183 research outputs found

    A TEMPORAL RELATIONAL ALGEBRA AS A BASIS FOR TEMPORAL RELATIONAL COMPLETENESS

    Get PDF
    We define a temporal algebra that is applicable to any temporal relational data model supporting discrete linear bounded time. This algebra has the five basic relational algebra operators extended to the temporal domain and an operator of linear recursion. We show that this algebra has the expressive power of a safe temporal calculus based on the predicate temporal logic with the until and since temporal operators. In [CrC189], a historical calculus was proposed as a basis for historical relational completeness. We propose the temporal algebra defined in this paper and the equivalent temporal calculus as an alternative basis for temporal relational completeness.Information Systems Working Papers Serie

    Content-based Video Retrieval

    Get PDF
    no abstract

    Case Adaptation with Qualitative Algebras

    Get PDF
    This paper proposes an approach for the adaptation of spatial or temporal cases in a case-based reasoning system. Qualitative algebras are used as spatial and temporal knowledge representation languages. The intuition behind this adaptation approach is to apply a substitution and then repair potential inconsistencies, thanks to belief revision on qualitative algebras. A temporal example from the cooking domain is given. (The paper on which this extended abstract is based was the recipient of the best paper award of the 2012 International Conference on Case-Based Reasoning.

    Hop and HipHop : Multitier Web Orchestration

    Get PDF
    Rich applications merge classical computing, client-server concurrency, web-based interfaces, and the complex time- and event-based reactive programming found in embedded systems. To handle them, we extend the Hop web programming platform by HipHop, a domain-specific language dedicated to event-based process orchestration. Borrowing the synchronous reactive model of Esterel, HipHop is based on synchronous concurrency and preemption primitives that are known to be key components for the modular design of complex reactive behaviors. HipHop departs from Esterel by its ability to handle the dynamicity of Web applications, thanks to the reflexivity of Hop. Using a music player example, we show how to modularly build a non-trivial Hop application using HipHop orchestration code.Comment: International Conference on Distributed Computing and Internet Technology (2014

    Content-based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events

    Get PDF
    As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated us

    Time management situation assessment (TMSA)

    Get PDF
    TMSA is a concept prototype developed to support NASA Test Directors (NTDs) in schedule execution monitoring during the later stages of a Shuttle countdown. The program detects qualitative and quantitative constraint violations in near real-time. The next version will support incremental rescheduling and reason over a substantially larger number of scheduled events

    On Completeness of Historical Relational Query Languages

    Get PDF
    Numerous proposals for extending the relational data model to incorporate the temporal dimension of data have appeared in the past several years. These proposals have differed considerably in the way that the temporal dimension has been incorporated both into the structure of the extended relations of these temporal models, and consequently into the extended relational algebra or calculus that they define. Because of these differences it has been difficult to compare the proposed models and to make judgments as to which of them might in some sense be equivalent or even better. In this paper we define the notions of temporally grouped and temporally ungrouped historical data models and propose two notions of historical reIationa1 completeness, analogous to Codd's notion of relational completeness, one for each type of model. We show that the temporally ungrouped models are less expressive than the grouped models, but demonstrate a technique for extending the ungrouped models with a grouping mechanism to capture the additional semantic power of temporal grouping. For the ungrouped models we define three different languages, a temporal logic, a logic with explicit reference to time, and a temporal algebra, and show that under certain assumptions all three are equivalent in power. For the grouped models we define a many-sorted logic with variables over ordinary values, historical values, and times. Finally, we demonstrate the equivalence of this grouped calculus and the ungrouped calculus extended with a grouping mechanism. We believe the classification of historical data models into grouped and ungrouped provides a useful framework for the comparison of models in the literature, and furthermore the exposition of equivalent languages for each type provides reasonable standards for common, and minimal, notions of historical relational completeness.Information Systems Working Papers Serie
    • …
    corecore