7,464 research outputs found

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring

    A Self-timed Ring Based True Random Number Generator

    No full text
    International audienceSelf-timed rings are oscillators in which several events can evolve evenly-spaced in time thanks to analog effects inherent to the ring stage structure. One of their interesting features is that they provide precise high-speed multiphase signals. This paper presents a true random number generator that exploits the jitter of events propagating in a self-timed ring with a high entropy. Designs implemented in Altera Cyclone III and Xilinx Virtex 5 devices provide high quality random bit sequences passing FIPS 140-1 and NIST SP 800-22 statistical tests at a high bit rate

    Comparison of Self-Timed Ring and Inverter Ring Oscillators as Entropy Sources in FPGAs

    No full text
    International audienceMany True Random Numbers Generators (TRNG) use jittery clocks generated in ring oscillators as a source of entropy. This is especially the case in Field Programmable Gate Arrays (FPGA), where sources of randomness are very limited. Inverter Ring Oscillators (IRO) are relatively well characterized as entropy sources. However, it is known that they are very sensitive to working conditions. This fact makes them vulnerable to attacks. On the other hand, Self-Timed Rings (STR) are currently considered as a promising solution to generate robust clock signals. Although many studies deal with their temporal behavior and robustness in Application Specific Integrated Circuits (ASIC), equivalent study does not exist for FPGAs. Furthermore, these oscillators were not analyzed and characterized as entropy sources aimed at TRNG design. In this paper, we analyze STRs as entropy sources for TRNGs implemented in FPGAs. Next, we compare STRs and IROs when serving as sources of randomness. We show that STRs represent very interesting alternative to IROs: they are more robust to environmental fluctuations and they exhibit lower extra-device frequency variations

    Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy

    Get PDF
    The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites

    A Very High Speed True Random Number Generator with Entropy Assessment

    No full text
    International audienceThe proposed true random number generator (TRNG) exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit sequences at a very high bit rate. It takes advantage of a special feature of STRs that allows the time elapsed between successive events to be set as short as needed, even in the order of picoseconds. If the time interval between the events is set in concordance with the clock jitter magnitude, a simple entropy extraction scheme can be applied to generate random numbers. The proposed STR-based TRNG (STRNG) follows AIS31 recommendations: by using the proposed stochastic model, designers can compute a lower entropy bound as a function of the STR characteristics (number of stages, oscillation period and jitter magnitude). Using the resulting entropy assessment, they can then set the compression rate in the arithmetic post-processing block to reach the required security level determined by the entropy per output bit. Implementation of the generator in two FPGA families confirmed its feasibility in digital technologies and also confirmed it can provide high quality random bit sequences that pass the statistical tests required by AIS31 at rates as high as 200 Mbit/s

    Effects of reduced discrete coupling on filament tension in excitable media

    Get PDF
    Wave propagation in the heart has a discrete nature, because it is mediated by discrete intercellular connections via gap junctions. Although effects of discreteness on wave propagation have been studied for planar traveling waves and vortexes (spiral waves) in two dimensions, its possible effects on vortexes (scroll waves) in three dimensions are not yet explored. In this article, we study the effect of discrete cell coupling on the filament dynamics in a generic model of an excitable medium. We find that reduced cell coupling decreases the line tension of scroll wave filaments and may induce negative filament tension instability in three-dimensional excitable lattices.Peer Reviewe

    A Very High Speed True Random Number Generator with Entropy Assessment

    No full text
    International audienceThe proposed true random number generator (TRNG) exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit sequences at a very high bit rate. It takes advantage of a special feature of STRs that allows the time elapsed between successive events to be set as short as needed, even in the order of picoseconds. If the time interval between the events is set in concordance with the clock jitter magnitude, a simple entropy extraction scheme can be applied to generate random numbers. The proposed STR-based TRNG (STRNG) follows AIS31 recommendations: by using the proposed stochastic model, designers can compute a lower entropy bound as a function of the STR characteristics (number of stages, oscillation period and jitter magnitude). Using the resulting entropy assessment, they can then set the compression rate in the arithmetic post-processing block to reach the required security level determined by the entropy per output bit. Implementation of the generator in two FPGA families confirmed its feasibility in digital technologies and also confirmed it can provide high quality random bit sequences that pass the statistical tests required by AIS31 at rates as high as 200 Mbit/s

    Drafting in Self-Timed Circuits

    Get PDF
    Intervals between data items propagating in self-timed circuits are controlled by handshake signals rather than by a clock. The sequence of handshakes can be abstracted as the movement of “tokens”. In many self-timed designs, a trailing token will catch up with a leading token, even when it trails by thousands of gate delays. Simulations in SPICE of a simple GasP circular FIFO reveal this effect. Contrary to earlier work, we find the cause of drafting to be charge stored on an isolated node between two series transistors. This mechanism occurs in many decision gates that implement a logical AND. The charge on the floating internal node can drift between actions and thereby change the delay of the gate. Drafting occurs because the delay of a trailing token through a self-timed stage depends on when the leading token departed. This effect, called “drafting”, can be seen in many of the self-timed designs, e.g., GasP, Mousetrap, Click, Micropipeline. Drafting behavior may be modulated by controlling the internal node of the GasP NOR gate. This offers possibilities for using self-timed circuits in applications where the interval between data items carries information for spiking neural networks, security or real-time signal processing

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    4D electron imaging: principles and perspectives

    Get PDF
    In this perspective we highlight developments and concepts in the field of 4D electron imaging. With spatial and temporal resolutions reaching the picometer and femtosecond, respectively, the field is now embracing ultrafast electron diffraction, crystallography and microscopy. Here, we overview the principles involved in the direct visualization of structural dynamics with applications in chemistry, materials science and biology. The examples include the studies of complex isolated chemical reactions, phase transitions and cellular structures. We conclude with an outlook on the potential of the approach and with some questions that may define new frontiers of research
    corecore