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1 Introduction

This continuous growth in demand for computing has resulted in larger collections
of servers machines, referred to as clusters or server farms, being hosted in denser
datacenters thus having a higher computational and storage capability per occupied
unit volume. While projections indicate a continued scaling of server density and
manufacturing cost for another decade, the semiconductor manufacturing industry
has already renounced following Dennard scaling1 and almost reached the physical
limits of voltage scaling in Complementary Metal-Oxide-Semiconductor (CMOS)
technologies, which results in an energy-scalability wall that makes transistor power

J. Kim was also affiliated with ESL-EPFL during the period this research was developed.

1 The scaling theory he and his colleagues formulated in 1974 postulated that MOSFETs continue
to function as voltage-controlled switches while all key figures of merit (such as layout density,
operating speed, and energy efficiency improve provided geometric dimensions, voltages, and
doping concentrations) are consistently scaled to maintain the same electric field. This property
underlies the achievement of Moore’s Law and the evolution of microelectronics over the last few
decades.
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Fig. 1 Datacenters current energy use and projection [2]

consumption increase with further increases in density. At a large-scale, this “eco-
nomic meltdown trend of Moore’s law” for servers and datacenters [1], translates in
a dramatic increase in computation and cooling electricity costs.
Energy-efficiency constraints have therefore become the dominant limiting factor

for datacenters because their growing size and electrical power demands cannot be
met with state-of-the-art design practices and their electricity bill is skyrocketing, as
Fig. 1 shows. This figure depicts the Energy Stars [2] electricity usage measured and
projected up to 2011. If we extrapolate these values linearly up to 2017, as voltages
stop scaling down according to the current International Technology Roadmap for
Semiconductors (ITRS) projections, the electricity usewould exponentially increase.
Moreover, the expected increase in energy prices would only exacerbate the cost of
using datacenters. Thus, datacenter operation will require more money per year on
energy costs than on IT equipment replacement. In 2007, datacenters in Western
Europe consumed an estimated total of 56 terawatt-hours (TWh) of power per year.
The European Union (EU) estimates that this figure is likely to reach 124 TWh by
2020 [2].
Power and thermal monitoring and control play a key role to reduce the power

consumption of datacenters while maintaining the performance requirements and
the maximum temperature constraints by manipulating multiple control knobs in the
systems. As monitoring and control solutions are developed by being tightly cou-
pledwith hardware architecture andworkload characteristics running on datacenters,
we first revisit the datacenter structures (Sect.1.1) and the workload characteristics
running on current datacenters (Sect. 1.2). Then, we present an energy efficiency
figure of state-of-the-art datacenters (Sect. 1.3), which motivates us to develop effec-
tive power and thermal monitoring and control solutions by manipulating multiple
control knobs to achieve further global/holistic energy savings in datacenters.
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Fig. 2 Organization of datacenters: computing and cooling systems (a) and server organiza-
tion (b) [3]

1.1 Overall Datacenter Architecture

A datacenter can largely be decomposed into three parts: (1) IT, i.e., aggregation of
servers, (2) cooling, and (3) power distribution units. Servers are the key constituent
of datacenters and produce a significant amount of heat as they provide the capability
of data manipulation and processing. In a server room, there is a large number of
servers to sustain performance requirements. Figure 2a shows an example of typical
server organization in a server room with a typical 1 U2. Server are typically placed
in 42U racks such that the servers are interconnected with local rack Ethernet switch,
and then, connected to cluster-level Ethernet switches, which can potentially span
more than ten thousand individual servers [3].
Datacenter cooling systems are deployed to remove heat generated by the servers

alongwith additional amount of heat inside a server room, which needs to be removed
as well. Power is delivered to servers through power distribution units (PDUs) and
stored in un-interruptible power supply (UPS) systems to cope with power black-
out. In this chapter, we focus on IT and cooling parts of datacenters. As shown
in Fig. 2b, in a typical datacenter, a cooling system consists of computer room air
conditioning/handler (CRAC/CRAH) in a server room and heat exchanger (namely,
chiller) and cooling tower outside the server room. CRAC/CRAH provides cold air,
such that the air condition of server rooms maintains safe operating temperature and
humidity through the exchange of hot air exhausted by servers in the room with
cold air (or water) provided from a chiller. According to the American Society of
Heating, Refrigerating and Air-Conditioning (ASHRAE) 2009 recommendation, it
is recommended to maintain the server room air condition as follows:

• Temperature: 64.4–80.6 ◦F
• Humidity: 41.9 ◦F at dew point (DP) to 60% RH and 59 ◦F DP.

However, these values are quite conservative as they are determined by assuming that
servers in a server room are fully utilized, which rarely happens as will be explained

2 A rack unit, U or RU, is a unit of measure to describe the height of rack-mount servers placed in
19-in. or a 23-in. rack, where 1U corresponds to 1.75 in. (44.45 mm) high.
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in Sect. 1.2. Due to the over-provisioning of cooling capability to server rooms,
huge amount of power are now wasted in datacenters, which motivates us to develop
an efficient system control solution that adaptively adjusts cooling configurations
along with existing power and thermal management solutions developed for servers
to achieve further energy savings. The effective control solution is only obtained
through accurate-yet-efficient monitoring of power consumption and temperature of
multiple points of datacenters, which urges to develop an efficient monitoring system
for datacenters.

1.2 Datacenter Workload Characteristics

Many types of applications are running on datacenters, ranging from high-
performance computing (HPC) to large-scale services, e.g., web search, streaming
service, etc. Recently, due to the big advancements on cloud service providers (e.g.,
Amazon, Microsoft, Google, etc.), it becomes easier to deploy large-scale services,
which leads to the drastic increase on servers hosting large-scale applications. The
common characteristics of the large-scale services are that they are unprecedentedly
parallel as it uses big chunk of data by splitting into small chunk. Figure 3 illustrates
the overall operation which manipulates big chunk of dataset. In [4], Ferdman et
al., examined applications running on today’s clouds and presented top six most
commonly found applications as follows:

• Data serving: serving as the backing store for large-scale web applications, e.g.,
Facebook inbox, Google Earth, etc.

• MapReduce: large-scale data analysis by first performing filtering and transforma-
tion of the data (namely, map procedure) and then aggregate the results (namely,
reduce procedure)

• Media streaming: streaming services by packetizing and transmitting media files
ranging from megabytes to gigabytes

• SAT solver: large-scale computations for solving complex algorithms, e.g.,
symbolic execution

• Web frontend: web services which schedule independent client requests across a
large number of stateless web servers

• Web search: web search engines such as those powering Google and Microsoft
Bing, which indexes terabytes of data obtained from online sources.

Up to now, most of the control solutions have been developed by targeting HPC
workload characteristics. However, the workload characteristics of such large-scale
applications are quite different from traditional HPC applications in both macro-
scopic andmicroscopic scales [4], whichmandates us to develop the control solutions
for the large-scale applications.
In a macroscopic scale, the application, first, is user-interactive, thereby, the

amount of required computing capacity is highly variable and fast-changing [6] due
to the dependence with external factors, i.e., number of clients/queries, etc. The
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Fig. 3 An example of scale-out applications [5]

characteristics of the workload traffic are well analyzed in [7]. In the coarse-grained
time interval (few tens of minutes to hours), the characteristics of users’ requests are
distinctly different over time while the global pattern has a strong correlation with
adjacent time periods as well as the same period in different days. On the other hand,
in the fine-grained time interval (less than few seconds), the characteristics of user
requests depend on burstiness of traffic and arrival patterns and we can model the
characteristics of users’ request at the microscopic scale with (1) ON/OFF periods
and (2) inter-arrival time between two consecutive requests during ON period. ON
period is defined as the longest continual period during which all the request inter-
arrival times are smaller than predefined value. Accordingly, OFF period is defined
as a period between two on periods. As presented in [7], ON/OFF period and inter-
arrival time are time-varying and uncertain while each of them forms lognormal
distribution.
Second, the responsiveness (or latency) should come at the first criteria to be

satisfied as the level of user satisfaction leads to the success of the business [10].
Third, the amount of required resources is usually far beyond the level that single
server can sustain; thereby, massively parallel nodes are cooperatively working by
forming a cluster architecture [8]. For instance, in a web search application, a big
chunk of search index is divided into multiple smaller datasets, and then, allocated
into multiple VMs (or servers) each of which is called a index searching node (ISN).
Once a query is arrived, each ISN independently searches matched data with the
allocated dataset and a master node gathers the search results from multiple ISNs,
then sends the results to clients. Due to the deployment of multiple nodes for a single
application, such workload is called scale-out applications [4].
Microscopic-scale characteristics of the application are well studied in [4]. The

following summarizes the four distinctive micro-architectural workload characteris-
tics in the applications:
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• High instruction cache miss rates
• Low instruction- and memory-level parallelism
• Large memory footprint far exceeding the capacity of on-chip caches
• Low on-chip and off-chip bandwidth requirements.

Due to the lack of the control solutions accounting for the distinctive workload
characteristics of large-scale cloud application, in this chapter, we will present a
power management solution optimized for the workload characteristics of the large-
scale cloud applications.

1.3 Energy Efficiency of Datacenters

Due to the conservative cooling provision and lack of the consideration on workload
characteristics, vast amount of energy is wasted in todays’ datacenter. Power usage
efficiency (PUE) is the most widely used metric to quantify the power efficiency of
datacenters, which is defined as follows:

PUE = Total power consumed by a datacenter

Power consumed by servers
(1)

Thus, the lower, the better and it can ideally be reached to 1.0 According to US
Environmental Protection Agency (EPA) report [2], the PUE of average datacenters
around world amounts to 1.9, which means that for every watt of power consumed
in the computing equipment, an additional 0.9 W of power is needed for cooling
and power delivery. Figure 4a shows the breakdown of energy usage of typical dat-
acenters (The PUE value amounts to 1/0.45 = 2.22) when assuming 10 ∼ 30% IT
load scenario [3]. Cooling system, comprised with chiller and CRAC/CRAH, con-
sumes around 30%of energy consumptionwhile the power system spends additional
23% of energy caused by uninterruptible power supply (UPS), power distribution
unit (PDU) and AC-DC conversion losses. Other facility elements, e.g., humidifier,
lighting, transformers, contribute around 2% of total energy consumption. Such in-
efficiency corresponds to waste of money in the business sense. Figure 4b shows the
monthly costs breakdown in a state-of-the-art datacenter assuming a 3-year server
amortization and a 15-year infrastructure amortization [9]. This figure illustrates
that, in less than three years, the accumulated cooling costs are higher than the ac-
tual server deployment costs, thus datacenters energy and thermal management is
directly related to effective cooling and power delivery.
Among the various reasons contributing to the poor energy efficiency (e.g., voltage

conversion loss in UPS, excessive cooling provision, etc.), the loss in the datacenter
cooling facility caused by the over-provisioned cooling capability takes the most
significant portion in the entire loss as it is adjusted to guarantee safe operating
conditions of servers targeting the worst-case workload scenario which happens
rarely. In order to improve the energy ineffectiveness, datacenter designers and a
large set of recent search works in the literature have identified three key guidelines
as follows:
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Fig. 4 a Breakdown of datacenter energy overheads [3]. b Datacenter costs breakdown assuming
a 3-year servers and 15-year infrastructure amortization model [9]

• Fine-grained monitoring of PUE
• Server rack layout minimizing hot and cold air mixing by cold-aisle/hot-aisle
layout, containment, duct, and analysis of computational fluid dynamics (CFD)

• Adjustment of thermostat of server room to the highest level where servers can
be safely operated

However, there still exist huge gap until it reaches to its ideal value, i.e., 1.0, which
necessitates the energy- and thermal-aware design in unprecedented ways. The main
reason is that all these practices are still focused only onworst-case cooling scenarios
designs without any holistic view that considers the dynamic cooling needs of the
computing infrastructure at run-time. These results pose very drastic consequences
in the design and modes of operation for next-generation datacenters.

1.4 Chapter Organization

In this chapter, we focus on presenting solutions to reduce the energy consumptions of
servers and cooling systems through effective power and thermal control solutions
based on accurate yet efficient power and temperature modeling and monitoring
solutions. The rest of the chapter is organized as follows. Section 2 reviews state-of-
the-art datacenters, especially focused on computing and cooling parts of datacenters
to understand state-of-the-art technologies and figure out control knobs which are
manipulated in control solutions. Section 3 shows approaches of modeling and mon-
itoring power and temperature in servers as well as datacenters. Section 4 explains
dynamic power and thermal management solutions for single servers, ranging from

david.atienza@epfl.ch
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Table 1 Server power
breakdown [3] Component Proportion (%)

CPU 33

DRAM 30

Disk 10

Networking 5

Etc. 22

conventional air-convection cooled servers to liquid cooled ones. Section 5 explains
power and thermal management solutions for large-scale computing server clusters
in a datacenter. Section 6 explains the joint power and thermal management solutions
for large-scale datacenters including both of computing and cooling power consump-
tions, especially targeting a hybrid cooling architecture which selectively uses free
cooling according to required cooling capability. Section 7 summarizes the chapters.

