
w

m

TIME MANAGEMENT

Michael B. Richardson

miker@aldrin.ksc.nasa.gov
and

Mark J. Ricci
mricci@ aldrin.ksc.nasa.gov

Advanced Computing Technologies

f

fJ

SITUATION ASSESSMENT CrMSA)*

Boeing Aerospace Operations,
KSC FL 32899

ABgI'RACT

TMSA is a concept prototype developed to
support NASA Test Directors (NTDs) in schedule

execution monitoring during the later stages of a
Shuttle countdown. The program detects
qualitative and quantitative constraint
violations in near real-time. The next version

will support incremental rescheduling, and

reason over a substantially larger number of
scheduled events.

INTRODUCTION

The Time Management Situation Assessment

(TMSA) program is a prototype developed to

assist NASA Test Directors (NTDs) manage
the later stages of a Shuttle countdown. The

NTDs are primarily concerned with the orderly

and timely execution of the countdown process.
The cognitive model they reason with is a

relatively high-level one which includes a
nominal (planned) model of the countdown and a
set of qualitative and quantitative constrainta

that define such a countdown by specifying

temporal duration and ordinal relationships
between c0.um_down events. Constraints vary
both in their specificity (e.g. < is more explicit,

<= is less explicit) and in their necessity (i.e.
from critical _-more necessary to desirable -
less necessary).

From the perspective of knowledge engineering
for TMSA, what is not included in the NTDs' view

is as important as what is included. The details
of a subsystem or procedural failure, and what is

required to correct or bypass it are not, for the
purposes of TMSA, a part of the NTDs" view of the

Group
FA-71

• This work is a portion of the technical support
provided to the Artificial Intelligence Section,

Design Engineering Directorate, by Boeing
Aerospace Operations under the Engineering

Support Contract at Kennedy Space Center.
Arthur E. Beller is the NASA Technical Contact.

 93"/

countdown situation. Even in an anomalous
situation the NTDs" focus remains on the

temporal duration and ordinal unfolding of the
countdown. When an anomaly occurs the NTDs
participate in the anomaly response, primarily,

for the purpose of determining the impact the
anomaly will have on the temporal and ordinal
aspects of the countdown.

The NTDs monitor the current countdown and

assess its compliance with their nominal
countdown model. When there is a need for a

deviation, they consider alternative revisions of

the current countdown and assess the legality
and desirability of the revised countdown with
regard to the constraints. The countdown

schedule may be revised by reordering events
and/or adjusting the durations of intervals
between events.

The existing prototype monitors launch
processing during the later stages of the
countdown. It detects deviations from a nominal

countdown by detecting temporal and
prerequisite constraint violations. It then

identifies the violated constraint(s). The system
is initialized and operates with both qualitative
and quantitative constraints on the order of
events and intervals, and the duration of
intervals.

The prototype is implemented in Smalltalk and

rum on a 25mhz 486, under MS DOS. It appears
that a C++ version of the program will be able to
handle a schedule containing 200-300 events
with response times of < 1.5 seconds for each
assimilation input (i.e. relation vector

refinement).

SALIENT CHARACI'ERISTICS OF THE SITUATION

In formulatintt our approach to this scheduling
task we found the following characteristics of
the situation to be especially important.

m

155

https://ntrs.nasa.gov/search.jsp?R=19930009503 2020-03-17T07:50:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42809162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I. The situation is highly structured. A pre-
existing nominal schedule is available. There is

• well formni•ted, proven set of constraints on

the schedule. Tha horizon for rescheduiing is
limited by fixed synchronization points which
divide and encapsulate the countdown schedule.
All possible events in the countdown are known
and are of limited number.

2. Although this is an advisory system used by
experts, the criticality of the situation places •
premium on timeliness and correctness beyond
that of many applications. Near real-t/me (< 1.5
second) responses and an assurance of

correctness are required. Rescheduling with
verification must be supported with response
times, •gain, in near real-time. The amount of
time available for considering schedule

alternatives is severely limited, especially near
the end of the countdown.

The verification and validation issues in our

software environment, along with the above
mentioned characteristics led us to approach the

problem algorithmically, and avoid using
heuristics.

While the countdown is formulated in terms of
both events and intervals, the constraints
between intervals are such that we have been

able to represent intervals as start and end pairs
of events. This has permitted us to reslrict our

representation to a point algebra that along with
our variation of the Waltz algorithm provides •
reasoning mechanism that is both' sound and
complete.

