100 research outputs found

    Force to Rebalance Control of HRG and Suppression of Its Errors on the Basis of FPGA

    Get PDF
    A novel design of force to rebalance control for a hemispherical resonator gyro (HRG) based on FPGA is demonstrated in this paper. The proposed design takes advantage of the automatic gain control loop and phase lock loop configuration in the drive mode while making full use of the quadrature control loop and rebalance control loop in controlling the oscillating dynamics in the sense mode. First, the math model of HRG with inhomogeneous damping and frequency split is theoretically analyzed. In addition, the major drift mechanisms in the HRG are described and the methods that can suppress the gyro drift are mentioned. Based on the math model and drift mechanisms suppression method, four control loops are employed to realize the manipulation of the HRG by using a FPGA circuit. The reference-phase loop and amplitude control loop are used to maintain the vibration of primary mode at its natural frequency with constant amplitude. The frequency split is readily eliminated by the quadrature loop with a DC voltage feedback from the quadrature component of the node. The secondary mode response to the angle rate input is nullified by the rebalance control loop. In order to validate the effect of the digital control of HRG, experiments are carried out with a turntable. The experimental results show that the design is suitable for the control of HRG which has good linearity scale factor and bias stability

    TRIPLE-MODE VIBRATORY GYROSCOPE

    Get PDF
    Коріолісовий вібраційний гіроскоп (CVG) є одним з хронологічно новітні гіроскопічні технології, що з'явилися на світовому ринку в 90-х роках минулого століття.There are two well-known modes of Coriolis vibratory gyro operation. These are rate mode and rate-integrating modes described in many works of different authors. There is also known dual mode CVG in which two abovementioned modes of operation have been combined in one gyro with automatic switching from one mode to another.Существует два известных режима работы вибрационного гироскопа Кориолиса. Это режим скорости и режим интегрирования скорости, описанные во многих работах разных авторов. Также известен двухрежимный CVG, в котором два вышеупомянутых режима работы были объединены в одном гироскопе с автоматическим переключением из одного режима в другой.Існують два відомих режими вібраційного гіроскопії Коріоліса. Це режими швидкості та інтеграції швидкості, описані в багатьох роботах різних авторів. Відомий також дворежимний CVG, в якому два вищезгадані режими роботи були об'єднані в одному гіроскопі з автоматичним перемиканням з одного режиму в інший

    TRIPLE-MODE VIBRATORY GYROSCOPE

    Get PDF
    Коріолісовий вібраційний гіроскоп (CVG) є одним з хронологічно новітні гіроскопічні технології, що з'явилися на світовому ринку в 90-х роках минулого століття.There are two well-known modes of Coriolis vibratory gyro operation. These are rate mode and rate-integrating modes described in many works of different authors. There is also known dual mode CVG in which two abovementioned modes of operation have been combined in one gyro with automatic switching from one mode to another.Существует два известных режима работы вибрационного гироскопа Кориолиса. Это режим скорости и режим интегрирования скорости, описанные во многих работах разных авторов. Также известен двухрежимный CVG, в котором два вышеупомянутых режима работы были объединены в одном гироскопе с автоматическим переключением из одного режима в другой.Існують два відомих режими вібраційного гіроскопії Коріоліса. Це режими швидкості та інтеграції швидкості, описані в багатьох роботах різних авторів. Відомий також дворежимний CVG, в якому два вищезгадані режими роботи були об'єднані в одному гіроскопі з автоматичним перемиканням з одного режиму в інший

    Thin-Film AlN-on-Silicon Resonant Gyroscopes: Design, Fabrication, and Eigenmode Operation