2 State-of-the-Art in Datacenter Design

In this section, we explain state-of-the-art techniques to improve the energy efficiency
of datacenters while meeting the temperature constraint, especially focusing on the
two biggest energy consumers in datacenters, i.e., computing servers and datacenter
cooling facility.

2.1 Computing Servers

1) Energy-Proportional Server Designs Server architectures have traditionally tar-
get performance optimization to support the ever-increasingly IT services demands
and energy-efficiency has only become an important concern in the last five years.
Due to the continuous technology scaling-driven performance improvement and the
fact that single microprocessor architectures recently reached its performance limits
[11], server designs have evolved since 2005 towards multi-cores architectures. A
good example of this trend in state-of-the-art server designs is the HP DL980 blade
server, which includes eight CPU sockets and each of them can support up to 10
cores [12]. Currently, the power consumed by servers takes more than 50% of total
power consumed by datacenters [3]. Table 1 shows the power breakdown of existing
servers, which outlines that the largest portion of total power consumption in servers
is taken by the CPU, but also DRAM memories must be considered as important
blocks to develop power and thermal management strategies at server level.
In addition, future server designs trends by major server vendors, e.g., Sun Labs-

Oracle, IBM, etc., show an evolution towards 3D-stacked technology integration
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programs [11], which enables the integration of a larger number of processing cores
in very limited chip volumes and can significantly reduce the memory access latency
by stacking memory layers on top of processing cores. Furthermore, 3D integration
enables easier development of heterogeneous computing architectures because it is
possible to integrate multiple memory types (e.g., 3D-stacked DRAM, phase change
memory), and storage (e.g., solid-state disk) devices from different manufacturing
processes, as in the EuroCloud server project [13]. However, as a side effect, power
density is expected to significantly increase in 3Dmulti-core computing systems (i.e.,
up to 300 W/cm3 [14]), which will make extremely difficult to properly dissipate
the generated heat with current air-based cooling systems [15]. In particular, if free
cooling is used, it will be a must to consider jointly the conception of the cooling
and computing architecture.
One of the recent topics in server research is achieving energy-proportional com-

ponents, which implies that computing systems should consume different amounts
of active power according to their actual utilization. Nowadays, although servers are
currently optimized to handle high-performance computation demands, most of the
servers in a datacenter run at or below 40% utilization during a significant part of the
time, yet still draw almost full power during the process [16]. Therefore, latest server
designs include many sensors (e.g., power, temperature, etc.) to accurately detect the
current server utilization state [17]. Also, server components (i.e., processor, mem-
ory, and disk) now provide various operating states (e.g., active/idle/sleep/dormant)
as well as various voltage and frequency (v/f) levels in processor and memory [18].
Therefore, recent works [19, 20] have shown the potential of developing energy
proportionality in servers by exploiting the different power states and v/f levels ac-
cording to the performance demand of local server utilization. Nonetheless, all these
approaches focus on power consumption optimization of computing systems, thus
they do not formally guarantee an optimal v/f point under thermal-induced power
variations or can provide thermal damage prediction.
In order to reduce idle-time (leakage) power consumption, server processors pro-

vide nowadays hardware support for virtualization (e.g., AMD-V, IntelVT-x), which
is a technique to enable increased physical server utilization by running applications
from multiple OS instances in the so-called virtual machines (VMs) [21]. Moreover,
on top of the hardware support, several virtualization software frameworks (e.g.,
Citrixs XenServer, Microsofts Hyper-V, VMWare ESXi, etc) have been recently de-
veloped to host multiple VMs with negligible performance degradation. Figure 5a
illustrates the server virtualization. Recent improvements in the server virtualization
techniques enable to run applications in a virtualized server within acceptable per-
formance loss, i.e., ∼ 20% for running CPU intensive workload [22] compared to
running on a native system, while it is known to be degraded further when running
memory- and disk-intensive workloads [23].
These various control options described above, i.e., power state, v/f level, VM

placement, etc., give us great opportunities to achieve further power savings by
fully utilizing the various control options while posing the challenges to develop an
efficient control solution at the same time due to the large solution space, which
necessitates us to develop an effective yet low-complexity control scheme.
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Fig. 5 Concept of server
virtualization: hosting
multiple VMs with the aid of
hypervisor

Hypervisor or Virtual Machine Monitor (VMM)

Virtual machine

Opera�ng System

App App…
VM

Opera�ng System

App App……

Fig. 6 Hot- and cold-aisle
isolation [9]

2.2 Cooling Infrastructure

In order to achieve energy-efficient datacenter cooling, various solutions have been
presented. In this section, we address the three most widely used and effective
solutions: (1) hot- and cold-aisle isolation, (2) closed-coupled cooling, and (3) free
cooling. Then, we present how to utilize the cooling solutions more effectively to
achieve further energy savings.

1) Hot- and Cold-Aisle Isolation Figure 6 shows a typical way of server room
cooling. The cold air is provided by computer room air conditioning (CRAC) units
through a raised floor, a steel grid resting on stanchions installed 2–4 ft. above the
concrete floor. The cold air flows into racks through perforated tiles, and then, hot air
is exhausted through a rear side of rack after absorbing heat generated by servers in
the rack. One way of improving cooling efficiency is to prevent mixing the cold air
provided from CRAC and hot air exhausted by servers. It is realized by a solution, so
called hot- and cold-aisle isolation, which arranges server racks such that the intakes
of cold air in server racks are faced each other, i.e., cold aisle, while preventing the
mixture of hot air in different aisle side, i.e., hot aisle. The hot air is eventually drawn
by the CRAC, and then, cold air is again provided to cold aisles by exchanging the
heat with cold air (or water) provided from chillers.

david.atienza@epfl.ch
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Fig. 7 In-rack cooling [24]

2) Closed-Coupled Cooling Closed-couple cooling solutions place cooling units
more closely to computing units so as to remove any losses incurred throughout the
delivery of cooling medium and quickly react to spatial temperature distribution. In
this cooling solution, there are largely two classifications according to the granu-
larity of computing cluster covered by single cooling unit, i.e., in-row and in-rack
coolings. An in-row cooling adjusts cooling condition at every row according to the
corresponding conditions while an in-row cooling adapts its cooling configuration
according to operating condition at each rack. Figure 7 shows an example of an
in-rack cooling solution where the cold air is directly fed into the front door of racks,
namely, CoolDoor while the hot air is drawn by the CRAC with the same way in
Sect. 2.2. The effectiveness of the solution is quite obvious in terms of the energy
efficiency in that it can adjust only necessary parts instead of adjusting whole cooling
configuration based on the worst-case scenario. It is reported that PUE of this cooling
solution can reach down to 1.1 ∼ 1.2 [3]. However, the capital expenditure for the
installation is quite high.

3) Free Cooling A recent approach to improve energy efficiency in datacenters is
the concept of free cooling, which relies on the use of outside cold air and/or water
for cooling instead of electricity. This is a promising architectural innovation for
datacenter cooling infrastructure that can enable PUE to approach values near 1.0.
Google has recently constructed two datacenters in Ireland and Belgium based on
this concept and reports drastically improved PUE figures up to 1.09 [3].
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Fig. 8 Datacenter cooling architecture [43]

Despite the promising advantages on cooling-energy efficiency, the fundamental
issue of free cooling is its limited applicability, as it can only be used in a very
limited set of geographical locations because the cooling capability is tightly coupled
with climate condition (e.g., temperature and humidity). Thus, it suffers from wide
variations of cooling efficiency during the year, which translates in significantly
high computing systems failure rates [25]. Hybrid cooling, which provisions back-
up cooling infrastructure along with free cooling, is an intuitive solution to extend
the usability of free cooling. Two main types of hybrid cooling architectures exist
[26, 27]. The first architecture switches between free- and electricity-based cooling
according to the outside temperature: if the outside temperature is lower than a
certain threshold, free cooling is used; otherwise, chiller-based electricity cooling
is employed as shown in Fig. 8. However, in real-life conditions, datacenters can
use free cooling in very limited periods of the year and the average reported PUE
is approximately 1.5. The second proposed architecture uses a cooperative hybrid
cooling solution to increase the time free cooling is used. In this case, free cooling
complements the chiller by pre-cooling hot return water with cold outside water
before entering the chiller. This second architecture enables using free cooling, at
least partially, for the entire year, and provides up to 50% energy savings in cooling
infrastructure (PUE�1.25). However, it still suffers from significant higher failure
rate than chiller-based solution due to lack of efficiency in the combined cooling
scheme, whichmakes the current computing systems to operate at higher and variable
temperatures. Moreover, due to the continuous increase in server power density,
driven by the ever-increasing IT demand, the applicability of current free cooling
will be even more limited in the future.
Figure 9 shows the variation of the power consumed by computing and cooling

facilities as well as PUE measured for a datacenter equipped with hybrid cooling
architecture deployed in Finland.As indicated the PUE line, PUEvalue varies 1.09 ∼
1.60 and can be largely classified into three periods according to the PUE value. In
this datacenter, free cooling is used only when the outside temperature is lower
than 8 ◦C, which is set to very conservative value so as to cope with the worst-case
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Fig. 9 Variations of power and PUE throughout a year [28] measured by a datacenter equipped
with hybrid cooling architecture deployed in Finland

scenario. First, during the winter, PUE value is low as the free cooling is used for
the most of the time period while it becomes increased during the summer as the
electrical cooling is more frequently used as the temperature goes up.
Thus, free cooling as such cannot provide the ultimate solution to improve dat-

acenter energy efficiency due to the limitation of the cooling capability and the
dependency on outside temperature. In order to be generally applicable it must be
combined in synergistic ways with innovative energy-proportional server design and
cooling solutions, as well as holistic datacenter thermal control.

3 Power and Temperature Modeling and Monitoring

Accurate-yet-efficient modeling and monitoring on power and temperature of data-
centers are necessary to develop control solutions for target systems. In this section,
we first explain how we can model the power consumption and the temperature of
existing servers and cooling facility in datacenters. Then, we address scalable and
cost-effective power and temperaturemonitoring systems for large-scale datacenters.
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3.1 Server Modeling

1) Power Modeling A server consists of various components, i.e., CPU, DRAM,
disk, network interface (NIC), etc. As presented in Table 1, vast amount of the power
is consumed by CPUs, memory, and disk, i.e., more than 70%. Extensive works
have been presented to accurately model power consumption of each component.
McPAT is micro-architectural power model for chip multiprocessor (CMP), includ-
ing in-order and out-of-order processor cores, networks-on-chips, shared caches,
integrated memory controllers, and multiple-domain clocking, while tacking into
account various process characteristics, e.g., bulk CMOS, SOI, and double-gate
transistors, based on the forecast in the ITRS roadmap. The accuracy is validated
using various processor implementations, i.e., Niagara, Niagara2, Alpha 21364, and
Xeon Tulsa, whose errors range 10.84 ∼ 22.61%, compared to the measured values.
DRAMSim [29] and Micron’s System Power Calculator [30] provide accurate and
detailed timing and power models of various types of DRAM, e.g., DDR, DDR2.
DDR3, Mobile LPDRAM, etc., accounting for the operations.
Although such accurate power models exist to model individual component of

servers, it is difficult to use all such accurate models together due to the speed of
the simulation. It becomes more exacerbated when we target to simulate the large
number of servers in datacenters. Thus, high-level power models are widely used
to track and estimate the power consumption of servers based on the observation
that the power consumption for a given server is highly correlated with distinctive
workload characteristics, e.g., CPU-, memory-, or disk-intensive, stressed on servers.
To capture the relationship, various works have presented high-level power model
which estimates the power consumption based on the utilizations [31–33]. Among
them, Economous et al. [31] present a linear regression powermodel which estimates
the server power consumption with respect to utilizations of CPU (ucpu), memory
(umem), and disk (udisk), and network interface (unet ) as follows.

