191 research outputs found

    Resource allocation for multimedia messaging services over EGPRS

    Get PDF
    The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplifies wireless access to packet data networks, such as the Internet, corporate LANs or to mobile portals. It applies a packet radio standard to transfer user data packets in wellorganized way between Mobile Stations (MS) and external packet data networks. The Enhanced General Packet Radio Service (EGPRS) is an extension of GPRS, offering much greater capacity. These enhancements have allowed the introduction of new services like Multimedia Messaging Services (MMS). MMS enables messaging with full content versatility, including images, audio, video, data and text, from terminal to terminal or from terminal to e-mail. The Wireless Application Protocol (WAP) is the WAP Forum standard for the presentation and delivery of wireless information and telephony services on mobile phones and other wireless terminals. In this thesis it is indicated that efficient radio resource allocation is necessary for managing different types of traffic in order to maintain the quality demands for different types of services. A theoretical model of MMS and WAP traffic is developed, and based on this model a simulator is implemented in Java programming language. This thesis proposes two techniques to improve the radio resource allocation algorithm performance called "radio link condition diversification" and "interactive traffic class prioritization". The radio link condition diversification technique defines minimum radio link quality that allows the user to receive their packets. The interactive traffic class prioritization technique defines different priorities for WAP packets and for MMS packets. Both techniques give good results in increasing user's perception of services and increasing network efficiency. This thesis indicates also that the prioritization mechanism successfully improves the response time of the interactive service by up to 80% with a setting of priority for interactive traffic class and decreasing the performance of the background traffic. This decrease is within a range acceptable by the end-user and that the link conditions limit mechanism has an advantage in terms of resource utilization

    Traffic Modeling in Mobile Communication Networks

    Get PDF
    This paper is focused on traffic modeling in Mobile Communication networks. This research is aimed at developing a traffic model that will predict a blocking probability for voice calls and handover calls blocking probability in mobile communication networks (GSM). The high number of block calls experience in mobile network, especially during the busy- hour as leads to poor Quality of Service (QOS) delivering in mobile network. The block calls experience in mobile network should be reduced (in line with NCC recommended value 2%) to a certain low values, to ensure good QOS. The developed traffic model is focused on new voice calls and handover calls in a cell. The developed traffic models are designed based on the number of channels resource available; these numbers of channels are partition into two segments in a cell network. The cell technology is homogenous in nature; therefore it is applicable to the entire mobile communication system. The analytical method is deployed, and the collection traffic data with equipment know as the Operation and Maintenance Center (OMC-counter) which is in built in the mobile communication network. The OMC-counter runs on Linux operation software, which helps to capture the number of arrival calls and service time in a specified interval. The arrival rate is assumed to be Poisson and the interarrival rate (the different between two arrival points or more) is also, assumed to be exponentially distributed and independence identical distributed. These parameters were assumed in the developed traffic model. The developed traffic models are blocking probability for voice calls and handover calls are shown in Equation (3) and (4). These traffic models are used to manage, a balance relationship between cost incurred in mobile communication by operators and service render to the mobile subscribers. Keywords: Arrival rate, service time, exponential distribution, channels rate and traffic load in erlang

    Performance Evaluation of v-eNodeB using Virtualized Radio Resource Management

    Get PDF
    With the demand upsurge for high bandwidth services, continuous increase in the number of cellular subscriptions, adoption of Internet of Things (IoT), and marked growth in Machine-to-Machine (M2M) traffic, there is great stress exerted on cellular network infrastructure. The present wireline and wireless networking technologies are rigid in nature and heavily hardware-dependent, as a result of which the process of infrastructure upgrade to keep up with future demand is cumbersome and expensive. Software-defined networks (SDN) hold the promise to decrease network rigidity by providing central control and flow abstraction, which in current network setups are hardware-based. The embrace of SDN in traditional cellular networks has led to the implementation of vital network functions in the form of software that are deployed in virtualized environments. This approach to move crucial and hardware intensive network functions to virtual environments is collectively referred to as network function virtualization (NFV). Our work evaluates the cost reduction and energy savings that can be achieved by the application of SDN and NFV technologies in cellular networks. In this thesis, we implement a virtualized eNodeB component (Radio Resource Management) to add agility to the network setup and improve performance, which we compare with a traditional resource manager. When combined with dynamic network resource allocation techniques proposed in Elastic Handoff, our hardware agnostic approach can achieve a greater reduction in capital and operational expenses through optimal use of network resources and efficient energy utilization. Advisor: Jitender S. Deogu

    Wireless communications in the new millennium and third generation wireless networks

    Get PDF
    At the end of the 20 century, and at the beginning of this one, wireless communications are making large advances. The new technologies are on the way to provide a high-speed, high-quality information exchange between handheld terminals, and information repositories. The so called 2,5 generation networks, using the techniques like the HSCSD1, GPRS2, EDGE3, and the 3r generation wireless systems will help the wireless world to reach those goals. In this thesis I will start from the first and second-generation wireless networks, and then look into the 2,5 generation and 3rd generation wireless communications more in detail. The latest advances in the wireless world are the main focus of this paper although a short history of wireless communications is also given. The various aspects related to 3rd generation systems will be explored in this thesis, for example the air interface discussions, its time scale, its elements like the mobile equipment, software and security, USLM4, services that will be offered, etc. In addition, the technical factors and key technologies that are likely to shape the wireless network environment of the future will be explored. This part is expected to help us to see beyond the 3rd generation

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Queueing Networks for Vertical Handover

    Get PDF
    PhDIt is widely expected that next-generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is a mix of cellular networks (GSM/GPRS and WCDMA) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. If cellular/ WLAN interworking is to be the basis for a heterogeneous network then the analysis of complex handover traffic rates in the system (especially vertical handover) is one of the most essential issues to be considered. This thesis describes the application of queueing-network theory to the modelling of this heterogeneous wireless overlay system. A network of queues (or queueing network) is a powerful mathematical tool in the performance evaluation of many large-scale engineering systems. It has been used in the modelling of hierarchically structured cellular wireless networks with much success, including queueing network modelling in the study of cellular/ WLAN interworking systems. In the process of queueing network modelling, obtaining the network topology of a system is usually the first step in the construction of a good model, but this topology analysis has never before been used in the handover traffic study in heterogeneous overlay wireless networks. In this thesis, a new topology scheme to facilitate the analysis of handover traffic is proposed. The structural similarity between hierarchical cellular structure and heterogeneous wireless overlay networks is also compared. By replacing the microcells with WLANs in a hierarchical structure, the interworking system is modelled as an open network of Erlang loss systems and with the new topology, the performance measures of blocking probabilities and dropping probabilities can be determined. Both homogeneous and non-homogeneous traffic have been considered, circuit switched and packet-switched. Example scenarios have been used to validate the models, the numerical results showing clear agreement with the known validation scenarios

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF
    • 

    corecore