41 research outputs found

    Data Monitoring and Analysis in Wireless Networks

    Full text link
    Various wireless network technologies have been created to meet the ever-increasing demand for wireless access to the Internet, such as wireless local area network, cellular network, sensor network and many more. The communication devices have transformed from large computational servers to small wireless hand-held devices, ranging from laptops, tablets, smartphones to small sensors. The advances of these wireless networks (e.g., faster network speed) and their intensive usages result in an enormous growth of network data in terms of volume, diversity, and complexity. All of these changes have raised complicated issues of network measurement and management. In the first part of this thesis, I study how WiFi network characteristics impact network forensics investigation and home security monitoring. I first focus on network forensics investigation and propose a wireless forensic monitoring system to collect trace digests of WiFi activities and facilitate cybercrime investigation. Then, I design and develop a low-cost home security system based on WiFi networks for physical intruder detection. Two methods - MAC-based detection and RSSI-variance-based detection, are proposed based on the characteristics of WiFi networks. In the second part, I study how to effectively and efficiently model multiple coevolving time series, which is ubiquitous in network measurement especially in wireless sensor networks. Two comprehensive algorithms are proposed to address three prominent challenges of mining coevolving sensor measured traces: (a) high order; (b) contextual constraints; and (c) temporal smoothness

    Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation

    Full text link
    Achilles Tendon Rupture (ATR) is one of the typical soft tissue injuries. Rehabilitation after such a musculoskeletal injury remains a prolonged process with a very variable outcome. Accurately predicting rehabilitation outcome is crucial for treatment decision support. However, it is challenging to train an automatic method for predicting the ATR rehabilitation outcome from treatment data, due to a massive amount of missing entries in the data recorded from ATR patients, as well as complex nonlinear relations between measurements and outcomes. In this work, we design an end-to-end probabilistic framework to impute missing data entries and predict rehabilitation outcomes simultaneously. We evaluate our model on a real-life ATR clinical cohort, comparing with various baselines. The proposed method demonstrates its clear superiority over traditional methods which typically perform imputation and prediction in two separate stages

    Probabilistic sequential matrix factorization

    Get PDF
    We introduce the probabilistic sequential matrix factorization (PSMF) method for factorizing time-varying and non-stationary datasets consisting of high-dimensional time-series. In particular, we consider nonlinear Gaussian state-space models where sequential approximate inference results in the factorization of a data matrix into a dictionary and time-varying coefficients with potentially nonlinear Markovian dependencies. The assumed Markovian structure on the coefficients enables us to encode temporal dependencies into a low-dimensional feature space. The proposed inference method is solely based on an approximate extended Kalman filtering scheme, which makes the resulting method particularly efficient. PSMF can account for temporal nonlinearities and, more importantly, can be used to calibrate and estimate generic differentiable nonlinear subspace models. We also introduce a robust version of PSMF, called rPSMF, which uses Student-t filters to handle model misspecification. We show that PSMF can be used in multiple contexts: modeling time series with a periodic subspace, robustifying changepoint detection methods, and imputing missing data in several high-dimensional time-series, such as measurements of pollutants across London.Comment: Accepted for publication at AISTATS 202

    Networked Time Series Prediction with Incomplete Data

    Full text link
    A networked time series (NETS) is a family of time series on a given graph, one for each node. It has a wide range of applications from intelligent transportation, environment monitoring to smart grid management. An important task in such applications is to predict the future values of a NETS based on its historical values and the underlying graph. Most existing methods require complete data for training. However, in real-world scenarios, it is not uncommon to have missing data due to sensor malfunction, incomplete sensing coverage, etc. In this paper, we study the problem of NETS prediction with incomplete data. We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future. Furthermore, we propose Graph Temporal Attention Networks, which incorporate the attention mechanism to capture both inter-time series and temporal correlations. We conduct extensive experiments on four real-world datasets under different missing patterns and missing rates. The experimental results show that NETS-ImpGAN outperforms existing methods, reducing the MAE by up to 25%

    Bayesian Temporal Factorization for Multidimensional Time Series Prediction

    Full text link
    Large-scale and multidimensional spatiotemporal data sets are becoming ubiquitous in many real-world applications such as monitoring urban traffic and air quality. Making predictions on these time series has become a critical challenge due to not only the large-scale and high-dimensional nature but also the considerable amount of missing data. In this paper, we propose a Bayesian temporal factorization (BTF) framework for modeling multidimensional time series -- in particular spatiotemporal data -- in the presence of missing values. By integrating low-rank matrix/tensor factorization and vector autoregressive (VAR) process into a single probabilistic graphical model, this framework can characterize both global and local consistencies in large-scale time series data. The graphical model allows us to effectively perform probabilistic predictions and produce uncertainty estimates without imputing those missing values. We develop efficient Gibbs sampling algorithms for model inference and model updating for real-time prediction and test the proposed BTF framework on several real-world spatiotemporal data sets for both missing data imputation and multi-step rolling prediction tasks. The numerical experiments demonstrate the superiority of the proposed BTF approaches over existing state-of-the-art methods.Comment: 15 pages, 9 figures, 3 table
    corecore