Pserver = C0 + C1ucpu + C2umem + C3udisk + C4unet (2)

where {C0,C1,C2,C3} is a set of fitting parameters, which varies according to the
target server system. This model is validated through two types of servers: (1) blade
servers containing 2.2 GHzAMDTurion processor, 512MB SDRAM, 40 GBHDD,
10/100 MBit Ethernet and (2) Itanium servers containing four Itanium2 chips, 1 GB
DDR, 36 GB HDD, 10/100 MBit Ethernet. According to their evaluations, the er-
rors are within 10% in most of test cases using various benchmark suites, i.e.,
SPECcpu200, SPECjbb2000, SPECweb2005. Further evaluations for developing
the high-level server power modeling have been conducted in [32] by comparing
five different forms of power models as follows:

Type1 : Pserver = C0 (3)

Type2 : Pserver = C0 + C1ucpu (4)

Type3 : Pserver = C0 + C1u
r
cpu (5)
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Type4 : Pserver = C0 + C1ucpu + C2udisk (6)

Type5 : Pserver = C0 + C1ucpu + C2umem + C3udisk + C4unet (7)

Type 1 modes the power consumption in a static value. Type 2 and 3 model the
power consumption with respect to CPU utilization, i.e., ucpu, in linear and nonlinear
manners, respectively. Type 3 and 4 add additional term to take into account the vari-
ations caused by disk (udisk), memory (umem), and network (unet ). It concludes that
Type 2 power model is enough for modeling CPU-intensive workload while Type
5 power model, using both of OS-reported component utilizations and CPU perfor-
mance counters, is needed to cover broad workload characteristics, i.e., memory-
and disk-intensive workloads, and aggressively power-managed servers.
In [33], Pedramet al. further enhance the accuracy of the powermodel by adjusting

the fitting parameters according to various operating voltage and frequency and the
number of active cores. It used Intel Xeon E5410 processor for the validation with
various test cases, i.e., combination of the number of active cores and operating
voltage and frequency level. Recently, Joulemeter is provided to automatically tune
the parameters in power models by measuring battery usage in laptop or measuring
power consumption in servers.
Fans also consume significant amount of power in servers. Indeed, it is well

known that the fan power consumption has a cubic relationship with fan speed [34],
as follows:

Pf an = C0 + C1s
3
f an (8)

where {C0,C1} is a set of fitting parameters and sf an represents fan speed. Thus,
lowering the fan speed enables us to reduce drastic amount of power consumption.

2) Temperature Modeling Accurate temperature models for servers are required to
capture the temporal and spatial temperature variations. Especially, due to the high
area and cost of placing thermal sensors in a silicon die as well as frequent failures
of thermal sensors, the needs for the accurate temperature modeling becomes more
important. Computational fluid dynamics (CFD) simulation is known to be a solution
to develop accurate and complete 3D thermal map of servers by using numerical
methods and algorithms to solve and analyze problems that involve fluid flows. In
[35], Choi et al. present a CFD-based thermalmodeling solution of servers by solving
the governing transport equations shown in the following conservation law form:

∂ρφ

∂t
+ ∂ρUjφ

φ∂xj

= ∂

∂xj

(
�phi,eff

∂φ

∂xj

)
+ Sφ (9)

where φ is a general variable used for different context, e.g., mass, velocity, tem-
perature, or turbulence properties; ρ is a fluid (air) density; t is a time for transient
simulations; xj is a coordinate x, y, or z direction when j is 1, 2, or 3, Uj is the ve-
locity in each direction; � is the diffusion coefficient; S is the source for a particular
variable such as the heat flux from a target system when the air temperature is φ.
The four terms in Eq. (9) corresponds to transient, convection, diffusion, and source
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Fig. 10 Layout of IBM X335 server (a) and temperature map (b) [35]

parts of transport phenomenon at the spatial domain/extent. Figure 10a and b show
pictures of IBM X335 server comprising of multiple components and its tempera-
ture map, respectively. As shown in Fig. 10, the spatial temperature variation can
be accurately modeled. Despite the high accuracy of the CFD simulation, the sim-
ulation complexity is quite high because it does not have any closed-form solution
for solving the differential equation in Eq. (9), which leads to adopt computer-based
numerical procedures.
In [36], T. Heath et al. present a solution of constructing temperature map of

servers while relieving the complexity of CFD simulation with negligible accuracy
degradation, i.e., within 0.32 ◦C compared to CFD simulation. The simplification is
achieved by abstracting heat- and air-flow with simplified graphs. Recently, a fur-
ther simplified temperature model for servers has been presented in [38], especially
targeting the CPU and memory sub-system of servers considering varied heat re-
moval capability as a fan speed changes. It is developed by constructing thermal RC
network of the system based on well-known duality between thermal and electrical
phenomena [37], as shown in Fig. 11. In the RC network of CPU socket, P c

j rep-
resents the power consumption of each core in a socket; Rc

l and Rc
v represent the

lateral and vertical thermal resistance, respectively, where Rc
l is normally ignored as

Rc
v << Rc

l ; R
c
s and Rc

ca are thermal resistance of heat spreader and case-to-ambient
(i.e., heat sink), respectively. Cc

j , C
c
s , and Cc

ca are thermal capacitances of die, heat
spreader, and heat sink, respectively; T c

ja represents the junction temperature which
is used as an input to dynamic thermal management (DTM) units such that T c

ja is
lower than Tmax .Rc

ca is the sum of the thermal resistances of heat sink and convective
resistance, i.e.,Rc

ca = Rc
hs +Rc

conv, whereRconv is changed according to the fan speed
as follows:

Rc
conv ∝ 1

A · sα
f an

(10)

where A is the effective area and α is a factor with a range of 0.8∼1.0.
In the RC network of memory part, P D

chip is the power consumed in each DRAM
chip; RD

chip and CD
chip are thermal resistance and capacitance of each chip; T D

j is
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Fig. 11 RC network based temperature model [38]

the junction temperature of a DRAM chip; N is the number of ranks in a single
DRAM chip. In addition, they observe that the temperature of DRAM is correlated
with the temperature of CPU as the air inside a server flows from CPU to DRAM,
thereby, air absorbing heat in CPU socket affects to the temperature of DRAM as it
is equivalent to raising ambient temperature at DRAM. This phenomenon is called
thermal coupling and modeled as follows:

qD ∝ T C
ha

RD
ca

(11)

where qD is the dependent coupling heat source of the memory; T C
ha is the heat sink

sink temperature of the CPU; RD
ca is the thermal resistance of the case to ambient of

the memory DIMMs. This model is validated using Intel dual socket Xeon server,
which shows a strong match between the actual measurement and the model within
a 0.27 ◦C average error.

3.2 Datacenter Modeling

1) Computing Facility Basically, the temperature of servers in datacenter can be
calculated using models in Sect. 3.1. However, for accurate temperature estimation
for servers in a datacenter, we need to take into account interactions of generated
heats among multiple servers in a server rack because servers are placed in a server
rack in vertical direction and cold air flows from bottom to top of the server rack
such that the heat generated at bottom is recirculated and affects to servers placed
at upper side of the server rack. We call it heat recirculation in a datacenter. The
amount of heat recirculation in a datacenter can be described by a cross-interference
matrix, which is represented by�N×N = {φi,j } where N is the number of servers in
a server rack. φi,j indicates the contribution of the outlet heat rate of the i-th server
in the inlet heat rate of the j -th one. Assuming Qout

i and Qin
j are, respectively, the
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outlet and inlet heat rates for the i-th and j -th server, the inlet heat rate for j -th server
can be calculated as follows [39]:

Qin
j =

N∑
i=1

φi,jQ
i
out + Qamb + Pj (12)

where Qamb represents the heat rate delivered from cold aisle of a server room and
Pj denotes the power consumed by j -th server.
In the vector form, we can write this relationship as follows:

Qin = �T Qout + Qs + P (13)

Based on the heat rate, we can calculate the temperature at each server within a server
rack using temperature models in Sect. 3.1.

2) Cooling Facility The typical cooling facility consists of a cooling tower, a chiller,
and CRAH (or CRAC) as explained in Sect. 1.1. The heat generated by servers in
a server room is absorbed by cold air provided from CRAH, and then, drawn by
CRAH. CRAH exchanges the heat drawn from the server room with cold water
(or air) provided from a chiller based on refrigeration cycle. In [42], A. Qouneh
et al. provide a comparative and quantitative analysis of cooling power as varying
processor utilization and adjusting the server room temperature accordingly. For
further analysis of the power consumption of the cooling facility, some models have
beenpresented in [40, 41]whichmodel the power consumption based on thermo-fluid
principles.
However, based on our analysis of real datacenter setups of our industrial partners

in this work, we have observed that an alternative procedure can be used, where
PUE mainly depends on the temperature set-point of server room (Troom), outside
temperature (Tout ), and total power consumed by servers (Pcl). Moreover, Troom is
the dominant factor compared to the others. Thus, we can simply characterize PUE
with respect to Troom. Figure 12 shows PUE with respect to Troom. As shown in this
figure, the PUE of electrical and free cooling ranges 1.53 ∼ 1.83 and 1.08 ∼ 1.14,
respectively. Assuming that Troom is set to the highest temperature of which servers
in active mode can satisfy the maximum temperature limit, i.e., T max

pm , we can model
PUE as a function of the power consumption of servers, i.e., Ppm. By matching the
results shown in Fig. 12, we can approximate the PUE with a relatively simple form,
namely:

PUE = a1P
2
pm + a2Ppm + a3 (14)

wherea1, a2, anda3 are curvefitting parameters. In the case of electrical and free cool-
ing, the sets we have obtained for {a1, a2, a3} are {3.32×10−5,−9.45e×10−4, 1.30}
and {0, 0, 1.08}, respectively. Then, themaximum (average) rootmean square (RMS)
error amounts to 4.38% (0.76%) and 0.56% (0.56%), respectively.
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Fig. 12 Power usage effectiveness (PUE) in electrical and free cooling as power consumption of
server varies [43]

Finally, the temperature of the server room, Troom, depends on CRAH efficiency,
εCRAH , which is defined as follows [43]:

εCRAH = T air
CRAH − Troom

T air
CRAH − T water

CRAH

(15)

where T air
CRAH represents temperatures of air exhausted from server room; T

water
CRAH is

the temperature of chilled water flowing into the CRAH, which corresponds to the
set-point of chiller and outside temperature when electrical and free cooling is used,
respectively. Note that these values can be calculated using the procedure in [40],
which depends on server power consumption, outside temperature, etc. Since εCRAH

is always less than 1, Troom is always higher than T water
CARH .

3.3 Monitoring System for Datacenters

Power management in datacenters is an area of increasing interest from several
viewpoints as it is backed up by real concerns on energy usage and cost by modern
computing systems. Data center computing applications and platforms have been
typically designed without regard to power consumption. With increased awareness
of energy cost, power consumption tracking and management is now an issue even
for compute-intensive server clusters.
Datacenters ecosystem is facing an increasing need for decision support systems

for datacenter management. Building and administration of datacenters are indeed
evolving towards increasingly complex scenarios. IT infrastructure managers have
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to optimize the datacenter utilization and costs, under several constraints gener-
ated by heterogeneous and diverging technical challenges: customer requirements,
infrastructure costs, energy costs, physical space available, etc.
Datacenters that have some energy measuring capabilities carry out those moni-

toring tasks through Data-Center Infrastructure Management (DCIM). This concept
includes the integration of IT and Facility Management, with the aim of centralising
monitoring, management and intelligent capacity planning of data centre systems.
Capacity planning focuses primarily on energy but also on power, space, network,
IT equipment, cabling, cooling and environmental factors (temperature and relative
humidity).
Understanding total capacity of all factors ultimately gives the optimal position

where equipment should be moved, added or changed for optimised use of the avail-
able capacity. It also directly indicates where potential capacity is still present but
unused (stranded capacity). Currently, in many datacenters this task is carried out
manually or through site audits. This is a tedious, time-consuming and labour-
intensive process, with a high risk of human error. An advanced DCIM system
automates and simplifies this process, benefiting to IT and facility staff, but also to
the energy efficiency of the datacenter.
A DCIM system can in particular map and manage the complete power chain

and hence the energy capacity of the datacenter. Starting at the power sources (grid
power or alternative power sources) up to the outlets on a rack Power Distribution
Unit (PDU) or even the components within the servers, including all devices in
between, DCIM systems are essential to plan energy flows and perform trending
and analysis. They bring full access to all available devices, from facility to IT, as
well as life cycle management, support contracts, and logical and physical cable
connections.
Whereas DCIM systems are usually a good fit for large datacenters, the needs

of small to medium-size urban datacenters are not adequately met today. Existing
systems are generally too complex, pricy, difficult to use and not modular enough
for urban facilities. In addition, solutions offered on the market today are generally
proprietary and tend to lock their users in to single vendors. InnovativeDCIM support
systems for datacenter management are thus needed. PMSM (i.e., Power Monitor
System and Management) [44–56], developed at EPFL in cooperation with Credit
Suisse [45], is an example of such an innovation.

