8,506 research outputs found

    Evolution of cooperation on dynamical graphs

    Get PDF
    There are two key characteristic of animal and human societies: (1) degree heterogeneity, meaning that not all individual have the same number of associates; and (2) the interaction topology is not static, i.e. either individuals interact with different set of individuals at different times of their life, or at least they have different associations than their parents. Earlier works have shown that population structure is one of the mechanisms promoting cooperation. However, most studies had assumed that the interaction network can be described by a regular graph (homogeneous degree distribution). Recently there are an increasing number of studies employing degree heterogeneous graphs to model interaction topology. But mostly the interaction topology was assumed to be static. Here we investigate the fixation probability of the cooperator strategy in the prisoner’s dilemma, when interaction network is a random regular graph, a random graph or a scale-free graph and the interaction network is allowed to change. We show that the fixation probability of the cooperator strategy is lower when the interaction topology is described by a dynamical graph compared to a static graph. Even a limited network dynamics significantly decreases the fixation probability of cooperation, an effect that is mitigated stronger by degree heterogeneous networks topology than by a degree homogeneous one. We have also found that from the considered graph topologies the decrease of fixation probabilities due to graph dynamics is the lowest on scale-free graphs

    The Cognitive Virtues of Dynamic Networks

    No full text
    For the most part, studies in the network science literature tend to focus on networks whose functional connectivity is largely invariant with respect to some episode of collective information processing. In the real world, however, networks with highly dynamic functional topologies tend to be the norm. In order to improve our understanding of the effect of dynamic networks on collective cognitive processing, we explored the problem-solving abilities of synthetic agents in dynamic networks, where the links between agents were progressively added throughout the problem-solving process. The results support the conclusion that (at least in some task contexts) dynamic networks contribute to a better profile of problem-solving performance compared to static networks (whose topologies are fixed throughout the course of information processing). Furthermore, the results suggest that constructive networks (like those used in the present study) strike a productive balance between autonomy and social influence. When agents are allowed to operate independently at the beginning of a problem-solving process, and then later allowed to communicate, the result is often a better profile of collective performance than if extensive communication had been permitted from the very outset of the problem-solving process. These results are relevant, we suggest, to a range of phenomena, such as groupthink, the common knowledge effect and production blocking, all of which have been observed in group problem-solving contexts

    Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks

    Full text link
    We investigate the relationship of resting-state fMRI functional connectivity estimated over long periods of time with time-varying functional connectivity estimated over shorter time intervals. We show that using Pearson's correlation to estimate functional connectivity implies that the range of fluctuations of functional connections over short time scales is subject to statistical constraints imposed by their connectivity strength over longer scales. We present a method for estimating time-varying functional connectivity that is designed to mitigate this issue and allows us to identify episodes where functional connections are unexpectedly strong or weak. We apply this method to data recorded from N=80N=80 participants, and show that the number of unexpectedly strong/weak connections fluctuates over time, and that these variations coincide with intermittent periods of high and low modularity in time-varying functional connectivity. We also find that during periods of relative quiescence regions associated with default mode network tend to join communities with attentional, control, and primary sensory systems. In contrast, during periods where many connections are unexpectedly strong/weak, default mode regions dissociate and form distinct modules. Finally, we go on to show that, while all functional connections can at times manifest stronger (more positively correlated) or weaker (more negatively correlated) than expected, a small number of connections, mostly within the visual and somatomotor networks, do so a disproportional number of times. Our statistical approach allows the detection of functional connections that fluctuate more or less than expected based on their long-time averages and may be of use in future studies characterizing the spatio-temporal patterns of time-varying functional connectivityComment: 47 Pages, 8 Figures, 4 Supplementary Figure

    Structure and Dynamics of Information Pathways in Online Media

    Full text link
    Diffusion of information, spread of rumors and infectious diseases are all instances of stochastic processes that occur over the edges of an underlying network. Many times networks over which contagions spread are unobserved, and such networks are often dynamic and change over time. In this paper, we investigate the problem of inferring dynamic networks based on information diffusion data. We assume there is an unobserved dynamic network that changes over time, while we observe the results of a dynamic process spreading over the edges of the network. The task then is to infer the edges and the dynamics of the underlying network. We develop an on-line algorithm that relies on stochastic convex optimization to efficiently solve the dynamic network inference problem. We apply our algorithm to information diffusion among 3.3 million mainstream media and blog sites and experiment with more than 179 million different pieces of information spreading over the network in a one year period. We study the evolution of information pathways in the online media space and find interesting insights. Information pathways for general recurrent topics are more stable across time than for on-going news events. Clusters of news media sites and blogs often emerge and vanish in matter of days for on-going news events. Major social movements and events involving civil population, such as the Libyan's civil war or Syria's uprise, lead to an increased amount of information pathways among blogs as well as in the overall increase in the network centrality of blogs and social media sites.Comment: To Appear at the 6th International Conference on Web Search and Data Mining (WSDM '13
    • 

    corecore