    Get PDF
    Resonant MEMS gyroscopes have been rapidly adopted in various consumer, industrial, and automotive applications thanks to the significant improvements in their performance over the past decade. The current efforts in enhancing the performance of high-precision resonant gyroscopes are mainly focused on two seemingly contradictory metrics, larger bandwidth and lower noise level, to push the technology towards navigation applications. The key enabling factor for the realization of low-noise high-bandwidth resonant gyroscopes is the utilization of a strong electromechanical transducer at high frequencies. Thin-film piezoelectric-on-silicon technology provides a very efficient transduction mechanism suitable for implementation of bulk-mode resonant gyroscopes without the need for submicron capacitive gaps or large DC polarization voltages. More importantly, in-air operation of piezoelectric devices at moderate Q values allows for the cointegration of mode-matched gyroscopes and accelerometers on a common substrate for inertial measurement units. This work presents the design, fabrication, characterization, and method of mode matching of piezoelectric-on-silicon resonant gyroscopes. The degenerate in-plane flexural vibration mode shapes of the resonating structure are demonstrated to have a strong gyroscopic coupling as well as a large piezoelectric transduction coefficient. Eigenmode operation of resonant gyroscopes is introduced as the modal alignment technique for the piezoelectric devices independently of the transduction mechanism. Controlled displacement feedback is also employed as the frequency matching technique to accomplish complete mode matching of the piezoelectric gyroscopes.Ph.D

    MEMS Gyroscopes for Consumers and Industrial Applications

    Get PDF
    none2mixedAntonello, Riccardo; Oboe, RobertoAntonello, Riccardo; Oboe, Robert

    Disc resonator gyroscope fabrication process requiring no bonding alignment

    Get PDF
    A method of fabricating a resonant vibratory sensor, such as a disc resonator gyro. A silicon baseplate wafer for a disc resonator gyro is provided with one or more locating marks. The disc resonator gyro is fabricated by bonding a blank resonator wafer, such as an SOI wafer, to the fabricated baseplate, and fabricating the resonator structure according to a pattern based at least in part upon the location of the at least one locating mark of the fabricated baseplate. MEMS-based processing is used for the fabrication processing. In some embodiments, the locating mark is visualized using optical and/or infrared viewing methods. A disc resonator gyroscope manufactured according to these methods is described