4 Power and Thermal Managements of Servers

As the servers operating workloads are time-varying, the accompanying power con-
sumption and thermal profile vary as well. In order to maintain controlled power
consumption and thermal dissipations, run-time dynamic power and thermal man-
agement (DPM and DTM) mechanisms are required. These management schemes
exploit the utilization of power and temperature-affecting control knobs that exist in
different layers of abstraction of the system, to aid in power and thermal reduction. In
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addition, a fundamental challenge of any developed power or thermal management
scheme is to have minimal, or preferably zero percent, performance degradation. If
anymanagementmechanism has a significant impact on the processing performance,
it interfereswith the architectural characteristics, hence considered a degrading rather
than a managing element.
In this section, we explore the various power and thermal management mecha-

nisms for server architectures. We first start by showing the state-of-the-art in power
and thermal management solutions in Sect. 4.1. In Sect. 4.2, we explore our re-
cent development in hierarchical power and thermal management schemes. Finally,
we show our advances in power and thermal management in liquid-cooled server
architectures.

4.1 Overview of CPU Power and Thermal Management
Techniques

Power and thermal management solutions have been extensively existing in litera-
ture, which has been reflected in the various power and thermalmanagement schemes
[71, 72]. Nevertheless, we explore the recent works on power and thermal manage-
ment in the state-of-the-art.

1) Temperature-Affecting Control Knobs As mentioned earlier, run-time manage-
ment schemes utilize various control knobs that either reduce the causes of high heat
generation, or increase the ability of the utilized cooling methodology. In the case of
3D MPSoCs, these control knobs are classified as follows.

a) Workload Activity Knobs At the software-level (application, system software,
and OS), workloads can be altered and customized such that they can be
thermally-aware. For example, task scheduling and task migration [73] have been
extensively used to balance the workload on planar 2D MPSoCs [74]. Another
example involves the intra-task instruction scheduling to prevent the processing
element temperature from elevating to alarming values.

b) Circuit Switching Activity Knobs This class of control knobs affects the operat-
ing conditions of the processing element. These knobs may stall the processing
element temporarily to reduce the heat generation, such as clock gating [75].
Alternatively, these knobs may reduce the operating speed of the processing ele-
ment, which implies lower power consumption, hence lower heat generation, such
as dynamic frequency scaling (DFS) or dynamic voltage and frequency scaling
(DVFS) [75, 76].

c) Thermal Package Control Knobs The knobs at the thermal package level are
responsible of changing the cooling capabilities, which is related to the injected
fluid in the case of 3D MPSoCs with liquid cooling. For instance, the volumetric
flow rate of the injected fluid can be varied by changing either the liquid pumping
power [77], or varying the value of a flow-control valve [78].
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2) Power and Thermal Management of Air-Cooled 2D and 3D MPSoCs Ogras
et al. [79] proposes the control of power usage in processing elements (PEs) and
routers by using model predictive control at design time, and Bogdan et al. [80] elab-
orate further this approach by considering both PEs and routers in the control scheme
for voltage and frequency. However, they only consider power management and do
not explore thermal control aspects. In fact, consolidating the power consumption in
processing elements could undermine temperature issues while the power consump-
tion is reduced. Thus, explicit thermalmanagement schemes that include temperature
as a key role in optimization or imposing temperature as a constraint are required for
thermal balancing.
Initial research efforts have been focusing on combined power and thermal man-

agement by presenting a set of scheduling mechanisms for MPSoCs that perform
temperature management at the system-level [81], using threadmigration techniques
to achieve temperature reduction in localized hot spots [75], or using a temperature-
aware dynamic scheduling algorithm with negligible performance overhead [74].
These methods do not exploit history information and take reactive control actions
based on the current thermal profile and frequency setting of the MPSoC.
However, recent works exploit history information to improve thermal manage-

ment policies. Previous work [82] exploits a temperature forecast technique based on
an auto-regressive moving average model. Another work proposes a novel technique
that adapts the thermal management policy to the current workload characteristics
[76], where the adaptation is done online exploiting information related to the work-
load history. Two recent approaches [83, 84] describe two methodologies to achieve
thermal prediction by combining the information of thermal model, thermal sensors
and power consumption statistical properties. These approaches rely on open-loop
search or optimization where it is assumed that power can be estimated accurately.
More advanced solutions apply the concepts of model-predictive control (MPC)

to turn the control from open-loop to closed-loop [87]. A chip-level power con-
trol algorithm based on optimal control theory is proposed [85], where the power
consumption of the MPSoC is controlled to maintain the temperature of each core
below a specified threshold. A recent work [86] proposes MPC utilization to solve
the thermally-aware frequency assignment problem of a planar MPSoC.
However, most previous policies do not completely avoid hot-spots, but they

simply reduce their frequency, because the interaction among the prediction method,
the thermal behavior of the MPSoC and the frequency assignment of the MPSoC
have not been addressed as a joint optimization problem.
In a similar vein, recent work considers dynamic thermal management for 3D

MPSoCs. Previous work evaluates several policies for task migration and DVFS
[88]. This previous work explores thermal profiles of adjacent processing elements
being on the same vertical column (interlayer adjacent) or within the same layer
(intralayer). Based on this analysis, a combined DVFS and a task migration policy,
named THERMOS, is implemented. However, this work do not consider controlling
the thermal packaging knobs, whether it is air or liquid cooling. Another work [89]
integrates a thermally-aware task scheduler with DVFS on a two-tier 3D MPSoC
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with eight cores. A recent paper proposes a temperature-aware scheduling method
specifically designed for air-cooled 3DMPSoCs [91]. Thismethod takes into account
the thermal heterogeneity among the different layers of the system, but there is
no study on the effect of the thermal packaging control knobs as active thermal
management parameters. The resulting temperatures obtained in these papers are
significantly high (85–120 ◦C).These results imply that 3DMPSoCs are prone to high
temperatures, andwith increasing power densities conventional thermalmanagement
techniques and air-based cooling are incapable of controlling the temperature while
preserving system performance.

3) Thermal Management of Liquid-Cooled 3D MPSoCs Prior liquid cooling work
[90] evaluates existing thermal management policies on a 3D MPSoC with a fixed-
flow rate setting, and also investigates the benefits of variable flow using a policy
to increment or decrement the flow rate based on temperature measurements, but
without considering pump energy consumption.
Thermal management methods for 3DMPSoCs using a variable-flow liquid cool-

ing have been recently proposed [77]. These policies use experimentally-driven sets
of rules to control the temperature profile of the 3D MPSoC while ensuring per-
formance requirements to be satisfied. These approaches use a centralized control
concept, which is inappropriate if the controlled parameters increase [92], as in the
case of targeted 3D MPSoC designs with liquid cooling in this work.
Recently, Qian et al. explore the use of a cyber-physical approach 3D MPSoCs

thermal management with inter-tier liquid cooling [93]. They construct their con-
trol mechanism with software-based thermal estimation and prediction. They use
a non-uniform liquid flow in different microchannels to meet the cooling demands
of different modules. They take their control decisions on software-based thermal
estimation and prediction. They use a non-uniform liquid flow in differentmicrochan-
nels, to meet the cooling demands of different modules. However, they have not
shown the overhead of their software-based thermal estimation. Moreover, they do
not show the feasibility of having a non-uniform flow in different channels, as a
physical implementation.

4.2 Run-Time Hierarchical Power and Thermal Management for
Server Architectures

Wehave proposed another proactivemanagement scheme that relies onmodel predic-
tive controller (MPC) [94]. In this work, we have developed a thermal management
scheme that controls task scheduling, DVFS, and the cooling infrastructure. In partic-
ular, we target the cooling infrastructure case of interlayer liquid cooled 3DMPSoC,
where we can alter dynamically the injected liquid flow rate. At each time interval,
a new set of workloads arrive, and the management scheme allocates these tasks to
various cores and sets the corresponding flow rate such that the predicted peak tem-
perature is reduced while minimizing the 3D MPSoC power consumption (cooling

david.atienza@epfl.ch



880 J. Kim et al.

and computation power). Then for each processing element it applies MPC to the
assigned workload such that the local predicted temperature is reduced while using
the minimum computing energy possible via DVFS. The formulation of this problem
is stated as follows:

J =
h∑

τ=1

(
‖Rpτ‖ + ‖Tuτ‖

)
(16)

min J (17)

subject to : fmin � fτ � fmax ∀ τ (18)

xτ+1 = Axτ + Bpτ ∀ τ (19)

C̃xτ+1 � tmax ∀ τ (20)

uτ 	 0 ∀ τ (21)

uτ = wτ − fτ ∀ τ (22)

lτ 	 μf2
τ ∀ τ (23)

− w � mτ+1 − mτ � w ∀ τ (24)

0 � mτ � 1 ∀ τ (25)

pτ = [lτ ;mτ ] ∀ τ (26)

where matrices A, B are related to the overall 3D MPSoC system description. These
matrices represent the 3D MPSoC system using a coarse granularity of the thermal
cells and where the sampling time of the resulting discrete-time system is TGC . The
horizon of this predictive policy is defined as h [87]. Then, the objective function J

is expressed by a sum over the horizon.
In the cost function (Eq. (16)), the first term ‖Rpτ‖ is the norm of the power input

vector p weighted by matrix R. Power consumption is generated here by two main
sources. Vector p is a vector containing normalized power consumption data the p

tiers and the pumping power. Matrix R contains the maximum value of the power
consumption of the tiers and the cooling system. The second term ‖Tuτ‖ is the norm
of the required workload, but not yet executed. To this end, the weight matrix T
quantifies the importance that executing the required workload from the scheduler
has in the optimization process. Then, Inequality (18) defines a range of working
frequencies to be used, but this does not prevent from adding in the optimization
problem a limitation on the number of allowed frequency values.
Equation (19) defines the evolution of the 3DMPSoCaccording to the present state

and inputs. Equation (20) states that temperature constraints should be respected at
all times and in all specified locations. Since the system cannot execute jobs that have
not arrived, every entry of uτ has to be greater than or equal to 0 as stated by Eq. 21.
The undone work at time τ , uτ is defined by Eq. 22. Equation 23 defines the relation
between the power vector l and theworking frequencies.μ is a technology-dependent
constant.

david.atienza@epfl.ch



Power-Thermal Modeling and Control of Energy-Efficient Servers and Datacenters 881

A B

SPARC core
L2 cache

Crossbar

Other
Microchannel
TSV

C

C
A

B

C
A

B

Fig. 13 Schematic diagram of the four-tier liquid-cooled 3DMPSoC used in the thermal evaluation
of the proposed thermal management scheme

Then, Eqs. 24–25 define constraints on the liquid cooling management. The nor-
malized pumping power value (m) scales, and any time instance τ , from 0 (no liquid
injection) to 1 (power at the maximum pressure difference allowable), as shown in
Eq. 25. Moreover, the maximum increment/decrement change in the pumping power
value from time (τ ) to (τ + 1) is limited by a another normalized value w, as shown
in Eq. 24, which models the mechanical dynamics of the pump.
Equation 26 defines formally the structure of vector p. Vector l ε 
p is the power

input vector, where p is the number of tiers of 3D MPSoC.
Finally, the control problem is formulated over an interval of h time steps, which

starts at current time τ . Indeed the result of the optimization is an optimal sequence
of future control moves (i.e., amount of workload to be executed in average for each
tier of the 3D MPSoC which is stored in vector f). Then, only the first samples of
such a sequence are applied to the target 3DMPSoC, while the remaining moves are
discarded. Thus, at each next time step, a new optimal control problem based on new
temperature measurements and required frequencies is solved over a shifted predic-
tion horizon (e.g., the “receding-horizon” [87] mechanism), which represents a way
of transforming an open-loop design methodology into a feedback one, as at every
time step the input applied to the process depends on the most recent measurements.
To evaluate the effectiveness of this thermal control, we apply this management

scheme on a four-tier 3DMPSoC based on the UltrsSPARCT1MPSoC [112], which
is shown in Fig. 13. In addition, we compare it against different state-of-the-art
thermal management techniques, which are as follows:

• Liquid cooling with LB (LC_LB) [95]: It applies the maximum cooling flow
rate, while the jobs are scheduled with load balancing policy (LB). LB balances
the workload by moving threads from a core’s queue to another if the difference
in queue lengths is over a threshold.
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Fig. 14 Peak and average temperatures observed using all the policies, both for the average case
across all workloads and maximum workload on four-tier 3D MPSoC [94]

• LUT-based flow rate control with LB (LC_VAR) [77]: It dynamically changes
the flow rate based on the predicted maximum temperature, while the jobs are
scheduled with LB.

• Fuzzy-logic control (LC_FUZZY) [96]: This mechanism utilized fuzzy logic in
deriving thermal management mechanism that controls the variable liquid flow
rate and DVFS.

In addition we refer to this management scheme as LC_PROACTIVE in the fol-
lowing paragraphs. In this evaluation of different thermal management policies,
LC_PROACTIVE is compared with respect to the other management techniques
mentioned above based on the:

• Maximum and average temperatures.
• Computational and cooling power consumption.

