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The performance, energy efficiency and cost improvements due to tradition-

al technology scaling have begun to slow down and present diminishing returns.

Underlying reasons for this trend include fundamental physical limits of transis-

tor scaling, the growing significance of quantum effects as transistors shrink, and a

growing mismatch between transistors and interconnects regarding size, speed and

power. Continued Moore’s Law scaling will not come from technology scaling alone,

and must involve improvements to design tools and development of new disruptive

technologies such as 3D integration. 3D integration presents potential improve-

ments to interconnect power and delay by translating the routing problem into a

third dimension, and facilitates transistor density scaling independent of technology

node.

Furthermore, 3D IC technology opens up a new architectural design space of

heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to

provide the CPU architectures of the future by integrating high performance proces-



sors with on-chip high-bandwidth memory systems and highly connected network-

on-chip structures. Such techniques can overcome the well-known CPU performance

bottlenecks referred to as memory and communication wall.

However the promising improvements to performance and energy efficiency

offered by 3D CPUs does not come without cost, both in the financial investments

to develop the technology, and the increased complexity of design. Two main limi-

tations to 3D IC technology have been heat removal and TSV reliability. Transistor

stacking creates increases in power density, current density and thermal resistance in

air cooled packages. Furthermore the technology introduces vertical through silicon

vias (TSVs) that create new points of failure in the chip and require development

of new BEOL technologies. Although these issues can be controlled to some exten-

t using thermal-reliability aware physical and architectural 3D design techniques,

high performance embedded cooling schemes, such as micro-fluidic (MF) cooling,

are fundamentally necessary to unlock the true potential of 3D ICs.

A new paradigm is being put forth which integrates the computational, elec-

trical, physical, thermal and reliability views of a system. The unification of these

diverse aspects of integrated circuits is called Co-Design. Independent design and

optimization of each aspect leads to sub-optimal designs due to a lack of under-

standing of cross-domain interactions and their impacts on the feasibility region of

the architectural design space. Co-Design enables optimization across layers with a

multi-domain view and thus unlocks new high-performance and energy efficient con-

figurations. Although the co-design paradigm is becoming increasingly necessary in

all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-



layer coupling and higher degree of connectivity between components exacerbates

the interdependence between architectural parameters, physical design parameters

and the multitude of metrics of interest to the designer (i.e. power, performance,

temperature and reliability). In this dissertation we present a framework for multi-

domain co-simulation and co-optimization of 3D CPU architectures with both air

and MF cooling solutions. Finally we propose an approach for design space explo-

ration and modeling within the new Co-Design paradigm, and discuss the possible

avenues for improvement of this work in the future.
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Chapter 1: Introduction

CMOS technology has for the last half century taken advantage of aggressive

technology scaling, resulting in faster and more densely packed transistors that have

provided exponential increases in computing capacity. Over the years, the consumer

market for semiconductors has come to expect such a rate of growth to continue

far into the future. However, today transistor scaling is approaching fundamental

physical and economic limits, and already the rate of increase in computing power

and performance has begun to slow.

Vertical integration (3D ICs) is an emerging technology which promises to rein-

vigorate Moore’s Law performance scaling by reducing interconnect power and delay,

and facilitating new heterogeneous computer architectures such as stacked memory-

on-logic CPUs [9–11]. Additionally, logic-on-logic stacking can create more highly

connected circuits and increase inter-core communication bandwidth in multi-core

CPUs [7, 12, 13]. Stacking memory-on-logic can provide a high-bandwidth memory

interface to the processor [9, 14], overcoming the memory wall [6] and facilitating

the processing in memory paradigm [11].
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Thus 3D integration brings the potential of many advantages both at the cir-

cuit and architectural level. However these advantages come with a cost in terms

of physical constraints and increased dependencies between CPU components and

across metric domains. The chief limitation associated with 3D ICs is thermal in

nature [8,14–16]. Vertical stacking inherently increases power flux while inter-layer

dielectrics significantly increase the thermal resistance of the stack. Other limita-

tions come from the introduction of through silicon vias (TSVs) which introduce

new failure modes [17–19] and sources of noise coupling [20–24] while increasing the

impedance of the power delivery network [25,26].

Increased thermal insulation makes 3D IC temperature a much more highly

coupled function of CPU architecture, performance and power [8, 27]. Furthermore

it is well known that critical path delay, leakage power and reliability are strong

functions of temperature, creating an interconnected network of metrics that all in-

fluence each other. Although the same fundamental relationships exist in 2D ICs,

the higher connectivity, and spatial coupling between stacked components exacer-

bate these inter-dependencies in 3D to such an extent that simultaneous modeling

and optimization is a must [27–32].

In this dissertation we explore the potential of 3D CPU architectural oppor-

tunities and evaluate the associated challenges (e.g., thermal and reliability issues)

and their implications on the architectural feasibility space. We propose a co-design

paradigm to design 3D CPUs to maximize their performance and/or energy ef-
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ficiency under physical constraints and finally propose a modeling and simulation

methodology for high dimensionality design space exploration of the 3D CPU design

space.

1.1 Advantages of 3D Integration

As transistor sizes approach atomic scale, quantum effects that have tradi-

tionally been insignificant begin to significantly effect behavior. Moreover transistor

size is fundamentally limited by the dimensions of the atoms used to construct

them. Additionally, the traditional scaling trend of manufacturing cost per transis-

tor (Figure 1.1(a)) is expected to stall out very soon, removing a significant economic

incentive to invest in future technology nodes [3].

Another issue causing Moore’s Law scaling to end is the growing gap in perfor-

mance and power efficiency of transistors vs. interconnect [4,5]. Figures 1.1(b) and

1.1(c) show the trends of transistor and interconnect delay and power respectively as

technology has advanced. Transistors are clearly increasing in speed due to smaller

input capacitance whereas interconnect is decreasing in speed due to smaller more

resistive wires, and more wire-wire parasitic capacitance [33]. For similar reasons,

chip-scale transistor power remains nearly flat over time while interconnect power is

increasing at a much faster rate [5]. Closing the gap between transistors and wires is

necessary to continue historical scaling trends of power and performance over time.
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Figure 1.1: (a) Transistor cost [3] (b) wire/gate delay [4] (c) wire/gate power [5]
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Engineers are aggressively investigating new technologies and paradigm shifts

that can continue to provide the market with the growth it expects, even as technol-

ogy scaling has begun to stall out. Transistors have traditionally been laid out in a

two dimensional plane on a silicon wafer. One technique to improve transistor and

interconnect density without the use of technology scaling is to pack transistors into

three dimensional space, resulting in what are called three-dimensional integrated

circuits (3D ICs). In addition to increasing transistor density, which can increase

circuit performance and reduce power consumption, 3D integration can theoretical-

ly reduce interconnect length by a factor of
√
N where N is the number of stacked

layers [34]. Assuming optimal buffer insertion, this would reduce wire delay and

power proportionally [35].

Another advantage of vertical integration is chip level integration of circuits

manufactured in disparate technologies, referred to as heterogeneous integration.

This allows circuits such as analog sensors, MEMs, RF, DRAM, and CMOS to all

be integrated together, extending the system on a chip (SoC) paradigm to many

new applications. Not only can heterogeneous integration make new SoC designs

feasible, it can improve the quality of current SoC designs, by allowing different

components of the design to be fabricated in a manufacturing process optimized

for that specific component. Circuits that are traditionally fabricated as separate

chips and connected using an interposer or PCB can be vertically integrated with

TSVs, greatly increasing the bandwidth between these chips, and opening up oppor-

tunity to redesign how such circuits interact with one another, possibly increasing

performance and/or decreasing power consumption.
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1.2 Thermal and Reliability Issues

Temperature and reliability are two of the most important challenges associ-

ated with 3D ICs. Other challenges include signal integrity and power delivery [26].

Thermal challenges arise from the increased power flux inherent to 3D stacking.

High temperatures can cause timing violations by increasing transistor and inter-

connect resistance, and excessively high temperatures can even cause permanent

physical damage to the chip. Thus chip temperature plays a critical roll in both

soft and hard error reliability. Temperature significantly effects leakage power. In-

creased power leads to higher current density which can cause electromigration and

IR voltage drop in the power delivery network (PDN). Furthermore temperature

fluctuations can cause TSV defect formation from thermal cycling and so called

TSV pop-out and delamination [36].

Although traditional 2D circuits can address the thermal and related reliability

issues by attaching a large heatsink to the back side of the chip to dissipate the heat

to the environment, this approach is not applicable to 3D ICs. An attached heatsink

can only remove significant heat from the top layer, as other layers are sandwiched

between electrical isolation layers composed of SiO2 which block heat dissipation

and cause high temperatures [27, 28]. We refer to this as the trapped heat effect

(Figure 2.6). Micro-fluidic cooling is a promising technology for localized embedded

cooling that can overcome the trapped heat effect and scale cooling capacity with
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number of layers. In our work we examine the power, performance, thermal and

reliability interdependence and show the massive potential of micro-fluidically cooled

and multi-objective co-design in 3D CPUs.

1.3 3D IC Co-Design

In the previous sections we have discussed the physical design challenges (e.g.,

temperature and reliability) and the architectural opportunities of 3D integration.

Traditionally the physical and architectural designs are performed independently in

sequence using different levels of abstraction. Moreover, even within the physical

design domain, design problems are tackled sequentially, and cross-domain opti-
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mizations are not usually considered. A new paradigm which integrates the compu-

tational, electrical, physical, thermal and reliability views of the system is gaining

steam. This unification of diverse aspects of the overall integrated system is called

Co-design. Co-design enables optimizations across different layers of the design hi-

erarchy which are not possible through a conventional top down design approach

thereby unlocking new high performance configurations.

In the remainder of this dissertation we use 3D CPUs as a case study to

exemplify the interdependence of the physical and architectural design spaces. We

use a novel simulation flow which integrates placement, temperature and reliability

design challenges into a unified framework for architectural-physical optimization

and analysis (Chapter 3).

Figure 1.2 illustrates the cause and effect relationships from some chosen design

variables to the optimization and constraint metrics of interest. The figure clearly

illustrates the interdependence between the terminal and intermediate nodes, and no

metric of interest can be determined without simultaneous consideration of all design

variables. The interconnectedness of this relationship graph strongly motivates the

need for the co-design paradigm. Isolating any subset of graph nodes from Figure 1.2

requires cutting many edges. In other words estimates calculated from a subset of

design metrics, variables and objective functions suffer from comprised accuracy due

to the high connectivity in the graph and large loss of information when graph edges

are removed.
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Furthermore, we observe that the relationship graph contains cycles, which

imply nested loops within a simulation flow. An example is the interdependence of

temperature and leakage power. Leakage power increases as temperature elevates,

and likewise temperature will rise when leakage power increases. Iterative simula-

tions are required to accurately capture such inter-dependencies. Co-design design

space exploration (DSE) is a computationally intensive problem due to both opti-

mization loops and nested simulation loops within the evaluation flow of a single

design candidate.

1.4 Thesis Outline

In this thesis we first provide some in depth background information on 3D

CPUs in Chapter 2. This includes details on the architectural advantages of 3D

integration, the physical design issues and micro-fluidic cooling. In Chapter 3 we

introduce the simulation flow used to estimate metrics of interest for a given 3D

CPU architecture, including performance, power, temperature and reliability. Fur-

thermore we introduce here the physical design optimization loops evaluated in

Chapter 5.

Chapter 4 evaluates the advantages in performance and energy efficiency that

can be achieved by 3D CPUs. Our first study shows significant performance poten-

tial, but this potential is not realized with traditional air cooling, and MF cooling

is required to unlock the benefits of high-bandwidth stacked memory. In our second

study we consider how micro-fluidic cooling and 3D memory-on-logic stacking can
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revitalize the classic frequency scaling paradigm in parallel with the current core

scaling model. Some of the major reasons frequency scaling came to an end was

temperature and memory bandwidth issues, which are largely overcome by memory-

on-logic stacking and MF cooling.

Chapter 5 evaluates the effectiveness of physical co-design towards expanding

the 3D CPU architectural design space feasibility region and thus unlocking new

high-performance high-energy-efficient CPU architectures of the future. Physical

design of both the logic and the heatsink are explored subject to simultaneous and

interrelated temperature and reliability constraints. One interesting result is that

temperature and reliability optimization can be at conflict with one another, which

seems counter-intuitive, and further justifies the need for a co-design approach that

is aware of the intricate trade-offs between multiple design variables.

Another study reported in this chapter investigates the fundamental trade-

off between cooling capacity and inter-layer bandwidth (i.e. TSV density) in a MF

cooled 3D IC. We show that using a generic heatsink design geared towards minimiz-

ing temperature or maximizing TSV density only leads to significant performance

sub-optimality, and a co-design approach is necessary to discover the best heatsink

parameters for each architectural design point.

Chapter 6 introduces a modeling and simulation scheme to bring the co-

design framework discussed in previous chapters into practical use on large multi-

dimensional problems. The 3D CPU co-simulation framework introduced in Chap-

ter 3 covers a wide array of different simulations and model, and thus consumes

a non-trivial amount of compute resources. Exhaustive application of this simu-
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lation flow over a large industry-scale design space may not be computationally

feasible. Thus we propose a methodology to accurately predict the design space and

identify regions of interest (e.g., optimal-feasible region or Pareto optimal front)

while simulating only a small percentage of the design space. Our results show high

accuracy compared to randomized or modeling-only approaches, and makes the co-

design paradigm developed in this dissertation practically applicable to real design

problems.

Finally Chapter 7 concludes the dissertation with a summary of the work com-

pleted, and some recommendations for future work. Avenues for continuation of the

work begun in this dissertation include integration of additional design metrics and

models, a hierarchical co-design framework to progress from high-level to detailed

design, efficient methods of cutting the co-design graph to balance design time with

quality, and the integration of runtime management approaches into the co-design

framework.
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Chapter 2: 3D CPUs: Background and Motivation

3D Stacking is an emerging technology which offers many new opportunities

for high performance CPU architectures. The memory wall [9] is a known hurtle to

future performance and power scaling, and 3D integration is a promising technology

to overcome it. Stacked memory circuits are already in commercial production

[37,38] and heterogeneous memory-on-logic CPUs are being aggressively researched

and prototyped [14,27,39]. Moreover, communication overheads in both power and

delay have become more and more significant as we have entered the age of big data.

This is the so-called communication wall [40]. 3D CPUs offer new solutions such

as high-bandwidth on-chip processing-in-memory [11, 41, 42] and highly connected

3D NOC topologies [13, 27, 43]. Finally we discuss some of the physical challenges

associated with 3D CPUs, potential solutions, and the need for a co-design paradigm

to optimize for strong architectural-physical interactions inherent to 3D CPUs.

2.1 Three-Dimensional Integration

3D ICs are formed by stacking multiple layers of traditional (2D) ICs one atop

the other. Some nets in the 3D circuit span multiple layers, and must be connected

with vertical interconnects. The most prominent type of vertical interconnect is
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called the through silicon via (TSV). TSVs are vertical columns of metal that pass

through the silicon substrate and connect the horizontal metal wires in adjacent IC

layers, as shown in Figure 2.1. TSVs are used to deliver both signals and power

between layers of a 3D IC. Because a TSV passes through the substrate, transistors

and TSVs cannot coexist at that same location in the same layer. Hence TSV place-

ment effects the positions of transistors and the length of wires, which determine

the overall delay of a circuit.

TSVs pass through the electrically charged and conductive silicon substrate,

and so they must be surrounded by a layer of insulating material to decouple them

from the substrate. This layer of insulation is called the liner, and is typically made

of silicon dioxide (SiO2). There exists a minimum spacing between TSVs and other

features such as transistors and other TSVs, which must be enforced in order to

guarantee proper functionality of the chip. This minimum spacing is called the keep
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out zone (KOZ) and is determined by the precision of the manufacturing process and

TSV effects such as thermally-induced stress around a TSV due to the mismatch in

thermal expansion of the silicon, the liner, and the TSV [44].

Vertical integration is a promising new technology and can continue transistor

density scaling as technology scaling slows down due to physical limitations. Beyond

transistor density scaling, 3D integration brings other unique advantages. Because

each layer in a chip stack is manufactured independently, 3D integration can fa-

cilitate heterogeneous integration by manufacturing different layers with disparate

manufacturing processes. Vertical integration also increases the overall connectivity

of a system by decreasing the average distance between system components, thus

decreasing global wirelengths, critical path delays and interconnect power. By im-

plementing a circuit in N layers, the global wirelength can be reduced by up to a

factor of
√
N [34].

2.2 Memory Wall

The so-called memory wall describes the limitation put on processor perfor-

mance and energy efficiency due to a lack of high-bandwidth, high-density low-power

DRAM circuits. The term was originally coined to describe the gap in CPU and

memory performance, as shown in Figure 2.2. An initial solution to this gap was

the addition of cache memory on chip to hide the DRAM latency, but caches are

limited in size due to silicon area and leakage power constraints. Moreover as the

multi-core paradigm has matured, memory bandwidth has become a limitation not
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just due to DRAM speed, but also due to increased memory access rates as more

cores operate in parallel. The memory wall is a key obstacle in the climb towards

next generation computing: both mobile and exascale supercomputing.

2.3 3D Memories

3D integration is an enabling technology to further the three memory design

goals: higher density, higher bandwidth, and lower power. Vertical stacking inher-

ently increases memory density within a fixed footprint area, and heterogeneous

integration facilitates high speed, and/or very wide TSV memory buses which dis-

sipate considerably less power than their off-chip counterparts.

Two main strategies have been employed towards bringing 3D memory into

the commercial market. One focuses on speed using very high speed differentially

signaled serial interconnects. Although this strategy increases absolute power, the

power efficiency (bandwidth per Watt) is much improved. An example of such an
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architecture is Micron’s Hybrid Memory Cube (HMC) [37]. Alternatively a wide

parallel bus can be pursued taking advantage of the tremendous interconnect den-

sity offered by TSV technology [37]. This strategy can massively improve memory

bandwidth without increasing power, or alternatively provide very low power op-

eration at nominal performance. An example of such an architecture is Samsung’s

Wide-IO DRAM [38].

2.3.1 Wide-IO

The Wide-IO memory architecture consists of 4 independent channels each

with a 128 bit data bus. Each channel contains four 64 Mb arrays, for a total

capacity of 1Gb per layer. The Wide-IO memory can deliver peak bandwidth up

to 12.8 GB s−1, 4x higher than the equivalent LPDDR2 device, while increasing

bandwidth per Watt of IO power by more than 10x [38]. The Wide-IO 2 specification

has been released by JEDEC and makes many significant improvements [45]. The

number of channels can be increased from 4 to 8, the density ranges from 8 to 32

Gb and the peak bandwidth tops out at 34 (4 channel) or 68 (8 channel) GB s−1.

Moreover the operating voltage is reduced from 1.2 to 1.1 V, providing even lower

power. Wide-IO 2 is expected to surpass the performance of LPDDR4 in 3D stacked

devices [45].
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Wide-IO memory is intended to be integrated directly on top of logic using

TSVs. This approach is ideal for density and power, but has thermal implications.

Wide-IO is expected to be used in high-end smart phones, but in the absence of

embedded active cooling schemes may not be thermally feasible in a server or super-

computer environment [46].

2.3.2 Hybrid Memory Cube

The HMC is connected to the CPU through a board-level high speed differ-

ential serial interface [37]. However the cube itself is composed of stacks of DRAM

on top of a layer of CMOS. This heterogeneous integration allows for optimized

common logic circuits such as decoders and memory controllers while maintaining

the memory density characteristics of stacked DRAM. HMC facilitates a distributed

architecture called “Far” mode [37] where multiple HMCs are connected together to

form a memory network for scalable high capacity memory systems. HMC moves

the memory controller to the DRAM module itself rather than the core in order to

efficiently realize such a scaled architecture.

