15,026 research outputs found

    App creation in schools for different curricula subjects - lesson learned

    Full text link
    The next generation of jobs will be characterized by an increased demand for people with computational and problem solving skills. In Austria, computer science topics are underrepresented in school curricula hence teaching time for these topics is limited. From primary through secondary school, only a few opportunities exist for young students to explore programming. Furthermore, today's teachers are rarely trained in computer science, which impairs their potential to motivate students in these courses. Within the "No One Left Behind" (NOLB) project, teachers were supported to guide and assist their students in their learning processes by constructing ideas through game making. Thus, students created games that referred to different subject areas by using the programming tool Pocket Code, an app developed at Graz University of Technology (TU-Graz). This tool helps students to take control of their own education, becoming more engaged, interested, and empowered as a result. To ensure an optimal integration of the app in diverse subjects the different backgrounds (technical and non-technical) of teachers must be considered as well. First, teachers were supported to use Pocket Code in the different subjects in school within the feasibility study of the project. Observed challenges and difficulties using the app have been gathered. Second, we conducted interviews with teachers and students to underpin our onsite observations. As a result, it was possible to validate Pocket Codes' potential to be used in a diverse range of subjects. Third, we focused especially on those teachers who were not technically trained to provide them with a framework for Pocket Code units, e.g., with the help of structured lesson plans and predefined templates.Comment: 10 pages, 5 tables EduLearn 201

    ScratchMaths: evaluation report and executive summary

    Get PDF
    Since 2014, computing has been part of the primary curriculum. ‘Scratch’ is frequently used by schools, and the EEF funded this trial to test whether the platform could be used to improve pupils’ computational thinking skills, and whether this in turn could have a positive impact on Key Stage 2 maths attainment. Good computational thinking skills mean pupils can use problem solving methods that involve expressing problems and their solutions in ways that a computer could execute – for example, recognising patterns. Previous research has shown that pupils with better computational thinking skills do better in maths. The study found a positive impact on computational thinking skills at the end of Year 5 – particularly for pupils who have ever been eligible for free school meals. However, there was no evidence of an impact on Key Stage 2 maths attainment when pupils were tested at the end of Year 6. Many of the schools in the trial did not fully implement ScratchMaths, particularly in Year 6, where teachers expressed concerns about the pressure of Key Stage 2 SATs. But there was no evidence that schools which did implement the programme had better maths results. Schools may be interested in ScratchMaths as an affordable way to cover aspects of the primary computing curriculum in maths lessons without any adverse effect on core maths outcomes. This trial, however, did not provide evidence that ScratchMaths is an effective way to improve maths outcomes

    Computer Programming Effects in Elementary: Perceptions and Career Aspirations in STEM

    Full text link
    The development of elementary-aged students’ STEM and computer science (CS) literacy is critical in this evolving technological landscape, thus, promoting success for college, career, and STEM/CS professional paths. Research has suggested that elementary- aged students need developmentally appropriate STEM integrated opportunities in the classroom; however, little is known about the potential impact of CS programming and how these opportunities engender positive perceptions, foster confidence, and promote perseverance to nurture students’ early career aspirations related to STEM/CS. The main purpose of this mixed-method study was to examine elementary-aged students’ (N = 132) perceptions of STEM, career choices, and effects from pre- to post-test intervention of CS lessons (N = 183) over a three-month period. Findings included positive and significant changes from students’ pre- to post-tests as well as augmented themes from 52 student interviews to represent increased enjoyment of CS lessons, early exposure, and its benefits for learning to future careers

    Computational Thinking Integration into Middle Grades Science Classrooms: Strategies for Meeting the Challenges

    Get PDF
    This paper reports findings from the efforts of a university-based research team as they worked with middle school educators within formal school structures to infuse computer science principles and computational thinking practices. Despite the need to integrate these skills within regular classroom practices to allow all students the opportunity to learn these essential 21st Century skills, prior practice has been to offer these learning experiences outside of mainstream curricula where only a subset of students have access. We have sought to leverage elements of the research-practice partnership framework to achieve our project objectives of integrating computer science and computational thinking within middle science classrooms. Utilizing a qualitative approach to inquiry, we present narratives from three case schools, report on themes across work sites, and share recommendations to guide other practitioners and researchers who are looking to engage in technology-related initiatives to impact the lives of middle grades students

    System upgrade: realising the vision for UK education

    Get PDF
    A report summarising the findings of the TEL programme in the wider context of technology-enhanced learning and offering recommendations for future strategy in the area was launched on 13th June at the House of Lords to a group of policymakers, technologists and practitioners chaired by Lord Knight. The report – a major outcome of the programme – is written by TEL director Professor Richard Noss and a team of experts in various fields of technology-enhanced learning. The report features the programme’s 12 recommendations for using technology-enhanced learning to upgrade UK education

    Research questions and approaches for computational thinking curricula design

    Get PDF
    Teaching computational thinking (CT) is argued to be necessary but also admitted to be a very challenging task. The reasons for this, are: i) no general agreement on what computational thinking is; ii) no clear idea nor evidential support on how to teach CT in an effective way. Hence, there is a need to develop a common approach and a shared understanding of the scope of computational thinking and of effective means of teaching CT. Thus, the consequent ambition is to utilize the preliminary and further research outcomes on CT for the education of the prospective teachers of secondary, further and higher/adult education curricula

    Contemporary developments in teaching and learning introductory programming: Towards a research proposal

    Get PDF
    The teaching and learning of introductory programming in tertiary institutions is problematic. Failure rates are high and the inability of students to complete small programming tasks at the completion of introductory units is not unusual. The literature on teaching programming contains many examples of changes in teaching strategies and curricula that have been implemented in an effort to reduce failure rates. This paper analyses contemporary research into the area, and summarises developments in the teaching of introductory programming. It also focuses on areas for future research which will potentially lead to improvements in both the teaching and learning of introductory programming. A graphical representation of the issues from the literature that are covered in the document is provided in the introduction

    An evaluation of a professional learning network for computer science teachers

    Get PDF
    This paper describes and evaluates aspects of a professional development programme for existing CS teachers in secondary schools (PLAN C) which was designed to support teachers at a time of substantial curricular change. The paper’s particular focus is on the formation of a teacher professional development network across several hundred teachers and a wide geographical area. Evidence from a series of observations and teacher surveys over a two-year period is analysed with respect to the project’s programme theory in order to illustrate not only whether it worked as intended, by why. Results indicate that the PLAN C design has been successful in increasing teachers’ professional confidence and appears to have catalysed powerful change in attitudes to learning. Presentation of challenging pedagogical content knowledge and conceptual frameworks, high-quality teacher-led professional dialogue, along with the space for reflection and classroom trials, triggered examination of the teachers’ own current practices

    Using Scratch to Teach Undergraduate Students' Skills on Artificial Intelligence

    Full text link
    This paper presents a educational workshop in Scratch that is proposed for the active participation of undergraduate students in contexts of Artificial Intelligence. The main objective of the activity is to demystify the complexity of Artificial Intelligence and its algorithms. For this purpose, students must realize simple exercises of clustering and two neural networks, in Scratch. The detailed methodology to get that is presented in the article.Comment: 6 pages, 7 figures, workshop presentatio
    • …
    corecore