Thermal impact of all the policies on a four-tier 3D MPSoC (cf. Fig. 13) is shown
in Fig. 14. This figure shows that LC_LB reduces the peak temperature to 47 ◦C,
whereas LC_FUZZY and LC_VAR push the system into a higher peak of 52
and 67 ◦C, respectively, but still avoids any hot-spots. This is the similar case in
LC_PROACTIVE, where the peak temperature reaches 84 ◦C. The alteration be-
tween the peak temperature comes from the fact that main target is to reduce the
peak temperature to any value below 85 ◦C. However, since each technique has a
different management policy, with different control elements, the peak and average
temperatures are affected.
Figure 15 shows the total consumed power when running the various policies on

the four-tier MPSoC with the average workload [94]. Energy consumption values
are normalized with respect to the load balancing policy on the 3D-MPSoC with
LC_LB. In this figure, LC_PROACTIVE manages to reduce the cooling power and
the overall system power by 60 and 23%, respectively, with respect to LC_LB.
Moreover, LC_PROACTIVE even reduces the cooling energy more than LC_VAR
and LC_FUZZY by 40 and 22%, respectively.
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Fig. 15 The normalized energy consumption in the whole system (chip and cooling network) [94]

4.3 Design-Time Power and Thermal Optimizations

In addition to run-timemanagement schemes, several works conduct power and ther-
mal optimizations at design-time. In the case of MPSoCs, several approaches have
been taken to optimize the power utilization and heat generation or dissipation.At the
platform level, differentmodules can be designed to reduce the overall power density,
hence heat generation, while preserving the system functionality. This approach has
been taken recently in low-power (hence low temperature) processor designs such
asARM big.LITTLE processing architecture [97]. Another approach at the platform
level is to reduce the operating power supply of the platform to near-threshold values
[98]. Near-threshold computing allows the processing units to operate close to the
voltage threshold value of the used transistor, hence reducing the overall power and
thermal density.
In the case of 3DMPSoCs, recent work proposes multiple supply voltages utiliza-

tion to optimize the voltage islands distribution in 3D MPSoCs [99]. In this work, a
temperature-aware voltage island generation methodology is proposed that formu-
lates this problem as amixed-integer linear programming (MILP) problem. Themain
aim in this work is tominimize the thermal hotspots in 3DMPSoCswhile keeping the
performance and timing requirements satisfied. The interdependency between power
and heat densities made it feasible to formulate this problem and achieve significant
results.
Another work utilizes various microarchitectural techniques to control the

thermal hotspots in 3D MPSoCs via thermal herding [100]. This technique explores
different architectural disciplines by spitting several microarchitectural blocks
between the different layers of 3D MPSoC to enhance the throughput while
controlling the thermal hotspots such as, register file splitting. This splitting is based
on general application trends and the significance of particular instructions or data
locations to the execution flow.
Previous works have investigated the rearrangement of various hardware modules

within the MPSoC to minimize the global thermal impact, which is also known in
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literature as temperature-aware floorplanning. Initial work on temperature-aware
floorplanning [101] has shown its significant impact on reducing the peak tempera-
ture. This work has defined ametric called thermal diffusion that resembles the lateral
heat dissipation. This metric has been used in an optimization problem to maximize
the gains of thermal diffusion. Other similar works have proposed simulated an-
nealing utilization [102] or genetic algorithms [103] to achieve temperature-aware
floorplanning.
In the context of 3DMPSoCs, temperature-aware floorplanning has also been ex-

tendedby including the interlayer thermal dissipation and interconnect characteristics
[102, 104–106]. For example, initial work has been proposed [107] for temperature-
aware microarchitectural floorplanning. The main objective in this work is to place
the processing submodules of a single processor in several layers such that the wire
lengths and the temperatures are minimized. To achieve this, a mixed integer linear
programming (MILP) problem is formulated to minimize the weighted sum of per-
formance, area and thermal-related aspects. Another work uses simulated annealing
to minimize the temperature of 3D MPSoC via floorplanning [105] by considering
the additional power consumption of the interconnects.
As for liquid-cooled 3D MPSoCs, Mizunuma et al. use their thermal model to

explore floorplanning solutions to homogenize temperature distributions in this ar-
chitecture [108]. The results in thiswork, which is further assisted by the observations
in other work [96], show that in the case of liquid cooled 3D MPSoC, temperature-
aware floorplanning follows the trend of placingmore heat dissipatingmodules at the
fluid inlet port, while lower heat dissipatingmodules at the outlet port. In otherwords,
the optimal heat dissipation pattern for temperature-aware floorplanning would be
monotonically decreasing from the distance of the fluid inlet port.
Our recent proposed framework, namely GREENCOOL, optimizes the active

cooling path of microchannel-based iterlayer liquid cooled 3D MPSoCs to balance
the thermal profile of the target 3D MPSoC while significantly reducing the active
cooling energy demands [109]. This design-optimization methodology uses the con-
cept of channel modulation, where we change themicrochannel aspect ratio (channel
width/channel height) to enhance the heat transfer capability from the target 3DMP-
SoC via changing the convective thermal resistance [110]. Using the conventional
CMOS fabrication process for etching the channels, such as deep reactive iron etch-
ing [111], it is possible to modulate the width of the channel from inlet to outlet (and
hence its aspect ratio) and create any kind of channel width profile, while keeping
the height of the channels constant. Thus, channel width modulation requires only
a change in the patterns on the masks used for etching channels amounting to min-
imal additional fabrication costs. To summarize, using careful design it is possible
to modify the local channel aspect ratios so as to contain the pumping power while
constraining the thermal gradients.
To understand how the channelwidth affects the change in temperature due to con-

vection (ΔTconv) in detail, an analysis is performed on a single microchannel shown
in Fig. 16. We start by the following set of equations governing the Nusselt number
(a dimensionless form of heat transfer coefficient), and the product of friction factor
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Fig. 17 Rconv as a function of the channel width for the structure in Fig. 16

and Reynold’s number for microchannels, under fully developed conditions [110]:

Nu = 8.235 · (1− 2.0421AR + 3.0853AR2 − 2.4765AR3 + 1.0578AR4

− 0.1861AR5)

f r · Re = 24 · (1− 1.3553AR + 1.9467AR2 − 1.7012AR3 + 0.9564AR4

− 0.2537AR5), (27)

where AR is the aspect ratio reciprocal (height/width) of the channel. Using the
Nusselt number, the heat transfer coefficient (a measure of the amount of heat
transferred per unit area for one Kelvin difference in temperature between the fluid
and the microchannel wall surface, expressed inW/m2K) can be written as:

h = kcoolant · Nu

dh

(28)

david.atienza@epfl.ch



886 J. Kim et al.

Fig. 18 Junction temperature distribution for the structure in Fig. 16. aWith uniform nonmodulated
channel width. bWith modulated channel width to compensate for sensible heat absorption [109]

where kcoolant is the thermal conductivity of the coolant and dh is the hydraulic
diameter of channel. The effective heat transfer coefficient as seen by the junction
looking down the channel from the top can be written by projecting the heat transfer
coefficient above from the side wall surfaces onto the top as follows:

heff = h
2 ∗ HC + wC

W
(29)

where HC is the height and wC is the width of the channel, and W is the total
width of the structure as shown in Fig. 16. The convective resistance Rconv for
this structure can be obtained as a reciprocal of this quantity. The Rconv for this
structure is plotted as a function of wC in Fig. 17, assuming water as the coolant,
HC = 100 μm,W = 100 μm and varying wC from 10 to 50 μm.
Figure 17 shows that the convective resistance (and alsoΔTconv) drops quickly as

the channel width is reduced. Since the goal is to modify the convective resistance to
compensate forΔTheat , it can be postulated that the channel width must no longer be
a constant but instead should be a function of the distance along the channel wC(z).
The width must be larger near the inlet where the fluid temperature is low and smaller
near the outlet where the fluid temperature is high. Hence, theoretically, for the case
of uniform heat flux, it is possible to lower the final thermal gradient by steadily
modulating the channel width from inlet to outlet, as shown in Fig. 18b.

GREENCOOL uses this principle in formulating an optimal control problem to
find the optimal channel width profile for each microchannel, from the fluid inlet
to outlet ports. The target of this optimization is to minimize the peak temperature
and thermal gradients of the 3D MPSoC, as well as reducing the energy needed by
cooling.When applied various 3DMPSoC architectures, significant thermal gradient
reductions as well as cooling power savings, with respect to worst-case designs.
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For instance, when GREENCOOL is applied to different architectural layouts of
the UltraSPARC T1 Niagara MPSoC [112], a 31% thermal gradient reduction is
observed. Figure 19 shows the layout of the different two-dies 3D-MPSoCs used in
this experiment. The dies are of size 1 cm× 1.1 cm and the heat flux densities range
from 8 to 64 W/cm2 in the two dies. Further details about the floorplan and power
dissipations can be found in pervious works [77, 96, 112].
In this experiment, the worst-case (peak) power dissipation of the 3D-MPSoC

functional elements [77, 96, 112] (obtained using measurements) are used in the
optimization process. GREENCOOL achieves a thermal gradient reduction of 31%
(23 ◦C to 16 ◦C). When the peak heat flux levels were replaced by average values,
this same optimal channel modulation configuration manages to reduce the thermal
gradient by 21% compared to the uniform channel width case. The thermal gradients
obtained for the different cases and for various channel types are plotted in Fig. 20.
In another set of experiments to demonstrate the energy-efficiency of GREEN-

COOL, significant cooling energy savings that reach up to 80% has been achieved
[109]. Furthermore, GREENCOOL aids in developing efficient cooling layout in the
cases where uniform cavity utilization is infeasible.
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Fig. 21 Concept of server
consolidation

5 Power and Thermal Managements for Server Clusters

5.1 Conventional Solution to Minimize Power Consumption for
Server Clusters

In datacenters, servers are normally severely under-utilized, less than 30% in more
than 90% of the total time [3]. In addition, as explained in Sect. 3, the power
consumption of servers is not proportional to the utilization, i.e., the idle power
consumes around 50% of the peak power consumption. Due to the poor energy-
proportionality, the power consumed by servers in datacenters can be reduced as
we minimizes the number of active servers by packing workloads into the minimal
number of active servers [46]. The technique is called Server consolidation. The
key enabler to realize the solution is server virtualization, explained in Sect. 2.1,
as it enables to migrate workloads easily by encapsulating workloads with a form
of virtual machines (VMs) and run multiple VMs in a single physical server with
the aid of hypervisor. Figure 21 shows the concept of the server consolidation in a
virtualized server environment.
In the server consolidation, we need to take care such that the performance after

the consolidation should not be degraded, or within an acceptable range. To achieve
this goal, many works have developed the consolidation solutions such that the sum
of the peak required utilization among co-located VMs does not exceed the server’s
capability [46]. However, as analyzed inmanyworks [6], the peak utilization happens
rarely and much higher than off-peak (e.g., 90th/95th/99th percentile) values. Thus,
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the server consolidation based on the peak value makes us to lose the opportunity for
further power savings. To overcome the conservative solution, some works [6, 47]
presents server consolidation solution which packs VMs into servers based on off-
peak (e.g., 90th/95th/99th percentile) of server utilization.
The advantage obtained from the server consolidation is obvious in terms of

power savings. However, it may cause unexpected performance degradation due
to the conflict of using shared resources among co-located VMs, especially last-
level cache (LLC) [48, 49]. Tickoo et al. [49] analyzed how the performance is
degraded asVMs are allocated to share LLCwith others using SpecJBB and Sysbench
benchmark suites in order to evaluate the amount of the performance degradation
caused by different cache usage characteristics of co-locatedVMs. The results show
that sharing LLC between two copies ofVMs both hosting SpecJBB leads to∼30%
performance degradationwhile a case of sharingLLCbetweenVMshostingSpecJBB
and Sysbench leads to ∼20% degradation. In [50], Govindan et al. characterize the
amount of interference with a set of parameters, i.e., effective number of used sets
and ways. Then, it presents a solution to allocate VMs by accounting for the amount
of the interference such that the performance interference becomes minimized while
meeting the required performance requirement.