The HMC significantly improves DRAM latency by reducing memory con-

troller queuing delays and providing more memory parallelism though independent

bank operation. Experimental data from first generation HMC prototype reports

DRAM bandwidth of 128GB s−1while dissipating 11 W, improving bandwidth per

Watt more than 3.5x over DDR4 [37].
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Analysis by TSMC [46] shows that Wide-IO 2 brings the best of both worlds

by providing performance parity with DDR4 while matching LPDDR4 in power

dissipation. On the other hand the HMC is a revolutionary new memory architecture

that pushes performance, power and price to new extremes.

2.4 Memory-on-Logic 3D CPU

Heterogeneous 3D integration can provide massive bandwidth improvements

between CPU core logic and memory. Non-CMOS technologies such as DRAM,

phase-change RAM (PRAM) and magnetic RAM (MRAM) [47] can be stacked di-

rectly on top of logic cores. Stacked memory-on-logic DRAM architectures are a

natural solution to the memory wall problem as they can offer high-bandwidth, low-

latency, low-power interconnects between memory and CPU. Increases in bandwidth

and power efficiency come from reduction in interconnect length (i.e. RC parasitics)

and massively increased integration density of TSVs as compared to off-chip PCB

traces [9, 27]. TSV integration can facilitate many more memory controller (MC)

modules to increase memory access parallelism at the expense of increased power,

temperature and area [8, 9, 12].Studies have shown that the performance improve-

ments due to main memory stacking can be up to 2x [8, 9]. Stacked DRAM is

considered to be one of the primary advantages of 3D CPUs [9,39]. A cross section

of a stacked DRAM memory-on-logic 3D CPU is shown in Figure 2.3.
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2.4.1 Capacity Limitations

The capacity of on-chip DRAM is limited to only a few GB [11, 27]. Thus

most computing systems require both on and off-chip DRAM. On-chip DRAM could

be leveraged as cache or a non-uniform memory access (NUMA) paradigm can be

applied [48] to manage both on and off-chip DRAM as a unified main memory.

Even within a stacked DRAM module, non-uniform access constraints may need

to be applied due to non-uniform power delivery capacity in the 3D stack [49].

Such NUMA systems require memory swap controllers to keep hot memory pages

in low-latency portions of the memory [48,49].

Studies have shown the effectiveness of using stacked DRAM for additional

cache rather than main memory. DRAM cache can offer large capacity compared to

an SRAM cache of the same area [50] while maintaining higher bandwidth and lower

latency compared to main memory [51]. Moreover hot page migration into a DRAM
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cache can be done at the cache line granularity whereas NUMA stacked memory

systems must swap memory at the page granularity, which is both inefficient and

requires OS support [48].

However there are two main limitations to DRAM cache: the tag array would

be unreasonably large for standard (e.g., 64 MB) cache line sizes, and off-chip main

memory cannot provide the necessary bandwidth to use significantly larger cache

line sizes. Jiang et al. [51] proposed a hot-page filtering technique to efficiently

manage the DRAM bandwidth to leverage performance improvements of up to 25%

from a 128 MB DRAM cache. Loh [50] leveraged the DRAM row buffer hardware

to further increase DRAM cache performance by 29% by employing an adaptive

multi-queue policy. On the other hand, Chou et al. [48] presented a low overhead

technique that allows NUMA stacked memory to achieve cache-line level data mi-

gration, outperforming both DRAM cache and traditional NUMA stacked memory.

2.5 3D Super-Mesh NOC

Traditionally, communication between caches, cores and IO devices has been

accomplished using a bus architecture. A bus is a shared communication fabric

where communication is broadcast to all bus nodes. While such an architecture

is fast, it has been shown to scale poorly when the number of bus nodes surpasses

roughly 10 [13] due to bus contention in the shared fabric. Today’s chip multiproces-

sors (CMPs) already have more than 10 cores, and are expected to continue scaling

to hundred or even thousands of nodes [52]. Thus the network on chip (NOC) has
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become standard communication fabric in modern multi-core architectures. NOC-

s use a packetized routing network. Thus many communication packets can be

simultaneously passed through the network across independent router links.

The standard NOC topology has been a 2D mesh where nodes are spread

uniformly in two dimensions and each router connects to its four Manhattan neigh-

bors as well as its local node [7, 13]. However in many-core systems, whether dis-

tributed or integrate on chip, inter-core communications delays have begun to dom-

inate [11,53–55]. This is called the communication wall. The extension of the mesh

topology into 3D has been shown to provide significant improvements in latency,

throughput and energy efficiency [7, 43]. However, due to the mismatch in vertical

(hundreds of microns) and horizontal (millimeters) length of inter-core router links,

more innovative NOC topologies that provide higher connectivity in the vertical

direction have also been proposed [7, 12,13].
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One simple extension that can be applied to either 2D or 3D mesh topologies

is the torus ring. The torus adds a connection between the first and last node in

each row and column of a mesh. This modification reduces the diameter (i.e. worst

case distance) of the NOC, but introduces non-uniform delay hops which complicate

routing algorithms. However this can be significantly offset by use of a folded torus

topology. In general torus topology has less latency but consumes more power [56].

In the vertical direction, the motivation behind the torus architecture can

be further extended to include connecting all nodes in a vertical column due to

the relatively small distance between nodes on adjacent layers. Circuit analysis

estimates that multilayer routing channels can traverse up to four layers in the

vertical direction with the same delay as a horizontal connection between adjacent

cores [1,57]. The 3D super-mesh topology was introduced in [27] which connects each

pair of network nodes in a vertical column with a dedicated router link. Performance

improvements and power and area overheads versus standard 3D-NOC are shown

in Table 2.1. Mesh, torus and super-mesh topologies are illustrated in Figure 2.4.

Table 2.1: Comparison of 3D mesh and 3D super-mesh NOC [1]

Metric 3D super-mesh 3D mesh Ratio

IPC 29.3 25.3 1.16
Average Latency (cycles) 42.9 49.4 0.87
Total CPU Power (W) 315 284 1.11
Total CPU Area (m2m) 1580 1516 1.04
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2.5.1 3D Super-Mesh TSV Requirements

In a 3D CPU with a 3D super-mesh NOC on n logic layers, each router requires

n−1 vertical links to directly connect to all routers above and below it. Each vertical

connection between layer i and layer j requires a TSV between all adjacent layers

from i to j. Hence, the total number of TSVs that passes between layer i and layer

i+ 1 in a vertical column of 3D super-mesh NOC routers is given in Equation (2.1)

as TROUT and illustrated in Figure 2.5. Wlink is the bit width of the router link. In

the studies presented in this dissertation Wlink = 128 bits.

TROUT (i) = Wlinki(n− i) (2.1)
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2.5.2 3D NOC-Bus Hybrid

A hybrid structure for 3D NOC has been proposed in [13]. A traditional 2D

mesh is used in each layer, but a subset of the routers on each layer are connected

to a vertical bus that allows broadcast communication between all routers in a

vertical column. This approach achieves full communication between all layers in

the vertical direction while minimizing the number of ports (and thus the power

and area) of each router. The number of nodes on each vertical bus is equal to the

number of layers in the NOC which is typically less than 10 [58], implying that bus

is a reasonable communication fabric in the vertical direction. Results show that

the proposed 3D NOC-bus hybrid structure applied to a shared banked L2 cache

outperforms a 2D NOC. Moreover it is shown that cache line mitigation is much

less common in the 3D NOC due to higher connectedness between nodes, and even

with cache line mitigation turned off in the 3D NOC, it still outperforms 2D [13].

2.6 Thermal Issues

The chief challenge associated with 3D integration is thermal management.

Thermal challenges in 3D ICs are twofold. Unlike technology scaling, 3D integration

increases transistor density without reducing the power per transistor. This results

in increased power flux as more layers are stacked. Exacerbating this problem, the

dielectrics between functional layers have relatively low thermal conductivity, and

significantly diminish heat flow from stacked layers to the heat sink in traditional air-

cooling schemes. The cooling capacity on each layer of an air-cooled 3D IC degrades
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as the layer moves farther away from the heatsink, therefore large thermal gradients

form in the vertical direction [27]. We call this phenomenon the trapped heat effect

(Figure 2.6) and it can result in extremely high peak temperatures [59,60].

Figure 2.7 shows an example thermal profile for a 3D CPU with two DRAM

layers stacked on a 16-core multiprocessor layer (Section 2.4). We observe a large

thermal gradient both within a layer and across vertical layers. We also observe

significant thermal coupling from the processor layer to the neighboring DRAM

layer, even though the DRAM layer has very low power density. This phenomenon

leads to increased DRAM leakage and requires shorter refresh periods in memory-

on-logic 3D CPUs [61], which has performance implications.
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Figure 2.7: Thermal map of (a) processor layer, (b) bottom DRAM layer and (c)
top DRAM layer

The high temperatures associated with air cooled 3D ICs cause high leakage

power (thus reducing the energy efficiency and possibly resulting in thermal runaway

[62]), increased transistor and wire delay (thus degrading performance), and reduced

chip reliability (Section 2.7). A promising solution to the thermal issue comes from

embedded active cooling technology such as micro-fluidic cooling (Section 2.8).
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2.7 Reliability Issues

Most reliability concerns specific to 3D ICs are related to TSVs, which intro-

duce several new failure modes. Many TSV reliability degradations are fundamen-

tally caused by thermal and stress issues [17,18,63]. The thermal issue comes from

the fact that the stacked structure increases the power density without providing

a sufficient heat removal path (Section 2.6). The stress issue is due to significant

differences in the coefficient of thermal expansion (CTE) between TSVs (e.g., cop-

per 17.7 MK−1) and the silicon substrate (3.05 MK−1). When TSVs are cooled

down from high manufacturing temperature to room temperature, negative thermal

load is applied creating compressive and tensile stress inside TSVs and neighboring

substrate areas [44]. This phenomenon is illustrated in Figure 2.8. TSV stress not

only affects reliability, but is also shown to influence transistor mobility and thus

circuit performance [64].
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TSV-induced reliability losses include: TSV electromigration [19,65,66], TSV

stress migration [17, 18, 63, 67], TSV oxide breakdown [68], TSV thermal cycling

[69–71] and TSV stress-induced material fracture [72–74]. TSV electromigration and

stress-migration cause TSV’s metal atoms to migrate, gradually altering material

density and resistance, and eventually causing TSVs to form short or open-circuits.

Electromigration moves atoms by transfer of momentum from flowing electrons,

whereas stress-migration moves atoms along stress gradients. TSV oxide breakdown

occurs when the electrical field inside the TSV barrier layer exceeds its threshold,

destroying the electrical isolation between TSVs and the substrate. Thermal cycling

shortens a TSV’s lifetime by introducing TSV defects through thermal fatigue. Ma-

terial fracture, initiated by manufacturing imperfections (e.g., voids inside TSVs)

and accelerated in high stress environments, may lead to delaminations or cracks

around the TSV structure. All the above mentioned TSV failures are exacerbated

at elevated temperature [63].

2.8 Micro-Fluidic Cooling

Micro-fluidic (MF) cooling is a promising technology for cooling ICs with high

power flux. DARPA’s Intra/Interchip Enhanced Cooling (ICECool) Program [75]

has been investigating and prototyping such cooling systems for both high-flux 2D

ICs (e.g., high gain RF amplifier arrays) and 3D CPUs. By pumping coolant into the

substrate of the chip, the resistive path through the oxide layers and chip package

are short-circuited, providing significantly lowered transistor junction temperatures
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[27, 59]. Moreover, MF cooling channels can be etched into the substrate of each

layer in a 3D stack before bonding, providing equal cooling capacity to all layers

and removing vertical thermal gradients [27, 60]. Finally, the high conductance of

water coupled with the active heat movement due to fluid pumping velocity provide

massively increased cooling capacity as compared to traditional air cooling [16].

Although general purpose CPUs have not generally required active cooling in

the past, 3D stacking and the trapped heat effect will significantly increase thermal

resistance. Enhanced cooling will be necessary to sustain the high power density of

modern CPU architectures implemented in 3D IC technology [8]. Solutions such as

DVFS have been proposed to control temperature in air cooled 3D CPUs, but at

the expense of performance [14,76].

A MF heatsink is created by fabricating microchannels in the silicon substrate

of each layer in a 3D IC. A microchannel is a small channel (generally 10s to 100s

of µmin dimension [77]) etched into the silicon substrate. These microchannels are

created with the intention of pumping fluid through them in order to cool each layer

of the chip [60]. The fluid enters the system at a low temperature and as it flows

through each channel, heat is conducted through the silicon substrate into the fluid

and then pumped out of the system. This concept is illustrated in Figure 2.9.

Micro-fluidic cooling comes with some overheads. One such overhead is the

additional power required to pump the fluid. In previous work, methods for re-

ducing pumping power have been investigated, such as nonuniform microchannel

distribution [59] and dynamic control of fluid flow rate [78, 79]. The results of the

studies presented in this dissertation [8, 27–29] show that the pumping power used
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Figure 2.9: Micro-fluidic heatsink in memory-on-logic 3D CPU

to implement a MF heatsink is more than accounted for by the leakage power re-

duction that is a result of temperature reduction. Another overhead to MF cooling

is that adding microchannels to a 3D IC requires a thicker substrate. This requires

both the length and diameter of TSVs to increase in order to maintain a specific

TSV aspect ratio defined by the manufacturing process, which increases the area

overhead of TSVs. Typical 3D IC thinned silicon substrates have thickness in the

50um range while micro-channels would require thicker substrate (in the 150-200um

range) [59]. TSVs and microchannels cannot coexist in the same space, so adding

30



micro-fluidic cooling to a design also constrains where TSVs can be placed, and the

placement of microchannels and TSVs must be co-designed [30, 31, 80]. We investi-

gate this trade-off between cooling capacity and vertical interconnect density (i.e.

vertical signal bandwidth) in Section 5.2.

Chapter 3: 3D CPU Co-Simulation Co-Optimization Flow

3D integration technology brings the opportunity for new computer architec-

tures, however such drastic changes to the conventional computing paradigm require

new architectural models of 3D CPU performance, power, area and timing (PPAT).

The 3D PPAT modeling challenges can be broadly broken down into the following

categories.

• Memory Hierarchy: Stacked memory architectures have significantly dif-

ferent memory hierarchy topologies due to more fine grained integration with

TSV technology. CPU-DRAM communication may take place over multiple

independent communication channels which could be point-to-point, bus or a

hybrid of both [27]. Each communication channel can be wider and/or clocked

faster using high-density low-impedance on-chip interconnects. PPAT simula-

tions must be configured to model the power and performance of such uncon-

ventional memory hierarchies. Moreover heterogeneous integration facilitates

on-chip cache and/or main memory technologies such as DRAM, MRAM and
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PRAM, all of which require complex memory controller designs [47]. Models

of these technologies and their controllers are not included in most 2D PPAT

simulation frameworks which assume on-chip SRAM and off-chip DRAM. Fi-

nally, due to drastically reduced parasitics, memory-on-chip integration could

facilitate a reemergence of large parallel interfaces as opposed to high speed

serial communication for low-power designs [38]. The whole spectrum of inter-

face implementations must have available models within a 3D PPAT simulator

for proper trade-off analysis.

• Communication Networks: Like the memory hierarchy, inter-core com-

munication can leverage similar benefits from 3D integration. NOCs in 2D

CPUs usually follow typical topologies such as 2D mesh and torus. However

the expansion of cores into the third dimension in logic-on-logic architectures

introduces new 3D NOC topologies. These 3D networks are more highly con-

nected offering higher bandwidth and reduced logical distance between nodes

(i.e. number of hops), but require more complex routers and thus dissipate

more power and may introduce larger router delays. Additionally, the verti-

cal distance between nodes is often much less (e.g., 10x) than the horizontal

distance. Asymmetric NOC topologies with larger router radix in the verti-

cal direction can take advantage of this physical asymmetry (e.g., 3D super-

mesh [27]). Thus a 3D PPAT simulator must have the capability of simulating

customized asymmetrical NOCs and the associated physical implementations

of the routers and drivers.
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• Fine Grained Integration: One of the main advantages of 3D integration

is the reduction to wire length due to fine grained integration. The reduction

in length to the longest wires in a large circuit (e.g., a CPU function block)

can approach
√
n where n is the number of layers across which the circuit

is split [34]. Power, delay and area estimates for circuits with regular struc-

ture (e.g., memory elements) can be estimated analytically using technology

and topology parameters (although 3D implementation significantly increases

the design space of the topology parameters to be considered [81]). However,

highly complex and customized circuits (e.g., ALU) are hard to estimate an-

alytically. For 2D CPU analysis, empirical models have been fit to real CPU

circuits in the market [2]. Since 3D CPUs are still in the research and devel-

opment stage, similar data does not exist. Developing models for 3D function

unit PPAT is a challenging and open problem.

The simulation flow used to evaluate the 3D CPU design space explored in

the following chapters is shown in Figure 3.1. We provide a detailed description of

each step in the simulation flow in the following sections.

3.1 Architectural Design Space

The studies presented in Chapters 4 and 5 involve exhaustive simulation across

a set of computer architectural variables. Table 3.1 enumerates the fixed architec-

tural parameters across all studies. The three study variables (number of cores, CPU

clock rate and number of memory controllers) take on different ranges in different
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Figure 3.1: Simulation flow

studies, and are thus enumerated in their respective sections. In these chapters we

maintain a relatively small architectural design space to accommodate exhaustive

simulation. However, in Chapter 6 we expand the scope and dimensionality of our

architectural design space and apply modeling techniques to feasibly estimate the

metrics of interest across a large combinational space of architectural variables.

3.2 Performance Simulation

Performance simulation is performed by Multi2Sim (M2S) [82], a cycle accu-

rate CPU simulator. Architectural parameters are passed to the simulator through

configuration files that include number of cores, number of function units with-

in cores, pipeline width, buffer/queue/register size, cache size/associativity/latency,

network-on-chip (NOC) topology/latency, branch predictor size and type etc. Cache

and register (e.g., register file, register alias table (RAT) and branch target buffer)

latencies are determined using CACTI [81, 83] to provide realistic architectural se-

tups to the simulator. DRAM latency is calculated as explained in Section 3.3 and
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Table 3.1: Architectural parameters

Cores See Study Details
Clock Rate See Study Details
Memory Controllers See Study Details
Technology 45 nm

Branch Predictor 4k Entry 2-Level
Issue Out of Order
Reorder Buffer 64 entries
Fetch/Dec/Issue Width 4
Functional Units 4 IALU, 1 IMult, 2 FPALU, 1 FPMult
Physical RF 80 Int, 40 FP
BTB Size 1024 entries
Return Addr. Stack 32 entries
Load/Store Queue 20 entries

Private L1 I/D Cache 256 Sets per Core, 2-Way, 64B Block (32
kB per Core) @ 2 cycle

Shared L2 Cache 512 Sets per Core, 16-Way, 64B Block (512
kB per Core) @ 7 cycles

NOC type 3D Super-Mesh
NOC link latency 3 cycles

DRAM bus width 64 B
DRAM bus speed Core clock rate
DRAM capacity 1 GB/layer × 4 layers = 4 GB

NOC topology/latency is calculated as explained in Section 3.9. M2S simulates the

execution of an x86 binary file on the described CPU. The simulator outputs a list

of performance statistics such as IPC, memory reads, writes, hits and misses, branch

prediction rate, number of instructions that access each type of execution unit, reads

and writes to buffers, queues and RAT etc.
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3.2.1 Benchmarks

The studies presented in the subsequent chapters evaluate an architectural-

physical design space across a suite of benchmark workloads. All benchmarks used

in our work come from the SPLASH-2 [84] and PARSEC [85] benchmark suites.

These benchmarks are standard for evaluating the results of architectural research

on CMPs [14,86–90].

