5 research outputs found

    An Evolutionary Account of Technological Development

    Get PDF
    If 'nothing in biology makes sense except in the light of evolution' (Theodosius Dobzhansky, 1973) , then, does nothing in technology make sense except in the light of evolution? This study will seek to construct an evolutionary account of technological development. To this end, it will consider and analyse a variety of theoretical proposals. In this thesis I will survey existing evolutionary accounts found in socio-cultural and engineering sciences, and will evaluate how these theories have been formulated. The study will look at evidence and theory, and it will consider the formalisation, visualisation and conceptualisation of ancestral-descent relationships in socio-technical systems. In recent years, this area of study has gained momentum among experts from different academic, scientific and theoretical backgrounds, particularly those working in the fields of theoretical and engineering science, technology, and in the development of social-technical systems. 21st century biologists, social scientists, philosophers, economists, and technologists have instigated lively and thought-provoking interdisciplinary discussions about the feasibility of quantifying and modelling macro and microevolution in technology. Neo-Darwinian theory and modern synthesis theory have prepared a framework for a more effective discussion than ever before. The question asked by many researchers in this area is how microevolution can bring about macro evolutionary events in socio-technical systems. However, any evolutionary account of technology requires the application of conceptual tools and special theoretical foundations for study that do not necessarily match those traditionally used in the study of the organic world. Therefore, to address how microevolution can influence macroevolution in technological design, it is important to establish an evolutionary account of modular systems in technology in order to depict the patterns and processes that have evolved over time in the process of design. The main principles that govern Darwin’s evolutionary scheme according to natural selection suggest that every system in nature uses variation, reproduction and heritability in order to evolve. The simplicity of the general principles that govern the theory of evolution in biology has enabled it to be generalised as a theoretical framework in other academic and research fields. However, the existence of directionality and intentionality in the production of artefacts makes it necessary to extend the definition of, and to re-examine, evolutionary mechanisms and classic notions of synthesis. For example, Simondon's theory of concretization considers the horizontal transmission of technicality in systems. Additionally, Baldwin and Clark argue that the theory of modularity is a powerful conceptual tool which can be used in different fields, and this theory sheds light on how extended evolutionary operators work in technological systems. It is possible to find similarities between evolution in natural history and the developmental history of modern technology. Historical objects in the two fields are connected together through the idea of reproductive descent. This thesis will investigate how the unit of selection affects the process of evolution and the hierarchical classification of modular systems, and how evolutionary mechanisms bring about evolutionary change in design space through time. It will explore how different evolutionary operators interact to cause 'phenotypic' effects. The main challenge of the thesis will be to explain developmental patterns found in socio-technical systems, and in the biological selective regime, into an extended synthesis. To this end, a scientific investigation of shared research is required, and emphasis will be placed on how this unifying approach can delineate evolutionary mechanisms, functional theory and evolutionary methodology of design, evolutionary operators, and phenotypic-genotypic distinction in technology. It is apparent that evolutionary theory can be used for theoretical planning in the growth and development of technical-social systems. The basic principles of Darwin’s theory of evolution notes that each system (which can), under a selective regime, achieves properties including variation, reproduction and heritability, in order that the system can evolve. Academics who study the growth and development of technology in the context of an evolutionary-historical process often use the idea of genetic transfer for inspiration

    Processi di internazionalizzazione e sistemi di PMI nell'Economia della conoscenza : un'esplorazione empirica integrata a livello regionale

    Get PDF
    The analysis of the main theories on the process of internationalization of SMEs highlights multiple perspectives of interpretation. Each one focuses on what it believes to be a key determinant of international involvement, form resources/skills availability to relationships, from management capabilities to the risk appetite of the entrepreneur, and assesses the implications for the process of expanding into foreign markets, the benefits in terms of competitiveness and its chances of success. However, what you can easily find out by literature review is that a more or less complex learning and organizational process existence represents the base of the growth path of SMEs. A knowledge based perspective allows to model the path of business growth based on the capacity to exploit the knowledge within the organization and the ability to acquire and manage knowledge outside the company through a systematic process of exploration, associated with positive externalities resulting from an increased international involvement. The empirical analysis on a sample of micro and small enterprises in Emilia Romagna is developed at the macro level, in order to study the relationship between internationalization, knowledge and performance by assessing the cause and effect link and at the micro level, with the aim to identify policy recommendations that allow improve the approach of SME to internationalization process and define the role of other actors of the territory (banks, private and public associations, region and State

    Evolution of bow-arrow technology.

    Get PDF
    This thesis examines the development of bow-arrow technology in terms of modem evolutionary theory. Previous approaches that propose functional-adaptive technological trajectories are critiqued. Different theoretical approaches towards technology and associated units of analysis are examined. Behavioural ecology, evolutionary archaeology, and dual inheritance theory are shown to hold most promise for explaining trait-lineages in a given technological tradition. Previous approaches to bow-arrow technology are analysed, and an evolutionary archaeological methodology appropriate for examining lithic armatures is presented. Environment, historical contingency, selection, drift, population dynamics and social learning mechanisms are seen as key complex factors requiring case by case examination. An evolutionary case study with nine temporally, geographically, and culturally related stratigraphic phases containing a total of 3600 complete lithic armatures from the south Scandinavian middle Mesolithic (c. 6600-5400 BC) is presented. The phases are described in terms of associated fine-grained archaeological data and previous interpretations. A Bayesian chronological framework is constructed for the case study, using modelling facilities in the OxCal calibration package. This method time-steps and calculates relative occupation durations of point bearing phases in terms of available archaeological and radiometric data. The chronological model covers the culture-historical periods termed Blak, Kongemose and Early Ertebolle phases. The validity of previous typological interpretations of projectile point sequences is questioned in light of these results. The nine time-stepped lithic armature assemblages are then analysed to describe inter- and intra-site point trait variation. A linked series of descriptive and multivariate statistical techniques identify key morphological attributes that summarise trait variation within and between phases. Variation is graphically represented and related to different social learning populations, reduction strategies, and engineering constraints. A remarkably long-term homogenous pattern of complex projectile point manufacture is found for the Kongemose phases, compared to the temporally bracketing Blak and Ertebolle phases. Faunal, climatic, and population level factors are then modelled to account for variation and stability of the case study's armature traits. Faunal data from the Tagerup and Segebro sites, spanning the case study period, are examined for possible diet breadth changes, in relation to point-trait variation. No functional relationship is found between point-shape and potential target-prey. A population model is then constructed in OxCal using all published south Scandinavian radiometric data from the final Maglemose to the final Ertebolle cultural phases. A simple model of landmass reduction, forestation cover and mammalian population density levels demonstrates reduced land mass alone would not significantly affect human population levels - even with relatively high human population densities. Holocene 5180 and A14C data is used as a proxy for contemporaneous climatic fluctuations. These proxies are plotted and superimposed onto the population graph. A correlation between climate change, population fluctuation, and projectile point technology is found. As changes in point morphology and lithic reduction strategies coincide with apparent regional drops in population, drift processes may account for some variation in point-shape
    corecore