
HAL Id: hal-00911782
https://hal.inria.fr/hal-00911782

Submitted on 30 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hop and HipHop : Multitier Web Orchestration
Gérard Berry, Manuel Serrano

To cite this version:
Gérard Berry, Manuel Serrano. Hop and HipHop : Multitier Web Orchestration. International Con-
ference on Distributed Computing and Internet Technology, Feb 2014, Bhubaneswar, India. �hal-
00911782�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49708254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00911782
https://hal.archives-ouvertes.fr

Hop and HipHop : Multitier Web Orchestration

Gérard Berry1 and Manuel Serrano2

1 Collège de France,11 place Marcelin Berthelot, 75231 Paris Cedex 05, France,
Gerard.Berry@college-de-france.fr

2 Inria Sophia Méditerranée, 2004 route des Lucioles, 06902 Sophia Antipolis, France,
Manuel.Serrano@inria.fr

Abstract. Rich applications merge classical computing, client-server
concurrency, web-based interfaces, and the complex time- and event-
based reactive programming found in embedded systems. To handle
them, we extend the Hop web programming platform by HipHop, a
domain-specific language dedicated to event-based process orchestration.
Borrowing the synchronous reactive model of Esterel, HipHop is based on
synchronous concurrency and preemption primitives that are known to
be key components for the modular design of complex reactive behaviors.
HipHop departs from Esterel by its ability to handle the dynamicity of
Web applications, thanks to the reflexivity of Hop. Using a music player
example, we show how to modularly build a non-trivial Hop application
using HipHop orchestration code.

1 Introduction

Our aim is to help programming rich applications driven by computers, smart-
phones or tablets; since they interact with various external services and devices,
such applications require orchestration techniques that merge classical comput-
ing, client-server concurrency, web-based interfaces, and event-based program-
ming. To achieve this, we extend the Hop multitier web programming platform
[8] by the new HipHop domain specific language (DSL), which is based on the
synchronous language Esterel [1]. HipHop orchestrates and synchronizes inter-
nal and external activities according to timers, events generated by the network,
GUIs, sensors and devices, or internally computed conditions.

Like Esterel, Hiphop is a concurrent language based on the perfect synchrony
hypothesis: a HipHop program repeatedly reacts in conceptual zero-delay to in-
put events by generating output events; synchronization and communication
between parallel statements is also performed in conceptual zero-delay. Perfect
synchrony makes concurrent programs deterministic and deadlock-free, the only
non-determinism left being that of the application environment. Its implementa-
tion is cycle-based, execution consisting of repeated atomic cycles “read inputs
/ compute reaction / generate outputs” in coroutine with the main Hop code.
Concurrency is compiled away by static or dynamic sequential scheduling of code
fragments. Cyclic execution atomicity avoids interference between computation
and input-output, which is the usual source of unexpected non-determinism and
synchronization problems for classical event-handler based programming.

While Esterel is limited to static applications, HipHop is designed for dynam-
icity. Its implementation on top of Hop makes it possible to dynamically build
and run orchestration programs at any time using Hop’s reflexivity facilities. It
even makes it possible to modify a HipHop program between two execution cy-
cles (not detailed here). It also simplifies the language by importing Hop’s data
definition facilities, expressions, modular structure, and higher-order program-
ming features. It relies on the Web asynchronous concurrency and messaging
already supported by Hop.

Section 2 briefly presents the Hop language. Section 3 describes HipHop and
its relation with Hop. Section 4 presents a music application. Section 5 briefly
overviews related work. We conclude in Section 6.

2 Hop

Hop has been presented in several publications [9, 8]. We only remind its essential
aspects and show some examples that should be sufficient to understand the rest
of the paper.