3.3 DRAM Latency Model

Although DRAM latency depends on many transient factors, many perfor-

mance simulators, including M2S, simply model memory latency as a constant av-

erage value. We propose a model for the average memory latency time, comprised

of five different steps in the DRAM access procedure, starting at the time a last

level cache (L2 cache in this work) miss is detected. We estimate the average dura-

tion of each step as a function of the architectural parameters. The five steps are

as follows: (1) MC Queuing Delay, (2) Memory Address Translation, (3) Address

Transfer Delay, (4) DRAM Core Access (5) Data Transfer Delay. Step (1) is the

only step that is a strong function of the architectural variables considered in these

studies. Steps (2) through (5) are modeled as a constant delay of 5 cycles [91], 1

DRAM bus cycle [57], 32 ns [9] and b DRAM bus cycles [57] respectively, where b

is the cache line width divided by the DRAM bus width. DRAM bus width and

frequency are given in Table 3.2.
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Table 3.2: 2D vs. 3D DRAM Bus
Integration Bus Width Bus Frequency

2D Off-Chip DRAM 64 bits 200 MHz
3D Stacked DRAM 512 bits Core Frequency

3.3.1 MC Queuing Delay

The memory controller queuing delay represents the amount of time a memory

request spends waiting in the memory controller queue. This value depends on the

number of memory controllers (i.e. consumers of memory requests) and the number

of cores (i.e. producers of memory requests). The work by Awasthi et al. [86] reports

that the increase in queuing delay from a single core to a 16 core processors is about

8x. Dong et al. [91] reported that a configuration with 4 cores and one MC has

a queuing latency of 116 cycles. We linearly extrapolate these two observations to

model queuing delay as a function of #core, and assume that memory requests are

uniformly distributed across the address space1, such that queuing delay is inversely

proportional to the number of MCs. Thus we model MC queuing delay TQ with

Equation (3.1).

TQ =
388 ns

#MC
×
[
1 +

(
#core× 1− 1/8

16− 1

)
−

(
16× 1− 1/8

16− 1

)]
(3.1)

3.3.1.1 Derivation

We can solve TQ(#core) = TQ(d)+m(#core−d) as a linear function of #core

using the following two observations:

1This assumption was validated in [14].
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1. TQ(4) = 116 ns

2.
TQ(16)

TQ(1)
= 8

Observation 2 can be rearranged as TQ(1) =
1
8
TQ(16). Thusm =

TQ(16)−TQ(1)

16−1
=

TQ(16)
1− 1

8

16−1
. Allowing d = 16 we can write TQ(#core) = TQ(16)+TQ(16)

1− 1
8

16−1
(#core−

16) = TQ(16)[1 +
1− 1

8

16−1
(#core− 16)].

All that is left is to solve for TQ(16) by solving m =
TQ(4)−TQ(1)

4−1
=

TQ(16)−TQ(4)

16−4
.

Substituting Observation 1 (TQ(4) = 116 ns) and rearranged Observation 2 (TQ(1) =

1
8
TQ(16)) yieldsm =

116 ns− 1
8
TQ(16)

4−1
=

TQ(16)−116 ns

16−4
which when solved yields TQ(16) =

388 ns.

3.4 Power/Area Estimation

Dynamic and leakage power are estimated along with the total area of each

CPU component by McPAT [2], a power and area estimation tool commonly used in

computer architecture research [14,92–95]. The architectural parameters are used to

estimate the leakage power at nominal temperature using internal transistor-level

models of CPU components. Likewise these transistor models also estimate the

energy-per-access (e.g., read, write or decode) and total area of each component.

The combination of access counts from Multi2Sim and energy-per-access estimates

from McPAT yield dynamic power. Dynamic and leakage power estimates are ap-

plied to an optimized floorplan topology to generate a power density map. The

power density map is consumed by the thermal model, which internally applies

thermal-leakage scaling (Section 3.8.1).
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Transistor level power and area models of regular structures such as caches,

registers etc. are provided internally through CACTI [83]. Power and area mod-

els of complex combinational logic such as ALUs and decoders are generated by

applying curve fitting to empirical data collected from real CPUs. Cacti has been

expanded to estimate 3D memory implementations [81], but development fine-grain

3D combinational logic blocks is an area of future work, and in this dissertation 2D

function blocks are used2.

3.4.1 Pumping Power

The micro-fluidic heatsink’s simulated for this work consist of straight mi-

crochannels with non-uniform spacing between channels. The minimum pitch be-

tween channels is double the channel width W , however many channels are spaced

considerably farther apart than the minimum pitch. The power required to pump

fluid through a microchannels, Ppump is defined in Equations (3.2) through (3.6) [59],

where N is the number of microchannels, f is the fluid flow rate, ∆p is the pres-

sure drop across each microchannel, γ is a function of microchannel aspect ratio

(AR = W/H), µ is the viscosity of fluid flow, L is the length of the channel, v is

the fluid velocity, Dh is the hydraulic diameter of the channel, W is the width and

H is the height of the microchannel. Specific values used in the work reported here

are given in Table 5.2.

2We do allow the memory controller and execution unit to be split across two layers at sub-
component boundaries (e.g., FPU-IFU boundary in execution unit or Front-end-back-end boundary
of the memory controller [2]). The effects on power and area of such a coarse-grained split are
assumed to be negligible.
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Table 3.3: Micro-fluidic system parameters

Var Value Name Var Value Name

W 100 µm Width µ 653 µPa s Viscosity
H 200 µm Height Ppump 2 mW per layer Pumping Power

In our study we assume a constant pumping power Ppump. Thus a reduction

in the number of channels N results in increased pressure drop and fluid velocity

in the remaining channels, which increases the local heat transfer coefficient of each

channel [96]. Our heatsink optimization scheme (Section 3.10) finds the optimal

trade-off between number (and location) of channels vs. heat transfer coefficient

of each channel. The pumping power used to provide micro-fluidic cooling in our

studies is more than made up for by reductions in thermally induced leakage power

due to reduced chip temperatures [27–29].

Ppump = Nf∆p (3.2)

f = WHv (3.3)

∆p = 2γµLvD−2
h (3.4)

γ = 4.7 + 19.64× (AR2 + 1)

(AR + 1)2
(3.5)

Dh =
2WH

W +H
(3.6)

3.5 Core Netlist

Each CPU core consists of a set of interconnected components as shown in

Figure 3.2. The bit width of each connection in the netlist is annotated in the

figure, and the associated utilization of each net is calculated from the Multi2Sim
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Figure 3.2: CPU core component netlist with net widths notated.

performance statistics (Section 3.2). Details of each CPU component are given in

Table 3.4. The execution unit and memory controller are large components, and

are allowed to be pipelined and/or split into two sub-components which can be

placed on separate layers of the 3D stack (multi-layer)2. The instruction fetch unit

(IFU) contains the branch predictor and the instruction cache. The execution unit

contains integer and floating point function units along with the register file and

the reorder buffer. The load store unit (LSU) contains the load store queues and

the data cache and the memory management unit (MMU) contains the translation

look-aside buffers (TLBs). Core routers are connected in a 3D super-mesh topology

(Section 2.5). More detailed descriptions of each CPU component can be found

in [2].
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Table 3.4: CPU core component properties

Name Comments

IFU Instruction Fetch Unit
REN Rename Unit
EX Execution Unit Multi-layer
LSU Load Store Unit

ROUT Router Inter-core
L2 L2 Cache Shared

MMU Memory Mgmt. Unit

MC Memory Controller Multi-layer, Inter-core, Shared

As shown in the figure, the router and the memory controller are the only com-

ponents that communicate outside of the core (inter-core), either with other cores

or with the DRAM. The L2 cache and memory controller components are slices of

a larger component that services multiple cores (shared). The L2 cache is a single

shared cache with a local slice associated with each core, whereas each memory con-

troller can service two, four, or eight L2 cache slices, depending on the total number

of memory controllers. Using the wire delay model (Section 3.6), we calculate the

maximum allowed center-to-center distance between each connected component for

the target clock frequency to prevent timing violations. These distance constraints

are used to create a timing-feasible floorplan (Section 3.9).

3.6 Wire Delay Model

We calculate the wire delay per unit length using Equation (3.7) from [35].

The variables a = 0.4 and b = 0.7 are fitting parameters taken from [35], and the

variables r, c, r0, c0 and cp are respectively the wire resistance per unit length,

wire capacitance per unit length, output resistance of a minimum-size inverter, in-
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put capacitance of a minimum-size inverter and parasitic output capacitance of a

minimum-sized inverter. These values were extracted from the McPAT source code

and are given in Table 3.5. Given these parameters the delay per unit length cal-

culated by Equation (3.7) is 81 ps mm−1. The wire delay model is used to insure

timing feasibility during floorplan creation (Section 3.9).

d

l
= 2

√
rcr0c0

(
b+

√
ab(1 +

cp
c0
)

)
(3.7)

Table 3.5: Transistor and interconnect parameters for 45 nm technology [2]
variable value variable value

r 0.36 Ω µm−1 c 0.28 fF µm−1

r0 10.9 kΩ c0 0.85 fF
cp 0.31 fF

3.7 Reliability Model

Our reliability model focuses on TSV electromigration (EM), one of the 3D

CPU’s critical failure modes [18, 19, 63, 65–67, 69, 97]. As more power dissipating

device layers are stacked vertically, power flux increases dramatically. However, 3D

power delivery network (PDN) is limited by the number of power pins (i.e. C4

bumps) which is a function of the footprint area of the chip, and does not increase

as more layers are stacked [25, 26]. This leads to a significant increase in PDN’s

current density in 3D CPUs. Furthermore, the stacking structure generates thermal

hotspot in areas of high power (and current) density [59]. The increases in both cur-

rent density and temperature accelerate TSV EM. In addition, the immature TSV
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fabrication process induces structural defects such as voids inside TSVs [97], which

also degrade TSV’s EM reliability. As TSVs consume many placement/routing re-

sources, it is hard to make post-layout EM fixes (i.e. redundant wires/vias) without

significant area overhead and redesign effort [18,30,31,63,98].

In the proposed reliability model each TSV’s EM lifetime is considered as

a random variable, where the randomness is caused by TSV manufacturing [99].

We model each TSV’s failure probability density function (PDF) using a Weibull

distribution. Each Weibull distribution is determined by a shape parameter k and

a scale parameter λ. We assume that TSV EM failure rate is constant over time

(therefore k = 1). The scale parameter λ, is determined by TSV’s mean-time-to-

failure (MTTF). Specifically, λ is calculated based on classic Black’s equation [100]

as shown in Equation (3.8).

λ = MTTFEM ∝ (Javg)
−2e

Ea
kbT . (3.8)

Javg is the average DC current density, Ea is activation energy, kb is Boltzman-

n’s constant, and T is absolute temperature in degrees Kelvin. In cases where AC

signal is concerned, Javg is its equivalent DC current density [101]. Higher current

density and temperature shorten the expected EM lifetime of TSVs, according to

Equation (3.8).

For reliability estimation, each TSV must be assigned a point in space at which

to measure the temperature. Signal TSVs within a 3D net are uniformly distributed

inside its feasible region. A 3D net’s feasible region is determined such that the in-
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Figure 3.3: TSV EM reliability model

terconnect timing constraint between the connecting blocks is not violated using the

3D net wirelength model from [21]. Figure 3.3 illustrates our system-level EM reli-

ability modeling approach. Based on typical 3D-CPU applications, TSV activities

(messaging between logic blocks and/or memory blocks) can be acquired from per-

formance simulation (Section 3.2). Combined with voltage/frequency information,

the TSV activities are translated into transient currents by modeling the capac-

itive load’s charging/discharging behavior. The transient current is subsequently

converted to its equivalent DC current density distribution [101]. This DC current

density distribution and the thermal profile define a failure PDF for each TSV.

System’s EM reliability (REM) is defined as the probability that none of the

TSVs fail before the target lifetime of has elapsed. REM can be expressed using

Equation (3.9), where PEM is the probability that a 3D-CPU fails before target

lifetime, and P i
EM is the probability of the ith TSV fails before target lifetime.

REM = 1− PEM = 1−
∏

i∈TSV

(1− P i
EM). (3.9)
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3.8 Thermal Model

Once the chip floorplan has been constructed (Section 3.9) and component

power estimation is complete (Section 3.4), we have a power density map for each

tier of the 3D stack. Power density maps are converted into thermal maps using

our compact thermal model [59]. A 3D grid is constructed representing the physical

structure of the 3D IC. Each tier in the chip stack is divided into sub-layers: silicon

substrate (with or without microchannels), active silicon, interconnect and passi-

vation. Likewise the power map is discretized into a 3D grid and the total power

of each power grid is assigned to the respective physical grid in the active silicon

sub-layer (all other sub-layers have zero power).

Then each physical grid is converted to an electrical circuit representation as

shown in Figure 3.4. Power is modeled as a current source and thermal resistance

is modeled as electrical resistance. The voltage at the center of each circuit grid

represents the temperature of the respective physical grid. This technique takes

advantage of the thermal-electrical duality, similar to HotSpot [102]. Thermal resis-

tances are evaluated based on material properties and dimensions of the respective

physical grid using the technique in [59]. Material properties and dimensions of dif-

ferent sub-layers are listed in Table 3.6. When modeling a MF heatsink, the circuit

model contains both solid and fluid grids. The resistance of a fluid grid depends on

material properties and fluid flow rate [96].
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Table 3.6: Thermal model material properties
Sub-Layer Thickness Material Conductivity

(µ m) (W m−1 K−1)
Top Substrate 995 Si 148
Microchannel Substrate 200 Si 148
Microchannel Fluid 200 H2O 0.58
Thinned Substrate 55 Si 148
Active Silicon 5 Si 148
Interconnect 15 SiO2+Cu 2.25
Passivation 15 SiO2 1.4

3.8.1 Leakage Model

McPAT reports a base leakage value for each CPU component which is esti-

mated at a fixed temperature T0. To obtain more accurate leakage power estimates,

which take into account leakage power’s strong dependence on temperature, we iter-

atively solve our thermal model and then scale leakage estimates at each grid based

on the estimated temperature of that grid after the previous iteration. We repeat

this process until the change in temperature between two iterations is less than some

threshold (e.g., 1 ◦C). The thermal leakage scaling model is extracted from McPAT

source code [2] (Figure 3.5).
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3.9 Floorplan Optimization

For each architectural configuration, we run a thermal-reliability aware floor-

planner to create an optimized CPU floorplan for that architecture3. Floorplans are

optimized iteratively using feedback from the thermal (Section 3.8) and reliability

(Section 3.7) models while estimating timing feasibility using the netlist (Figure 3.2)

and wire delay model (Section 3.6). A fundamental trade-off exists between timing,

reliability and temperature. Placing high power components closer together can

reduce wire delay and negative slack, but will increase hot-spot temperatures [27].

Likewise, splitting components across layers can reduce power density and thus

3Some of the studies here disable floorplan optimization and use a fixed topology, while others
use modified objective functions. The algorithm presented here is the fully comprehensive method
proposed in this dissertation at large, while other versions are considered for comparison and
sensitivity analysis.
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remove hotspots, but introduces additional TSVs which increase probability of fail-

ure [103]. Thus the timing, reliability and thermal profile must be simultaneously

co-optimized during floorplanning.

The power dissipation and net activity of each component is averaged across

all benchmark workloads when evaluating the thermal and reliability profile for

floorplan optimization. The area of each component is given by McPAT (Section 3.4)

and each component is assumed to be laid out as a rectangle. Net activities are

derived from Multi2Sim (Section 3.2) and net widths are annotated in Figure 3.2.

Our approach optimizes the floorplan of a single CPU core, and then tiles

that single-core floorplan in order to generate a chip level floorplan with the correct

number of cores. Floorplan optimization at chip-scale would have been computa-

tionally infeasible, so the problem is reduced to floorplan optimization of a single

core. However the thermal effects of core tiling and stacking are captured in the

embedded thermal and reliability models. Cores are allowed (but not required) to

be distributed across multiple layers.

Thermally aware floorplan optimization reduces peak temperature by opti-

mizing the vertical and planar power density to reduce hot-spots, as well as moving

high power components closer to the fluid inlets where maximum cooling poten-

tial exists [27]. However, timing violations are modeled (Section 3.6) throughout

the optimization flow, and only timing feasible floorplans are accepted. Reliability

aware floorplan optimization improves MTTF by preventing high activity nets to

span across layers, and by minimizing the number of TSVs in general [103].
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3.9.1 Floorplan Representation

We use transitive closure graphs (TCGs) [104] to represent the physical re-

lationship between CPU components on each logic layer. A 3D floorplan can be

represented as a set of n TCGs, where n is the number of layers in the 3D stack.

We call such a set a 3DTCG. A simulated annealing approach is used to search

the solution space of 3DTCGs, and a nested simulated annealing loop is used to

optimize the component aspect ratios (AR) for each 3DTCG considered.

Given a 3DTCG with the area and AR of each component, a unique 3D floor-

plan is constructed. Then the chip area, thermal profile, MTTF and netlist wire-

lengths of that floorplan are evaluated. The objective of the floorplanning algorithm

is to find an optimized floorplan for each architecture which minimizes area, peak

temperature, and negative slack and maximizes lifetime. It may be hard or even

impossible to find a floorplan that meets both thermal, reliability and timing con-

straints when considering an aggressive 3D CPU architectural design. High quality

physical design optimization of the floorplan can significantly increase the feasibility

region of an evaluated architectural design space, which will ultimately result in the

selection of more optimal design points [1, 103].
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3.9.2 Simulated Annealing Approach

Simulated annealing is used to search the solution space of 3DTCG topologies

and CPU component aspect ratios. The annealing operations used for the simulated

annealing of the 3DTCG are the original four intra-layer annealing operations from

[104] (rotate, swap, move and reverse), plus the inter-layer swap from [105] and the

inter-layer move from [106] (referred to as “Change Layer” in that paper).

The objective function used for simulated annealing of the 3DTCGs is given

in Equation (3.10), where A is the total area of the core (Section 3.4), S is the total

negative slack, T is the maximum temperature from the thermal model (Section 3.8)

and R is the reliability metric (Section 3.7). The negative slack on each net is the

wire delay (Section 3.6) on that net minus one cycle delay. Wirelength between

two components is measured as the Manhattan distance between the center point

of each component.

OBJ = c1A+ c2S + c3T − c4R (3.10)

The nested simulated annealing loop for determining aspect ratio of each com-

ponent chooses a random component and scales its AR by a value randomly chosen

from a normal distribution with µ = 1 and σ = 0.1. Aspect ratio for each compo-

nent is constrained by the equation 1
5
< AR < 5. The objective function used for

the aspect ratio simulated annealing is OBJ = c1A+ c2S.
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3.9.3 Speeding Up Simulation Time

Because a temperature profile is required to evaluate the objective function

at each iteration of the 3DTCG simulated annealing algorithm, the thermal model

must be evaluated many times. The full chip-scale thermal model would be too time

consuming to evaluate on each iteration, so instead we evaluate the thermal profile of

a 2×2×k core tiling and use this as an indicator of the true chip-scale temperature

profile,where k is the number of core layers. This approach can make thermal simu-

lation up to 30-50x faster than the evaluation of the full chip-scale model while still

modeling the thermal effects of core stacking and the junction where cores abut in

the horizontal direction. The correlation coefficient between the maximum temper-

ature observed by chip-scale vs. reduced model is 80%. Thus thermal simulation of

a reduced core tiling is a practical and accurate way of approximating temperature

in the thermally aware floorplanning algorithm.

Likewise the reliability model is applied to the same 2 × 2 × k tiling of the

floorplan. The thermal and reliability estimates of this reduced tiling do not provide

reliable estimates of absolute temperature and lifetime, but do provide accurate es-

timates of the relative ordering between floorplan candidates, making this technique

suitable for unconstrained optimization.

