85,941 research outputs found

    Evaluating pedagogical practices supporting collaborative learning for model-based system development courses

    Get PDF
    Model-based software development (MBSD) has been widely used in industry for its effectiveness of code generation, code reuse and system evolution. At different stages of the software lifecycle, models -- as opposed to actual code -- are used as abstractions to present software development artifacts. In a university software engineering curriculum, compared to other concrete and tangible courses, e.g., game and app development, these levels of abstraction are often difficult for students to understand, and further, to see models' usefulness in practice. This paper presents an evaluation of pedagogical practices supporting collaborative learning for MBSD courses from experiences of teaching them at University of Oslo. The focus is to answer two research questions: 1) What are the challenges and possibilities when using a collaborative learning approach for teaching modelling and architecture? 2) What are the challenges and benefits of having a holistic approach to MBSD courses in light of the requirements of academia and the needs of industry? The term “holistic” is understood 1) as an approach that involves human factors (users), technology and processes, 2) as an approach to teaching MBSD courses where modelling for Enterprise Architecture is taught together with System Architecture and Model-Driven Language Engineering. Empirical data was collected through interviews, questionnaires, and document analysis. The paper’s research results show that three different course perspectives (Modeling for Enterprise Architecture with Business Architecture, System Architecture and Model Driven Language Engineering) are essential parts of teaching modeling courses, and an industry field study shows that industry sees the potential of having junior architects to provide support to a team and solving basic architectural problems

    A Competency-based Approach toward Curricular Guidelines for Information Technology Education

    Get PDF
    The Association for Computing Machinery and the IEEE Computer Society have launched a new report titled, Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology (IT2017). This paper discusses significant aspects of the IT2017 report and focuses on competency-driven learning rather than delivery of knowledge in information technology (IT) programs. It also highlights an IT curricular framework that meets the growing demands of a changing technological world in the next decade. Specifically, the paper outlines ways by which baccalaureate IT programs might implement the IT curricular framework and prepare students with knowledge, skills, and dispositions to equip graduates with competencies that matter in the workplace. The paper suggests that a focus on competencies allows academic departments to forge collaborations with employers and engage students in professional practice experiences. It also shows how professionals and educators might use the report in reviewing, updating, and creating baccalaureate IT degree programs worldwide

    Innovation and failure in mechatronics design education

    Get PDF
    Innovative engineering design always has associated with it the risk of failure, and it is the role of the design engineer to mitigate the possibilities of failure in the final system. Education should however provide a safe space for students to both innovate and to learn about and from failures. However, pressures on course designers and students can result in their adopting a conservative, and risk averse, approach to problem solving. The paper therefore considers the nature of both innovation and failure, and looks at how these might be effectively combined within mechatronics design education

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Business Process Management Education in Academia: Status, challenges, and Recommendations

    Get PDF
    In response to the growing proliferation of Business Process Management (BPM) in industry and the demand this creates for BPM expertise, universities across the globe are at various stages of incorporating knowledge and skills in their teaching offerings. However, there are still only a handful of institutions that offer specialized education in BPM in a systematic and in-depth manner. This article is based on a global educators’ panel discussion held at the 2009 European Conference on Information Systems in Verona, Italy. The article presents the BPM programs of five universities from Australia, Europe, Africa, and North America, describing the BPM content covered, program and course structures, and challenges and lessons learned. The article also provides a comparative content analysis of BPM education programs illustrating a heterogeneous view of BPM. The examples presented demonstrate how different courses and programs can be developed to meet the educational goals of a university department, program, or school. This article contributes insights on how best to continuously sustain and reshape BPM education to ensure it remains dynamic, responsive, and sustainable in light of the evolving and ever-changing marketplace demands for BPM expertise

    Walking Through the Method Zoo: Does Higher Education Really Meet Software Industry Demands?

    Get PDF
    Software engineering educators are continually challenged by rapidly evolving concepts, technologies, and industry demands. Due to the omnipresence of software in a digitalized society, higher education institutions (HEIs) have to educate the students such that they learn how to learn, and that they are equipped with a profound basic knowledge and with latest knowledge about modern software and system development. Since industry demands change constantly, HEIs are challenged in meeting such current and future demands in a timely manner. This paper analyzes the current state of practice in software engineering education. Specifically, we want to compare contemporary education with industrial practice to understand if frameworks, methods and practices for software and system development taught at HEIs reflect industrial practice. For this, we conducted an online survey and collected information about 67 software engineering courses. Our findings show that development approaches taught at HEIs quite closely reflect industrial practice. We also found that the choice of what process to teach is sometimes driven by the wish to make a course successful. Especially when this happens for project courses, it could be beneficial to put more emphasis on building learning sequences with other courses

    Reducing bureaucratic burdens on lecturers

    Get PDF

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Maintaining an ethical balance in the curriculum design of games-based degrees.

    Get PDF
    In February 2011, games-based degrees were subjected to the scrutiny of the Livingstone- Hope report into the future of education in the fields of video games and visual effects. The report delivers a damning appraisal of the education system’s ability to fulfil skills shortages in these creative industries, and makes a range of proposals for changing education in both schools and universities to meet the needs of these sectors. This paper discusses the findings of this report from the perspective of higher education, with particular emphasis on the complex ethical considerations of designing a curriculum for games-based degrees. The argument for taking a broader perspective on this issue is illustrated through discussion of Games Software Development degrees at Sheffield Hallam University
    • 

    corecore