3,043 research outputs found

    Preventing DDoS using Bloom Filter: A Survey

    Full text link
    Distributed Denial-of-Service (DDoS) is a menace for service provider and prominent issue in network security. Defeating or defending the DDoS is a prime challenge. DDoS make a service unavailable for a certain time. This phenomenon harms the service providers, and hence, loss of business revenue. Therefore, DDoS is a grand challenge to defeat. There are numerous mechanism to defend DDoS, however, this paper surveys the deployment of Bloom Filter in defending a DDoS attack. The Bloom Filter is a probabilistic data structure for membership query that returns either true or false. Bloom Filter uses tiny memory to store information of large data. Therefore, packet information is stored in Bloom Filter to defend and defeat DDoS. This paper presents a survey on DDoS defending technique using Bloom Filter.Comment: 9 pages, 1 figure. This article is accepted for publication in EAI Endorsed Transactions on Scalable Information System

    A Design Approach to IoT Endpoint Security for Production Machinery Monitoring

    Get PDF
    The Internet of Things (IoT) has significant potential in upgrading legacy production machinery with monitoring capabilities to unlock new capabilities and bring economic benefits. However, the introduction of IoT at the shop floor layer exposes it to additional security risks with potentially significant adverse operational impact. This article addresses such fundamental new risks at their root by introducing a novel endpoint security-by-design approach. The approach is implemented on a widely applicable production-machinery-monitoring application by introducing real-time adaptation features for IoT device security through subsystem isolation and a dedicated lightweight authentication protocol. This paper establishes a novel viewpoint for the understanding of IoT endpoint security risks and relevant mitigation strategies and opens a new space of risk-averse designs that enable IoT benefits, while shielding operational integrity in industrial environments

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack
    • …
    corecore