Removing thermal and reliability terms from the objective function and re-

formulating them as constraints would invalidate the proposed simulation speed up

technique, and significantly increase the optimization runtime. However this would
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remove the need for proper choices of weighting factors to drive the trade-off be-

tween conflicting optimization terms. The comparison and trade-offs of these two

schemes is left to future work.

3.9.4 Core Tiling and NOC Design

To generate the final chip floorplan, the core floorplan is replicated on an i×j×

k grid such that ijk = n where n is the total number of cores. The dimensions of a

single core floorplan are defined as widthcore and heightcore respectively (determined

by single-core floorplan optimization). The values i, j and k are chosen such that:

• Total area per layer (iwidthcorejheightcore) is less than Amax = 400 m2m.

• Total number of layers is minimized.

• Layer aspect ratio (iwidthcore/jheightcore) is close to unity.

NOC topology is defined as an i×j×k 3D super-mesh [7] (Section 2.5) and NOC la-

tency is defined as the wire delay of length max(widthcore, heightcore) (Section 3.6).

NOC topology and latency are fed back into the performance simulator to get ac-

curate inter-core communication simulations 4.

4Floorplan and NOC design are required to define NOC parameters for performance simulation.
McPAT is run once to generate area estimates before performance simulation, and then again to
generate power estimates after performance simulation. The initial area estimations are enough to
generate an estimate of NOC latency, assuming a perfectly square core floorplan with no white-
space.
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Figure 3.6: Example thermally unaware floorplan with MF cooling

3.9.5 Example

Figures 3.6 and 3.7 illustrate an example floorplan result5 with and without

thermal awareness, and the resulting thermal and power maps. This example is from

a 32-core 16 MC 3D CPU running ocean at 2.4 GHz with micro-fluidic cooling. We

see that thermally unaware floorplanning results in less total chip area and a more

square chip outline, however this floorplan has significantly higher temperatures.

5Dimensions shown in mm.
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Figure 3.7: Example thermally aware floorplan with MF cooling

Note that fluid flow direction in this figure is from left to right and the pumping

power is fixed. The thermally aware floorplan is able to improve chip temperature

using a number of techniques.

First, shifting the chip dimensions towards a more tall and narrow chip outline

allows for the fabrication of more microchannels and reduces the length of each chan-

nel, which significantly increases the cooling capacity of the micro-fluidic heatsink

by reducing the thermal wake effect [107]. Second, the function unit with the high-

est power density (ROUT) is surrounded by low power units or dead-space on all

sides, allowing for more lateral heat spreading and reducing hotspot temperatures.
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In the thermally unaware floorplan, the router in one core abuts the MC in the

neighboring core, leading to hotspots. More importantly, the thermally aware floor-

plan splits cores across two layers, preventing vertical stacking of hotspots. In the

fixed floorplan routers are stacked vertically, leading to significant hotspot heating.

Finally, compared to the thermally unaware floorplan, the thermally aware floorplan

allocates more total power to the top layer and less to the bottom layer. This is due

to the significantly larger thermal resistance between the ambient temperature (at

the top of the chip stack) and the bottom layer, as compared to the top layer6.

3.10 Cooling Optimization

The final step in our analysis approach for DSE of 3D CPUs with micro-

fluidic heatsinks is to consider optimized non-uniform heatsink designs. Due to the

non-uniform nature of the generated power map after floorplan optimization, the

optimal microchannel distribution in the micro-fluidic heatsinks is also non-uniform

when subjected to a constant pumping power. Simply placing microchannels uni-

formly at minimum pitch (the default heatsink design in this work) is inefficient

as cooling potential is distributed to hot-spots and cold-spots equally. In addition

to the nonuniform power density profile on each layer, one must also consider the

nonuniform thermal resistance between each layer and the ambient, due to inter-

layer resistances. Thus microchannels are more valuable when placed between layers

that are far from the top (ambient interface) of the chip, where thermal resistance

is high.

6The bottom and sides of the chip stack are adiabatic.

56



Like floorplan optimization, heatsink optimization is performed for each archi-

tectural configuration, and is optimized using a simulated annealing algorithm with

feedback from the thermal model. The chip-scale power map consists of a tiling

of single-core power maps. We take advantage of this by optimizing the heatsink

configuration for a single core stack and then tile the optimized microchannel con-

figuration for the final solution. A core stack is a single core that is tiled in the

vertical direction as many times as it would be in the true chip-scale layout (i.e. k

times). In other words, the microchannel placement on different layers of the stack

can be different, but in the planar direction it is tiled. Tiling of microchannels in

the vertical direction is inefficient because of the strong dependence of thermal resis-

tance on layer depth. As in floorplan optimization, thermal evaluation of heatsink

design points is carried out on a 2x2xk tiling of cores such that the thermal interface

between adjacent cores is molded accurately, while speeding up simulation time.

3.10.1 Microchannel Placement Representation

Microchannels are assumed to be straight channels of constant width which

extend along the entire length of the chip from inlet to outlet. Thus, channel

placement can be represented as a two-dimensional placement problem, the two

dimensions being vertical (i.e. in the direction of layer stacking) and horizontal

(perpendicular to the direction of flow). We represent the placement of channels as

a binary matrix B, which has k rows and Wchip/∆x columns, where Wchip is the width

of the chip perpendicular to the direction of flow, and ∆x is the width of a grid in
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the thermal model (Section 3.8). In our thermal model it is assumed that ∆x = W ,

where W is the width of a microchannel. If by,x = 1, then grid x on layer y contains

a microchannel, and if by,x = 0, it does not. All channels must be separated by at

least one non-channel grid (i.e. channel wall must have nonzero width). Thus if

by,x = 1, then by,x+1 = by,x−1 = 0.

3.10.2 Simulated Annealing Approach

Simulated annealing is used to explore the solution space of matrix B. Two

annealing operations can be applied to B during simulated annealing optimization:

add or remove a channel. The initial solution is uniform channels with minimum

pitch. All entries in B which are candidates for channel insertion or removal are

identified. If a channel is being added, a random candidate is chosen and the solution

is updated. If a channel is being removed, a ranking is imposed on existing channels

using our microchannel cost model (Section 3.10.4), and a candidate is selected

from the bottom qth percentile. In these studies we set q = 25%. The objective

function used to evaluate annealing moves is OBJ = T , where T is the maximum

temperature from the thermal model (Section 3.8).

3.10.3 Example

Figures 3.8 through 3.10 exemplify how micro-channel placement optimization

can reduce on chip temperatures for a given floorplan and a fixed pumping power.

Figure 3.8 shows the power density and associated temperature maps of 32-core
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Figure 3.8: Temperature and power density of air cooled floorplan
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Figure 3.9: Temperature and channel distribution using uniform MF heatsink.
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Figure 3.10: Temperature and channel distribution using optimized MF heatsink.

3D CPU using air cooling. Each core spans two layers and the tiling topology

is 4 × 8 × 1. The dynamic power density is fixed regardless of cooling scheme,

although the leakage power does change with the temperature when uniform and

optimized MF heatsinks are applied. Figures 3.9 and 3.10 show the temperature and

associated microchannel placement vectors of a uniform and optimized MF heatsink

respectively.

We observe that the reduction in peak temperature is only marginal from air

cooling to uniform MF cooling, whereas the reduction due to an optimized MF

heatsink is substantial. The basic mechanism of improvement in this example is

as follows: by removing microchannels on the top layer that run through areas

of low power density, more cooling capacity can be delivered to the bottom layer,
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which has much higher thermal resistance and suffers from thermal coupling with

the high-power top layer. Although the microchannel distribution on the bottom

layer remains generally uniform, the top layer only has channels running under

the thin strips of high-power-density components. Since many less channels are

used in the Optimized MF heatsink, the fluid velocity is increased, counteracting

the thermal wake effect and greatly improving heatsink cooling capacity, while still

keeping channels in place under local hotspots.

3.10.4 Microchannel Cost Model

In order to reduce convergence time of our simulated annealing approach, we

define a cost model of microchannels such that removing channels with lower cost

are more likely to improve the objective function. The basic idea is to quantify the

amount of power being sunk by each channel, and remove the channels that are

sinking the least power. The formulation for our cost model is given below, and

illustrated in Figure 3.11.

1) Sum Power: Since B is a two dimensional variable, we must create a

corresponding two-dimensional representation of the three-dimensional power map.

Since each channel sinks power from all sources along the direction of flow, it makes

sense to sum the power map along the flow direction. However, one must take into

account the decreasing cooling capacity of a microchannel along the direction of flow

due to an increase in fluid temperature (i.e. the thermal wake effect [107]). Thus the

power generated near the outlet is more critical in determining peak temperature
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Figure 3.11: Microchannel cost model example

than the power located near the inlet because it is subject to less cooling. When

summing the power map along the direction of flow the power is scaled by some

function σ which increases along the direction of flow. Scaled power matrix P is

created such that py,x =
∑

z powery,x,zσ(z) where power is the three dimensional

power map such that the third dimension runs along the direction of flow. In our

study we set σ(z) = 1 + 0.5(z − 1).

2) Enumerate Microchannels and Grids: We enumerate each microchan-

nel in B and each power grid in P such that the ith microchannel is represented by

byi,xi
and the jth power grid is has power pyj ,xj

.

3) Evaluate Distance: Generate distance matrix D such that di,j = |xi −

xj|+ λ|yi − yj| is the distance between the ith microchannel and the jth power grid.

The coefficient λ is the relative weighting between vertical and horizontal distance,

and can be adjusted to model the amount of thermal coupling between layers. In

our study λ = 1.
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4) Weight: Using the distance matrix D we create a weight matrix W which

represents the relative thermal conductance from each power grid to each microchan-

nel. We convert D to W by mapping each element using some function α which

decreases with distance. Thus wi,j = α(di,j). In our study α is a Gaussian function

centered at 0 with a standard deviation of 2. After determining the values of W

the normalized matrix N is generated such that the sum of weights between each

grid and all channels equals one: ni,j = wi,j/
∑

i wi,j. Thus all grids have the same

total influence on the outcome of the cost model, but the relative influence on each

channel is determined by distance.

5) Scale: Finally a scale matrix S is created representing the total power

sunk by each channel from each grid. The values of this matrix depend on the

position weights from the previous step and the total power in a grid. However,

as stated earlier, the thermal resistance to ambient of the layers deep in the stack

is more than those near the top, making the power in these layers more critical to

peak temperature. To model this, power matrix P is scaled by some function β

which is an increasing function of layer depth. Thus si,j = ni,jpyj ,xj
β(yj). In our

study we define β(y) = 1 + 0.5(y − 1). The final channel cost vector c is generated

by summing S across all grids: ci =
∑

j si,j. The cost vector is used to determine

the set of channels considered for removal during each iteration of the simulated

annealing algorithm.
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3.11 Simultaneous Optimization

One would assume that floorplan and heatsink optimization would need to be

done simultaneously, or in a nested loop to avoid convergence to a local minimum.

Initially that approach was implemented, but upon comparison of the nested opti-

mization to the sequential method proposed in the paper, we observed that sequen-

tial optimization resulted in very similar quality results as the nested optimization,

and significantly reduced the simulation runtime.

Chapter 4: Architectural Opportunities of Micro-Fluidically Cooled

3D CPUs

This chapter presents the results of two studies undertaken to quantify the

potential architectural opportunities presented by 3D IC technology using a stacked

memory-on-logic processor. In the first study (Section 4.1) we show that indeed

significant speedup can be achieved, but as expected this speedup is significantly

thermally limited by the trapped heat effect. However we show that MF cooling

can overcome the thermal issues and thus realize the true potential of the 3D CPU

architectures under consideration. In the second study (Section 4.2) we explore the

potential return to a frequency scaling scheme in light of the reduced memory wall

inherent to stacked memory processors, and the reduced leakage power and chip
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temperatures achieved with micro-fluidic cooling. We find that the energy efficiency

scaling trend vs. frequency is actually reversed when MF cooling is applied. Finally

we summarize this chapter in Section 4.3.

4.1 2D vs. 3D CPUs and the need for MF cooling

Chapter 2 introduced a number of architectural opportunities brought on by

3D technology, as well as some of the associated challenges. Thermal management

was identified as a primary limitation of 3D integration and micro-fluidic (MF)

cooling was introduced as a promising potential solution. In this study we begin

with the simplest type of 3D CPU: a stacked DRAM memory integrated on top of a

traditional 2D multi-core processor. We ask two fundamental questions in this study:

What are the potential performance improvements offered by this architecture, and

what are the thermally feasible improvements. Furthermore, regarding the second

question we investigate how the switch from air cooling to MF cooling will affect

the thermal feasibility, and push the 3D memory-on-logic architecture closer to

realization of it’s true potential.

As discussed in Section 2.4 the primary performance benefit of memory-on-

logic stacking comes from higher memory bandwidth [9, 27, 39]. In our study we

increase the memory bus frequency to match the CPU core frequency and expand

the bus bit witch to match that of the L2 cache line (Table 3.2). Although these two

extensions do improve memory bandwidth significantly, they do not fully leverage

the additional CPU-DRAM interconnect density offered by TSV technology. To
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explore architectural designs with even more bandwidth we consider increasing the

number of memory controllers (MCs), allowing parallel memory access and thus

scaling memory bandwidth proportional to the number of MCs.

Although additional MCs can also be added to traditional 2D CPUs with

off-chip DRAM, they will not benefit from more than a few MCs due to off-chip

bandwidth constraints imposed by IO pin count limitations [9,108,109]. On the other

hand, memory-on-logic 3D CPUs achieve monotonic (albeit diminishing) speedup

as more MCs are added due virtually unlimited1 CPU-DRAM integration density.

Memory latency vs. number of MCs is shown in Figure 4.1 in a traditional 2D off-

chip DRAM configuration and a memory-on-logic 3D CPU. This data was generated

for a 16-core CPU using the simulation infrastructure and DRAMmodels introduced

in Chapter 3. As more MCs compete for a fixed number of IO pins in a traditional

DRAM CPU, the transfer delay from our latency mode (Section 3.3) begins to

dominate as it increases proportional to the number of MCs2. This makes MC scaling

beyond 8 inefficient, whereas the DRAM latency with on-chip vertical integration

shows significant gains all the way up to 32.

In the this study we sweep the number of MCs and the clock frequency of a

traditional 2D CPU and a memory-on-logic 3D CPU and evaluate the performance,

power and temperature. We observe thermal violations in the 3D CPU with air

cooling, so we evaluate the potential improvements to thermally feasible performance

offered by applying a MF heatsink. The architectural design space considered in

1Feasible TSV integration density is many orders of magnitude higher than the density required
for any reasonable number of memory controllers.

2DRAM bus width per MC is total IO pins (64) divided by total number of MCs.
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Figure 4.1: Average DRAM latency vs. number of memory controllers [8]

this study is given in Table 4.1. In this study the floorplan topology was fixed and

uniform microchannel placement was used. The effects of physical optimizations are

introduced in Section 5.1.

Table 4.1: Study 1: Architectural Design Space

Cores 16
Clock Rate {2.4, 2.6, 3.0, 3.2, 3.4} GHz
Memory Controllers {1, 2, 4, 8, 16, 32}

We conclude that memory-on-logic architectures do bring significant potential

performance improvements, but are thermally infeasible with traditional air cooling.

In fact, 3D stacking actually reduces the feasible performance compared to tradi-

tional off-chip DRAM when air cooling is applied because the trapped heat effect

requires total chip power to be scaled down significantly. However MF cooling is

able to realize the potential benefits of 3D CPUs by removing thermal violations.

We also show that MF cooling significantly reduces leakage power, more than mak-

ing up for the required MF pumping power, and begging the question of how MF

cooling effects energy efficiency scaling trends, which we investigate in Section 4.2.
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4.1.1 Performance

Throughout this dissertation we measure performance by the average number

of committed instructions per nanosecond (IPnS) which is equivalent to billions of

instructions per second (BIPS). Figure 4.2 shows the performance of our target pro-

cessor with a variable number of memory controllers and clock rates. On average the

peak performance for a 3D CPU is 1.62x the peak performance of a 2D CPU within

the studied design space. Although 3D integration offers the potential for significant

speedups, these improvements can only be feasibly realized if the heat generated as a

result of the increased power flux and thermal resistance can be sufficiently removed

form the chip. It is important to note that performance improvements result from

both reduced latency at a fixed number of MCs, and the ability to leverage more

MCs and thus access multiple DRAM ranks in parallel.

4.1.2 Temperature

Figures 4.3 and 4.4 show the peak temperature of our target processor config-

urations. In this work we assume the thermal violation temperature is 85 ◦C, which

is shown as a horizontal black line in each figure. The number annotated above each

bar represents the maximum performance (across all different MC configurations)

that does not violate the thermal constraint for each frequency/benchmark pair.
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In the 2D case adding more memory controllers did not significantly increase

the temperature of the chip (Figure 4.3). This is because the generated heat has a

low thermal resistance path to the heatsink (Section 3.8). Thus no thermal violations

occur, and the optimal number of MCs can be implemented without considering any

new cooling methods. However the performance gains are limited.

In the 3D case, when the chip is air cooled (Figure 4.4(a)) the peak temperature

often surpasses the thermal constraint, and thus the peak performance cannot be

achieved. The maximum achievable performance of an air cooled 3D system is in

most cases actually less than that of a 2D IC. This is because adding more MCs to

a 3D IC increases the peak temperature drastically (which is not the case for 2D),

meaning that in most cases the 2D IC can use more MCs than the air cooled 3D

IC, causing the 3D IC to get worse performance.

We know from the performance plots (Figure 4.2) that 3D ICs are capable of

achieving much greater performance, and this motivates the need for more aggressive

cooling techniques in order to achieve the performance increases potentially offered

by 3D integration. When micro-fluidic cooling is applied (Figure 4.4(b)) the peak

temperatures are all brought to below the temperature threshold, and the great

performance increases offered by 3D integration can be thermally realized. Thus,

aggressive cooling has enabled more aggressive architectural configurations. On

average, the MF cooled 3D CPU’s maximum achievable performance is 2.4x greater

than the maximum achievable performance of an air cooled 3D CPU and 1.6x greater

than the maximum achievable performance of an air cooled 2D CPU.
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4.1.3 Thermally Feasible Performance

The maximum performance subject to thermal constraints (i.e. the annota-

tions in Figures 4.3 and 4.4) is plotted in Figure 4.5. When air cooling is used

3D and 2D CPUs alternatively outperform each other depending on the workload.

In general 3D CPUs have better performance than 2D CPUs when the number of

MCs is the same. However, for most benchmarks 2D CPUs can thermally accom-

modate more MCs, allowing them to outperform an air cooled 3D CPU. But for the

low power benchmarks (e.g., lu, streamcluster and ocean) the 3D temperature

is low enough even with air cooling to take advantage of the additional bandwidth

offered by memory-on-logic stacking. When thermal concerns are alleviated with

MF cooling, 3D CPUs always perform best.

It can be observed in Figure 4.5 that average performance improves very little

with respect to frequency in an air cooled 3D CPU. Due to thermal constraints,

there must be a trade-off between frequency and the number of memory controllers

to maintain a safe temperature. With MF cooling or a traditional 2D layout, enough

temperature slack exists in the system that both frequency scaling and increased

number of memory controllers can be leveraged for higher performance.

4.1.4 Power

Dynamic power remains the same regardless of heatsink type. However, Fig-

ures 4.6 and 4.7 show that adding MF cooling actually decreases the total power

dissipation dramatically. This is because the leakage power is strongly dependent
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on temperature and the temperature reduction due to liquid cooling reduces the

leakage power. On average micro-fluidic cooling can reduce 3D IC leakage power

by 20.9W, which easily justifies the extra power used to pump the fluid through

the microchannels (less than 1 W). Furthermore, it begs the question of how MF

cooling effects energy efficiency scaling trends, which are examined in Section 4.2.
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4.2 Frequency Scaling with Micro-Fluidics

Since the 1980s Moore’s Law performance scaling was traditionally achieved

through constant increases to CPU frequency, made possible by similar reductions in

capacitance and voltage through technology scaling. However the increase in power,

and therefore temperature, associated with frequency scaling became unsustainable

in the mid 2000s [110]. One of the biggest problems was the exponential increase in

leakage power as temperatures increased, causing energy efficiency to plummet past

a few GHz [111]. Another big issue with frequency scaling was the ever increasing

memory wall gap between processor and memory performance (Section 2.2) [110].