Hop is a Scheme-based multitier functional language. The application server-
side and client-side are both implemented within a single Hop program. Client
code is distinguished from server code by prefixing it with the syntactic annota-
tion ‘~’. Server-side values can be injected inside a client-side expression using
a second syntactic annotation: the ‘$’ mark. On the server, the client-side code
is extracted, compiled on-the-fly into standard JavaScript, and shipped to the
client. This enables Hop clients to be executed by unmodified Web browsers.

Except for its new multitier programming style, Hop uses the standard Web
programming model. A server-side Hop program builds an HTML tree that cre-
ates the GUI and embeds client-side code into scripts, then ships it to the client.
AJAX-like service-based programming is made available by service definitions, a
service being a server-side function associated with a URL. The with-hop Hop
form triggers execution of a service. Communication between clients and servers
is automatically performed by the Hop runtime system, with no additional user
code needed.

The Hop Web application fib-html below illustrates multitier programming.
It consists of a server-built Web page displaying a three-rows table whose cells
enumerate positive integers. When a cell is clicked, the corresponding Fibonacci
value is computed on the client and displayed in a popup window. Note the ‘~’
signs used lines 3,6, 7, and 8 which mark client-side expressions.

1:(define-service (fib-html)

2: (<HTML>

3: ~(define (fib x) ;; client-side code since prefixed by ~

4: (if (< x 2) 1 (+ (fib (- x 1)) (fib (- x 2)))))

5: (<TABLE>

6: (<TR> (<TD> "fib(1)" :onclick ~(alert (fib 1))))

7: (<TR> (<TD> "fib(2)" :onclick ~(alert (fib 2))))

8: (<TR> (<TD> "fib(3)" :onclick ~(alert (fib 3)))))))

Let us modify the example to illustrate some Hop niceties. Instead of building
the rows by hand, we let Hop compute them. The new Hop program uses the
(iota 3) expression (line 9) that evaluates to the list (1, 2, 3) and the map

functional operator that applies a function to all the elements of a list. The $i

expression (line 8) denotes the value of i on the server at HTML document
elaboration time, seamlessly exported to the client code:

1:(define-service (fib-html)

2: (<HTML>

3: ~(define (fib x) ...)

4: (<TABLE>

5: (map (lambda (i)

6: (<TR>

7: (<TD> "fib(" i ")"

8: :onclick ~(alert (fib $i)))))

9: (iota 3)))))

Before delivery to a client, the server-side document is compiled on the server
into regular HTML and JavaScript. It can then be executed by all standard
browsers.

3 The HipHop Programming Language

HipHop embeds the reactive primitives of Esterel [1] within Hop while making
maximal usage of Hop’s expressive power. By convention, the ‘&’ suffix is associ-
ated with HipHop code. Technically speaking, a HipHop form should be seen in
two ways. First, it is a Hop constructor that builds a Hop value that represents
a HipHop abstract syntax node. This makes it possible to dynamically build and
run HipHop programs from within Hop. Second, it is a temporal statement exe-
cuted by a reactive machine that communicates with Hop using logical HipHop
events built by Hop out of physical or programmed events.

The reactive machine is triggered by Hop and perform conceptually instanta-
neous and deterministic reactions to its input HipHop events, generating output
HipHop events.

3.1 HipHop Events

HipHop logical events are abstract Hop values of class HipHopEvent. They can
be inputs and outputs of the reactive machine or local to the HipHop program,
then helping synchronization and communication between its concurrent parts.
HipHop events have an optional boolean presence/absence status and an optional
data value. The status and value of each event are unique in each reaction and
broadcast to the parallel components of the HipHop program.

The status of an event is absent by defaut. Input events are set present

from Hop prior to the reaction using the hiphop-input! Hop form; this deter-
mines the input context. Local and output events are set present from within

the HipHop program by executing the emit& statement. The status of an event
e is not memorized between successive reactions. It is read using the (now& e)

form, while the status at the previous reaction is read using the (pre& e) form.
The data value of an event is defined when setting the status, either from Hop

using hiphop-input! for an input or by emit& for an output or local. Contrarily
to the status, the value is memorized between reactions. The current value of
e is returned by the (val& e) form, while the value at the previous reaction is
read using the (preval& e) form. As for Esterel, several emissions can occur
for the same event in the same reaction; they are said to be simultaneous. In
that case, the final value of the event is obtained by combining the individually
emitted values using a combination function specified in the event Hop object
declaration.