5.2 Correlation-Aware Power and Temperature Management

We can achieve further compact server consolidation by considering correlation
among workload variation. In [51], Verma et al. found out that workloads running
on datacenters are strongly correlated one another. In order to achieve further power
savings while maintaining quality of service (QoS) level, correlations among VMs’
workload have been exploited in recentworks [51–54]. In [51],Verma et al. presented
a clustering-based correlation-aware VM placement solution. To efficiently charac-
terize the workload correlation, it first transforms utilization traces with a form of an
envelope which is defined as a binary sequence which is ‘1’when CPU utilization is
higher than a threshold value, e.g., 90th percentile, otherwise ‘0’. Second, it clusters
VMs such that the envelops ofVMs’CPU utilization included in different clusters do
not overlap. Finally, it allocates VMs to physical servers such that VMs in different
clusters are co-located in a single server so as to minimize the possibility when peaks
are coincided. To meet the performance requirement after the consolidation, it allo-
cates VMs based on their off-peak utilization demands (e.g., 90th percentile) while
reserving a shared peak buffer to handle resource demand higher than the off-peak
value for all co-located VMs. However, this approach is applicable only when the
envelops ofVMs are stationary and distinctively different one from another, thereby,
producing multiple clusters. Hence, it does not work well with applications with
non-stationary and fast-changing VM behaviors.
In [52], Meng et al. presented a joint-VM sizing technique that pairs two un-

correlated VMs into a super-VM and provision super-VMs by predicting the the
aggregated workloads. However, once super-VMs are formed, this solution does not
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a b

Fig. 22 a 90th-percentile response time (in seconds) with respect to the number of clients and
allocated cores. b Variations of CPU utilization of two index searching nodes (ISNs) with respect
the number of clients

consider the correlations of VMs within a same super-VM anymore. Thus, it may
lose the chance of further power savings by leveraging time-varying correlations in
scale-out applications. In [54], Halder et al. extends the scheme such that aggregated
workload of multipleVMs can be utilized forVM placement. However, this solution
can be applicable only when future servers’ utilization is perfectly known.
However, all the correlation-aware VM placement solutions target conventional

HPC application, thereby they cannot work well with scale-out applications whose
workload characteristics are quite different, as we explained in Sect. 1.2. To over-
come the drawbacks of existing solutions, we [56] developed a power management
solution for datacenters hosting scale-out application, especially targeting following
distinctive workload characteristics of scale-out applications. We used a websearch
application in CloudSuite [4] as a proxy to characterize the workload characteristics
of scale-out applications.

• User-interactive and fast changing: Owing to the user-interactive nature of
scale-out applications, responsiveness, quantified in terms of latency, is the first
criterion we need to satisfy when running the applications. Therefore, we should
provision VMs in a conservative manner, based on the peak (or Nth percentile
according to QoS requirement) resource demand of each VM. As the scale-out
applications are commonly highly parallel, we canmeet the required performance
level for runningVMs by assigning the right number of cores. Figure 22a demon-
strates the 90th percentile response time of a websearch cluster with respect to
the number of queries as we vary the number of allocated cores to host the web-
search cluster from 4 to 16. Furthermore, the resource demand is time-varying and
mostly lower than the provisioned amount of resources. However, as described in
[6], due to the significant performance degradation caused by the long transition
latency between power modes and fast changes of resource demands, dynamic
power gating (turning on/off cores) cannot be applicable to such applications.
Motivated by these observation, it is required the solution allocating the right
number of cores for each VM according to its peak (or off-peak depending on
QoS level) resource demand to guarantee QoS levels to all VMs while scaling v/f
level to achieve power savings.
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Table 2 Performance metrics of a web search application co-located with a VM running PARSEC
benchmark: numbers in parenthesis show the case when a web search application is running alone

IPC L2 MPKI L2 miss rate (%)

w/ Backshcoles 0.76 (0.75) 2.38 (2.40) 11.28 (11.57)

w/ Swaptions 0.75 (0.77) 2.32 (2.43) 11.02 (9.63)

w/ Facesim 0.70 (0.70) 2.41 (2.36) 11.41 (11.31)

w/ Canneal 0.76 (0.78) 2.46 (2.43) 11.76 (11.67)

The amount of required CPU utilization of websearch clusters is dynamically
varied as the amount of user requests changes over time. Figure 22b shows the
CPU utilization traces for twoVMswith respects to the number of queries, each of
whichVM is an index serving node (ISN), in a single web search cluster to process
queries requested from the varying number of clients. As shown in the figure, the
CPU utilizations of both VMs are highly synchronized with the variation of the
number of clients. Moreover, the loads betweenVMs in a cluster are not perfectly
balanced because the CPU utilization depends on the amount of matched results
corresponding to a user request. Thus, we can improve the resource utilization by
sharing cores among multiple VMs, such that they can more flexibly use cores
depending on their time-varying resource demands.

• Negligible performance degradation caused by LLC conflict:As analyzed in
[4], the performance degradation caused by sharing caches is negligible because
the required memory footprint is too large to be sustained by on-chip caches.
Table 2 shows the measured performance metrics of a websearch application
when it is allocated to share core and cache with various applications in PARSEC
benchmark suite. We compared instruction per clock cycles (IPC), L2 miss-per-
kilo-instruction (MPKI), and L2miss ratio (percentage), which are obtained using
Xenoprof patched for the AMD15h Bulldozer architecture [55]. The numbers in
parenthesis show the cases before co-location. As presented, there are only neg-
ligible variations over all the metrics before and after the co-location, which
correspond to a negligible performance degradation due to cores sharing. Moti-
vated by these observations, we can efficiently utilize multiple cores in a server
by allocating co-located VMs to share the cores assuming that the performance
degradation is negligible.

• High correlation among VMs: As jobs are distributed to multiple VMs in a
cluster, workloads of VMs within a same cluster are highly correlated compared
to different clusters (or services). In Fig. 22b, we can observe the intra-cluster
correlation between twoVMs in a cluster, both ofwhich are strongly synchronized
with the variation of the number of clients. Thus, the proposed solution takes into
account the pervasive correlation in scale-out applications, i.e., within a cluster
as well as among clusters, such that correlated VMs are not co-located.
Figure 23 illustrates an example of demonstrating the effectiveness of the
correlation-aware VM provisioning solution. Let’s assume that we have two
servers, Server1, and Server2, each of which consists of eight cores, and four
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Fig. 23 A motivational example to show the effectiveness of considering correlation information:
utilization traces (a); VM allocations (b) without considering correlation, and with considering
correlation (c)

VMs, i.e., V M1, V M2, V M3, and V M4, where {V M1,V M2} and {V M3,V M4}
are in Service1 and Service2, respectively. We assume that all the VMs have
the same amount of the tail distribution on CPU utilization, and VMs in a same
service are highly correlated (as load is quite well balanced among VMs) while
VMs in different services are less correlated. Figure 23a shows an example of
CPU utilization traces. If we do not take into account the correlation, we allocate
sets of {V M1,V M2} and {V M3,V M4} into Server1 and Server2, respectively, as
shown in Fig. 23b. In this case, the maximum CPU utilization amounts to 800%
per each server, thereby, all cores should be in active state. However, if we pair
{V M1,V M3 and {V M2,V M4}, as shown in Fig. 23c, the actual maximum uti-
lization can be lowered down to 500 for both servers, thereby, we can turn-off (or
idle low-power state) three cores per each server and/or lower v/f level without
any quality degradation.

Basedon the observations andmotivations above, wepresented a server consolidation
solution in [56]. First, to efficiently capture correlation information, they present a
low-complexitymeasure for evaluatingworkload correlation among co-locatedVMs,
and then, developed VM allocation algorithm.

1) Efficient Correlation Measure for VM Allocation: Pearson product-moment cor-
relation coefficient, orPearson’s correlation, ismostwidely used correlationmeasure
to quantify the correlation of used CPU utilization amongVMs [53]. It is calculated
as the ratio of covariance of the two random variables to the product of their stan-
dard deviations. However, the overhead to calculate the metric for a certain time
interval is high for a short time period due to the concentrated computation at the
end of the time period, because it utilizes the average values of CPU utilization
samples collected during each time period. In addition, Pearson’s correlation is also
partly inefficient because the value reflects correlation throughout the correspond-
ing time interval because we only require the correlation at (off-)peak utilizations
in VM placement. Equation (30) is presented in [56] as a new measure to quantify
the correlation between two VMs to overcome the inefficiency of the conventional
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correlation metric.

Costvm
i,j = ûcpu(V Mi)+ ûcpu(V Mj )

ûcpu(V Mi + V Mj )
(30)

where Costvm
i,j represents the newly defined correlation measure between V Mi and

V Mj . ûcpu(V Mi) is a reference utilization of V Mi , which is either the peak or the
Nth percentile value depending on QoS requirement. The numerator represents the
worst-case peak CPU utilization when the peaks of two VMs coincide, while the
denominator is an aggregated actual peak utilization when V Mi and V Mj are co-
located into a same server. Thus, the higher Costvm

i,j , the lower correlation between
V Mi and V Mj . Moreover, we can update the values at each sampling period of
utilization. Thus, we can save memory space to store all samples as well as evenly
distributing computational effort to measure the correlation across a certain time
horizon. Using our new Costvm

i,j function, we can model correlations among all VMs
by constructing a 2-D matrix, namely,Mvm

cost where the (i,j)-th element corresponds
to Costvm

i,j .

2) Correlation-Aware VM Allocation for Scale-Out Applications Based on the cor-
relation metric in Eq. (30), we can minimize the correlation among co-located VMs
in Serveri , i.e., V

alloc
i = {V Mi,1, · · · ,V Mi,nvm

i
} where nvm

i is the number of VMs
allocated to Serveri , by allocating VMs such that a weight sum of Costvm

i,j is min-
imized while the sum of ûcpu(V Mi,j ) in the server does not exceed the total CPU
capability of the server, i.e., Capi . The correlation of Serveri is defined as follows:

Cost
server
i =

nvm
i∑

j=1
wvm

i,j ·
⎛⎝ Nvm∑

k=1&k �=j

Costvm
j ,k

nvm
i − 1

⎞⎠ (31)

where wvm
i,j represents a weight of V Mi,j , defined as the ratio of û(V Mi,j ) to the sum

of û(V Mi,j )’s of all co-located VMs in Serveri .
The problem is a well-known bin-packing problem [43]. In order to reduce the

solution complexitywithin negligible solution quality degradation, Kim et al. present
a heuristic based on a First-Fit-Decreasing where it first manipulates VMs having
the highest utilization among unallocated VMs. Figure 24 shows a pseudo code to
achieve this goal. In this algorithm, we periodically adjust VM allocation at every
tperiod based on the workload predictions. The algorithm largely consists of two
phases: (1) UPDATE (lines 1 ∼ 8) and (2) ALLOCATE (lines 9 ∼ 18). In the
UPDATE phase, we initialize parameters and update CPU utilization statistics. Then,
we allocate VMs to servers in the ALLOCATE phase.
The UPDATE phase consists of five steps, namely:

• Initialization: a set of unallocated VMs (Vunalloc), sets of allocated VMs (Valloc
i ),

remaining capacity (Remi) for all servers, and a correlation threshold (T Hcost )
(lines 1 ∼ 4).

• Prediction: predict the workload based on history, as we previously prepared in
[43] (line 5).
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Fig. 24 The correlation-aware VM placement presented in [56]

• Sorting: we sort VMs in V
unalloc in descending order of predicted ûcpu(V Mi) to

reduce the fragmentation of the bin-packing problem (line 6)
• Update cost function: update Mvm

corr by updating the Costvm
i,j for all VM pairs

(line 7)
• Estimate the number of active server sets: determine the number of estimated
active servers, i.e., Ñserver , as presented in Eq. (32) (in line 8):

Ñserver =
∑Nvm

i=1 ˜̂ucpu(V Mi)

Ncore

(32)

where ˜̂ucpu represents an estimate of ûcpu. Then, Ñserver is equal to the minimum
number of servers to accommodate all VMs in V

unalloc. We provision VMs to
reduce the number of active servers while satisfying performance requirements.

Based on the update information and the predictions, we allocateVMs inALLOCATE
phase by iterating the procedure (in line 10 ∼ 18) until allVMsare allocated to Ñserver

servers (line 9).

• Select a server having the largest remaining CPU capability, i.e., Remi (line 10).
• Find a VM to be allocated into Serveri which has the highest Cost

server
i with

VMs in V
alloc
i , while satisfying two conditions: (1) Cost

server
i should be larger

than T Hcost ; and (2) ûcpu(V Mi) should be less than or equal to Remi (line 11)
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Fig. 25 CPU utilization traces: correlation-unaware (a) and correlation-aware (b) VM placements
[56]

• Update V
alloc
i , Remi , and V

unalloc accordingly in caase we find a VM (lines
12 ∼ 15)

• Iterate the procedure to findVMs to be allocated in Serveri until until there is no
VM left (lines 12 ∼ 16).

