35,445 research outputs found

    Adaptive Importance Sampling for Performance Evaluation and Parameter Optimization of Communication Systems

    Get PDF
    We present new adaptive importance sampling techniques based on stochastic Newton recursions. Their applicability to the performance evaluation of communication systems is studied. Besides bit-error rate (BER) estimation, the techniques are used for system parameter optimization. Two system models that are analytically tractable are employed to demonstrate the validity of the techniques. As an application to situations that are analytically intractable and numerically intensive, the influence of crosstalk in a wavelength-division multiplexing (WDM) crossconnect is assessed. In order to consider a realistic system model, optimal setting of thresholds in the detector is carried out while estimating error rate performances. Resulting BER estimates indicate that the tolerable crosstalk levels are significantly higher than predicted in the literature. This finding has a strong impact on the design of WDM networks. Power penalties induced by the addition of channels can also be accurately predicted in short run-time

    Fast performance estimation of block codes

    Get PDF
    Importance sampling is used in this paper to address the classical yet important problem of performance estimation of block codes. Simulation distributions that comprise discreteand continuous-mixture probability densities are motivated and used for this application. These mixtures are employed in concert with the so-called g-method, which is a conditional importance sampling technique that more effectively exploits knowledge of underlying input distributions. For performance estimation, the emphasis is on bit by bit maximum a-posteriori probability decoding, but message passing algorithms for certain codes have also been investigated. Considered here are single parity check codes, multidimensional product codes, and briefly, low-density parity-check codes. Several error rate results are presented for these various codes, together with performances of the simulation techniques

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Doppler-corrected differential detection system

    Get PDF
    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection

    On Galois-Division Multiple Access Systems: Figures of Merit and Performance Evaluation

    Full text link
    A new approach to multiple access based on finite field transforms is investigated. These schemes, termed Galois-Division Multiple Access (GDMA), offer compact bandwidth requirements. A new digital transform, the Finite Field Hartley Transform (FFHT) requires to deal with fields of characteristic p, p \neq 2. A binary-to-p-ary (p \neq 2) mapping based on the opportunistic secondary channel is introduced. This allows the use of GDMA in conjunction with available digital systems. The performance of GDMA is also evaluated.Comment: 6 pages, 4 figures. In: XIX Simposio Brasileiro de Telecomunicacoes, 2001, Fortaleza, CE, Brazi

    Fast Power and Energy Efficiency Analysis of FPGA-based Wireless Base-band Processing

    Full text link
    Nowadays, demands for high performance keep on increasing in the wireless communication domain. This leads to a consistent rise of the complexity and designing such systems has become a challenging task. In this context, energy efficiency is considered as a key topic, especially for embedded systems in which design space is often very constrained. In this paper, a fast and accurate power estimation approach for FPGA-based hardware systems is applied to a typical wireless communication system. It aims at providing power estimates of complete systems prior to their implementations. This is made possible by using a dedicated library of high-level models that are representative of hardware IPs. Based on high-level simulations, design space exploration is made a lot faster and easier. The definition of a scenario and the monitoring of IP's time-activities facilitate the comparison of several domain-specific systems. The proposed approach and its benefits are demonstrated through a typical use case in the wireless communication domain.Comment: Presented at HIP3ES, 201

    Efficient detection and signal parameter estimation with applications to high dynamic GPS receivers

    Get PDF
    A novel technique for simultaneously detecting data and estimating the parameters of a received carrier signal phase modulated by unknown data and experiencing very high Doppler, Doppler rate, etc. is discussed. Such a situation arises, for example, in the case of Global Positioning Systems (DPS) where the signal parameters are directly related to the position, velocity and acceleration of the GPS receiver. The proposed scheme is based upon first estimating the received signal local (data dependent) parameters over two consecutive bit periods, followed by the detection of a possible jump in these parameters. The presence of a detected jump signifies a data transition which is then removed from the received signal. This effectively demodulated signal is then processed to provide the estimates of global (data independent) parameters of the signal related to the position, velocity, etc. of the receiver. One of the key features of the proposed algorithm is the introduction of two different schemes which can provide an improvement of up to 3 dB over the conventional implementation of Kalman filter as applied to phase and frequency estimation, under low to medium signal-to-noise ratio conditions
    corecore