3.2 Reactive Machines and their Reactions

Reactive machines interface Hop and HipHop. A machine M is defined by its
HipHop input/output logical event interface and its HipHop program.

Hop delivers an input event A with value v to a reactive machine M using the
form (hiphop-input! M A v). Any number of inputs can be delivered before
a reaction; they are only valid for this reaction. A reaction is triggered from
within Hop by (hiphop-react! M). Determining when a machine should react
is solely Hop’s responsibility. However, to simplify a common case, it is possible
to write (hiphop-input-and-react! M A v) to pass an input and trigger a
reaction right away.

A reaction may trigger output events, the actual output action being per-
formed by associated Hop listeners associated with the events and stored in the
reactive machine. To handle data, a reaction may also trigger the evaluation of
Hop expressions using the atom& HipHop statement, see Section 3.4.

Seen from Hop, a HipHop reaction is simply a standard function call. Seen
from HipHop, the execution of the reaction is conceptually performed in zero-
delay, the HipHop program sleeping between two successive reactions and re-
membering its control state from one reaction to the next. This coroutine exe-
cution scheme avoids interference between input event registering and reactions,
which is a common cause of unwanted non-determinism and deadlocks with clas-
sical threading techniques.

A reactive machine can be executed on the server or shipped to and executed
on a client, because it is a standard Hop object. Several reactive machines can
coexist in the same application, making it possible to use a GALS programming
model (Globally Asynchronous, Locally Synchronous) without extra overhead.
This will not be detailed here.

3.3 HipHop Intuitive Execution Semantics

The reactive code is based on deterministic sequencing, concurrency, and tempo-
ral statements inspired from Esterel [1]. Control positions are memorized from

one reaction to the next. To illustrate sequencing, consider the following se-
quence:

(seq&

(await& A)

(await& B)

(emit& O)

where A and B (resp. O) are input (resp. output) HipHop events. Intuitively, the
code waits for A and then B to be present, before emitting O and terminating
synchronously: O is emitted within the reaction triggered by B. Technically, at
first reaction, the HipHop control flow stops on (await& A), and yields back
control to Hop. HipHop control stays there at each subsequent reaction until the
first reaction where A is present. In this reaction, control immediately moves to
(await& B) and stays there until the next reaction where B is present. During
this reaction, and without further delay, it outputs O and terminates.

To illustrate concurrency, consider now the following HipHop code:

(seq&

(par& (await& A) (await& B))

(emit& O)

Here, A and B are waited for in parallel, not in sequence. The par& statement
terminates when all its arms are terminated. Thus, O is emitted exactly when
the last of A and B occurs (note that A and B may be both present in the
same reaction if they have been both input into the reactive machine before
the reaction is triggered). In HipHop, concurrency and sequencing can be mixed
arbitrarily, and the same holds for all other instructions.

We say that a statement that starts and terminates in the same reaction
is instantaneous or immediate; this is the case for emit&. Otherwise, we say
that the statement pauses, waiting for the next reaction, and we call it a delay

statement; this is the case for await&. Things that happen in the same reaction
are called simultaneous. This is of course a conceptual notion in terms of abstract
reactions, not a physical one.

3.4 HipHop Core Statements

As for Esterel, statements are divided into core statements, which are primitives
and handy derived statements. Thanks to Hop’s reflexivity, derived statements
can be trivially defined from core statements using Hop. We first detail the core
statements.

The nothing& statement does nothing and terminates instantaneously. It is
the HipHop no-op. The (emit& e [v]) statement emits its event e with value de-
termined by optional v. It terminates instantaneously. The (atom& expr) state-
ment calls Hop to executes the expr Hop expression; it is instantaneous, which
means that its Hop argument execution time should be kept negligible in prac-
tice.