In Section 4.1 we observed a large reduction in leakage power and temperature

due to the application of MF cooling. Additionally we observed a significant per-

formance improvement due to increased memory bandwidth when memory-on-logic

stacking was applied. These two observations cause us to reexamine the feasibility

and efficiency of further frequency scaling in 3D CPUs with MF cooling.

In this study we first argue that frequency scaling is a more versatile scaling

trend than the core scaling that has come to replace it. We sample the parallelism

of a group of benchmarks and show that only those with very large degrees of par-

allelism will benefit from core scaling, whereas all workloads benefit from frequency

scaling. However with traditional air cooling, both core and frequency scaling are

limited in 3D CPUs. Next we compare air cooled and MF cooled 3D CPUs and their

associated scaling trends with respect to temperature, power and energy efficiency.
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4.2.1 Design Space and Benchmarks and Metrics

The design space swept in this study includes the number of cores (i.e. core

scaling) and the clock rate (i.e. frequency scaling). The specific values simulated are

given in Table 4.2. Different workloads exhibit different performance/power/temperature

trade-offs across these different variables, and the highest performance thermally

feasible design point is identified for each benchmark. In this study the floorplan

topology was fixed and uniform microchannel placement was used. The effects of

these physical optimizations are introduced in Section 5.1.

Table 4.2: Study 2: Architectural Design Space

Cores {16, 32, 64}
Clock Rate {2.4, 3.0, 3.6} GHz
Memory Controllers 0.5 per Core

Each benchmark (except for ferret, which has a unique data pipeline) has

some period of sequential execution that occurs on a single processing core, followed

by a period of parallel execution distributed across all cores. The ratio of parallel

execution time to total execution time3 is denoted α. According to Amdahl’s law,

the amount of speedup offered by using n cores (compared to a single core) is shown

in Equation (4.1).

Performance(n)

Performance(1)
=

n

n− α(n− 1)
(4.1)

3Benchmarks were terminated after 540M instructions if they had not already finished to main-
tain reasonable simulation time.
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In the architectures simulated here, adding more cores also changes the size

and distribution of the L2 cache as well as increasing the average distance between

routers in the NOC, causing performance to depend on other factors beyond Am-

dahl’s law. Nevertheless, benchmarks with a large α value often achieve optimal

performance with more cores, whereas benchmarks with a low α value often achieve

optimal performance with a smaller number of cores. The α value and highest

performing core count for each benchmark is tabulated in Table 4.3.

In this work we measure performance by the average number of committed

instructions per nanosecond (IPnS) and energy efficiency by the reciprocal of the

energy delay product (EDP).

4.2.2 Core and Frequency Scaling

For each benchmark, we find the highest performing architectural configuration

that does not violate the peak temperature constraint of 85 ◦C. The results of this

experiment are shown in Tables 4.3.

We observe that with air cooling both the number of cores and the frequency

is severely limited. With the application of MF cooling, every benchmark except

radix is able to achieve its optimal number of cores. Moreover, only swaptions

pursues core scaling over frequency scaling, and this is because swaptions is nearly

100% parallel. The main conclusion from this data is that even when thermal

constraints are mitigated (e.g., by applying MF cooling), the amount of potential

improvement due to core scaling has an established upper limit inherent to the
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Table 4.3: Maximum benchmark performance s.t. thermal constraint

Benchmark
α
(%)

Opt.
#Cores

Air Cooled MF Cooled Inc.
IPnS#Core Freq IPnS #Core Freq IPnS

Swaptions 99.8 64 16 3.0 35.1 64 3.0 119.6 3.41x
Radix 99.8 64 16 3.0 34.9 32 3.6 51.8 1.48x
Barnes 98.8 64 16 3.0 27.4 64 3.6 70.0 2.56x
FMM 98.7 32 16 3.0 24.5 32 3.6 42.6 1.74x
Water-spatial 93.2 64 16 3.0 40.5 64 3.6 67.1 1.66x
Water-nsquared 93.0 16 16 3.0 32.4 16 3.6 38.4 1.19x
FFT 74.3 64 16 3.0 6.2 64 3.6 7.6 1.23x
Raytrace 71.9 16 16 3.0 1.9 16 3.6 2.1 1.15x
Fluidanimate 35.7 16 16 3.0 4.7 16 3.6 5.5 1.18x
Dedup 29.2 16 16 3.6 1.3 16 3.6 1.3 0.00x
Facesim 0.0 16 16 2.4 4.8 16 3.6 7.0 1.48x
Radiosity 0.0 16 16 3.0 2.5 16 3.6 3.0 1.19x
Ferret - 32 16 3.0 4.6 32 3.6 5.5 1.20x

Average 1.57x

parallelism (α) in the workload. On the other hand frequency scaling can continue

to push performance for any arbitrary workload, until the thermal constraint is hit.

With MF cooling and 3D memory-on-logic stacking we expect that frequency scaling

once again becomes a viable strategy, at least in the short term.

4.2.3 Scaling Trends

To further investigate the frequency scaling trends of 3D CPUs, we fixed the

number of cores (32) and performed a detailed frequency sweep on a sequential

benchmark (facesim). The sequential nature of the benchmark eliminates the pos-

sibility of improving its performance through core scaling, and leads us to view

frequency scaling as the only avenue for benchmark speedup. We compare the fre-

quency scaling trends of an air cooled vs. MF cooled 3D CPU.
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Figure 4.8: 3D CPU (a) performance (b) energy efficiency vs. frequency with air
cooling and MF cooling
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It is obvious that frequency scaling will improve performance roughly linearly

with frequency (Figure 4.8(a)), but what is interesting is how power, temperature

and energy efficiency scale using different types of heatsinks. Figure 4.8(b) shows

that air cooled 3D CPUs will become energy inefficient beyond 3-4 GHzwhereas

MF cooled 3D CPUs will continue to be energy efficient beyond 5 GHz. This is

an interesting result because the traditionally frequency scaling paradigm ended

around 3 GHzwhich has good agreement with the simulation data. This implies

the possibility of MF cooling providing a realignment back to frequency scaling,

or the application of frequency and core scaling in tandem for future computer

architectures.

Figure 4.9(a) shows the thermal scaling trends. We can see that air cooled 3D

CPUs become thermally infeasible beyond 2 GHzwhereas MF cooling can push ther-

mal feasibility out to nearly 5 GHz. One advantage of 3D integration is core scaling

independent of technology scaling by applying logic-on-logic stacking. However this

will yield similar thermal scaling trends to frequency scaling due to increased power

flux, and will likewise require aggressive active cooling solutions such as MF cooling.

Finally, Figure 4.9(b) shows the power scaling trends. Two important obser-

vations can be made about air cooled 3D CPUs. First, they generally have large

amounts of leakage, roughly 50% up to 4 GHz. Beyond this point the thermal

runaway phenomenon [62] causes the leakage and temperature to quickly increase

without bound in a positive feedback loop. Moreover, leakage power scales at the

same rate as dynamic power, reducing energy efficiency as clock rates increase. MF

cooling not only removes the thermal runaway issue (in the range of frequencies
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Figure 4.9: 3D CPU (a) temperature (b) power vs. frequency with air cooling and
MF cooling
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simulated), but also causes leakage power to scale slower than dynamic, leading to

more efficient systems and improving the effectiveness of dynamic power control

schemes like clock gating [112].

4.3 Summary

In this Chapter we have quantitatively investigated some of the architectural

opportunities offered by memory-on-logic 3D CPUs with micro-fluidic cooling. We

consider the memory bandwidth advantages of 3D stacked memory and identify the

need for embedded active cooling to realize the theoretical gains of such a system.

Furthermore we consider the scaling trends of 3D CPUs with MF cooling and show

that frequency scaling may once again emerge (in conjunction with core scaling) as

a viable avenue for performance scaling of future CPUs cooled with micro-fluidics.

Section 4.1 made the case for memory-on-logic 3D CPUs by demonstrating

their potential speedup over traditional 2D CPUs with off-chip DRAM, but showed

that those improvements could only be thermally realized with embedded active

cooling such as MF cooling due to the high power flux of the core logic layer and the

trapped head effect of the stacked DRAM. Speedup was achieved by increasing the

clock speed and bit width of the memory bus using high density TSV integration,

and increasing the number of dedicated memory controllers allowing for parallel

memory access.

85



Section 4.2 built on some of the findings from Section 4.1 and evaluated the

frequency scaling trends of power, temperature and energy efficiency when using 3D

CPUs with MF cooling. Two major factors in the switch to multi-core paradigm

were excessive power and heat, and the memory wall. We show that the power and

heat scaling issue can be significantly curbed with embedded MF cooling, and that

the memory wall can be overcome with high bandwidth on-chip DRAM integration.

The scaling trends of temperature and leakage power are significantly linearized by

application of MF cooling, and moreover, the energy efficiency continues to rise in

an MF cooled 3D CPU as frequency is increased up to 5 GHzwhereas the energy

efficiency of an air cooled CPU begins to decrease past 3-4GHz.

Chapter 5: Architectural-Physical Co-Design of Micro-Fluidically Cooled

3D CPUs

In this chapter we present results from the application of our proposed co-

design flow. Section 5.1 applies the proposed scheme across a 3D CPU design

space with different physical optimizations, objective functions, and physical con-

straints. Section 5.2 investigates a fundamental trade-off between TSV density (i.e.

inter-layer communication bandwidth) and the cooling capacity of a MF heatsink.

Specifically we target a pin-fin heatsink. Compared to microchannel MF heatsinks,
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pin-fin MF heatsinks are known to have higher cooling capacity, but are more re-

strictive on TSV density and placement [113]. Section 5.3 concludes this chapter

with a summary.

5.1 Thermal-Reliability Aware Architectural-Physical DSE

In this study we investigate the effects of the floorplan (Section 3.9) and cooling

(3.10) optimization schemes on the feasibility region of a 3D CPU design space. In

addition to the thermal constraints imposed in Chapter 4 we also incorporate the

reliability model from Section 3.7 and impose a reliability constraint on the design

space. We combine the design variable spaces considered in the two previous studies

in Chapter 4. This results in a three-dimensional design space of cores, MCs and

frequency, as enumerated in Table 5.1.

Table 5.1: Study 3: Architectural Design Space

Cores {16, 32, 64}
Clock Rate {2.4, 3.0, 3.6} GHz
Memory Controllers {0.125, 0.25, 0.5} per Core

Thus we perform 3D memory-over-logic processor DSE across a combined

design space of architectural parameters, floorplan topology and MF heatsink design,

subject to thermal and reliability metrics. The optimization metric is performance

measured in instructions per nanosecond (IPnS, a.k.a. BIPS). We use a variable

reliability threshold of 0.00 ≤ α ≤ 0.99 such that the probability the CPU fails
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Figure 5.1: 3D CPU design space performance

before target lifetime is less than or equal to 1−α. For sensitivity analysis, we also

investigate the effects of ignoring one or more of the floorplan objective terms and

sweeping the tightness the reliability constraint.

5.1.1 Feasibility Region

First we explore the feasibility region of the design space. An architecture

is considered feasible if for all benchmarks the thermal and reliability constraints

are met. Although the entire design space from Table 5.1 was considered in this

evaluation, we found that no 64-core architectures could meet both thermal and

reliability constraints, so the 64-core architectures were trimmed from the design

space for this section1. Figure 5.1 illustrates the normalized performance of the

trimmed design space, evaluated over a set of parallel benchmarks from Splash-

2 [84] and PARSEC [85] benchmark suites. Performance values for each benchmark

were normalized to the 16-core 2 MC 2.4 GHzarchitecture before averaging across

all benchmarks.

1However in Section 5.1.2 we consider the optimal architecture of each benchmark individually
(as was done in Section 4.2) and the 64-core architectures are included in those results.
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Figure 5.2: Thermal feasibility region (shown in white)

2.4 3.0 3.6

8

4

2

WL+T+R

OPT

2.4 3.0 3.6

16

8

4

OPT

2.4 3.0 3.6

8

4

2

WL+T

2.4 3.0 3.6

16

8

4

Frequency (GHz)

N
u
m
b
e
r 
o
f 
M
e
m
o
ry
 C
o
n
tr
o
lle
rs

Reliability Feasibility Region

16 Cores 16 Cores

32 Cores32 Cores

Figure 5.3: Reliability feasibility region (shown in white)
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Figurea 5.2 through 5.4 show the feasibility region of the design space. Fea-

sible architectures are shown in white, infeasible architectures are shown in black

and the highest performing feasible architecture is marked with “OPT”. The ther-

mal (Figure 5.2) and reliability (Figure 5.3) feasibility regions are evaluated sep-

arately and their intersection defines the true thermal-reliability feasibility region

(Figure 5.4). Thermal feasibility is defined as maximum on-chip temperature less

than Tviolation = 85◦C. Reliability feasibility was defined as Pfail(ttarget) < α where

α = 99% is the reliability confidence and ttarget = 3 years is the lifetime target.
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Two floorplan objective functions are considered. The first only includes wire-

length2 and temperature (WL + T ), whereas the second also includes reliability

(WL + T + R). The results in this figure assume MF cooling with uniform mi-

crochannel placement.

Looking at the thermal feasibility region, we observe that the addition of re-

liability to the floorplan objective function causes the thermal feasibility region to

contract, resulting in reduced optimal performance. However, the addition of reli-

ability to the floorplan objective massively expands the reliability feasibility region

and the true thermal-reliability feasibility region which increasing the optimal per-

formance significantly.

This result exposes an interesting potential trade-off between temperature and

reliability in 3D CPUs. Although increased temperature increases the probability

of failure of a single TSV, it is quite possible that thermally optimized floorplans

contain more 3D nets (i.e. more cuts in the inter-layer partition) in order to opti-

mize the distribution of power. In some cases the increase in number of TSVs will

outweigh the reduction in temperature when considering the net effect on system

reliability.

Overall we conclude that even though one would assume optimization of ther-

mal and reliability metrics to go hand in hand, this is in fact not the case. Opti-

mization for temperature only is significantly suboptimal due to splitting too many

3D nets to get fine-grained power density matching against the thermal resistance of

2In this context wirelength consists of the combination of area A and total negative slack S
from Equation (3.10).
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Figure 5.5: Co-design results

each stack layer. Conversely, consideration of the reliability objective in optimiza-

tion increases hot-spot temperature, and awareness of both metrics is necessary to

maximize the intersection of the thermal and reliability feasibility region.

5.1.2 Optimal Performance

The optimal feasible performance of the investigated architectural design space

is plotted in Figure 5.5. This data is generated by finding the optimal feasible

performance of each benchmark separately, and normalizing against the base case

before averaging the results across all benchmarks. In this study the base case
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is as follows: air cooling, thermal-reliability unaware floorplanning (WL), and no

reliability constraint (i.e. α = 0). Three floorplan objectives are used to generate

the data, each one adding an additional term to the objective function.

The data is obtained using two different constraints: thermal (T Constraint)

and thermal-reliability (TR Constraint). These two constraints are defined by set-

ting α = 0 and α = 0.99 respectively. The unconstrained performance of the design

space is notated as an upper bound. Likewise, four different cooling schemes are

considered: high-pumping-power uniform MF cooling (High-P Fluid), low-pumping-

power optimized MF cooling (Low-P Opt Fluid), low-pumping-power uniform MF

cooling (Low-P Fluid) and traditional air cooling (Air). Low-pumping-power MF

cooling uses 5x less pumping power, and optimized MF cooling uses the microchan-

nel placement optimization technique described in Section 3.10.

Comparing the first (leftmost) two bars in the figure, we can see that with-

out reliability constraints, thermally-aware floorplanning improves thermally feasible

performance between 3% and 13% depending on the cooling method applied. Addi-

tionally one can observe that none of the considered cooling techniques are able to

thermally unlock the entire design space, and the improvement in performance due

to increasing MF cooling power 5x is less than 2x. Finally, microchannel placement

optimization can provide significant performance improvements while maintaining

a constant pumping power, thus greatly increasing the power efficiency of the MF

heatsink.
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Comparing the middle two bars we observe that the massive improvement to

the thermal feasibility region provided by MF cooling becomes a moot point when

reliability constraints are included. However, by comparing the last (rightmost) two

bars we see that reliability-aware floorplanning can once again unlock the perfor-

mance potential of MF cooling. Reliability feasibility does not significantly affect

the potential performance of an air-cooled 3D CPU since the architectural design

points which would benefit from the expanded reliability feasibility region are still

thermally infeasible. The conclusion here is that aggressive cooling is required to

thermally unlock 3D CPU performance, but must also be accompanied by reliabil-

ity aware physical design to realize the potential gains brought by the new cooling

technology.

5.1.3 Reliability Constraint Sensitivity

Finally we repeat the above analysis for different values of α and compare the

performance ratio between reliability aware (WL+ T + R) and reliability unaware

(WL + T ) designs. The improvement in average feasible performance is shown

in Figure 5.6. We observe that the performance improvement due to reliability

awareness in floorplanning increases as the reliability constraint tightens because

reliability becomes a more significant factor in determining physical feasibility.

Moreover we observe that the performance improvement due to reliability

awareness is significantly less when air cooling is used because many design points

are thermally limited. Due to a very small thermal feasibility region, reliability aware
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Figure 5.6: Performance improvement due to reliability-aware FP

design has little effect on the physical feasibility region, and thus offers only marginal

improvement. On the other hand when MF cooling is used the improvement due to

reliability-aware floorplanning is quite large since reliability is the dominating factor

determining physical feasibility.

The conclusion is that the effectiveness of certain optimization schemes, such as

reliability-aware floorplanning, will depend on other design choices, such as heatsink

type, and the design specifications, such as reliability constraint. This further mo-

tivates the need for a holistic co-design paradigm.
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5.2 Thermal-Bandwidth Trade-offs in MF Cooled 3D CPUs

In the previous studies we have investigated the trade-offs between perfor-

mance, temperature and reliability across an architectural physical design space. In

those studies constraints on TSV integration density did not come into play because

the microchannel MF heatsink can accommodate sufficient integration density to

support the architectures investigated in this dissertation3. However, other types

of MF heatsinks exist, which offer better cooling at the expense of reduced TSV

integration density [113,115]. In this study we investigate one such heatsink design:

the micro-fluidic pin-fin heatsink. In this section we present a study that shows

that a heatsink designed for maximum cooling will actually limit the architectural

design space due to inter-layer bandwidth constraints more so than a heatsink that

provides worse cooling in order to accommodate higher TSV density.

Micro-fluidic pin-fin heatsinks (Figure 5.7) pump fluid through cavities etched

into the silicon substrate of each layer in a 3D chip stack. The fluid cavities are

etched around cylindrical islands of silicon called pin-fins. Pin-fins provide a physi-

cal, electrical and thermal interconnection between adjacent layers in the chip stack,

and provide a path for heat transfer from the silicon into the fluid.Unlike microchan-

nel heatsinks, pin-fin cooling pumps all fluid through a single connected cavity, and

has been shown to provide better cooling performance compared to a micro-channel

heatsink when fluid velocity is high [113,115].

