal stained hearth features, scattered animal, bird, and fish bones, mussel shells, and less than a dozen formal chipped and ground stone tools. Both identified components contained cultural materials in good stratigraphic context with high spatial integrity. Significant, both were radiocarbon dated by multiple charcoal samples to a narrow 200-year period between 5250 and 5450 B.P. during the middle Holocene. With exception of the well-preserved faunal assemblages, perishable materials were poorly preserved in the moist silty clay loam. Charcoal lacked structure and was reduced to dark stains. Microfossils (e.g., phytoliths and starch gains) were present, although in very limited numbers and deteriorated conditions. The four much smaller Blocks (A, C, E, and F) yielded various quantities of cultural material and features, but these blocks also lacked sufficient charcoal dates and diagnostic artifacts Those artifacts and samples were left unassigned and analyzed separately from the Bell/Andice and Martindale components. The two well-defined components in Blocks B and D are the focus of this technical report. The components provide very significant data towards understanding rare and poorly understood hunter-gatherer populations during late stages of the Altithermal climate period. This final report builds upon the interim report submitted to TxDOT (Quigg et al. 2007) that briefly described the methods, excavations, preliminary findings, initial results from six feasibility studies, and proposed an initial research design for data analyses. Context and integrity of the cultural materials in the two identified components was excellent. This rare circumstance combined with detailed artifact analyses, solid documentation of their ages through multiple radiocarbon dates, and multidisciplinary approach to analyses, allowed significant insights and contributions concerning the two populations involved. Results provide a greater understanding of human behaviors during a rarely identified time in Texas Prehistory. The cultural materials and various collected samples were temporarily curated at TRC’s Austin laboratory. Following completion of analyses and acceptance of this final report, the artifacts, paper records, photographs, and electronic database were permanently curated at the Center for Archaeological Studies (CAS) at Texas State University in San Marcos

    Resolving Fine-Scale Surface Features on Polar Sea Ice: A First Assessment of UAS Photogrammetry Without Ground Control

    Get PDF
    Mapping landfast sea ice at a fine spatial scale is not only meaningful for geophysical study, but is also of benefit for providing information about human activities upon it. The combination of unmanned aerial systems (UAS) with structure from motion (SfM) methods have already revolutionized the current close-range Earth observation paradigm. To test their feasibility in characterizing the properties and dynamics of fast ice, three flights were carried out in the 2016–2017 austral summer during the 33rd Chinese National Antarctic Expedition (CHINARE), focusing on the area of the Prydz Bay in East Antarctica. Three-dimensional models and orthomosaics from three sorties were constructed from a total of 205 photos using Agisoft PhotoScan software. Logistical challenges presented by the terrain precluded the deployment of a dedicated ground control network; however, it was still possible to indirectly assess the performance of the photogrammetric products through an analysis of the statistics of the matching network, bundle adjustment, and Monte-Carlo simulation. Our results show that the matching networks are quite strong, given a sufficient number of feature points (mostly > 20,000) or valid matches (mostly > 1000). The largest contribution to the total error using our direct georeferencing approach is attributed to inaccuracies in the onboard position and orientation system (POS) records, especially in the vehicle height and yaw angle. On one hand, the 3D precision map reveals that planimetric precision is usually about one-third of the vertical estimate (typically 20 cm in the network centre). On the other hand, shape-only errors account for less than 5% for the X and Y dimensions and 20% for the Z dimension. To further illustrate the UAS’s capability, six representative surface features are selected and interpreted by sea ice experts. Finally, we offer pragmatic suggestions and guidelines for planning future UAS-SfM surveys without the use of ground control. The work represents a pioneering attempt to comprehensively assess UAS-SfM survey capability in fast ice environments, and could serve as a reference for future improvements

    Revisiting the Nelson Site: Recent Archeological Investigations and Material Analysis