The pause& statement delays execution by one reaction: it pauses for the
reaction and terminates at the next reaction.

The (if& test then else) statement instantaneously evaluates test. If the
result is true, it immediately starts then and behaves as it from then on; oth-
erwise, it does the same with else. These can be arbitrary HipHop statements.
Termination of the if& statement is instantaneously triggered by termination of
the selected branch. The seq& statement executes its arguments in order: the
first one starts immediately when the sequence starts; when it terminates, be it
immediately or in a delayed way, the second argument is immediately started,
etc. For instance, (seq& (emit& A) (emit& B)) immediately emits A and B,
which are seen as simultaneous within the reaction, while (seq& (emit& A)

(pause&) (emit& B)) emits A and B in two successive reactions.
The loop& statement is a loop-forever, equivalent to the infinite sequen-

tial repetition of its argument statements, themselves implicitly evaluated in
sequence. For instance, (loop& (pause&) (emit& A)) waits for the next reac-
tion and then keeps emitting A at each reaction. Exiting a loop& can only be
done by using the trap&/exit&, abort&, and until& statements, see below.

The par& statement starts its arguments concurrently and terminates when
the last of them terminates. Therefore, (par& (await& A) (await& B)) imme-
diately terminates when both A and B have been received. Remember that all
arms of a par& statement see all statuses and values of all (visible) events in
exactly the same way.

The suspend& statement immediately starts its body. At all following in-
stants, it suspends (freezes) the execution of its body for the reaction when its
condition is true. The suspend& statement terminates if its body is executed
and terminates. For instance,

(suspend& (now& A)

(loop&

(emit& B)

(pause&))

emits B at first instant and at all subsequent instants where A is absent.
The trap& statement defines a named exit point for its body. The exit&

statement provokes immediate termination of the corresponding trap& state-
ment, as well as immediate termination of all concurrent statements within the
trap& body, which do normally receive the control at that instant.

The local& statement declares local events in the first argument list. Their
scope is the body, which is the implicitly seq& list of the remaining HipHop
arguments. The declared events are not visible from Hop. A local& statement
terminates when its body does.

3.5 HipHop Derived Statements

The derived statements can be easily defined from the kernel ones using Hop.
The halt& statement pauses forever; it is defined as (loop& (pause&)). The

sustain& statement keeps emitting its event at each reaction. The await& state-
ment pauses and waits for its expression to become true and terminates:

(define (await& evt)

(trap& (done)

(loop&

(pause&)

(if& (now& evt) (exit& done)))))

The abort& statement instantaneously kills its sequential body when its condi-
tion becomes true, not passing the control to its body in this reaction; this is
what we call strong abortion:

(define (abort& evt . stmt-list)

(trap& (done)

(par&

(suspend& (now& evt) stmt-list)

(await& evt (exit& done)))))

The until& statement instantaneously kills its body when its condition becomes
true, but only at the end of the reaction, passing the control to its body for the
last time at that reaction as for an exited trap&; this is what we call weak abor-

tion. The loop-each& statement immediately starts its body, and then stongly
kills it and restarts it immediately whenever its condition becomes true. The
every& statement is similar but starts by waiting for the condition instead of
immediately starting its body (see [7]).

Once defined, these statements can be freely used in HipHop programs. Note
that this makes the language fully user-extensible. One can also build dynami-
cally statements from dynamic values computed during Hop execution, and even
dynamically modify the program between two reactions, for instance to use and
orchestrate services dynamically detected at runtime. Note also that there is no
need to redefine the basic arithmetic, list, and string expressions since Hop’s
ones can be reused (with some care however, no details given here).

4 An Application Example

We build a Lastfm-like smart music player called HopFM that orchestrates mu-
sical content and related information available on third party Web sites. It plays
music continuously, switching from one artist to another according to musical
similarities. It automatically fetches and displays information about music and
authors.