3However the inter-layer integration density required for more fine-grained 3D circuits may see
limitations due to micro-channel heatsinks. Moreover TSV-microchannel conflicts impose con-
strains on detailed gate-level placement [30,31,114]
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Figure 5.7: Micro-fluidic pin-fin cooling of a single layer in a 3D-IC

Two of the most important geometric parameters that determine the cool-

ing capacity of a micro-fluidic pin-fin heat sink are the pin diameter D and pitch

S [113,116], which are illustrated in Figure 5.7. The pin pitch determines the num-

ber of pins per unit area, and the pin diameter determines the surface area of each

pin. Increasing pin diameter or decreasing pitch increases the total surface area

between fluid and silicon substrate, increasing heat conduction, but also increas-

es the resistance to flow, causing fluid velocity to drop when a constant pressure

drop is enforced between fluid inlet and outlet. The micro-fluidic pin-fin heatsink

parameters explored in this paper are enumerated in Table 5.2.

Table 5.2: Micro-fluidic pin-fin heatsink dimensions

Variable Value Unit Description

S {250, 300, . . . , 600} µm Pin Pitch
D 75 µm Pin Diameter
H 100 µm Pin Height

Past work [113] has shown that micro-fluidic pin-fin heatsink parameters can

be optimized to improve cooling capacity, but have not considered how such opti-

mizations affect architectural design constraints such as vertical interconnect den-
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sity. Furthermore that work only considered one fixed micro-architecture, and did

not consider how optimal heatsink parameters change under different architectural

design choices.

One drawback associated with micro-fluidic cooling in general is the resource

conflict that emerges between TSVs and fluid cavities. Since TSVs cannot pass

through the fluid cavities, the location and density of vertical interconnects is deter-

mined by the design of the cooling system, such as pin-fin or microchannel diameter

and pitch. In other words, TSVs can not be placed through the fluid cavity. In a

pin-fin MF heatsink, TSVs are generally more constrained because more of the chip

area is dedicated to the fluid cavity [115]. In such a heatsink, TSVs can only pass

through the pins themselves (Figure 5.7).

Past work [30,31] has shown that this resource conflict can restrict the place-

ment of TSVs, leading to increased wirelength and thus critical path delay, but

has not considered how the resource conflict can affect micro-architectural design

choices.

Our results show there exists a trade-off between maximum TSV density and

cooling capacity of the micro-fluidic heatsink. Since different 3D CPU architectures

require varying amounts of vertical interconnect density, the cooling solution for

each architecture should be designed to maximize cooling while accommodating

sufficient TSV bandwidth (BW). We show that näıve application of fixed micro-

fluidic heatsink designs will severely limit the feasible design space for 3D CPUs

and result in the selection of suboptimal designs.
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5.2.1 Bandwidth Requirements

The bandwidth requirement of a 3D CPU architecture is defined as the max-

imum TSV density required by the architecture. In this study we simulate single-

layer cores, so TSVs are only required for extra-core communication: 1) commu-

nication between memory controllers and DRAM, and 2) communication between

routers. An extension of this study which is left to future work would be to include

multi-layer cores and the TSV density requirements associated with these intra-core

vertical nets.

5.2.2 Memory Controller TSV Density

The number of DRAM buses passing through layer i in a vertical column of

memory controllers (MCs) is i: the number of MCs contained on all layers below and

including layer i. Thus the logic layer with the highest MC TSV density is always the

top layer, layer n. The minimum TSV density required for communication between

the MCs and the DRAM DTMC is given in Equation (5.1), where Wbus is the DRAM

bus width, ATSV is the area of a single TSV and AMC is the total area of a single

memory controller. In this work Wbus is assumed to be 512 bits (64 bytes).

DTMC = nWbusATSV
1

AMC

(5.1)
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5.2.3 Router TSV Density

The number of TSVs between layer i and i+1 in a vertical column of routers

was defined in Equation (2.1). Thus the minimum TSV density requirement for

router communication, DTROUT , is given in Equation (5.2) where AROUT is the

total area of a single router.

DTROUT = max
i={1,2,...,(n−1)}

TROUT (i)ATSV
1

AROUT

(5.2)

5.2.4 TSV Density Requirement

The overall TSV density requirement of a 3D CPU DT is the larger of the two

aforementioned density requirements, as expressed in Equation (5.3). In this study

we assume TSV pitch is 10 µm, making ATSV = 100 2µm. Other area values used

in this study are: AMC = 8.660 2mm and AROUT = 0.924 2mm which are obtained

from McPAT [2] (Section 3.4).

DT = max(DTMC , DTROUT ) (5.3)

5.2.5 Bandwidth Capacity

The pin-fin structure not only affects cooling, but also the maximum band-

width capacity of a micro-fluidic pin-fin heatsink. The bandwidth capacity is defined

as the maximum TSV density supported by the heatsink. The maximum TSV den-

sity supported by a pin-fin heatsink with pin diameter D and pin pitch S is DP as
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defined in Equation (5.4). The first two terms in the equation represent the cross

sectional area of a pin divided by the total area between adjacent pins. Y is the

TSV yield, which is the amount of pin area which can contain TSVs. In this work

we assume Y = 0.8 due to the circular shape of pin fins which results in wasted area

around the edge.

DP =
π

4

D2

S2
Y (5.4)

5.2.6 Pin Fin Thermal Model

The thermal model introduced in Section 3.8 was for a microchannel MF

heatsink. In this study we use a different thermal model to model the pin-fin MF

heatsink. The model was developed by our collaborators at Georgia Institute of

Technology [113] with whom we preformed this study. The pin-fin MF heatsink

model is explained in the remainder of this section.

The 3D stack is discretized into multiple control volumes, each modeling the

temperature around one pin. Figure 3.4 shows the energy flows in a single control

volume. Energy balance analysis is conducted for each control volume to evaluate

the thermal map of the system.

Each control volume is assumed to have a uniform fluid temperature Tf and a

uniform silicon temperature Ts. The energy equation for the solid components of a

control volume is given in Equation (5.5), where qgen is the energy generation rate
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Figure 5.8: Control volume around one pin

obtained from the power map, qcond is the heat conduction from neighboring control

volumes and qconv is the heat transferred by convection between the solid and the

fluid.

qgen = qcond + qconv (5.5)

The energy balance equation for the fluid is given in Equation (5.6), where ṁ

is the mass flow rate, Cp is the specific heat capacity of the fluid, and Tf (i− 1, j) is

the fluid temperature of the upstream neighbor control volume.

qconv = ṁCp (Tf (i, j)− Tf (i− 1, j)) (5.6)
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A system of equations is obtained by applying energy balance analysis to each

control volume, and the system is solved simultaneously. Heat convection terms

are defined using fluid heat transfer coefficient hf , which is given in Equation (5.7),

where Nu is Nusselt number which we estimate using the equations in [113], and kf

is the thermal conductivity of the fluid.

hf = NukfD (5.7)

In this study the fluid is assumed to be water. Table 5.3 gives a list of parame-

ter values used in the thermal model. Some parameters are temperature dependent,

so their default value (calculated at 25 ◦C) is given in the table, and temperature

dependent scaling factors from [117] are applied within the model. Heat conduction

from the chip stack into the environment is modeled as a heat transfer coefficient

between the ambient temperature and the top and bottom of the chip stack.

Table 5.3: Micro-fluidic pin-fin thermal model parameters

Variable Value Unit Description

Tamb 40 ◦C Ambient temperature
Tfin 25 ◦C Fluid inlet temperature
hbot 10 W m−2 K−1 Heat transfer coefficient at layer n
htop 562 W m−2 K−1 Heat transfer coefficient at layer 1
kSi 149 W m−1 K−1 Thermal conductivity of silicon
kOx 1.4 W m−1 K−1 Thermal conductivity of oxide

ρf (25) 1000 kg m−3 Fluid density at 25 ◦C
kf (25) 0.5573 W m−1 K−1 Fluid thermal conductivity at 25 ◦C
Cp(25) 4200 J kg−1 K−1 Fluid specific heat capacity at 25 ◦C
µf (25) 1.53 mPa s Fluid dynamic viscosity at 25 ◦C
∆p 1500 Pa Pressure drop from inlet to outlet
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5.2.7 Experimental Setup

In the following sections we discuss our experiment and results. First we dis-

cuss our methodology and characterize the design space (Section 5.2.8). Next we

characterize the effect of pin-fin pitch S on the thermal and bandwidth feasibility

of the design space. Finally we introduce two näıve schemes for choosing a heatsink

design and compare them to our proposed co-design methodology for choosing the

heatsink design that optimally balances thermal and bandwidth (i.e. inter-tier com-

munication density) design constraints. We compare the feasibility region and max-

imum feasible performance and energy efficiency using the three heatsink design

methodologies.

We exhaustively simulate all unique combinations of the architectural design

variables in Table 5.4 using 12 parallel software workloads from the SPLASH-2

[84] and PARSEC [85] benchmark suites. For each architecture-benchmark pair we

evaluate the performance (instructions per unit time) and power using the evaluation

methodology from Chapter 3. For this study we use a fixed single-layer core floorplan

topology. For a given architecture-benchmark pair, the performance is normalized to

the performance of the baseline architecture (64-core, 32 MC, 3.6 GHz). Normalized

performance is averaged across all benchmarks to yield a single performance number

for each CPU architecture. Similarly, the dynamic and leakage power of each CPU

component of a CPU design is averaged across all benchmarks yielding a single
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Figure 5.9: Normalized metrics of 3D CPU architectural design space

power map for each architectural design point. This power map is fed into the pin-

fin thermal simulator (Section 5.2.6) to generate a unique thermal map and leakage

power estimate for each heatsink design enumerated in Table 5.2.

Table 5.4: Study 4: Architectural Design Space

Cores {16, 32, 64}
Clock Rate {3.0, 3.6} GHz
Memory Controllers {0.125, 0.25, 0.5} per Core
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5.2.8 Architectural Parameter Sensitivity

The normalized performance, total power and energy efficiency of our CPU

designs are shown in Figure 5.94. As number of cores increases, both performance

and power increase drastically, due to the highly parallel nature of the simulated

workloads. Likewise as cores per MC decreases (i.e. number of MCs increases for

a fixed number of cores) power and performance increase due to higher memory

bandwidth and parallel memory access, leading to higher core utilization. These

trends are more or less the same for both frequencies, with the higher frequency

offering higher performance at the expense of higher power. We calculate the energy

efficiency of each design point as performance2

power
which is similar to the inverse of the

energy-delay-product (EDP) metric.

5.2.9 Heatsink Parameter Sensitivity

Each cooling design has a unique cooling capacity and maximum bandwidth

capacity. The cooling capacity is modeled using the pin-fin thermal model (Sec-

tion 5.2.6) and the maximum BW capacity is modeled in Equation (5.4). Likewise

each CPU architectural design has a unique bandwidth requirement as modeled in

Equation (5.3). A heatsink-architecture pair is considered to be thermally feasible

if the maximum temperature is less than Tviolation = 85◦C. A heatsink-architecture

4Total power and energy efficiency depend on leakage and micro-fluidic pumping power, which
is a function of heatsink design. However the trends did not substantially change across heatsink
designs, so only the data generated by our proposed co-design methodology is shown in the figure.
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Figure 5.10: Maximum feasible performance and energy efficiency vs. pin pitch

pair is considered to be bandwidth feasible if the required TSV capacity is met by

the heatsink (i.e. DP ≥ DT ). Only heatsink-architecture pairs that meet both

feasibility constraints are considered as feasible design choices.

Figure 5.10 shows the maximum feasible performance and energy efficiency

within the architectural design space as a function of the micro-fluidic heatsink pin

pitch. We plot the maximum performance (energy efficiency) subject to BW and

thermal constraints separately and then show the maximum performance (energy

efficiency) subject to both constraints. We see that both metrics peak somewhere in

between the maximum and minimum pin pitch where the optimal balance is struck

between thermal and bandwidth feasibility regions.

In this study, the intersection of the thermal and bandwidth feasibility region-

s is largest between 400 and 500 µm, thus unlocking more high performance and

energy efficient 3D CPU architectures. Note that when different architectural pa-
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rameters and physical parameters such as floorplan are considered, the optimal pin

pitch value may change, but the fundamental trade-off between cooling and band-

width as a function of pin pitch will remain and require co-design optimization.

5.2.10 Results

Finally, we analyze the architectural design space using three schemes for

assigning a separate heatsink design to each architectural design point. The first

two schemes are examples of näıve methods that might be used in absence of a

comprehensive co-design methodology. These involve simply designing the heatsink

independent of the logic architecture. Thus they apply the same heatsink parameters

across the design space. The third scheme is our proposed co-design method, which

designs a unique heatsink for each CPU architecture in order to maximize feasible

performance or energy efficiency. The considered schemes are as follows:

1. “Max Cooling”: Choose a fixed heatsink design for all architectures that

minimizes peak temperature.

2. “Max BW”: Chose a fixed heatsink design for all architectures that maxi-

mizes bandwidth capacity (i.e. pin density).

3. “Co-design”: Choose a separate heatsink design for each architecture that

minimizes leakage power5 while maintaining thermal and BW feasibility.

5We minimize leakage power to maximize energy efficiency since dynamic power and perfor-
mance are not affected by heatsink design.
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Figure 5.11: Thermal feasibility region (shown in white)
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Figure 5.12: Bandwidth feasibility region (shown in white)
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Figure 5.13: Thermal-bandwidth feasibility region (shown in white)

Figure 5.11 and 5.12 respectively show the thermal and bandwidth feasibility

region of the architectural design space using the three schemes discussed above.

We can observe that “Max BW” makes the entire design space bandwidth feasible,

but offers a very small thermal feasibility region. Alternatively, “Max Cooling”

offers a large thermal feasibility region but a very restrictive bandwidth feasibility

region. “Co-design” is able to match the thermal feasibility of “Max Cooling” while

drastically increasing the bandwidth feasibility region, leading to the largest overall

feasibility region among the three schemes. Thus the “Co-design” scheme unlocks

more high performance and energy efficient designs than the two ná’ive schemes. The

optimal feasible architectural design under each heatsink design scheme is designated

110



as “OPT” in Figures 5.11 through 5.13. The optimal design is determined by cross-

referencing the feasibility regions with the performance and energy efficiency results

shown in Figure 5.96.

Table 5.5: Normalized Co-design Results

Metric Max Cooling Max BW Co-design

Optimal Performance 0.70x 0.81x 1.00x
Optimal Energy Efficiency 0.82x 0.94x 1.00x

Optimal Number of Cores 16 32 32
Optimal Cores per MC 2 4 2

Optimal Frequency (GHz) 3.6 3.0 3.0
Chosen Pin Pitch (µm) 600 250 500

A comparison of the maximum feasible performance and energy efficiency of

the architectural design space using the three heatsink design schemes is shown in

Table 5.5. Numbers in this table have been normalized to “Co-design”. The results

show that co-design of 3D CPU architecture and micro-fluidic pin-fin heatsink can

achieve significant improvements by optimally balancing the trade-off between TSV

density and cooling capacity. The optimal design points are enumerated in the table,

and illustrated in Figures 5.11 through 5.13.

We observe that “Max Cooling” in fact achieves the worst performance and

energy efficiency because the TSV density is so restricted as to not allow core stack-

ing (i.e. the number of cores was restricted to only 16, which is the maximum that

can be accommodated on one layer). Although the additional cooling did facilitate

higher frequency, it was not able to achieve good performance due to limits on core

scaling.

6In our study the same design is optimal in both performance and efficiency, however it is
certainly possible (even likely) that two different designs could have been optimal in the two
different metrics if a different physical or architectural design space were considered.
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Alternatively, “Max BW” was unable to accommodate sufficient MCs due to

thermal constraints. “Co-design” chooses a heatsink pin-fin pitch in between the

pitch chosen by the ná’ive schemes, thus providing sufficient cooling to accommodate

many MCs and maintaining sufficient bandwidth to accommodate core stacking.

5.3 Summary

In this chapter we introduce the physical optimization algorithms discussed in

Chapter 3 into our evaluation of the 3D CPU architectural design space. Section 5.1

introduces reliability constraints on top of thermal constraints and studies their

effect on the feasibility region of the CPU design space at hand. The impact of

different floorplan objective functions is reported and the conclusion is that all

metrics of interest (in this case temperature and reliability) must be considered

simultaneously during physical design to select the optimal feasible architectural

design point. Furthermore the microchannel heatsink optimization technique from

Section 3.10 is evaluated and shown to offer significant cooling improvements for

a fixed pumping power, and blindly increasing pumping power with a uniform MF

heatsink is shown to be inefficient.

Section 5.2 examines the trade-off between TSV bandwidth and cooling capac-

ity which is inherent to MF heatsinks, especially pin-fin MF heatsinks. The optimal

heatsink design will be a different for different architectural and physical CPU de-
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signs with their unique cooling and TSV density requirements. We show that a

simple fixed heatsink design focusing on maximizing either cooling or bandwidth

will fail to realize the true potential of the design space at hand.
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Chapter 6: Design Space Modeling for Physically Constrained 3D

CPUs

Design space exploration (DSE) involves the evaluation of a multitude of design

choices prior to detailed implementation. Such a technique is necessary to identify

regions of interest in the design space and perform educated trade-off analysis of

conflicting objectives. In its simplest form, DSE can be performed by exhaustively

simulating the entire design space. However as CPU designs become ever more

complex in the pursuit of Moore’s law performance scaling, the DSE problem has

become increasingly intractable as the design space grows combinatorially in the

number of design parameters. Exhaustive simulation across such large design spaces

is inefficient and potentially infeasible or unaffordable in terms of runtime.

Past work has attempted to overcome the computational infeasibility of ex-

haustive simulation in two ways. One is to reduce simulation time by orders of

magnitude using techniques such as host-compiled simulation [118] or statistical

simulation [119]. Although these approaches can make exhaustive simulation possi-

ble, the accuracy of such fast simulation techniques is reduced, and the applicability

of the techniques is limited in scope. Another approach to the DSE problem is to
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simulate only a small subset of the the full design space and use modeling techniques

to predict the properties of un-simulated designs. Modeling approaches [120–123]

have shown promising results on large architectural design spaces.

Vertical integration of circuits (3D ICs) moves the architectural design problem

into uncharted territory where traditional domain knowledge and designer intuition

may no longer apply. Moreover, past work [12, 29] has shown that 3D-CPU ar-

chitectural design choices have a profound impact on physical properties such as

power, area and temperature and significant portions of the 3D CPU design space

can be infeasible due to physical constraint violations. 3D integration significantly

complicates the DSE problem as follows:

• 3D integration brings many new architectural opportunities that significantly

compound the intractability of exhaustive simulation.

• The effects of these new architectures on the design trade-off space are cur-

rently not well understood.

• 3D ICs are more thermally sensitive to architectural changes than equivalent

2D chips due to their physical structure [27,29].

• 3D ICs can eliminate communication bottlenecks that are inherent in 2D ICs,

making performance and power more sensitive to architectural changes [8].
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• Ad hoc fixes late in the design cycle due to poor architectural design choices

can be more costly in 3D ICs because of higher interconnectivity and density

of circuit components and resource conflicts between transistors and vertical

vias [30, 31,114].

Physically aware DSE is becoming more important, especially in the context

of 3D ICs. Past work [29,103,124] has examined the effect of physical constraints on

a CPU design space, but has only done so with exhaustive simulation over a small

design space. On the other hand, the literature on design space modeling [120–123]

has only attempted to model optimization variables such as performance or energy

efficiency with no consideration of physical constraints.

In this Chapter we introduce a modeling and simulation technique for 3D

CPUs. The proposed technique models physical properties (e.g., power, area and

temperature) and traditional optimization metrics (e.g., instructions per second

or energy-delay-product). The technique uses these models to direct simulation

effort towards user-defined regions of interest in the design space for the purpose

of identifying interesting trends such as the Pareto optimal trade-off curve. Our

models accurately predict the performance and temperature of a diverse 3D CPU

design space and identify the optimal feasible design point (Pareto optimal design

set) with 100% (98%) accuracy while simulating less than 2% (5%) of the design

space.
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This Chapter is laid out as follows. Section 6.1 gives a detailed overview

of related work and Section 6.2 enumerates the contributions this work makes to

the research effort. Section 6.3 introduces our modeling and simulation approach

for identifying the design space region of interest to the designer and accurately

estimating optimization metrics and physical properties while only simulating a

small subsection of the space. Section 6.4 explains the experimental setup of our

studies, and Section 6.5 presents the results which demonstrate the effectiveness

and accuracy of our DSE modeling and simulation technique using two case studies.

