24 research outputs found

    Microarchitectural Floorplanning for Thermal Management: A Technical Report

    Get PDF

    Net Balanced Floorplanning Based on Elastic Energy Model

    Get PDF

    Resource and thermal management in 3D-stacked multi-/many-core systems

    Full text link
    Continuous semiconductor technology scaling and the rapid increase in computational needs have stimulated the emergence of multi-/many-core processors. While up to hundreds of cores can be placed on a single chip, the performance capacity of the cores cannot be fully exploited due to high latencies of interconnects and memory, high power consumption, and low manufacturing yield in traditional (2D) chips. 3D stacking is an emerging technology that aims to overcome these limitations of 2D designs by stacking processor dies over each other and using through-silicon-vias (TSVs) for on-chip communication, and thus, provides a large amount of on-chip resources and shortens communication latency. These benefits, however, are limited by challenges in high power densities and temperatures. 3D stacking also enables integrating heterogeneous technologies into a single chip. One example of heterogeneous integration is building many-core systems with silicon-photonic network-on-chip (PNoC), which reduces on-chip communication latency significantly and provides higher bandwidth compared to electrical links. However, silicon-photonic links are vulnerable to on-chip thermal and process variations. These variations can be countered by actively tuning the temperatures of optical devices through micro-heaters, but at the cost of substantial power overhead. This thesis claims that unearthing the energy efficiency potential of 3D-stacked systems requires intelligent and application-aware resource management. Specifically, the thesis improves energy efficiency of 3D-stacked systems via three major components of computing systems: cache, memory, and on-chip communication. We analyze characteristics of workloads in computation, memory usage, and communication, and present techniques that leverage these characteristics for energy-efficient computing. This thesis introduces 3D cache resource pooling, a cache design that allows for flexible heterogeneity in cache configuration across a 3D-stacked system and improves cache utilization and system energy efficiency. We also demonstrate the impact of resource pooling on a real prototype 3D system with scratchpad memory. At the main memory level, we claim that utilizing heterogeneous memory modules and memory object level management significantly helps with energy efficiency. This thesis proposes a memory management scheme at a finer granularity: memory object level, and a page allocation policy to leverage the heterogeneity of available memory modules and cater to the diverse memory requirements of workloads. On the on-chip communication side, we introduce an approach to limit the power overhead of PNoC in (3D) many-core systems through cross-layer thermal management. Our proposed thermally-aware workload allocation policies coupled with an adaptive thermal tuning policy minimize the required thermal tuning power for PNoC, and in this way, help broader integration of PNoC. The thesis also introduces techniques in placement and floorplanning of optical devices to reduce optical loss and, thus, laser source power consumption.2018-03-09T00:00:00

    Architectural-Physical Co-Design of 3D CPUs with Micro-Fluidic Cooling

    Get PDF
    The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future

    Aggressive and reliable high-performance architectures - techniques for thermal control, energy efficiency, and performance augmentation

    Get PDF
    As more and more transistors fit in a single chip, consumers of the electronics industry continue to expect decline in cost-per-function. Advancements in process technology offer steady improvements in system performance. The improvements manifest themselves as shrinking area, faster circuits and improved battery life. However, this migration toward sub-micro/nano-meter technologies presents a new set of challenges as the system becomes extremely sensitive to any voltage, temperature or process variations. One approach to immunize the system from the adverse effects of these variations is to add sufficient safety margins to the operating clock frequency of the system. Clearly, this approach is overly conservative because these worst case scenarios rarely occur. But, process technology in nanoscale era has already hit the power and frequency walls. Regardless of any of these challenges, the present processors not only need to run faster, but also cooler and use lesser energy. At a juncture where there is no further improvement in clock frequency is possible, data dependent latching through Timing Speculation (TS) provides a silver lining. Timing speculation is a widely known method for realizing better-than-worst-case systems. TS is aggressive in nature, where the mechanism is to dynamically tune the system frequency beyond the worst-case limits obtained from application characteristics to enhance the performance of system-on-chips (SoCs). However, such aggressive tuning has adverse consequences that need to be overcome. Power dissipation, on-chip temperature and reliability are key issues that cannot be ignored. A carefully designed power management technique combined with a reliable, controlled, aggressive clocking not only attempts to constrain power dissipation within a limit, but also improves performance whenever possible. In this dissertation, we present a novel power level switching mechanism by redefining the existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy efficient thermal control. We were able to achieve up to 40% speed-up compared to a base scheme without overclocking. We compare our method against different schemes. We observe that up to 75% Energy-Delay squared product (ED2) savings relative to base architecture is possible. We showcase the loss of efficiency in present chip multiprocessor systems due to excess power supplied, and propose Utilization-aware Task Scheduling (UTS) - a power management scheme that increases energy efficiency of chip multiprocessors. Our experiments demonstrate that UTS along with aggressive timing speculation squeezes out maximum performance from the system without loss of efficiency, and breaching power & thermal constraints. From our evaluation we infer that UTS improves performance by up to 12% due to aggressive power level switching and over 50% in ED2 savings compared to traditional power management techniques. Aggressive clocking systems having TS as their central theme operate at a clock frequency range beyond specified safe limits, exploiting the data dependence on circuit critical paths. However, the margin for performance enhancement is restricted due to extreme difference between short paths and critical paths. In this thesis, we show that increasing the lengths of short paths of the circuit increases the margin of TS, leading to performance improvement in aggressively designed systems. We develop Min-arc algorithm to efficiently add delay buffers to selected short paths while keeping down the area penalty. We show that by using our algorithm, it is possible to increase the circuit contamination delay by up to 30% without affecting the propagation delay, with moderate area overhead. We also explore the possibility of increasing short path delays further by relaxing the constraint on propagation delay, and achieve even higher performance. Overall, we bring out the inter-relationship between power, temperature and reliability of aggressively clocked systems. Our main objective is to achieve maximal performance benefits and improved energy efficiency within thermal constraints by effectively combining dynamic frequency scaling, dynamic voltage scaling and reliable overclocking. We provide solutions to improve the existing power management in chip multiprocessors to dynamically maximize system utilization and satisfy the power constraints within safe thermal limits

    Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters

    Get PDF
    Recently, the energy-efficiency constraints have become the dominant limiting factor for datacenters due to their unprecedented increase of growing size and electrical power demands. In this chapter we explain the power and thermal modeling and control solutions which can play a key role to reduce the power consumption of datacenters considering time-varying workload characteristics while maintaining the performance requirements and the maximum temperature constraints. We first explain simple-yet-accurate power and temperature models for computing servers, and then, extend the model to cover computing servers and cooling infrastructure of datacenters. Second, we present the power and thermal management solutions for servers manipulating various control knobs such as voltage and frequency of servers, workload allocation, and even cooling capability, especially, flow rate of liquid cooled servers). Finally, we present the solution to minimize the server clusters of datacenters by proposing a solution which judiciously allocates virtual machines to servers considering their correlation, and then, the joint optimization solution which enables to minimize the total energy consumption of datacenters with hybrid cooling architecture (including the computing servers and the cooling infrastructure of datacenters)

    Application-specific thermal management of computer systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    It is too hot in here! A performance, energy and heat aware scheduler for Asymmetric multiprocessing processors in embedded systems.

    Get PDF
    Modern architecture present in self-power devices such as mobiles or tablet computers proposes the use of asymmetric processors that allow either energy-efficient or performant computation on the same SoC. For energy efficiency and performance consideration, the asymmetry resides in differences in CPU micro-architecture design and results in diverging raw computing capability. Other components such as the processor memory subsystem also show differences resulting in different memory transaction timing. Moreover, based on a bus-snoop protocol, cache coherency between processors comes with a peculiarity in memory latency depending on the processors operating frequencies. All these differences come with challenging decisions on both application schedulability and processor operating frequencies. In addition, because of the small form factor of such embedded systems, these devices generally cannot afford active cooling systems. Therefore thermal mitigation relies on dynamic software solutions. Current operating systems for embedded systems such as Linux or Android do not consider all these particularities. As such, they often fail to satisfy user expectations of a powerful device with long battery life. To remedy this situation, this thesis proposes a unified approach to deliver high-performance and energy-efficiency computation in each of its flavours, considering the memory subsystem and all computation units available in the system. Performance is maximized even when the device is under heavy thermal constraints. The proposed unified solution is based on accurate models targeting both performance and thermal behaviour and resides at the operating systems kernel level to manage all running applications in a global manner. Particularly, the performance model considers both the computation part and also the memory subsystem of symmetric or asymmetric processors present in embedded devices. The thermal model relies on the accurate physical thermal properties of the device. Using these models, application schedulability and processor frequency scaling decisions to either maximize performance or energy efficiency within a thermal budget are extensively studied. To cover a large range of application behaviour, both models are built and designed using a generative workload that considers fine-grain details of the underlying microarchitecture of the SoC. Therefore, this approach can be derived and applied to multiple devices with little effort. Extended evaluation on real-world benchmarks for high performance and general computing, as well as common applications targeting the mobile and tablet market, show the accuracy and completeness of models used in this unified approach to deliver high performance and energy efficiency under high thermal constraints for embedded devices
    corecore