The user first selects a musical genre in a dynamically discovered list. This
activates the Hop control screen of Figure 1. The top of screen is used to adjust
the volume, pause the music, switch to the next track, etc. Below stands the
Start button (zone 2, Figure 1) that starts HopFM when clicked. HopFM then
searches the internet for a random artist of the selected genre, downloads a lim-
ited number of tracks of this artist, and starts playing. When a new track starts,

1
2

3

4 5

6

7

8
9

Fig. 1. The smartphone screenshot of HopFM. Ellipses show active zones managed
by Hiphop. Zone 1 sets the number of tracks to play per artist. Zone 2 initiates the
music play by starting the reactive machine. Zone 3 displays the name of the next
artist and the button to switch to his music. Zone 4 reports the current track name
and the album name; the two top buttons enable the user to emit positive or negative
recommendations. Zone 5 displays the album image, zone 6 the album’s track list, zone
7 comments about the album. Zone 8 displays the artist name and two buttons to emit
positive or negative recommendations. Zone 9 displays an image of the artist.

HopFM looks for related information on the internet: the associated album, its
image, its track list, and reviews. In parallel, HopFM searches and displays in-
formation about the played artist: his biography, his discography, some news,
and some blogs and reviews.

Also in parallel, the application searches the Web for similar artists to be
played later on, either when the currently downloaded tracks are over or when
the user clicks the Goto button (zone 3). If no similar artist is found, or if all
the known similar artists have been played, HopFM randomly chooses a new
random artist of the genre and starts again. HopFM keeps running until the
user clicks the top stop button.

The music player uses the following third-party services to retrieve musi-
cal contents and information about the tracks and artists: Free Music Archive3

(FMA), which provides mp3 music and informations about the tracks, albums,
and artists; EchoNest4, a database about tracks, artists, images, artist similari-
ties, and alignment information between other databases; MusicBrainz5, an open
music encyclopedia that collects music metadata.

HipHop orchestrates the requests to these remote services. For instance, to
search for an artist image, several requests to several sites are emitted simulta-
neously. As soon as the first one completes, the other ones are aborted and the
GUI is updated. If the artist changes before any request completes, all current
requests are aborted.

HipHop also handles user interactions and signals raised by the actual hard-
ware music player. Web services returns or errors, user interaction, and music
player events are the three sources of external asynchrony. They are all managed
uniformly by HipHop, local synchronous parallelism and communication being
essential to regulate and orchestrate external asynchrony.

4.1 HopFM Implementation

Clicking Start invokes the Hop client-side hopfm-play function, which con-
structs a reactive HipHop machine, creates various events, binds the external
Hop events to the HipHop interface events, creates a HipHop reactive program,
loads it into the machine, and eventually triggers the first reaction:

(define (hopfm-play catalog genre::genre)

(define musicstate (instantiate::HipHopEvent))

(define track (instantiate::HipHopEvent))

(define artist (instantiate::HipHopEvent))

(define playlist (instantiate::HipHopEvent))

...

(define (hopfm&) ...)

(let ((M (instantiate::HopHifiMachine

(program (hopfm&)))))

;; bind the machine to external HopHifi events

(add-event-listeners! M musicstate track artist)

;; trigger first HipHop reaction

(hiphop-react! M)))

The Hop function add-event-listeners! connects the actual hardware player
to the HipHop program. It binds Hop listeners that forward the events to
HipHop.

3 http://freemusicarchive.org.
4 http://echonest.com.
5 http://musicbrainz.org.