KEY CONC_S AND DI_I_IT_ONS

Time

From the NTD's perspectivecountdown time is

discrete,with a relativelycoarse granularity
(i.e.the smallest increments are about one

second). Accordingly, we assume • discretetime

model and interpret points in time as single
integer,and intervalsas pairs of integers,with

consecutive integers forming the smallest

nontrivial intervals. Effectively then. our points
are "moments" in the sense of (AIVan _ Hayes,
1985). A different approach to discrete time
and "moments" is described in (Schmledel,
1990).

Pseudo Events

For severalpurposes TMSA employs events that

are not members of the universe of countdown

events employed by the NTDs. As with

156

countdown events, pseudo events have integer
time stamps and generally can be manipulated in

the same ways as countdown events. Current
uses of pseudo events are described below in the
Uncertainty discussion.

Uncertainty
Uncertainty arises in the countdown schedule
situation in several distinct ways. First of all

many of the qualitative constraints between
countdown events are ambiguous (e.g. <=).
Secondly, ambiguity also occurs in some

quantitative duration constraints on the length
of intervals.

We represent and reason •bout quantitative
constraints and uncertainty with the same
mechanisms used for qualitative constraints and
uncertainty. For example, to represent that an

event Ej must occur •t or after some point in time
we generate • pseudo event Ei, time stamp Ei
with the appropriate time and establish a

constraint relation Rij of <=. This approach
extends to duration constraints by usin-g two
pseudo events, one for the start and one for the

end. By representing qunnfitafive constrain_ in
this way we are able to take advantage of the
soundness and completeness of the
ConstralntChecker algorithm.

In addition to the nominal countdown model and

constraints, the NTDs also employ • quantitative
concept of slack time, not unlike _t _
project planning systems such as PERT or CPM.
For the NTDs slack time is • valuable resource

that they seek to preserve for use later in the

countdown should it be needed. Curre_y we do
not explicitly represent or reason about slack
time, but, we are now examining approaches to

representing slack time and evaluating the
quality of schedule alternatives in light of the

relative preservation of slack each provides.

Finally, there is the usual uncertainty related to
confidence in estimates of temporal duration.
Cmxently we do not deal with confidence factors,

but, may in the future, when we begin evaluating
the q_ity of schedule alternatives seek some

measure theoretic approach to confidence.

Event (Ei):
A primitive object without discrete time
duration. Events are used to define the two

fundamental types of countdown objects, _

Intervalsand Milestones, and to uniquely
represent specific points in discrete time.

Im

mm

J

w

Im

m

m

|

m

tm

m
I

m
g

|

qlm

II

|
m
m
mi

i

i "=

Universe of Events:

All the possible events that can occur as part of
a countdown. These events are specified in
advance to TMSA :or are generated pseudo events,
and are to be reasoned about by TMSA.

Interval (Ii]):
A countdown object with temporal duration
0sivially one) defined by two Events Ei and Ej
such that if the time stamp associated with Hi is
<= Ej then Ei is the start of the Interval lij and Ej
is the finish.

Assertions:

Assertions about Events may be of two types:

point assertions about a single Event (e.g. Eventi
occurred at time t); and Relationship Assertions

about pairs of events (e.g. Eventi <> Eventj).

Quantitative Relation:

A temporal duration between two Events that is

expressed as a natural number corresponding to
some number of units of discrete time.

Qualitative Relation:

One of the following relationships between two
Events: =, <, <=, o, <=> (unconsualned), 0 (null).
The program converts > to < and >., to <=.

ALO0_

Two algorithmshave been developedforTMSA.

These form the reasoningKernelof the program
and are designedto monitorand interpretthe
legality of the temporal duration and sequential
unfolding of a countdown.

The first algorithm, ConstraintChecker, is used
to maintain .a qualitative representation of the
current sU_us of a countdown and to check the

consistency of that status with the qualitative
constraints that de/me the legality of a
countdown.

A popular approach in the scheduling literature
is Allen's Interval Algebra (Allen, 1983) and
his adaptation of the widely used Waltz
Algorithm (Davis, 1987). The ConstraintChecker
Algorithm is also an adaptation of the Waltz
Algorithm and employs the Point Temporal
Algebra presented in (Vilaln and Kautz, 1986).

The ConstraintChecker Algorithm deals only

with qualitative Relationship Assertions (in the
form of R¢lati}on Vectors). One of the tasks of the
$cheduleMaintainer Algorithm is to generate
Relationship Assertions from Point Assertions
received from the live data stream or the NTDs.