• If we have unallocated VMs at the end of the iteration, we need to repeat the
procedure in lines 10 ∼ 16 with a degenerated T Hcost by a factor of α (line 17)
along with a list of servers sorted in descending order of Remi (line 18)

3) Setting Voltage and Frequency Level Due to the correlation-awareVMallocation,
the actual peak server utilization becomes much lower than the server’s computing
capability. Figure 25 shows the comparisons of CPU utilization traces when we
allocate VMs in correlation-unaware and correlation-aware manner, respectively.
Websearch benchmark is used in CloudSuite benchmark suite [4] and configured
two websearch clusters each of which has twoVMs, i.e., ISNs, in a single websearch
cluster, and applied cosine and sin wave user request patterns to each cluster. In the
figure, V Mi,j represents j -th VM in i-th websearch cluster. As shown in Fig. 22b,
workloads of VMs in a same cluster are highly correlated. Thus, a correlation-
unaware VM placement solution allocates VMs in a same cluster into a same server
as shown in Fig. 25a while the correlation-aware solution allocates VMs in different
websearch clusters into a same server as shown in Fig. 25b.As illustrated in the figure,
the correlation-awareVM placement solution leads to lowered peak CPU utilization,
which enables to lower voltage and frequency (v/f) levels for further power savings.
However, we do not know exactly how much we can lower v/f level when mul-

tiple VMs are co-located into a server because Costvm
i,j only captures the correlation

between two VMs. An empirical solution to provide rough guideline to lower v/f
is provided in [56] which utilizes Cost

server
i in Eq. (31). Figure 26 shows an em-

pirical relationship representing possible v/f slowdown for servers with respect to
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Fig. 26 Relationship between Cost
server
i in Eq. (31) and possible v/f scaling factor

Cost
server
i . The dots are scattered while the red line, which is a form of y = x,

shows the lower bound where we can safely lower v/f level without any performance
degradation. Based on this relationship, we can determine the frequency level of
Serveri , i.e., fi as follows:

fi =
(

1

Cost
server
i

)
·
⎛⎝∑nvm

i

j=1 ûcpu(V Mi,j )

Nserver
core

⎞⎠ · f max (33)

where f max is the maximum frequency level. fi is set by lowering the worst-case
peak required frequency level (i.e., the second parenthesis assuming the situation
when peaks of VMs coincide) with a factor of 1/Cost

server
i .

Figure 27 shows 90th percentile response time of websearch benchmark in four
different VM placement solutions and v/f levels.

• Segregated: allocate VMs into a server such that no VMs share cores
• Shared-UnCorr: allocate VMs to share cores without any consideration on their
correlation

• Shared-Corr (2.1G): correlation-awareVMallocationwhile running a server with
2.1 GHz

• Shared-Corr (1.9G): correlation-awareVMallocationwhile running a server with
1.9 GHz

As shown in Fig. 27, allocating VMs to share cores provides better performance
compared to the segregated allocation case. In addition, the correlation-aware VM
allocation provides better response time compared to the correlation-unaware allo-
cation scheme as it enables to reduce the actual CPU utilization, thereby the lowered
utilization can be used to lower the v/f/ level without any performance degradation
compared to the correlation-unaware solution.
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Fig. 27 90th percentile response time of Cluster1 and Cluster2 for three different VM allocations
in [56]

4) Simulation Results: Effectiveness of the 3Correlation-Aware VM Placement For
further validation of the correlation-aware VM placement, Kim et al. in [56] per-
formed the evaluation using server utilization traces from an actual datacenter setup.
It used CPU utilization traces of 40 VMs where each sample is collected at every 5
min for a day while synthesizing fine-grained utilization per 5 s with a lognormal
random number generator [7], whose mean is the same as the sampled value for the
corresponding 5-min sample. It targeted an Intel Xeon E5410 server configuration
which consists of eight cores and two frequency levels (2.0 GHz and 2.3 GHz) and
used the power model in [33] to compare the power consumption results among
various solutions. It compares three different VM placement approaches as follows.

• Best-Fit-Decreasing placement (BFD): a conventional best-fit-decreasing heuris-
tic approach without taking into account correlation information

• Peak clustering-based placement (PCP) [51]: a correlation-aware VM allocation
clustering VMs based on the envelopes of VMs’ CPU utilization such that VMs
coinciding their peaks of the envelopes are not allocated in a same server

• Correlation-aware placement (CAP) [56]: a correlation-awareVMallocation con-
sidering workload characteristics of scale-out applications manipulating a new
correlation metric in Eq. (30).

Table 3a compares the power consumption and performance violations of the three
approaches when we statically set the v/f level at the time of VM placement, i.e.,
tperiod = 1 h. The power consumption results are normalized with respect to the
power consumed by BFD, and the maximum violation shows the maximum per-
period ratio of the number of over-utilized time instances (i.e., when the aggregated
utilization among co-located VMs is beyond the CPU capacity of a corresponding
server) to tperiod , during the entire periods, i.e., 24 h. CAP provides up to 13.7%
power savings compared to BFD and PCP, while drastically reducing the number of
the violations. It is noteworthy that PCP provides almost similar results with BFD
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Table 3 Comparisons for
static (a) and dynamic
(b) v/f scaling

(a)

Normalized power Maximum violations (%)

BFD 1 18.2

PCP [51] 0.999 18.2

CAP 0.863 2.6

(b)

BFD 1 20.3

PCP 0.997 20.3

CAP 0.958 3.1

because, due to high and fast-changing correlations among VMs in our utilization
traces, PCP classifies VMs into only ‘1’ cluster during the most of the time periods
(22 out of 24 time periods).When the number of clusters is ‘1’, PCP behaves exactly
same with BFD. The power savings obtained by our proposed solution are due to the
aggressive-yet-safe v/f settings utilizing the lowered actual peak resource demand,
i.e., Eq. (33). Moreover, the proposed solution provides a drastic reduction of the vi-
olations (i.e., 15.6%) compared to the other approaches. Note that we allocatedVMs
based on their peak utilizations, which were predicted from the their history. Despite
the provision based on the peak utilization, we observed quality degradation over the
three approaches due to the mis-predictions of the peak utilization, especially during
abrupt workload changes. However, the proposed solution can statistically reduce the
probability of the violation by co-locating uncorrelated VMs. Thus, the probability
of joint under-predictions among the co-located VMs is drastically decreased.
Table 3b shows the comparisons for the simulated case of servers using dynamic

v/f scaling for further investigation of the effectiveness of CAP. To prevent frequent
oscillations of v/f level (which affects server reliability [70]), we performed the v/f
scaling at every 12 samples (i.e., 1 min). As shown in Table 3b, the power savings
become smaller compared to the static v/f scaling because the other approaches also
adaptively scale v/f level according to the time-varying utilization demand. However,
the amount of the violations is unacceptably high in the other approaches. Thus, more
servers need to be activated to achieve the same QoS level obtained by the proposed
solution, which leads to higher power consumption.

6 Power Minimization of Datacenters with Hybrid Cooling
Architectures

The power consumption of datacenter can be further optimized as we jointly reduce
the computing and cooling power consumption because the conventional computing
power minimization solutions discussed in Sect. 5 usually require higher cooling
capability due to the increased heat density of active servers by increasing actual
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Fig. 28 Proposed solution overview [43]

CPU utilization. Especially, when it comes along with hybrid cooling solutions in
a datacenter [26–28, 59–58], explained in Sect. 2.2, we need to revisit existing VM
placement solutions [60–65] as it further reduces the chance of using free cooling as
the solutions requires higher cooling capability due to the higher operating tempera-
ture of active servers. Motivated by this observation, Kim et al. present a joint power
and thermal optimization solution for datacenters equipped with hybrid cooling ar-
chitecutre to achieve further power savings while satisfying service-level agreement
(SLA) requirements by extending the usability of free cooling for datacenters having
a hybrid cooling architecture [43]. Figure 28 illustrates the solution overview ex-
plained in this section. The solution largely takes into account four input parameters
as follows:

• Climate condition
• Workload characteristics
• Temperature profile in a server room
• Server cooling architecture

As the climate condition and workload characteristics are non-deterministic, the
solution is implemented using a predictive control scheme utilizing predictions of
the values. The temperature profile of a server room and the dependency between
the server temperature and cooling solutions can be modeled using the solutions
explained in Sect. 3.
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6.1 Formal Problem Definition

To jointly minimize the computing and cooling power consumption of a datacenter
equipped with hybrid cooling architecture, we need to determine the optimal pair of
cooling mode,mco (electrical vs. free cooling) and maximum power consumption of
active servers (namely, power capping) based on four input parameters. In addition,
switching cooling mode, i.e., turning on and off chillers, leads to overhead in terms
of power and time. Thus, we jointly minimize the number of cooling mode switches
alongwith the power consumption by judiciously considering the switching overhead
into the objective function. Based on the requirements, the problemcan be formulated
as follows:

Find χ = {mco, [bi,j ]Npm×Nvm} (34)

Minimize Jdc = Pcl + Pco + Otr (35)

Subject to Tpmi
≤ T max

pm , where 1 ≤ i ≤ Npm (36)

Pr(tact > treq) ≤ (1− β) (37)

The problem we are trying to tackle is two-fold, namely, determining both the (1)
cooling mode and (2)VM placement such that the power consumption of datacenter,
i.e., Pdc = Pcl + Pco where Pcl and Pco represent the computing and cooling power
consumption in a datacenter, and the overhead caused by cooling mode transition,
i.e., Otr , are jointly minimized while satisfying temperature and SLA requirements.
mco represents datacenter cooling mode: ‘1’when free cooling is selected, otherwise
‘0’; bi,j is a binary variable representing VM placement: ‘1’ when vmj is mapped
into pmi ; Npm and Nvm represent the number of servers and VMs, respectively;
Jdc is an objective function consisting of power consumption of datacenter, i.e.,
Pdc = Pcl +Pco, and overhead caused by switching coolingmode, i.e.,Otr ; Tpmi

and
T max

pm represent temperature of i-th server (or physical machine) and the maximum
temperature constraint of servers, respectively. Then, tact and treq are actual and
required execution time, respectively, and Pr(tact > treq) represents the probability
when tact is larger than treq ; β is SLA requirement.
As a matter of fact, this optimization problem can be translated into a bin-packing

problem with variable bin size by exploiting the analogy between a bin and a server
because, for a given bin size (analogy with threshold of server utilization), the power
consumption is minimized when the number of bins (analogy with the number of
active servers in which VMs are assigned) is minimized, i.e., server consolidation.
Hence, the bin size, i.e., the threshold of server utilization, depends on mco as well
as Tout . However, due to the interdependency between mco and bi,j ’s, the solution
complexity is even higher than conventional bin-packing problem.
To reduce the solution complexity, we can solve this problem with a two-phase

solution. First, we determine a power-optimal pair of {mco, uth
pm} such that Jdc is

minimized while satisfying temperature and performance requirements assuming
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that ideal VM consolidation3 is applied, i.e., utilization of every active server equals
to uth

pm while others are ‘0’. Second, we assign VMs to servers such that the number
of servers where VMs are allocated is minimized while total utilization of every
server does not exceed uth

pm. Moreover, in order to achieve further improvement by
considering time-varying characteristics of Tout and the user requests, we iterate the
optimization procedure at every predefined time interval, topt . Note that we can reuse
server consolidation techniques explained in Sect. 5. Therefore, in this section, we
simply focus on explaining the first step of this problem.