Finally, Section 6.6 concludes the chapter with a summary.

6.1 Previous Work

As the CPU design space has become increasingly large, exhaustive simulation

has become computationally infeasible. Methodologies to facilitate large scale DSE

have taken two orthogonal approaches: drastically reduce simulation time or produce

models of un-simulated design points using simulation data from a small subset of the

design space. The works by Genbrugge and Eeckhout [119] and Perelman et al. [125]

attempt to significantly reduce simulation time with statistical simulation, which

entails constructing a short code sequence that is representative of a full workload.

Other work by Gandhi et al. [118] uses host-compiled simulation, which natively

executes workloads that have been annotated with performance and power data

generated offline using system models. Both techniques massively reduce simulation

time, but at the cost of reduced accuracy and limited applicability.
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Design space modeling likewise trades off accuracy for increased simulation

time by omitting simulation of certain design points and instead estimating those

points using modeling techniques. Historically, design space modeling techniques

[120–123] have used uniform random sampling to build models of the entire design

space. However there is a missed opportunity here. A significant advantage of

modeling approaches is the ability to control the accuracy of the model in different

regions of the design space, which we refer to as directed simulation. This is impor-

tant because it is often the case that accuracy of the simulations is only important in

a small subset of the design space, such as the Pareto front for the design objectives

at hand, or the region of physically feasible design points. Directed simulation can

improve the efficiency of a design space modeling technique by achieving sufficient

model accuracy in the region of interest while using significantly less simulations as

compared to random sampling.

Different modeling techniques have been proposed to accurately estimate the

properties of a design space. Early work by Joseph et al. [123] used linear regres-

sion to model instructions per cycle (IPC) across a 23-variable CPU design space.

However only two factors of each variable were considered, and the accuracy of

the generated models was not reported. Later that year two similar works by Lee

and Brooks [122] and İpek et al. [121] applied spline regression and artificial neu-

ral network models to similar problems, yielding average errors less than 10% and

maximum error around 50%. More recent work by Jia et al. [120] applied spline

regression to GPUs. This technique reduced maximum error to around 15% and

had average error in the single-digit range.
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Past work has had significant limitations. Most work has attempted only to

build models of the design space and not to apply those models in an efficient manner

to solve design space exploration problems of interest to a designer. Moreover no

work until now has attempted to use modeling to estimate the physical feasibility

region of the design space, or to provide a generic and systematic framework for

solving a multitude of DSE problems involving discovery of a region of interest in the

design space. Our proposed technique leverages the observation that it is inefficient

to model the entire design space when only a small subset of the design space is

physically feasible, or many of the design points represent low quality configurations

that should be trimmed from the design space.

Finally, past work has only been applied to traditional computer architectures

where a large amount of domain knowledge and intuition exists. 3D CPUs are

a new frontier of computer architecture research and their design will rely much

more heavily on statistical modeling than designer intuition. Moreover, physical

constraints, especially thermal, are well known to be one of the primary limitations

to the potential performance and efficiency of new 3D CPU architectures [15, 27].

Proper consider of physical feasibility constraints during DSE must be incorporated

in order to properly design the 3D CPUs of the future.

6.2 Contributions

This work makes the following contributions:
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• We propose a design space modeling and simulation technique that builds

regression models to identify the region of the design space that is of interest

to the designer and predict optimization metrics and physical properties within

that region while only simulating a small subset of the space.

• To the best of our knowledge our work is the first to apply design space

modeling techniques to 3D CPUs. 3D CPU design is expected to rely more

on design space modeling than traditional CPU architectures due to a lack

of designer experience and intuition regarding this emerging technology and

architectural paradigm.

• To the best of our knowledge our work is the first to apply design space

modeling to physical properties such as temperature to predict the feasibility

region of a design space. This is extremely important for designing 3D CPUs

which are known to be heavily thermally constrained [15,29].

• Unlike past work, our proposed modeling and simulation methodology is ex-

pendable to any arbitrary design objective and associated metrics (e.g., power,

performance, area, timing, temperature) and is able to maximize the efficiency

of optimization through directed simulation.
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Figure 6.1: Modeling and simulation technique

6.3 Modeling and Simulation Technique

In this section we introduce our modeling and simulation technique for 3D

CPU DSE subject to physical constraints. We use the smoothing spline analysis

of variance (SS-ANOVA) [126] modeling technique to build models for each design

parameters of interest (e.g., performance, temperature and power) as a composition

of cubic spline functions evaluated on combinations of design variables (i.e. model

terms). First we give some background on SS-ANOVA modeling and then describe

our technique for building models of the 3D CPU architectural design space with a

limited number of simulations. Figure 6.1 illustrates the overall flow of our model-

ing and simulation technique, and details are given in the subsections below. The

basic flow is an iterative back-and-forth between model building and choosing new

simulation points based off the constructed model predictions.

121



6.3.1 SS-ANOVA Modeling

A spline is a piecewise polynomial function [126]. In this work we consider

cubic splines, which are piecewise cubic functions. Splines are both differentiable and

continuous at the piecewise boundaries which are called knots [126]. The smoothing

spline is a technique to smooth noisy data by fitting a spline function to the data.

Analysis of variance (ANOVA) is a statistical technique for analyzing the underlying

source of variations in a population [126]. Multi-factor ANOVA can be used to

generate models of an observed data set as a function of some underlying properties

of each observation. An observation f can be modeled as a function of the variables

x = x1, x2, . . . , xn as shown in Equation (6.1) [126]. SS-ANOVA limits the functions

{f1, . . . , fn, f1,2, . . . , f1,2,...,n} to be spline functions which operate on some subset of

the variables in x. Each unique subset of input variables is called a term, and the

order of a term is the number of members in the subset. c is the trivial function on

the 0th order term (i.e. a scalar value).

f(x) = c+
∑n

j=1 fj(xj)+
∑n

j=1

∑n
k=j+1 fj,k(xj, xk)+ . . .+ f1,2,...,n(x1, x2, . . . , xn)

(6.1)

In this work we use the gss [127] package for the statistical computing environ-

ment R [128] to generate a unique smoothing spline model for each design property

of interest. To generate each model, gss requires a set of simulation data and a set

of model terms. However, choosing the appropriate simulation points and model
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terms are nontrivial problems. The choice of model terms and simulations points

strongly affects the quality of the model and suboptimal choices have a high cost

in terms of total simulation time and model complexity. Our iterative technique for

model term and simulation point selection and is explained in detail in the following

subsections.

6.3.2 Choosing Model Terms

The maximum number of terms (i.e. unique subsets of all model variables)

associated with n variables is 2n. However as a rule of thumb a model is unreliable

when the number of terms is greater than s/20 [129] where s is the number of simulat-

ed points. If too many model terms are used, the model can suffer from over-fitting,

making it very accurate with respect to the observed data, but a poor predictor of

the un-simulated data we wish to predict. Thus the number of model terms must

be kept relatively small in order to maintain model accuracy when the number of

simulations is small. The intended goal of the modeling and simulation approach

is to build accurate models while requiring only a small number of simulations, so

avoidance of the over-fitting problem is of critical importance.

The coefficient of determination (R2) is a commonly used metric to evaluate

how well a model fits the data [130]. However R2 monotonically increases as new

terms are added to a model [120]. Thus optimization of R2 itself would inevitably

lead to inclusion of all model terms, unnecessarily complicating the model and po-

tentially causing over-fitting. Adjusted R2 (R̄2) [131] (Equation (6.2)) scales R2
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relative to the number of model terms, m, and the number of data points, s. Thus

if an additional model term is added that only marginally improves R2, R̄2 will

decrease, indicating that the added term has reduced the quality of the model. Sep-

arate models (using separate sets of model terms) are built for each design property

of interest, so a separate R̄2 value is calculated for each model.

R̄2 = 1− (1−R2) s−1
s−m−1

(6.2)

We use a forward selection R̄2 based technique to select the terms in the model.

The model building technique is similar to the technique used in [120], and is shown

in the bottom half of Figure 6.1. Starting with an empty model we consider each

model consisting of one first order term. We evaluate the R̄2 metric for each model

and accept the one with the largest value. We then consider adding each remaining

first order term and accept the terms that increase the quality of the model by at

least θ. Model terms are added in decreasing order of model improvement, and

model improvement is reevaluated each time any term is added to the model.

Every time a new first order term is added to the model, we consider all

second order interaction terms created by combining the new first order term with

any other first order terms already in the model. Amongst all new second order

terms generated this way we add any that cause the model quality to improve by at

least θ. Second order terms are added to the model in a nested loop in decreasing

order of model improvement. The model is complete once all first order terms have

been added to the model, or when adding any new first order terms causes model
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quality to improve less than θ. We limit our model to terms of order two and below,

although the proposed model building approach could easily be extended to include

terms of arbitrary order. High order interactions are seldom significant [126] so

limiting the order of our model is expected to reduce the complexity of the model

and the model building procedure without incurring significant losses in accuracy.

6.3.3 Adding Simulation Points

The designer defines a discovery metric, which determines the point(s) in the

design space they are interested in accurately identifying. Some examples of poten-

tial discovery metrics are the optimal design point subject to a set of constraints

(e.g., design space optimization), or the set of Pareto optimal designs (e.g., trade-off

analysis). The optimality metric (e.g., performance or energy efficiency), constraints

(e.g., temperature, power, area or timing) and Pareto metrics (e.g., temperature-

performance trade-off curve) are defined by the designer. The goal of our proposed

modeling and simulation technique is to identify these points by iteratively pre-

dicting them and concentrating simulator effort around the predicted point(s) to

improve the accuracy of the prediction.

Initial models are built using a random sampling of η simulation points from

the design space. Using the model predictions1, the predicted design point(s) of

interest are identified. However, due to model error, the identified point(s) are not

necessarily the true points of interest. Luckily, the true points of interest are likely

1Design points that have already been simulated use real simulation metrics rather than pre-
dictions from models to improve accuracy of the method.
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to be close to the predicted points of interest. Thus a region of interest (ROI) is

defined which contains the design points which are close to the predicted point(s)

of interest, and additional simulation effort is concentrated towards this ROI to

improve model fidelity in that region. The ROI is defined as the design points close

to the predicted point(s) of interest, however the concrete definition of closeness will

necessarily be a function of the discovery metric. Section 6.4 introduces the specific

discovery metrics and associated ROI definitions used for the case studies presented

in this chapter.

Each iteration of the flow identifies χ new design points from the predicted

ROI and queues them for simulation. Once the simulations are performed, the

model is rebuilt and the process repeats. If the initial model mispredicts the ROI,

additional simulation effort in the mispredicted region will reduce model residuals

in that region and cause the newly predicted ROI to move away from its original

mispredicted region towards the true ROI. Thus as the modeling and simulation

flow iterates, predictions of the design point(s) of interest converge towards their

true values. The process terminates when a defined stopping criteria has been met.

6.3.4 Stopping Criteria

Stopping criteria could involve reaching a maximum number of simulations,

or a sustained convergence in predictions of ROI and/or point(s) of interest across

multiple iterations. Since we are considering different discovery metrics with differ-

ent definitions of point(s) of interest and ROI, we simply set the stopping criteria to
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terminate when the total number of simulations reaches ζ. However we investigate

the trade-off between number of simulations and optimality of our selected design

space in Section 6.5, and the point at which prediction convergence is achieved can

be observed post hoc in the results.

6.4 Experimental Setup

In this section we describe the experimental setup to evaluate the effective-

ness of the modeling and simulation technique introduced in Section 6.3. In the

following subsections we introduce the 3D CPU design space, the discovery metrics

and associated ROI definitions considered in our case studies and the metrics we

use to measure the success of our approach. Results are presented and discussed in

Section 6.5.

6.4.1 Architectural Design Space

Our study searches the architectural design space in Table 6.1. Variables with

values in brackets can take on any of the bracketed values, and the cross product of

all variable values represents the complete design space. The architectural design

space in Table 6.1 contains 4374 unique design points.
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Table 6.1: Architectural design space (baseline architecture shown in bold).

Variable Value(s)

Technology Node 32 nm
Number of cores (core) {8, 16, 32}
Memory controllers core{1/2, 1/4, 1/8}
Clock frequency {2.4, 3.0} GHz
NOC width 128 bits
L2 cache size (per core) {256, 512, 1024} kB
L2 cache associativity {4, 8, 16}
L1 cache size (per core) {16, 32, 64} kB
L1 cache associativity 1
Pipeline width {2, 4, 6}
Branch predictor Tournament
Local history table 1024 8-bit entries
Global predictor 4096 2-bit entries
BTB size 32 kB
BTB associativity 1
Reorder buffer length (rob) {96, 128, 160}
Issue queue length 0.4rob
Load-store queue length 0.5rob
Fetch queue length 64
Int architectural registers 0.67rob
FP architectural registers 0.33rob
RAT size rob 8-bit entries
DRAM size 4 GB
Cache line size 64 B
DRAM bus width 64 B

6.4.2 Software Benchmarks

Each architectural design point is evaluated using a set of software workloads

from the SPLASH-2 [84] and PARSEC [85] benchmark suites. The performance

of each design point is defined as the average normalized performance across all

benchmarks and the maximum temperature for each design point is the maximum
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Table 6.2: Simulated Workloads

SPLASH-2 PARSEC

water-nsquared blackscholes

fft fluidanimate

radix dedup

swaptions

temperature amongst all benchmarks. The specific benchmark programs used for

this study are given in Table 6.2. The inputs and parameters used for each bench-

mark are the default settings recommended in the Multi2Sim documentation [82].

6.4.3 Discovery Metrics

The goal of our DSE study is to identify the design point(s) of interest as

defined by the discovery metric chosen by the designer. Two discovery metrics are

considered as case studies in this paper, but our proposed methodology is applicable

to any arbitrary discovery metric. The discovery metrics considered here are:

• “Optimal”: design point with highest normalized performance subject to

thermal constraint tempp < Tviolation.

• “Pareto”: Pareto optimal set of design points in thermal-performance space.

Thus the modeled design parameters are performance and temperature.

Each discovery metric defines an accompanying ROI of radius ϕ = (ϕperf , ϕtemp).

The ROI for the “Optimal” and “Pareto” discovery metrics are given in Equation-

s (6.3) and (6.4)2 respectively, where perfi and tempi are the performance and

2Pareto optimal points are the set of points such that no other point is better in all metrics
of interest. Equation (6.4) presents a ϕ-relaxed definition of Pareto optimality that includes all
points such that no other point is better by a degree of ϕ in all metrics of interest.
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temperature of design point i and Ω is the design space. Design point p is the

predicted optimal feasible point for the discovery metric “Optimal”. The defined

ROI is the set of points within distance ϕ of the identified point(s) of interest, and

setting ϕ = (0%, 0◦C) causes the ROI to degenerate into a set containing only the

identified point(s) themselves. The nominal thermal constraint is Tviolation = 85◦C,

however the impact on our results due to reduced Tviolation is studied in Section 6.5.

ROIOptimal = {i ∈ Ω |
∣∣∣∣perfi − perfp

perfp

∣∣∣∣ ≤ ϕperf ∧ |tempi − tempp| ≤ ϕtemp} (6.3)

ROIPareto = {i ∈ Ω | ∀(j ̸=i)∈Ω perfj(1−ϕperf ) ≤ perfi ∨ (tempj+ϕtemp) ≥ tempi}

(6.4)

6.4.4 Modeling and Simulation Parameters

The modeling and simulation technique introduced in Section 6.3 can be

parametrized to make trade-offs between simulation time and optimality of the se-

lected design point. In this study we use the following parameters:

• We sample η = 40 simulation points at random from the design space to build

the initial model. The parameter η should be large enough to generate an

initial model with reasonable accuracy in order to yield a reasonable approxi-
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mation of ROI. However a large value of η would degrade the efficiency of the

method as it degenerates towards random sampling. Letting η = 40 was found

to be the smallest number of simulations that would allow the gss package to

generate models without causing software errors, and larger values degraded

efficiency.

• The threshold for accepting new model terms is R̄2
new − R̄2

current > θ = 0. By

increasing θ, the model complexity could be reduced at the expense of model

quality.

• We use ROI radius of ϕ = (8%, 4◦C) when the discovery metric is “Optimal”

and ϕ = (5%, 3◦C) when the discovery metric is the “Pareto”. Larger values

of ϕ prevent convergence to local minima, but generally increase the number

of simulations. The values chosen were determined experimentally to make

good tradeoffs between these two properties.

• We iteratively simulate chosen design points in increments of χ = 5. Small

values of χ increase the number of iterations and thus the number of times

model building must be performed. Moreover the new model is unlikely to

change much if χ is very small since only one or two new simulations does not

significantly change the input to the model builder. However excessively large

values of χ will spend too much simulation effort in the current estimation of

ROI when potentially the prediction of ROI will change substantially after the

next iteration. The value χ = 5 was found experimentally to provide a good

trade-off between these two concerns.
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• We use a nominal stopping criteria of ζ = 200 simulations. The trade-off

of optimality vs. number of simulations is investigated in Section 6.5. The

value ζ = 200 represents nearly 5% of the total design space. Simulation of

significantly more points would degrade the usefulness of the proposed method,

whose intended goal is to only simulate a very small subset of the space.

Moreover we find that our proposed method achieves very accurate results

with less than 200 simulations.

6.4.5 Evaluation Metrics

The goal of the experiment is to identify the design point(s) defined by the

discovery metric, while minimizing the total number of simulations performed. Thus

the primary metrics used to evaluate the quality of our technique will be the accuracy

of the identification, the number of simulations performed and the runtime overhead

of the modeling technique. The accuracy of identification is defined as the distance

of the identified point(s) from the actual point(s) of interest (which were obtained

by exhaustive simulation solely for the purpose of evaluation).

When the discovery metric is “Optimal”, the distance between the identified

point and the true solution is quantified as optimality, which is the ratio perfp
perfo

where

p is the predicted optimal feasible point and o is the true optimal feasible point

(determined by exhaustive simulation).
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When the discovery metric is “Pareto”, the distance between the identified

points and the true Pareto set is quantified as accuracy, which is the average Pareto

optimality of the predicted Pareto set. The Pareto optimality of design point k is

determined by finding the smallest value of ϕ such that k is included in the ROI.

Specifically, the Pareto optimality of k is αk and the smallest value of ϕ that includes

k in the ROI is ϕ = (1− αk)(100%, 60◦C3).

In general the optimality/accuracy of the predicted point(s) will increase as

more simulations are performed, eventually degenerating into the exhaustive simu-

lation . The net speedup of our technique consists of the reduction in total number

of simulations minus the runtime overhead of building the models. However we

will show in Section 6.5 that the modeling overhead is negligible compared to the

reduction in necessary simulations due to application of our approach.

6.4.6 Comparison to Other Techniques

The rudimentary technique to which our technique could be compared is ex-

haustive simulation. However one can conceive of a less rigorous random sampling

approach to DSE in which some portion of the solution space is sampled at random

and the best design amongst the sampled designs is selected4. Additionally we could

consider a less sophisticated modeling-only version of our proposed technique that

uses SS-ANOVA model building to predict the design point(s) of interest, but sim-

ply uses random sampling to provide data to the model builder. The modeling-only

360 ◦C was roughly the thermal range of the design space considered in this work as shown in
Figure 6.3.