157

The second algorithm, ScheduleMaintainer, is
used to maintain both a qualitative and

quantitative representation of a countdown, the
representation includes both the current status
of the countdown and the quantitative

constraints that define the legality of It

countdown. This representation is also used to
generate relational asseru_on vectors as input to
the consistency checking algorithm.

ConstraintChecker

ConstraintChecker differs from the Waltz

algorithm presented in (Vilaln and Kautz, 1986)
in two ways. Our algorithm uses an upper

diagonal array rather than a n x n array. For our

problem we needed to maintain not only a
current representation of the
constraints/relatiuns between events, but, also
the original constraints used to define a nominal
countdown. This permits the algorithm to
recognize the situation where a change in the
relation between two events violates the current
relation, but, not the original one. An

alternative approach would have been to not
update the relations vectors, but only check for
validity of the new assertion. We opted for the
approach used in order to permit not only the

checking of new assertions with the original
constraints, but, also to permit the tracking of
relation vector changes over time. This
capability is useful for debugging the constraint
database.

We state the following theorems without the
proofs because of space limitations.

The time complexity of ConstraintChecker is

O((n3)/2).
The Space Complexity of ConstraintChecker is

O(n 2).
The inference mechanism for ConstraintChecker
is sound.
The inference mechanism for ConstraintChecker

is complete.

ConArray (constraint array)
An upper diagonal array indexed by events, and
in which _C_y[i, j] holds the asserted
constraint relationship between events i and j.
ConArray holds the defining qualitative

constraints (given or generated) that the NTDs
use to define a legal countdown. Note that

unlike F.mpArray, ConArray is not updated.
Thus ConArray maintains a record of the
original constraint matrix.

F.mpArray (empirical array)

An upper diagonal array indexed by events, and
in which EmpArray[i, j] holds the asserted

empirical relationship between events i and j.
EmpArray holds the current, but, changing

relationships (given or generated) that actually
occur during the countdown.

EPQueue (event-pair queue)

A FIFO data structure used to keep track of
those Pairs of Events for which a changed
relationship is asserted.

The addition operation (+) computes the sum of

two vectors by f'mding the common constituent
simple relations. This is a means to identify the
least restrictive relationship the two vectors

together admit. Addition is implemented as a
Table lookup and is the same as that presented
in (Vilaln and Kautz, 1986).

The multiplication operation (x) is defined
between pairs of vectors that relate three Events.

For example: if R/j relates Events i and j, and Rjk
relates Events j and k, the product of Rij and Rjk
is the least restrictive relation between i and k

that the two vectors together admit.

Multiplication is also implemented as a table
lookup and is similar to that presented by
(V*dain and Kautz, 1986). The table has

been reorganized to yield valid results using the
upper diagonal array only.

ConstraintChecker

Assert (Rij)
/* Rij is a relation being asserted between Ei and
Ej.*/

{ Tempij:= EmpArray[ij];
EmpArray[ij_:=F.mpArray[ij] + Rij;

If EmpArray[ij'] -._ Templj
Then PUt F.iEj on _;]

Assimilate

/* Monitors EPQueue for new Relationship
Assertions */

{ While EPQuene is not empty Do
Get next EiEj from EPQueue:

Propagate (EmpArray[ij]);

Propagate (_.mpXrray[ij])

/* Props new Relation Assertion between Ei and
Ej to other Events */

158

For each Event Ek Do

Tempij:= EmpArray[ik] 4-

(EmpArray[ij] x EmpArrayUk]);
If Tempij = 0

Then (Check

(ConArray[ij]));

If EmpArray[ik] .._ Tempij
Then Put EiEk on

EPQueue;

EmpArray[ik]:= Tempij;
Tempi.'= EmpArray[jk] 4.
(EmpArray[ik] x EmpArray[ij]);
If Tempij = 0

Then (Check

(ConArray[kj];
If EmpArray[jk] -= Tempij

Then Put EjEk on
EPQueue;

EmpArray[jk]:= Tempij; }

Check (ConArray[ij])
/* Checks to see if new Relation Assertion

between Ei and Ej, Rij, violates the original
constraint between them*/

[Tempij:= ConArray[ij],
ConArray[ij]:= ConArray[ij] + Rij;
If ConArray[ij] = 0

Then (signal illegal count);
If ConArray[ij] -= Tempij

Then Replace EmpArray[ij] with

ConArray[ij] and Put EiEj on
EPQueue; }

ScheduleMaintainer

ScheduleMaintainer generates qualitative

relational assertion vectors by moving an Event
data point and time stamp received from an

external source into the appropriate position on
the multi-linked list that is the central data

structure for ScheduleMalntainer. A r_e_l_afional

assertion vector (Rij) is generated by taking the
moved Event and its new successor as an Event
pair EiEj. Quantitative constraints are
maintained by using pointers between related
Events. Ei and Ej for example, and when Ei is

moved. Ej is moved appropriately, and Eventj is

then processed as a moved Event, just as the
original moved Eventi was processed.