6.2 Multi-objective Trade-offs Exploration Between Cooling
Mode and Utilization Threshold

We explore the best approach to determine the optimal pair of {mco, uth
pm} which

minimizes the multi-objective function, Jdc. Since external conditions, i.e., outside
temperature and user requests, are time-varying, the optimal pair of {mco, uth

pm} varies
as well. Thus, we periodically adjust {mco, uth

pm} based on the predictions of the
external conditions and the predictive sequence of coolingmode transition.Assuming
the ideal VM consolidation at a certain instant, we can approximate the problem as
follows:

Find χ (k) = {mco(k), u
th
pm(k)} (38)

Min Jdc(k) =
k+Nh−1∑

l=k

αl−k
(
P̃cl(l)+ P̃co(l)+ Õtr (l)

)
(39)

s.t uth
pm(l) ≥ Ûtot (l)

Npm

, ∀l ∈ [k, k + Nh − 1] (40)

uth
pm(l) ≤ min

(
umax

pm , u
temp,max
pm (l)

)
, ∀l (41)

where Nh is the number of time periods; α is a weighting factor, 0 ≤ α ≤ 1; P̃cl(l),
P̃co(l), and Õtr (l) are predictions of Pcl , Pco, and Otr at the l-th period, which are
expressed as follows:

P̃cl(l) =
∑

mode∈{act ,idle,sleep}
Ñmode

pm (l)P̃ mode
pm (l) (42)

P̃co(l) = (PUE(uth
pm(l))− 1) · P̃cl(l) (43)

Õtr (l) = wco
tr · (mco(l)− mco(l − 1))2 (44)

3 In order to reduce the solution complexity, we find the solution assuming that the ideal VM
consolidation. The approach is optimistic in that the estimated power consumption is lower than
actual scenario due to the fragmentation of the server utilization caused by different utilizations
amongVMsand fractional ratio of the obtained server utilization toVMutilization in actual scenario.
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where P̃ mode
pm (l) is the estimated average power consumption of server at the l-th

period when the operating mode of the server is active (i.e., upm = uth
pm(k) based

on the assumption of ideal VM consolidation), idle, and sleep modes. Ñmode
pm (l) is

the corresponding number of servers. PUE is obtained using Eq. (14). (mco(l) −
mco(l − 1))2 represents whether cooling mode is switched at the l-th period, and wco

tr

is a weighting factor which models the overhead caused by cooling mode transition.
Ñact

pm (l), Ñ
idle
pm (l), and Ñ

sleep
pm (l) are defined as follows:

Ñact
pm (l) = Ũtot (l)

uth
pm(l)

(45)

Ñ idle
pm (l) = Ûtot (l)

uth
pm(l)

− Ñact
pm (l) (46)

Ñ sleep
pm (l) = Npm − (Ñact

pm (l)+ Ñ idle
pm (l)) (47)

whereNpm is the number of servers; Ũtot (l) is the prediction of average user requests
normalizedwith respect to themaximumnumber of user requests processed by single
server, i.e., 0 ≤ Ũtot (l) ≤ Npm; Ûtot (l) is the normalized maximum4 user requests
which is characterized a priori based on extensive characterization.
The first constraint (Eq. (40)) represents the lower bound of uth

pm(l) which is

determined such that Ûtot (l) user requests can be processed while satisfying SLA
requirement. The second constraint (Eq. (41)) represents the upper bound of uth

pm(l),
which is determined by the minimum value between the utilization level where
multiple VMs can run in a single server without acceptable performance loss (i.e.,
umax

pm ) and the highest utilization satisfying maximum temperature constraint, i.e.,

utemp,max
pm (l) which is obtained from temperature models in Sect. 3.1.
At the start of k-th period, we solve the optimization problem with two steps: (1)

prediction of the external condition, i.e., Ũtot and Tout for [k, k + Nh − 1]-th periods
and (2) optimization to find {mco(k), uth

pm(k)}.
1) Temperature and Workload Prediction At the start of k-th period, we predict
Tout (l) and Ũtot (l) where k ≤ l ≤ (k + Nh − 1). Prediction of Tout ’s can accurately
be predicted by daily and weekly weather forecast. However, accurate prediction
of Ũtot ’s is not trivial due to uncertain and non-stationary characteristics of user
requests. For accurate prediction, we adopt non-stationary Kalman filter [66], which
outperforms other predictors especially when a prediction value is uncertain and
non-stationary.

Ũtot (k) is predicted based on the history of measured Utot in past few periods as
well as the history of the same period in past few days (or weeks). The predictions

4 In this work, we target the SLA violation to be less than 5%. Thus, we used 95th-percentile
value instead of the maximum value to characterize the worst-case behavior of the corresponding
period. Considering the correlation amongVMs, we can use lower percentile values, e.g., 90-, 80-th
percentile, etc., to reduce more power consumption while satisfying SLA requirement, as presented
in [51]. Our optimization approach is directly applicable to these cases as well.
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Fig. 29 An example of the
predictive control scheme
when Nh = 3

χ dc(k+)

χ dc(k)

χ dc(k+2)

Predic�on horizon

obtained from the former history is denoted as Ũ
(1)
tot (k) while the other is denoted as

Ũ
(2)
tot (k). Then, we can obtain Ũtot (k) by a weighted sum of Ũ

(1)
tot (k) and Ũ

(2)
tot (k) as

follows:

Ũtot (k) = w(1)p Ũ
(1)
tot (k)+ (1− w(1)p )Ũ

(2)
tot (k) (48)

where weight, w(i)p (k) is weight factor.

2) Predictive Control Scheme To solve the multi-objective problem considering the
uncertainty of Tout and Ũtot , we adopt receding horizon control scheme as shown
in Fig. 29. At the start of the k-th period, we first predict Ũtot ’s and Tout ’s for
[k, k + Nh − 1]-th periods as explained in Sect. 6.2. Second, we find the optimal
utilization threshold corresponding to each cooling mode, i.e., mco = {0, 1}, for
[k, k + Nh − 1]-th periods, as follows. For a given cooling mode, we can express
P̃dc(k) = P̃dc(k)+P̃cl(k) as a continuous formwith respect to uth

pm(k) usingEqs. (42)–

(47). In addition, P̃dc(k) is convexwith respect touth
pm(k) because, asuth

pm(k) increases,

P̃cl(k) is monotonically decreased (due to the decreased number of active servers)
while P̃co(k) increases because PUE is monotonically increased. Figure 30 shows the
relationship of the power consumption with respect to the uth

pm. When an electrical
cooling is used, we can find an inflection point as the computing and the cooling
power consumptions varies in opposite directions. When a free cooling is used, the
total power consumption is usually decreased as the decrease of the computing power
as upm

th increases is much larger than the increase of the cooling power. However, the
cooling capability of the free cooling is limited, thereby, upm

th cannot be set too high.
Owing to the continuity and convexity of P̃dc(k) with respect to uth

pm(k) for given
mco(k), the unconstrained optimal solution of uth

pm(k) can be obtained by finding
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value which satisfies following equation.

Find uth
pm(k) �⇒ ∂

(
Pcl(k)+ Pco(k)

)
∂uth

pm(k)
= 0 (49)

The root can be efficiently obtained by root-finding algorithms, e.g., Newton-
Raphson method, binary search, etc. [67]. When uth

pm(k) satisfies the constraint,
we directly set utilization threshold with uth

pm(k); otherwise, we set uth
pm(k) with

lower-bound (Eq. (40)) and upper-bound (Eq. (41)) values so as to satisfy the
constraint.
Third, with the pairs of {mco, uth

pm}’s and including the overhead caused by cooling
mode transition, i.e., Otr , we find the optimal sequence of cooling mode transition
from k-th to (k + Nh − 1)-th periods, i.e., χdc(k) → χdc(k + 1|k) → · · · →
χdc(k + Nh − 1|k) where χdc(k + l|k) is the optimal solution at (k + l)-th period
when χdc(k) is determined as the optimal solution at k-th period. Then, we select
only χdc(k) and discard the other steps of the sequence. Finally, the entire process is
repeated at the start of (k + 1)-th period with the updated predictions.
The complexity is O(NNh−1

pm ). Despite the exponential complexity, the solution
can normally be found in low overhead by confining the search range to the proximity
of previous Npm’s.
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Table 4 Comparisons of power consumption and number of cooling mode transitions inMay, June,
and July

Period FIXED-TEMP P-ADAPTIVE PT-ADAPTIVE

May 1 ∼May 4 1.00 / 7 0.781 / 8 0.784 / 6

June 1 ∼ June 4 1.00 / 0 0.738 / 8 0.743 / 4

July 1 ∼ July 4 1.00 / 0 0.879 / 29 0.898 / 13

6.3 Simulation Results

To evaluate the effectiveness of the joint optimization, we used CloudSim [68], an
event-driven simulator providing toolkits to model behavior of cloud system com-
ponents such as datacenters, virtual machines (VMs), and scheduling policies. We
configured the target system with 100 servers and 100 VMs and used temperature
data measured at EPFL in Lausanne, Switzerland from May 2008 to July 2008. To
account for the overhead caused by VM migration, we assumed 100 s and 10% as
the migration time and performance degrdation, respectively. Then, we compared
the following cooling mode decision solutions for datacenters:

• FIXED-TEMP: a conventional cooling mode decision scheme which uses free
cooling only when Tout is lower than fixed pre-defined temperature, i.e., Tth =
10 ◦C [28], and sets uth

pm to umax
pm .

• P-ADAPTIVE: this is our first proposed scheme which adaptively adjusts the
cooling mode and the utilization threshold such that only power consumption of
datacenter is minimized.

• PT-ADAPTIVE: this is our second proposed scheme which jointly optimizes the
power consumption and transition overhead caused by cooling mode transition
with receding horizon control scheme.

To simply evaluate the effectiveness of the joint cooling mode decision scheme, we
applied the same VM allocation solution based on the peak [46] for all the three
comparisons above. Remind that these solutions are complementary with existing
VM allocation and power management solutions.
Table 4 shows the comparisons in terms of power consumption and number of

cooling mode transitions during the first four days in May, Jun, and July. The first
column represents the simulated time period. The second to fourth columns show
the normalized power consumption with respect to FIXED-TEMP and the number
of cooling mode transitions in each month.
First, in May, PT-ADAPTIVE yields 21.6% power savings compared to FIXED-

TEMP. The reason for the improvement can be analyzed by observing the traces of
cooling mode and utilization schedules presented in Fig. 31 where a and b depict
the traces for FIXED-TEMP and PT-ADAPTIVE, respectively. X-axis represent
data (month/date) and the left and right Y-axis are cooling mode/utilization and
outside temperature, respectively. The temperature ranges 7 ∼ 22 ◦C inMay, thereby
FIXED-TEMP uses the free cooling for short time period only when the outside
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a b

Fig. 31 Schedule of free mode and utilization threshold in May: MAX-UTIL (a) and PT-
ADAPTIVE(b)

Table 5 Comparisons of power consumption and the number of cooling mode transitions as
Pstatic/Ptot changes in June

Pstatic/Ptot FIXED-TEMP P-ADAPTIVE PT-ADAPTIVE

0.3 1.00 / 0 0.722 / 2 0.722 / 2

0.5 1.00 / 0 0.738 / 8 0.743 / 4

0.7 1.00 / 0 0.852 / 24 0.878 /12

temperature is lower than the threshold value, i.e., 10 ◦C in this evaluation. On the
contrary, PT-ADAPTIVE enables to use the free cooling for the longer time period
as it dynamically adjusts the maximum power consumption of servers by capping
the maximum server utilization according to the amount of demanding workload and
the outside temperature.
The most highest power savings are observed in June, i.e., 25.7%. The reason is

that the outside temperature is always higher than 10 ◦C, which makes impossible to
use the free cooling in FIXED-TEMP while PT-ADAPTIVE still decides to use the
free cooling by lowering the maximum server power consumption. However, in July,
the temperature is too high to use the free cooling while meeting the performance
requirements despite capping the maximum server power consumption, which leads
to rather smaller power savings, i.e., 10.2%, compared to other months.
Compared to P-ADAPTIVE, PT-ADAPTIVE provides almost similar (or slightly

less) power savings. However, PT-ADAPTIVE schedules the cooling mode such
that the number of cooling mode transitions is drastically reduced by accounting
for the overhead caused by the cooling mode transitions. Especially, in July, P-
ADAPTIVE switches the cooling mode too often, i.e., around 7 times per day while
PT-ADAPTIVE can reduce the number of transitions down to 3.25 times per day.
Figure 32a and b show the traces of P-ADAPTIVE and PT-ADAPTIVE in July,
respectively.
One important observation is that the effectiveness of PT-ADAPTIVE gets en-

hanced as the energy proportionality of server becomes improvement, which is the
direction where server designers are now focusing on. Table 5 shows the normalized
power consumption in June as the power-proportionality of servers, defined as the
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a b

Fig. 32 Schedule of free mode and utilization threshold in July: P-ADAPTIVE (a) and
PT-ADAPTIVE(b)

ratio of the static power to the total power consumption, i.e., Pstatic/Ptot , is at 0.3,
0.5, and 0.7. As shown in Table 5, PT-ADAPTIVE provides more power savings
as Pstatic/Ptot is lowered. As a matter of fact, when Pstatic/Ptot is low, we can use
free cooling for longer periods of time by lowering the server utilization threshold,
thereby we have a smaller number of active servers. Furthermore, as state-of-the-art
servers are designed to achieve higher energy-proportionality [69], these experi-
ments demonstrate that PT-ADAPTIVE is able to provide even more power savings
in possible future datacenter setups.

7 Conclusions

Recently, the energy-efficiency constraints have become the dominant limiting factor
for datacenters due to their unprecedented increase of growing size and electrical
power demands. In this chapter, we have explained the power and thermal modeling
and control solutions which can play a key role to reduce the power consumption of
datacenters considering time-varying workload characteristics while maintaining the
performance requirements and the maximum temperature constraints. We have first
explained simple-yet-accurate power and temperature models for computing servers,
and then, extended themodel to cover computing servers and cooling infrastructure of
datacenters. Second, we have presented the power and thermalmanagement solutions
for servers manipulating various control knobs such as voltage and frequency of
servers, workload allocation, and even cooling capability, especially, flow rate of
liquid cooled servers). Finally, we have presented the solution to minimize the server
clusters of datacenters by proposing a solution which judiciously allocates virtual
machines to servers considering their correlation, and then, the joint optimization
solution which enables to minimize the total energy consumption of datacenters
with hybrid cooling architecture (including the computing servers and the cooling
infrastructure of datacenters).
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