112,115 research outputs found

    Development of a simulation-based decision support tool for renewable energy integration and demand-supply matching

    Get PDF
    This paper describes a simulation-based decision support tool, MERIT, which has been developed to assist in the assessment of renewable energy systems by focusing on the degree of match achievable between energy demand and supply. Models are described for the prediction of the performance of PV, wind and battery technologies. These models are based on manufacturers' specifications, location-related parameters and hourly weather data. The means of appraising the quality of match is outlined and examples are given of the application of the tool at the individual building and community levels

    Harmonic effects on induction and line start permanent magnet machines

    Get PDF
    Power Electronics (PE) are implemented in a wide variety of appliances, either to increase its controllability or energy efficiency, or simply because a DC supply is needed. The massive integration of rectifiers has resulted in a decrease of the supply voltage quality. Although PE have enabled the end user to control electrical machines, the resulting distortion inversely affects Direct On-Line (DOL) machines. In this paper a review is presented of the influence of these supply anomalies on Induction Motors (IM). The suggested problems have already been subject of much study. However, as new DOL technologies are emerging, for example Line Start Permanent Magnet Machines or Induction Generator systems, the influence of supply distortion on these systems should also be considered. This paper will present a comprehensive overview of the loss mechanisms, the magnitude of the losses and the impact of these losses on operation of IM, LSPMM and IG

    Application of a simplified thermal-electric model of a sodium-nickel chloride battery energy storage system to a real case residential prosumer

    Get PDF
    Recently, power system customers have changed the way they interact with public networks, playing a more and more active role. End-users first installed local small-size generating units, and now they are being equipped with storage devices to increase the self-consumption rate. By suitably managing local resources, the provision of ancillary services and aggregations among several end-users are expected evolutions in the near future. In the upcoming market of household-sized storage devices, sodium-nickel chloride technology seems to be an interesting alternative to lead-acid and lithium-ion batteries. To accurately investigate the operation of the NaNiCl2 battery system at the residential level, a suitable thermoelectric model has been developed by the authors, starting from the results of laboratory tests. The behavior of the battery internal temperature has been characterized. Then, the designed model has been used to evaluate the economic profitability in installing a storage system in the case that end-users are already equipped with a photovoltaic unit. To obtain realistic results, real field measurements of customer consumption and solar radiation have been considered. A concrete interest in adopting the sodium-nickel chloride technology at the residential level is confirmed, taking into account the achievable benefits in terms of economic income, back-up supply, and increased indifference to the evolution of the electricity market

    Mixed-signal CNN array chips for image processing

    Get PDF
    Due to their local connectivity and wide functional capabilities, cellular nonlinear networks (CNN) are excellent candidates for the implementation of image processing algorithms using VLSI analog parallel arrays. However, the design of general purpose, programmable CNN chips with dimensions required for practical applications raises many challenging problems to analog designers. This is basically due to the fact that large silicon area means large development cost, large spatial deviations of design parameters and low production yield. CNN designers must face different issues to keep reasonable enough accuracy level and production yield together with reasonably low development cost in their design of large CNN chips. This paper outlines some of these major issues and their solutions

    General purpose rocket furnace

    Get PDF
    A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle

    Constructive solution of highly effective photoenergy module: development and experimental testing

    Get PDF
    Based on experimental study and computermodeling of working temperature influence on the efficiency of Chinese production silicon solar cells identified temperature dependence of efficiency shows the feasibility of using Chinese production Si-SC in the construction of photovoltaic thermal system, which together with the heat pump is part of a combined system for hot water supply, heating and air conditioning. Based on a detailed analysis of the working temperature influence on the efficiency of photovoltaic processes that determine the solar cells work, it has been developed the optimal construction and technological solution of hybrid solar generated module, the main feature ofwhich is the heat exchange block, designed to reduce the solar cells working temperature. The experimental testing of hybrid modules samples equipped with developed cooling system, high-voltage part of power take-off system demonstrates their reliability and high efficiency which allow to achieve the such module efficiency up to 18.5 %.На основе экспериментального исследования в комплексе с компьютерным моделированием влияния рабочей температуры на эффективность кремниевых солнечных элементов китайского производства выявлена температурная зависимость их эффективности. Температурная зависимость показывает целесообразность использования солнечных элементов китайского производства в составе фотоэлектрической тепловой системы, которая вместе с тепловым насосом является частью комбинированной системы горячего водоснабжения, отопления и кондиционирования воздуха. На основе детального анализа влияния рабочей температуры на эффективность фотоэлектрических процессов, определяющих работу солнечных элементов, было разработано оптимальное конструктивно-технологическое решение гибридного солнечного генерирующего модуля, основной особенностью которого является теплообменный блок, предназначен для снижения рабочей температуры солнечных элементов. Экспериментальные испытания образцов таких модулей, оснащенных разработанной системой охлаждения и высоковольтной системой отбора мощности, демонстрируют их надежность и высокую эффективность, позволяющие достичь КПД гибридного модуля до 18,5 %
    corecore