    Thermomechanical and mechanical characterization of a 3-axial MEMS gyroscope

    Get PDF
    Työn tavoitteena oli automaattisten, tehokkaiden ja edullisten testauslaitteistojen ja -menetelmien kehittäminen kolmiakselisten mikroelektromekaanisten (MEMS) gyroskooppien mekaaniseen ja termomekaaniseen karakterisointiin. Työn painotuksena oli testausmenetelmien ja -laitteistojen kehittäminen ja gyroskooppien vaurioanalyysit jäävät tämän työn ulkopuolelle. Gyroskooppi on kulmanopeuden mittaamiseen ja asennon aistimiseen käytettävä anturi. Mekaaninen karakteristointi kattaa gyroskooppien korkean G-arvon iskumaiset kuormitukset ja tärinäkuormitukset. Lämpömekaaninen karakterisointi kattaa gyroskooppien ympäristöolojen kontrolloimista lämpö-, kosteus- tai monikaasu -kaapissa. Tässä työssä kehitettiin menetelmä kolmiakselisten MEMS-gyroskooppien karakterisointiin lämpö- ja kosteuskaapissa. Menetelmä koostuu yksiakselisesta servomoottorista, servo-ohjaimesta ja ohjaussovelluksesta, jonka avulla voidaan samanaikaisesti mitata ja tallentaa gyroskooppien kulmanopeus kaikilta kolmelta (X, Y ja Z) akselilta sekä mitata ympäristön lämpötilaa. Korkean G-arvon iskumaisiin kuormituksiin tarkoitettu laitteisto koostuu pneumaattisesta iskutestauslaitteesta, jossa käytetään mekaanista iskua korkean G-arvon saavuttamiseen. Olemassa olevaa laitteistoa muutettiin siten että sillä voidaan saavuttaa suurempia G-arvoja (aina 80 000G:hen asti) ja mahdollistaa gyroskooppien tutkiminen eri asennoissa. Tärinäkuormituslaittesto koostuu signaaligeneraattorista ja täristinmoottorista, joka soveltuu gyroskooppien tärinätestaukseen. Signaaligeneraattoria käytetään eri taajuisten signaalimuotojen syöttämiseen täristinmoottorille, joka tärisee annetun syötteen mukaisesti. Pyörityslaitteen toiminnallisuutta testattiin yhdellä gyroskoopilla huoneenlämmössä. Gyroskoopin X, Y ja Z-akselien kulmanopeuksien keskiarvot sekä -hajonta mitattiin. Korkean g-arvon iskutestauslaitteistoa testattiin kuudella mittauksella, jossa gyroskoopit rikkoutuivat ensimmäisellä iskulla. Tärinätestauslaitteistoa testattiin yhdellä gyroskooppi-piirilevyllä. Gyroskooppi-piirilevyn päälle asetettiin kiihtyvyysanturi, jolla mitattiin tärinästä aiheutuvan kiihtyvyyden RMS-arvo, huippuarvo ja kokonaisenergia. Tulevat jatkotutkimukset keskittyvät pyöritys-, isku- ja tärinälaitteistoilla testattujen MEMS-gyroskooppien vaurioanalyysiin.The purpose of this thesis was to develop automated, efficient and economical methods for the mechanical and thermomechanical characterization of a digital 3-axial microelectromechanical systems (MEMS) gyroscope. The development of the test equipment and methods was the emphasis of this thesis, but the failure analyses of MEMS gyroscopes are beyond the scope of this work. A gyroscope is a device for measuring angular velocity and sensing change in orientation around its X, Y and Z-axis. The experimental part is divided into two sections, of which the first one is focused on high-G shock impact and vibration loading and the second on thermomechanical characterization. A rotation device was developed for the characterization of the MEMS gyroscopes in a temperature and humidity chamber. The rotation device consists of a oneaxial servo-motor, a servo-drive and a control program for the readout of angular velocity. The device is capable of simultaneously recording the angular velocities of the gyroscopes from all three axes while rotating the gyroscopes around a single axis. The device also records the temperature of the environment. The high-G shock impact equipment consists of a pneumatically assisted shock tester that relies on mechanical impact to generate the high-G shock pulse. An existing mechanical shock impact system was modified to gain higher G-values (up to 80 000G) and to enable the inspection of gyroscopes in different orientations. The vibration test equipment consists of a waveform generator and a vibration shaker, for the vibration testing of gyroscopes. The waveform generator is capable of outputting different waveforms with different frequencies to the shaker that vibrates with the given output. The functionality of the rotation device was tested with rotating one gyroscope board at room temperature. Respective averages and standard deviations of angular velocities were measured in the direction of X, Y and Z axes. The functionality of the high-G shock impact test equipment was verified with six measurements where all of the gyroscopes failed on first impact. The vibration test equipment was tested with one gyroscope board. Root mean square (RMS), peak value and total energy of acceleration were measured with an accelerometer placed on top of the vibrating gyroscope board

    High-Q Fused Silica Micro-Shell Resonators for Navigation-Grade MEMS Gyroscopes

    Full text link
    This research aims to develop the resonator for a navigation-grade microelectromechanical system (MEMS) Coriolis vibratory gyroscope (CVG) that will bring inertial navigation capabilities to a wider range of applications by reducing gyroscope size and cost. To achieve the desired gyroscope performance, the gyroscope resonator must have low energy dissipation and a highly symmetric structure. Several challenges arise at the micro-scale due to the increased sensitivity to imperfections and increased susceptibility to energy loss mechanisms. This work investigates the lower limit on energy dissipation in a micro-shell resonator known as the birdbath (BB) resonator. The BB resonator is designed to mitigate the energy loss mechanisms that commonly limit MEMS resonators, including anchor loss and thermoelastic dissipation, through a unique shape and fabrication process and through the use of fused silica as the structural material. A blowtorch molding process is used to form high aspect ratio fused silica shells with a range of wall profiles, providing a high level of control in three dimensions that is not possible with conventional micromachining techniques. Prototype BB resonators were developed prior to this dissertation work but they achieved low quality factors (Q) and low ring-down time constants (T) on the order of 100 thousand and 1 s, respectively. The goal of this work is to drastically increase performance above these initial results. Each relevant energy loss mechanism is considered in order to identify the dominant loss mechanism for a given device. Process improvements are implemented to mitigate each loss mechanism, including improved thermal management during blowtorch molding, cleaner lapping and polishing, reduced upfront surface contamination, and methods to remove contaminants after fabrication. Following optimization, Qs up to 10 million and Ts up to 500 s are measured, representing a marked improvement over the prototype resonators. It is found that BB resonators are now limited by surface loss, as indicated by the observed inverse relationship between Q and surface-to-volume ratio. The surface-loss-limited regime results in a high sensitivity to added surface layers. The addition of a conductive layer to enable electrostatic transduction is found to have a large impact, decreasing Q by 50% with the addition of only 30 angstroms of metal. It is suggested that the origin of this loss may be interfacial slippage due to a large increase in stress that occurs at the interface during oscillation. Experimental investigation into the dependence of Q on conductive layer composition, thickness, deposition conditions, and post-deposition treatments is carried out. Following treatments to removed adsorbed contaminants from the surface, resonators with a 15/50 angstrom Ti/Pt layer are found to maintain 60% of their initial Qs. Indium tin oxide (ITO) is identified as a promising conductive layer candidate, with initial experiments producing shells that maintain 70% of their initial Q. The values of Q and T produced in this work are unprecedented for MEMS resonators. Even accounting for the losses that accompany conductive layer deposition, birdbath resonator gyroscopes are expected to achieve navigation-grade performance.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146096/1/taln_1.pd

