66 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    A public mesh watermarking algorithm based on addition property of Fourier transform

    Get PDF
    Author name used in this publication: David ZhangCenter for Multimedia Signal Processing and Department of ComputingVersion of RecordPublishe

    A survey of digital image watermarking techniques

    Get PDF
    Watermarking, which belong to the information hiding field, has seen a lot of research interest recently. There is a lot of work begin conducted in different branches in this field. Steganography is used for secret conmunication, whereas watermarking is used for content protection, copyright management, content authentication and tamper detection. In this paper we present a detailed survey of existing and newly proposed steganographic and watenmarking techniques. We classify the techniques based on different domains in which data is embedded. Here we limit the survey to images only

    Robust digital image watermarking algorithms for copyright protection

    Get PDF
    Digital watermarking has been proposed as a solution to the problem of resolving copyright ownership of multimedia data (image, audio, video). The work presented in this thesis is concerned with the design of robust digital image watermarking algorithms for copyright protection. Firstly, an overview of the watermarking system, applications of watermarks as well as the survey of current watermarking algorithms and attacks, are given. Further, the implementation of feature point detectors in the field of watermarking is introduced. A new class of scale invariant feature point detectors is investigated and it is showed that they have excellent performances required for watermarking. The robustness of the watermark on geometrical distortions is very important issue in watermarking. In order to detect the parameters of undergone affine transformation, we propose an image registration technique which is based on use of the scale invariant feature point detector. Another proposed technique for watermark synchronization is also based on use of scale invariant feature point detector. This technique does not use the original image to determine the parameters of affine transformation which include rotation and scaling. It is experimentally confirmed that this technique gives excellent results under tested geometrical distortions. In the thesis, two different watermarking algorithms are proposed in the wavelet domain. The first algorithm belongs to the class of additive watermarking algorithms which requires the presence of original image for watermark detection. Using this algorithm the influence of different error correction codes on the watermark robustness is investigated. The second algorithm does not require the original image for watermark detection. The robustness of this algorithm is tested on various filtering and compression attacks. This algorithm is successfully combined with the aforementioned synchronization technique in order to achieve the robustness on geometrical attacks. The last watermarking algorithm presented in the thesis is developed in complex wavelet domain. The complex wavelet transform is described and its advantages over the conventional discrete wavelet transform are highlighted. The robustness of the proposed algorithm was tested on different class of attacks. Finally, in the thesis the conclusion is given and the main future research directions are suggested

    Scale Invariant and Rotation Invariant Image Watermarking

    Get PDF
    The scheme proposed is an improved version of the image watermarking scheme in "Scale-Invariant Image Watermarking via Optimization Algorithm for Quantizing Randomized Statistics". The previous watermarking scheme was scale invariant but not rotation invariant. In this thesis we propose to modify the method by incorporating Zernike moment transformation to make it rotationally invariant, thus making it robust against synchronization attacks.Computer Science Departmen

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes

    Comparative evaluation of video watermarking techniques in the uncompressed domain

    Get PDF
    Thesis (MScEng)--Stellenbosch University, 2012.ENGLISH ABSTRACT: Electronic watermarking is a method whereby information can be imperceptibly embedded into electronic media, while ideally being robust against common signal manipulations and intentional attacks to remove the embedded watermark. This study evaluates the characteristics of uncompressed video watermarking techniques in terms of visual characteristics, computational complexity and robustness against attacks and signal manipulations. The foundations of video watermarking are reviewed, followed by a survey of existing video watermarking techniques. Representative techniques from different watermarking categories are identified, implemented and evaluated. Existing image quality metrics are reviewed and extended to improve their performance when comparing these video watermarking techniques. A new metric for the evaluation of inter frame flicker in video sequences is then developed. A technique for possibly improving the robustness of the implemented discrete Fourier transform technique against rotation is then proposed. It is also shown that it is possible to reduce the computational complexity of watermarking techniques without affecting the quality of the original content, through a modified watermark embedding method. Possible future studies are then recommended with regards to further improving watermarking techniques against rotation.AFRIKAANSE OPSOMMING: ’n Elektroniese watermerk is ’n metode waardeur inligting onmerkbaar in elektroniese media vasgelê kan word, met die doel dat dit bestand is teen algemene manipulasies en doelbewuste pogings om die watermerk te verwyder. In hierdie navorsing word die eienskappe van onsaamgeperste video watermerktegnieke ondersoek in terme van visuele eienskappe, berekeningskompleksiteit en weerstandigheid teen aanslae en seinmanipulasies. Die onderbou van video watermerktegnieke word bestudeer, gevolg deur ’n oorsig van reedsbestaande watermerktegnieke. Verteenwoordigende tegnieke vanuit verskillende watermerkkategorieë word geïdentifiseer, geïmplementeer en geëvalueer. Bestaande metodes vir die evaluering van beeldkwaliteite word bestudeer en uitgebrei om die werkverrigting van die tegnieke te verbeter, spesifiek vir die vergelyking van watermerktegnieke. ’n Nuwe stelsel vir die evaluering van tussenraampie flikkering in video’s word ook ontwikkel. ’n Tegniek vir die moontlike verbetering van die geïmplementeerde diskrete Fourier transform tegniek word voorgestel om die tegniek se bestandheid teen rotasie te verbeter. Daar word ook aangetoon dat dit moontlik is om die berekeningskompleksiteit van watermerktegnieke te verminder, sonder om die kwaliteit van die oorspronklike inhoud te beïnvloed, deur die gebruik van ’n verbeterde watermerkvasleggingsmetode. Laastens word aanbevelings vir verdere navorsing aangaande die verbetering van watermerktegnieke teen rotasie gemaak
    corecore