(define (add-event-listeners! M musicstate track artist)

(add-event-listener! server "hophifi-state"

;; listener called when the music player state changes

(lambda (e)

;; forward the Hop event to HipHop

(hiphop-input-and-react! M musicstate (event-value e))))

(add-event-listener! server "hophifi-track"

;; listener is called when a new track starts

;; or when the playlist changes

(lambda (e)

(let* ((ev (event-value e))

(tk (list-ref ev.playlist ev.song)))

;; forward the track and artist to HipHop

(hiphop-input! M track tk)

(hiphop-input! M artist (track-artist tk))

(hiphop-react! M)))))

The HipHop program hopfm& runs a number of components in synchronous
deterministic parallel, each in charge of a specific task. These components syn-
chronize each other by communicating synchronously using the HipHop events
defined above: track, artist, playlist, album, etc. The random-playlist&

component looks for random playlists, each playlist being associated with an
artist; playlist& waits for playlist changes and starts searching for the next
artist; track& waits for the hardware player to start a new track, checks if it
belongs to a different album or to a different artist and, in this case, emits the
HipHop events album and artist towards the other components; artist-info&
waits for a new artist event, searches the internet for information about that
artist, and emits an event that lets the gui& component update the screen. The
HipHop program stops when the user clicks the main stop button, which raises

the musicstate HipHop event with value stop; the enclosing until& statement
then generates a global preemption that kills all internal activities and termi-
nates; termination can also occur if no artist is found (musicstate value ended).

(define (hopfm&)

(until& (memq (val& musicstate) ’(stop ended))

(par& ;; running all the components in synchronous parallel

;; peek a random playlist

(random-playlist& catalog genre playlist)

;; playlist manager

(playlist& playlist)

;; deal with new tracks

(track& track album artist)

;; manage new artists

(artist-info& catalog genre artist bio discog similar playlist)

;; update the gui

(gui& musicstate track album artist bio discog similar))))

Let us detail random-playlist&. Its operation requires two steps: calling FMA
for a random artist of the desired genre and checking that this artist has pub-
lished music. The FMA request is proxied via the Hop server using the HipHop

with-hop& statement that takes as parameter a service call and a HipHop
event to emit if the request completes successfully; with-hop& simply termi-
nates silently otherwise. Note that the artist found is kept local, since the global
artist handled by other modules is the one currently played.

(define (random-playlist& catalog genre playlist)

(trap& found

;; start looping

(loop&

;; creates two local events

(local& ((local-artist (instantiate::HipHopEvent))

(local-playlist (instantiate::HipHopEvent)))

;; get a random artist from FMA

(with-hop& ($hopfm/genre/artist/random genre catalog)

local-artist)

;; get the tracks of that artist

(with-hop& ($hopfm/artist/tracks (val& local-artist))

local-playlist)

(if& (pair? (val& local-playlist))

;; an artist with music is found

(seq&

(emit& playlist (val& playlist))

(exit& found)))))))

The artist-info& component searches in parallel an image of the current artist,
information about that artist, and a similar artist with a playlist. it outputs bio,
discog, similar, and playlist towards the other components as soon as the
corresponding information has been found.

(define (artist-info& catalog genre artist bio discog similar playlist)

(every& (now& artist) ;; we have a playlist for that artist

(par&

;; request a similar artist list

(similar-artist& catalog genre playlist artist similar)

;; fetch artist biography and discography

(artist/bio& artist bio discog)

;; fetch the artist images

(artist/image& artist))))

The artist/image& subcomponent of artist& calls FMA and EchoNest in par-
alle to find an artist image. As soon as one server responds, the other request is
aborted using a trap& statement with exit& triggered when the img local signal
is received. If no image is found, the currently displayed image is hidden:

(define (artist/image& artist)

;; find the first image out of two services

(let ((el (dom-get-element-by-id "hophifi-internet-artist-image")))

(local& ((img (instantiate::HipHopEvent (name "image"))))

;; try to find one image on two different servers

;; abort the pending request as soon as one returns

(trap& (done)

(par&

(seq&

(with-hop& ($hopfm/artist/image (val& artist)) img)

(if& (now& img) (exit& done)))

(seq&

(with-hop& ($hopfm/artist/image/echonest (val& artist))

img)