We state the following theorems without the
proofs because of space limitations.

The Time Complexity of ScheduleMaintalner is
O(n).

I

W

slw

m
slB

i

l

m

g

m

J

h
m

z

m

g

g

L
ms

lm

m

il

11l

L

ms

M
D

= .

w,.._

r_

The Space Complexity of ScheduleMaintainer is
O(n).

ScheduleMaintainer is initialized by

constructing an indexed (by External Time)
multi-linked list data structure (EventList) that

consists of records corresponding to every Event
in the Universe of Events. Each of the n records

(REj) include:
I. Name of the Event

2. Marker indicating whether the Event
has occurred

3. Time stamp

4. Marker indicating whether the Time "
Stamp is observed, assigned as a

constraint, or assigned arbitrarily by
the program

5. Pointer to Predecessor R.Ei
6. Pointer to Successor REk
7. Variable number of nonnull Pointers

to other P.Es with quantitative
constraint relationships between REi

and the other individual REs

8. Corresponding quantitative constraint
for each Pointer

9. Marker indicating whether the Record
is to be Moved

The algorithm receives as input the name of an
Event and an external time Stamp. The time

stamp may be when the Event actually occurred
or assigned by the user (to support interactive

incremental rescheduling i.e. what-ifing).

The algorithm then examines the corresponding
REi to determine if the REi should be moved in

order to maintain a partially ordered

(isomorphic) relationship between the discrete
time of the time stamps of items on EventList and
the natural numbers. This is done by comparing

the new discrete time stamp with the time stamp
of the successor RE.

If the new External time stamp violates the
partial-order condition, REi is marked to be
moved and moved to a location that maintains

the partial order condition.

In the new location, the successor to REi, REj is
selected and a relation vector for the pair EiEj is
generated. Depending on the time Stamps of the
two records, the vector is either = or >. If the

time stamps are equal the vector is =. If the tlme_}

stamps are ordered the vector is >.

The new relation Rij is then passed to
ConstraintChecker.

159

FUTURE WORK

C++ is being used for the version currently
under development. The new version of the

prototype will provide an exploratory
functionwhich permits the user to query the
system about the impact of changes to the

preplanned countdown schedule. Both of the

above developments are straightforwardand will

result in improved performance and increased
functionality, respectively.

A more challenging task addresses the
redundancy inherent in an array representation
of the constraint set. We believe the bandwidth

(e.g. Zabih, 1990). of the transitive closure of
the countdown graph is quite small and

substituting the transitive closure for the
original graph, will permit us to profitably use

an adjacency list (e.g. Mehlhorn, 1984) rather
than an array representation of the constraint
set. We currently believe we can maintain

inferential soundness and completeness with
such an approach. The issue seems to be, what
impact this might have on the scope of the

models specifiable with such a system. If we are
able to use this approach, a substantial

reduction in the time complexity of
ConstraintChecker is possible.

REFERENCES

(Allen 83) James F. Allen. Maintaining

Knowledge About Temporal Intervals,
Communications of the ACM 26(11). 832-843,
1983

(Allen & Hayes 85) James F. Allen, Patrick J.
Hayes. A Common-Sense Theory of Time. Proc.
9th IJCAI. Los Angeles (Cal.), 528-531, 1985

(Davis 87) Ernest Davis, Constraint Propagation
with Interval Labels. Artificial Intelligence 32.
281-331,1987

0dehlhorn 84) Kurt Mehlhoro, Data Structures
and Algorithms 2: Graph Algorithms and NP-

Completeness, Springer-Verlag. 1984

(Schmiedel 90) Albrecht Sckmiedel. A Temporal
Terminological Logic, Proc $th AAAI '90, Boston
(Mass.), 1990

(Zabih 90) Ramin Zabih , Some Applicationsof

Graph Bandwidth to Constraint Satisfaction

Problems, Proc 8th AAAI '90, Boston (Mass.),
1990

(Vilain & Kautz 86) M. Vilain, H. Kautz,

Constraint Propagation algorithms for Temporal
Reasoning. Proc 4th AAAI '86. Philadelphia
(Pa.), 1986