    Get PDF
    The Nelson Site (21BE24) is situated on a low terrace along the southern boundary of the Blue Earth River, approximately 2 miles west of the city of Mankato, Minnesota (Appendix A, Figures 1 and 2). Initial survey of the site in 1973 identified the site as a single component Terminal Woodland habitation site associated with cultural entities centered in the Mississippi River Valley of Iowa and Wisconsin. However, subsequent analysis and additional archaeological investigations conducted in 2011 and 2013 identified additional components of the site and recognized variations in decorative elements from pottery recovered from previous surveys, which differed from those generally attributed to defined pottery wares in adjacent areas and states. Additional investigations were conducted in the summer of 2014 to collect data from the originally defined Nelson site area and artifact concentrations identified during later surveys pf areas to the immediate south, with the explicit purpose to define cultural contexts to each component of the Nelson site terrace. The results of this archaeological investigation revealed that materials recovered from artifact concentrations identified to the south of the previously defined Nelson site are consistent with materials recovered from the 1973 investigation of the site. An admixture of materials consistent with both eastern and western sources suggests a commingling of influences and a regionally unique combination of material culture. While concentrations of cultural materials were identified throughout spatially distinct areas of the Nelson site terrace, these all appear to represent a relatively short temporal occupation of the area by a seemingly homogeneous, yet regionally distinct cultural group. However, the presence of cultural materials within buried habitable soil horizons that have been interpreted as temporally synonymous with materials recovered from overlying horizons cannot be demonstrably associated with the apparent primary occupation of the Nelson site terrace. As such, these materials may be representative an earlier occupation of the Nelson site terrace, which may or may not be related to its primary occupation

    At the water's edge: an archaeological investigation of playa occupation in the Central Plains

    Get PDF
    2021 Summer.Includes bibliographical references.Playa research on the American Great Plains has considerable potential to shed light on ancient hunter-gatherer lifeways and subsistence. These lacustrine environments provide a predictable water source and are ecological hubs for many species of mammals, waterfowl, and vegetation. The availability and abundance of resources create an environmental pull within the Plains that is ideal for ancient hunter-gatherer site choice in a region where resources are relatively scarce. This thesis provides an ecological and human behavioral approach to analyze the ancient history of mobile peoples by examining 18 archaeological playa site assemblages totaling 5,052 artifacts from the Central Plains. The lithic assemblages are placed within a geographic and environmental context, taking into consideration elements of site choice such as distance to playa, topographical location, and playa size. The data reveal that site selection includes many complex factors not always determined by resource acquisition or the surrounding environment. The results also illustrate regional differences in playa occupation, specifically that occupations in the South Platte River Basin are more diverse and continuous when compared to playas elsewhere in the Great Plains. The findings from this research casts light on overall hunter-gatherer lifeways and reveals the importance of playas to indigenous groups in the Central Plains over a 12,000-year history

    Recent Milestones in Unraveling the Full-Field Structure of Dynamic Shear Cracks and Fault Ruptures in Real-Time: From Photoelasticity to Ultrahigh-Speed Digital Image Correlation

    Get PDF
    The last few decades have seen great achievements in dynamic fracture mechanics. Yet, it was not possible to experimentally quantify the full-field behavior of dynamic fractures, until very recently. Here, we review our recent work on the full-field quantification of the temporal evolution of dynamic shear ruptures. Our newly developed approach based on digital image correlation combined with ultrahigh-speed photography has revolutionized the capabilities of measuring highly transient phenomena and enabled addressing key ques- tions of rupture dynamics. Recent milestones include the visualization of the complete displacement, particle velocity, strain, stress and strain rate fields near growing ruptures, capturing the evolution of dynamic friction during individual rupture growth, and the detailed study of rupture speed limits. For example, dynamic friction has been the big- gest unknown controlling how frictional ruptures develop but it has been impossible, until now, to measure dynamic friction during spontaneous rupture propagation and to understand its dependence on other quantities. Our recent measurements allow, by simul- taneously tracking tractions and sliding speeds on the rupturing interface, to disentangle its complex dependence on the slip, slip velocity, and on their history. In another application, we have uncovered new phenomena that could not be detected with previous methods, such as the formation of pressure shock fronts associated with “supersonic” propagation of shear ruptures in viscoelastic materials where the wave speeds are shown to depend strongly on the strain rate

    The 10 Meter South Pole Telescope

    Full text link
    The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zeldovich effect and to measure the small-scale angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy. A second-generation camera will measure the polarization of the CMB, potentially leading to constraints on the neutrino mass and the energy scale of inflation.Comment: 47 pages, 14 figures, updated to match version to be published in PASP 123 903 (May, 2011

    Processing, structure and thermo-mechanical properties of reclaimed nanoclay, and its application in polyamide 6 and low-density polyethylene nanocomposites.