4Exhaustive simulation is simply a degenerative case of random sampling where the simulated
portion of the solution space is the entire space.
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approach is representative of design space modeling techniques proposed in past

work [120–123]. The advantage of a modeling-only technique is that it only requires

models to be built once, but we will show that the time spent building models is

insignificant compared to the savings in simulation time achieved by our proposed

modeling and simulation technique. In Section 6.5 we compare the trade off curves

of simulation count vs. quality for the three aforementioned techniques:

• Proposed: modeling and directed simulation

• Modeling-Only: modeling and random simulation (representative of past

work [120–123])

• Random Sampling: no modeling and random simulation

Since all techniques involve randomized sampling to some degree (e.g., building

the initial model in our proposed technique), experiments are replicated multiple

times.

6.5 Results

In this section we describe the results of our experiments. First we provide

some characterization of the design space explored in our study, and then we com-

pare the quality of the different methodologies described in Section 6.4.6 for the

“Optimal” and “Pareto” discovery metrics.

134



2 4 6 8 10 12 14
0%

10%

20%

30%

Normalized Performance

P
er

ce
nt

 

 

All Designs
Feasible Designs (85°C)
Feasible Designs (65°C)

(a)

50 60 70 80 90 100 110 120
0%

10%

20%

30%

40%

Maximum Temperature (°C)

P
er

ce
nt

(b)

Figure 6.2: Distribution of (a) performance (b) temperature in design space

6.5.1 Design Space Characterization

We begin by examining the properties of the design space. Exhaustive simu-

lation was performed for the purpose of evaluation, as the design points of interest

must be identified before the quality of the considered techniques can be evaluat-

ed. Exhaustive simulation took weeks to perform using university servers, further

motivating the strong need for techniques such as the one proposed in this paper in
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Figure 6.3: Temperature vs. performance of entire design space

order to reduce simulation time significantly below that of exhaustive design space

simulation. We provide some statistics of the design space properties in order to

give context for the results of this study.

Figure 6.2(a) shows the distribution of normalized performance across all ar-

chitectural design points. We can see that the design space is biased heavily towards

the low-performance region. Furthermore thermal feasibility constraints bias the de-

sign space even further as the constraints tighten (i.e. Tviolation is reduced). This

implies that random sampling is not a very good technique for discovering the “Op-

timal” design point since the probability of randomly sampling a high-performance

thermally-feasible design point is low. The more biased the performance distribu-

tion is towards low-performance design points, the less effective random sampling

will be for finding the “Optimal” design point, and the greater the need for directed

simulation. Likewise Figure 6.2(b) shows the distribution of temperature. From this

figure we can see how different values of Tviolation will affect the size of the feasibility

region of the design space.
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Figure 6.3 shows a scatter plot of the performance and temperature of each

design point in the design space. We can see that identification of both the optimal

feasible design point and the Pareto optimal design set without exhaustive simula-

tion is non-trivial. The vast majority of design points in the design space are far

from the point(s) of interest using either discovery metric. Moreover the correlation

between performance and temperature is weak, motivating the need for independent

models of each design property.

6.5.2 “Optimal” Discovery

There exists a fundamental trade-off between the number of simulations and

the quality of the identified solution. We compare the random sampling and modeling-

only technique to our proposed modeling and simulation technique and show that

our technique is far better both in terms of quality of trade-off and the reliability

of the approach. First we evaluate the techniques using the “Optimal” discovery

metric.

Figure 6.4(a) tracks the optimality of the evaluated techniques as they itera-

tively add additional simulation points. We observe that modeling alone is a large

contributor to the optimality of the identified point. With only 1% of the solution

space sampled (roughly 40 points), the two modeling techniques can already iden-

tify a solution within 90% of the optimal, 38% closer to the optimal point than

the prediction made by random sampling. However the true power of the proposed

technique becomes clear as the number of samples increases. The random sam-
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Figure 6.4: Optimality of identified design.

pling techniques, both with and without modeling, quickly improve the optimality

of the predicted design as more simulation points are added, but then eventually

flatten out as additional sampling is unable to significantly improve the quality of

the prediction. However this diminishing returns phenomena is not observed in our

proposed modeling and simulation technique. By using models to direct simulation

effort on each iteration towards the ROI, the technique is able to make roughly linear
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improvements to prediction accuracy for each additional simulation. Our proposed

technique is able to identify the optimal feasible design point while simulating less

than 2% (roughly 80 points) of the entire design space.

Figure 6.4(b) re-examines the data from the perspective of the number of

simulations required to reach an optimality target. The data plotted here is on a

log-log axis, meaning polynomial relationships will appear as a straight lines whose

slope is proportional to the polynomial degree. An interesting result is that even if

only 90% accuracy is required, the application of model building still reduces the

total simulation time by roughly 2x compared to random sampling (saving over

100 simulation-hours in our study). This gap increases superlinearly as the opti-

mality target increases. Furthermore as the optimality target tightens beyond 98%

the slope of the trendline for the modeling-only technique significantly increases as

the technique begins to degenerate into random sampling. On the other hand our

proposed technique shows no such degeneration.

6.5.2.1 Robustness to Constraint Tightness

The previous results were evaluated at Tviolation = 85◦C. However as Fig-

ure 6.2(a) shows, reducing Tviolation significantly reduces the size of the thermal

feasibility region. It is expected that this will reduce the quality of the random

sampling technique significantly, but it is unclear how shrinking the feasibility re-

gion will affect the techniques that use model building. The fundamental question

here is how the size of the feasibility region affects the quality of the different tech-
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Figure 6.5: Additional simulations required when Tviolation is reduced from 85 ◦C to
65 ◦C.

niques. Although that question is investigated in this study by simply tightening

the thermal constraints, it is logically equivalent to considering a lower-performance

heatsink which would cause many design points to become thermally infeasible due

to elevated temperatures. Moreover, heterogeneous integration in 3D ICs may in-

troduce thermal constraints at substantially lower temperatures than those used for

CMOS logic. Reduction in Tviolation was a simple way to consider the effect of design

space constraints without requiring re-simulation of the entire solution space.

Figure 6.5 plots the number of additional simulations required when Tviolation

changes from 85 ◦C to 65 ◦C. We notice that the number of additional simulations

required for our proposed method is less than 30 (¡1% of the entire design space) and

moreover, remains roughly constant as the optimality target is tightened. On the

other hand random sampling and modeling-only both require superlinearly increas-

ing amounts of additional simulations in order to meet optimality targets. Although

model-building in and of itself does significantly reduce the amount of overhead com-

pared to random sampling, the point at which additional simulation effort begins to
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Figure 6.6: Accuracy of identified Pareto set.

show diminishing returns now occurs when optimality target reaches roughly 95%,

reducing the scalability of this approach in heavily constrained design spaces. The

conclusion is that our proposed technique is nearly independent of the size of the

design space feasibility region due to the application of directed sampling, whereas

techniques that use random sampling become less effective as the feasibility region

shrinks.
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6.5.3 “Pareto” Discovery

Figures 6.6(a) and 6.6(b) show the accuracy of the considered methods when

the “Pareto” discovery metric is applied. Although the general trends and rela-

tive ordering of the method results are similar to the “Optimal” case, there are

some significant differences. The most obvious difference is that the quality of both

model-based techniques is reduced. Identification of a set of Pareto points is a more

challenging problem and it makes sense that more simulation would be required

to identify the true Pareto design set. However the relative improvement of our

proposed technique vs. the modeling-only technique is substantially increased, in-

dicating the increased need for directed simulation for more complex design space

modeling and exploration problems such as identification of the Pareto design set.

Another interesting difference is that modeling-only is degenerating into ran-

dom sampling much sooner than it did for the “Optimal” discovery metric. The

conclusion here is that models built with random sampling can approximating a

single design much better than the relative ordering of all design points. Directed

simulation towards the ROI is of utmost importance for estimation of the Pareto

design set, even for rather loose accuracy targets.

Finally we observe that random sampling has roughly the same trade-off curve

whether predicting a single optimal feasible point or the entire Pareto optimal set.

However the modeling-based approaches both perform significantly better for the

“Optimal” discovery metric, which is the simpler problem5. This implies that ran-

5In fact the “Optimal” discovery metric problem is a sub-problem of the “Pareto” discovery
metric problem, but with significantly reduced complexity.
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dom sampling (and by extension exhaustive sampling) is failing to take advantage

of the significantly different degrees of problem complexity to efficiently find a solu-

tion. Our technique is able to take advantage of the reduced complexity across all

accuracy targets, and a modeling-only approach is able to take the same advantage

when the accuracy target is low.

6.5.4 Overhead of modeling approach

There is obviously some runtime overhead for building the model in the pro-

posed modeling approaches. We observed that the time consumed building models

in our proposed approach was less than the time consumed to simulate a single

design point (< 0.025% of the design space). Figure 6.4(b) clearly shows that this

overhead is negligible compared to the savings in number of required simulations

compared to random sampling.

6.6 Summary

In this chapter we propose a modeling and simulation technique to apply the

co-simulation and co-optimization techniques explored in the previous chapters to

a large design space where exhaustive simulation of the architectural design space

is not computationally feasible. We use smoothing spline ANOVA to build models

of the metrics of interest across the entire design space using simulation data from

only a small subset of the space. We iteratively build models and use these models

to choose new simulations that will improve the accuracy of the model in the region
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of interest to the designer, such as the optimal feasible design point or the Pareto

optimal front. Our proposed methodology is applied to an eight-dimensional 3D

CPU design space and tasked to discover the optimal feasible point and the Pareto

optimal set of designs. Using less than 5% of the design space, we are able to identify

both objectives with an accuracy of over 98%.
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Chapter 7: Conclusions and Future Work

In Chapter 1 we introduce 3D integration as a promising new technology that

promises to overcome some of the fundamental roadblocks to CPU performance s-

caling, such as interconnect power and delay dominance, the slowdown of economic

incentives for technology scaling, and the physical fundamental limits of technology

scaling due to quantum effects. We cite thermal and reliability concerns as first tier

limitations to 3D IC technology, and discuss the fundamental interconnectedness

of many metrics of interest and physical constraints in modern ICs. This inter-

connectedness is only exacerbated by 3D stacking and we introduce the co-design

paradigm as a systematic methodology for addressing the simultaneous modeling

and optimization of many design metrics and their interdependence on each other

as well as design variables.

In Chapter 2 we explain 3D integration technology and provide more de-

tailed analysis of the potential opportunities of 3D CPUs including massive mem-

ory bandwidth and highly connected on-chip inter-core communication networks.

Such architectural advancements offer an opportunity to overcome the memory-

and communication-wall. We detail the thermal and reliability concerns in 3D inte-

gration and introduce micro-fluidic cooling as a potential solution.
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Chapter 3 introduces the co-simulation co-optimization flow used to evaluate a

given architectural-physical design space throughout the many experiments present-

ed in this dissertation. The flow models performance, power, timing, reliability and

temperature. This chapter also introduces the physical optimization loops evaluat-

ed in Chapter 5 which can be driven by objective functions composed of arbitrary

combinations of simulated design metrics.

Chapter 4 presents the results of two studies that quantitatively show the

potential performance opportunities of stacked memory-on-logic CPUs and the as-

sociated need for micro-fluidic cooling. The first experiment finds that 3D stacking

has the potential to improve performance significantly, but without proper cooling

may actually reduce performance in order to meet thermal constraints. The second

experiment explores the possibility of a return to a frequency scaling paradigm in

parallel with the current core-scaling scheme in place today. This is made by the

combination of high bandwidth architectures and micro-fluidic cooling.

In Chapter 5 we apply the physical optimization algorithms introduced in

Chapter 3 and demonstrate the need for and advantages of simultaneous simulation

and optimization of a multitude of design metrics, and the impact of their interde-

pendence. We also introduce a new trade-off unique to MF cooled 3D ICs, which is

between inter-layer via density (i.e. inter-layer bandwidth) and cooling capacity.

Finally Chapter 6 brings together the co-design simulation scheme and propos-

es a way to realistically apply it across a real-world design space where exhaustive

simulation is not computationally feasible. We propose a modeling and simulation

framework that is able to apply the co-design paradigm over a large design space
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while only simulating a small subset of design points. Our method can discover

the user-defined architectural regions of interest with over 98% accuracy while only

requiring simulation of 5% of the design space.

7.1 Future Work

This dissertation significantly advances the emerging co-design paradigm, and

represents a prototype of application of co-design in a holistic and comprehen-

sive simulation and optimization framework. However, being an emerging design

paradigm coupled with an exciting new technology, there are obviously many ex-

citing avenues for future work in this field. Significant expansion of the scope of

our work can be achieved by introducing models of heretofore un-modeled phenom-

ena and improving (e.g., adding granularity and inter-metric coupling) the existing

models. Furthermore, an open research question how to efficiently model interac-

tion relationships to best balance design time with quality. The extension of the

co-design paradigm to low level detailed design will inevitable be introduced in

future research, however our work sets the groundwork with a comprehensive high-

level abstract implementation. Finally, our work investigates the application of the

co-design paradigm to design-time decision making, but it can equally be applied

to run-time management, and the interaction and simultaneous application of these

two domains will certainly be the ultimate goal of the research effort begun in this

dissertation.
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7.1.1 Expansion of Co-Design Scope

The work presented in this dissertation has covered significant ground towards

an implementation of the co-design paradigm. However it is by no means exhaustive.

There are other significant interconnected design challenges and metrics that are not

considered here, such as power delivery and signal integrity. In reality the co-design

relation graph presented in Figure 1.2 is only a sub-graph of the true scope of the

interconnected relationships involved in chip design. Due to the finite nature of

compute resources and the need to find efficient trade-offs between design time and

design quality, not every relationship can be considered in a real implementation of

the co-design paradigm. However the decision of which relationships to model and

which to ignore is domain specific, and as of yet there is no methodology in place

to quantitatively decide how to construct the co-design simulation structure (i.e.

to choose the sub-graph of the true global relationship graph to include in a co-

design implementation). Development of such a methodology would be a significant

contribution to be made by future work in this area, and would significantly advance

the work towards industrial-scale applicability for arbitrary design problems.

In the following subsections we discuss two important design problems that

are expected to limit the further advancement of 3D IC technology if the thermal

and reliability concerns can be overcome. Modeling and optimization of these design

problems would be a logical next step in expanding the scope of the proposed co-

design framework put forth in this dissertation.

148



VDD PCB Package u-Bump

Chip Mesh

u-Bump

n Tiers

P/G TSVs

Figure 7.1: PDN model in a 3D IC

7.1.1.1 Power Delivery

In a 3D IC, power is delivered from off-chip package through C4 bumps and

then distributed vertically through power TSVs. Figure 7.1 illustrates a 3D PDN

circuit model, which consists three parts: PCB, Package and On-chip circuits. The

on-chip circuit is modeled as a meshed RLC network capturing the voltage distri-

bution in both vertical and planar directions.

The vertical structure of a 3D PDN brings several new challenges. First, as

3D integration enables stacking multiple functional layers vertically, power scales

volumetrically with the product of footprint area and number of layers. However,

the number of power delivery pins (i.e. the power delivery capacity) is a function of

footprint area only. This imbalance between power supply and demand makes main-

tenance of high quality voltage rails a challenging problem. Second, the parasitics

of power/ground TSVs affect the resonant frequency of each layer thus influenc-

ing the power noise characteristics in 3D ICs. As the current draw in 3D ICs has

significant spacial variation, the PDN noise shows great variation spatially. Third,
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the stacking structure of 3D ICs enables power noise from one layer to couple in

neighboring layers. For example, when CPUs at different layers share the same

PDN, one active CPU core can affect the voltage level of another core on a different

layer. Fourth, in an air-cooled 3D IC, the heatsink and the power delivery pins are

almost always on opposite ends of the chip stack. This means there is a trade off in

that the chip layer with the most cooling capacity (i.e. closest to the heatsink) will

also be the layer with the worst power integrity, and vice versa. This necessitates

aggressive management and design methodologies considering both power delivery

and temperature.

7.1.1.2 Signal Integrity

Another design challenge in 3D ICs is to ensure signal voltage noise is main-

tained within design margins. Cross coupling between switched devices can cause

increased leakage/short circuit currents and possibly result in digital glitches that

affect circuit behavior or cause incorrect computations. In addition to the tradition-

al sources of coupling noise (wires and transistors), TSVs provide a new coupling

source in 3D ICs. TSVs have the potential to be more problematic than planar

wires since they are much larger, and surrounded by a much thinner insulation lay-

er [20,21]. TSVs can easily couple into the conductive silicon substrate through the

thin oxide liner around the TSV [23]. From there the voltage noise can couple into

other TSVs or transistors through the conductive substrate.
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Figure 7.2 shows a circuit model of coupling between two TSVs. TSV coupling

is most strongly affected by liner capacitance which is independent of the distance

between TSVs [23]. Thus, TSV coupling is not efficiently mitigated by increasing

TSV pitch. Liu et al. [23] show that increasing TSV pitch from 1 µmto 20 µm(20x

increase) only reduced TSV coupling from 255 mVto 225 mV(12% reduction).

We have done extensive work on modeling and reducing TSV-TSV coupling

noise [20, 21, 132, 133], but this work is at this point outside the scope of this dis-

sertation since it operates at the global placement layer of abstraction. However

by applying the co-design paradigm to more fine-grained detailed physical design

(Section 7.1.2) our past work on TSV coupling could be easily integrated into the

co-design paradigm.

7.1.2 Fine-Grained Design and Integration

The work in this dissertation has attacked the co-design problem at a high level

of abstraction. The architectural design knobs considered were macro-architectural

parameters and the physical design space consisted of high-level abstract floorplan-
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ning. A significant avenue for future work is to consider micro-architectural design

variables and/or more detailed physical design such as global placement. A promis-

ing approach going forward would be to add a fine-grained co-design scheme as a

hierarchical level under the high-level co-design flow presented in this dissertation.

Thus this future work would be a direct vertical extension of the current work.

Fine grained co-design would fundamentally require fine-grained models at

both the physical and architectural level. Although such models do exist for tradi-

tional 2D CPUs, to our knowledge no generally accepted low level models have been

put forth for 3D CPUs, and this is an area of ongoing research. For this reason the

current work in this dissertation has considered coarse-grained integration of either

vertical stacking of traditional 2D CPU layouts, or folding of high level function

blocks across layers. However theoretical and experimental work has shown that

the true advantage of 3D integration comes when circuits are split across layers

at a fine granularity [15, 134]. Development of fine-grained physical models for 3D

CPU function blocks would be a significant contribution to the advancement of the

co-design paradigm and would facilitate a hierarchical co-design approach to go all

the way from architectural design space exploration to tape-out physical layouts.

7.1.3 Runtime Management

This dissertation has only considered a design-time solution space. However

the co-design paradigm could equally be applied to the design of runtime man-

agement policies and algorithms. For example, traditional dynamic voltage and
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frequency scaling considers only core performance and temperature (or power). But

these policies also affect reliability, power integrity, DRAM refresh rate etc. The

co-design principle tells us we should simultaneously consider all the effects of a

given runtime policy or decision in order to choose the optimal operating conditions

at any given point in time.

Similar to design-time architectural decisions, runtime architectural decisions

such as turning on/off certain cores, memory controllers, regions of cache etc. can be

made using the co-design paradigm. Such adaptive architectures will become neces-

sary in the future due to the Dark Silicon effect [87]. Even micro-fluidic heatsinks can

benefit from runtime control [79]. Although the placement and dimensions of fluid

cavities are determined at design time, the fluid flow rate can be toggled, especially

in conjunction with DVFS and task migration techniques, and micro-values can be

designed to give runtime control of which cavities fluid is pumped through [135].

Runtime management is an orthogonal but not an independent means of chip

co-design. The scope of runtime techniques available are inherently decided at de-

sign time, and the existence of adaptive control can allow co-design methodologies

to target average rather than worst case design, opening up significant average per-

formance improvements while still guaranteeing worst case viability.
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