(if& (now& img) (exit& done)))))

(if& (now& img)

;; update the GUI with the new image

(atom&

(node-style-set! el :visibility "visible")

(set! el.src (val& img)))

;; no image was found, hides the current one

(atom& (node-style-set! el :visibility "hidden"))))))

Note the architectural power of nested preemption. In artist& above, when the
artist signal event is received, the every& preemption loop kills is body, abort-
ing artist/image& and by transitivity its spawned with-hop& requests that
might still be pending. Furthermore, the enclosing until& musicstate state-
ment of hopfm& has an even greater preemption power since it kill all activities
in the program: external preemptions dominate internal ones.

The other HopFM HipHop components are omitted here because their im-
plementation is similar.

5 Related Work

We presented a preliminary version of HipHop at the Plastic’11 workshop [2].
While the core language has been kept stable, the integration with HOP has been
entirely redesigned and the former version should be considered as obsolete.

Orc [3] addresses the service coordination issue by proposing a combinator-
based process calculus The temporal algebra of HipHop is richer than that of
Orc. However HipHop does not yet offer the flexibility of the Orc data-stream
pipeline f > x > g operator for large-scale data processing. Flapjax [5] provided
a unified framework for client-side event-based programming, based on implicit
control defined by data streams instead of explicit control in Hiphop. Jolie [6] is
a framework to write and orchestrate Web Services using a service-oriented pro-
gramming language inspired by the π-calculus. However, contrarily to HipHop,
Jolie is limited to server-only orchestration.

6 Conclusion

We have presented HipHop, a new domain-specific synchronous language geared
to the orchestration of services and user intreaction within Hop on server and
client sides. HipHop deals with logical events exposed by Hop. Its statements are
imported from Esterel. They are based on temporal sequentiality, concurrency
and preemption, which make it possible to replace the traditional asynchronous
thread / event-handler spaghetti [4] by a well-understood synchronous program-
ming style imported from embedded systems programming. The reflexivity of
Hop makes it possible to build HipHop programs, ship them to clients or other
servers, and run them.

With our LastFM example, we have sketched how to orchestrate Web services
and GUI events with HipHop, using its reactive statements as key architectural
tools.

Our current implementation is an interpreter directly based on Esterel’s con-
structive semantics [1]. More efficient implementations will certainly be needed
for large-scale applications, see [7].

Acknowledgements: we thank Cyprien Nicolas, who implemented HipHop in
Hop and participated in the PLASTIC’11 first paper about HipHop.

References

1. G. Berry. The foundations of Esterel. In Proof, Language and Interaction: Essays

in Honour of Robin Milner. MIT Press, 2000.
2. G. Berry, C. Nicolas, and M. Serrano. HipHop: A Synchronous Reactive Extension

for Hop. In Proceedings of the PLASTIC’11 workshop, Portland, USA, Oct. 2011.
3. D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration and

its semantic properties. In C. Baier and H. Hermanns, editors, CONCUR 2006

– Concurrency Theory, volume 4137 of Lecture Notes in Computer Science, pages
477–491. Springer, 2006.

4. E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):33–42, May 2006.
5. L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield,

and S. Krishnamurthi. Flapjax: a programming language for ajax applications. In
Proceeding of the 24th ACM SIGPLAN conference on Object oriented programming

systems languages and applications, OOPSLA ’09, pages 1–20, New York, NY, USA,
2009. ACM.

6. F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro. Jolie: a java orchestration
language interpreter engine. Electr. Notes Theor. Comput. Sci., 181:19–33, 2007.

7. D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel. Springer,
2007.

8. M. Serrano and G. Berry. Multitier Programming in Hop - a first step toward
programming 21st-century applications. Communications of the ACM, 55(8):53–59,
Aug. 2012.

9. M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for programming the Web
2.0. In Proceedings of the First Dynamic Languages Symposium, Portland, Oregon,
USA, Oct. 2006.