    Get PDF
    Oil-based mud (OBM) wastes are generated every year all over the world, and remain a serious challenge for the oil and gas industry. The potential solution for this global problem is either to destroy these hazardous chemicals completely - a significant challenge - or to use/utilise them for beneficial applications. Therefore, the aim of this thesis is to develop a detailed understanding of the synergistic effects of different clay minerals that exist in OBM waste, in influencing structural, morphological, rheological and thermo-mechanical behaviour of LDPE and PA6 nanocomposite materials. The thesis begins with a critical literature review, covering oil-based mud (OBM) waste treatments, polymer nanocomposites and their manufacturing, thermal degradation behaviour and mechanical performance. This is followed by a detailed characterisation of OBM waste to determine elemental composition, and structural and thermal properties. To evaluate their performance as a filler in polymer composites, both mechanical and thermal properties of polyamide 6 (PA6) and low-density polyethylene (LDPE)-based nanocomposites were manufactured through the process of melt compounding, followed by injection and compression moulding, with different amounts (wt%) of OBM fillers (OBMFs). The study on thermal degradation of LDPE/OBM slurry shows that the nanocomposites with higher percentage filler contents (in case of 7.5 and 10 wt%) decreased the heat capacity value by 33% and 17% in LDPE respectively. OBM slurry shows superior improvements in storage modulus, loss modulus and damping property (tan d) in LDPE matrix, compared to those of LDPE/MMT nanocomposites. However, the study shows a decrease of tensile and flexural properties for the LDPE/OBM slurry nanocomposites. The follow-up study focused on thermally-treated OBM waste in powder form and their effect on thermo-mechanical properties of LDPE matrix. It was observed that OBMFs was compatible with LDPE matrix, which led to a strong interfacial interaction between the clay layers and polymer. Further, the clay minerals present in OBMFs formed chemical bonds in microstructure within the nanocomposites. The OBMFs (10wt %)/LDPE nanocomposite produced the highest onset degradation temperature at 5 wt% loss (TD5%) and 50 wt% loss (TD50%) among the nanocomposites. An enhancement of mechanical properties of composites was identified, which showed a gain of 14% Young's modulus and 18% increase on tensile strength at 10 wt% OBMFs loading, compared to those properties of neat LDPE. The crystallinity and thermal degradation behaviours of polyamide 6/oil-based mud fillers (PA6/OBMFs) nanocomposites were also investigated. TGA indicates the onset decomposition temperature of D1/2 (half-decomposition) for PA6 with 10 wt% of OBMFs is 16ÂşC higher than that of PA6 and also registered a 47% specific heat capacity reduction. The Youngs' moduli were increased by 42% and 35% in PA6 with 7.5 and 10 wt% OBMFs nanocomposites respectively, whereas the tensile strengths were increased by 24% and 16% in PA6 with 7.5 and 10 wt% OBMFs nanocomposites respectively. The flexural strength increased by 26% with the addition of OBMFs from 0 to 10 wt% in PA6 nanocomposites. In conclusion, a loading amount of 10 wt% OBMFs on both polymer matrices was found to be the most desirable enhanced mechanical and thermal stability properties. However, 10 wt% OBMFs showed increased storage modulus and drop in loss modulus in both LDPE and PA6 matrices, leading to the conclusion that OBMFs improves thermo-mechanical properties in LDPE and PA6 matrices in dynamic condition. Considering the findings from this study, this material shows high potential for low-cost structural insulation materials as an alternative to conventional (more expensive) materials. All the proposed treatment techniques presented in the literature and in industrial practices dealing with OBM waste, passes pollution from one stage to another. This study explores the opportunity to utilise the useful reclaimed clay minerals from OBM waste as filler in nanocomposite manufacturing
    • …
    corecore