    Master of Science

    Get PDF
    thesisMicroelectromechanical gyroscopes are readily used in cars and cell phones. Tactical gyroscopes are available inexpensively and they offer 0.01 to 0.1 % scale factor inaccuracy. On the other hand, strategic gyroscopes with much better performance levels are 100,000 times more expensive. The main objective of this work is to explore the possibility of developing inexpensive strategic grade gyroscopes using microelectromechanical systems technology. Most of the available gyroscopes are surface micromachined due to fabrication issues and misalignment problems involved in multistep fabrication processes necessary to use the bulk of the wafer as the proofmass in MEMS gyroscopes. It can be shown that the sensitivity of the gyroscope is inversely proportional to the natural frequency; so if bulk micromachining technique is used it is possible to decrease the natural frequency further than current limits of surface micromachining in order to increase sensitivity. This thesis is focused on proposing a way to use bulk of the silicon wafer in the gyroscope to decrease the natural frequency to very low levels, such as sub-KHz regime, that cannot be achieved by single mask surface micromachining processes. It then proposes a solution for solving the misalignment problems caused by using multiple fabrication steps and masks instead of using only one mask in surface micromachined gyroscopes. In our design discrete proofmasses are linked together around a circle by compliant structures to ensure the highest effective mass and lowest effective spring constant. By using a proposed double sided fabrication technology the effect of misalignments on frequency mismatch can be reduced. ANSYS software simulations show that 20 µm misalignment between the masks causes a frequency shift equal to 0.3% of the natural frequency that can be compensated using electrostatic frequency tuning. Acceleration parasitic effects can also be a major problem in a low natural frequency gyroscope. In our design a multiple sensing electrode configuration is used that cancels the acceleration effects completely. The sensitivity of the gyroscope with 3126 Hz natural frequency is simulated to be 574 mV/(deg/sec) , or about four times higher than 132 mV/(deg/sec) , which was used as a benchmark for a sensitive gyroscope

    Development of dynamic model and control techniques for microelectromechanical gyroscopes

    Get PDF
    In this thesis we investigate the effects of stiffness, damping and temperature on the performance of a MEMS vibratory gyroscope. The stiffness and damping parameters are chosen because they can be appropriately designed to synchronize the drive and sense mode resonance to enhance the sensitivity and stability of MEMS gyroscope. Our results show that increasing the drive axis stiffness from its tuned value by 50%, reduces the sense mode magnitude by ~27% and augments the resonance frequency by ~21%. The stiffness and damping are mildly sensitive to typical variations in operating temperature. The stiffness decreases by 0.30%, while the damping increases by 3.81% from their initial values, when the temperature is raised from -40 to 60C. Doubling the drive mode damping from its tuned value reduces the oscillation magnitude by 10%, but ~0.20% change in the resonance frequency. The predicted effects of stiffness, damping and temperature can be utilized to design a gyroscope for the desired operating condition
    corecore