1,421 research outputs found

    Taxonomies of Model-theoretically Defined Topological Properties

    Get PDF
    A topological classification scheme consists of two ingredients: (1) an abstract class K of topological spaces; and (2) a taxonomy , i.e. a list of first order sentences, together with a way of assigning an abstract class of spaces to each sentence of the list so that logically equivalent sentences are assigned the same class.K, is then endowed with an equivalence relation, two spaces belonging to the same equivalence class if and only if they lie in the same classes prescribed by the taxonomy. A space X in K is characterized within the classification scheme if whenever Y E K, and Y is equivalent to X, then Y is homeomorphic to X. As prime example, the closed set taxonomy assigns to each sentence in the first order language of bounded lattices the class of topological spaces whose lattices of closed sets satisfy that sentence. It turns out that every compact two-complex is characterized via this taxonomy in the class of metrizable spaces, but that no infinite discrete space is so characterized. We investigate various natural classification schemes, compare them, and look into the question of which spaces can and cannot be characterized within them

    Corrigendum to Taxonomies of Model-theoretically Defined Topological Properties

    Get PDF
    An error has been found in the cited paper; namely, Theorem 3.1 is false

    Disentangling agglomeration and network externalities : a conceptual typology

    Get PDF
    Agglomeration and network externalities are fuzzy concepts. When different meanings are (un)intentionally juxtaposed in analyses of the agglomeration/network externalities-menagerie, researchers may reach inaccurate conclusions about how they interlock. Both externality types can be analytically combined, but only when one adopts a coherent approach to their conceptualization and operationalization, to which end we provide a combinatorial typology. We illustrate the typology by applying a state-of-the-art bipartite network projection detailing the presence of globalized producer services firms in cities in 2012. This leads to two one-mode graphs that can be validly interpreted as topological renderings of agglomeration and network externalities

    Mapping Properties of Co-existentially Closed Continua

    Get PDF
    A continuous surjection between compacta is called co-existential if it is the second of two maps whose composition is a standard ultracopower projection. A continuum is called co-existentially closed if it is only a co-existential image of other continua. This notion is not only an exact dual of Abraham Robinson\u27s existentially closed structures in model theory, it also parallels the definition of other classes of continua defined by what kinds of continuous images they can be. In this paper we continue our study of co-existentially closed continua, especially how they (and related continua) behave in certain mapping situations

    Resolving structural variability in network models and the brain

    Get PDF
    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar diagnostics presented in statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling---in addition to several summary statistics, including the mean clustering coefficient, shortest path length, and network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be embedded in anatomical brain regions tend to produce distributions that are similar to those extracted from the brain. We also find that network models hardcoded to display one network property do not in general also display a second, suggesting that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.Comment: 24 pages, 11 figures, 1 table, supplementary material

    A Hierarchy of Maps Between Compacta

    Get PDF
    Let CH be the class of compacta (i.e., compact Hausdorff spaces), with BS the subclass of Boolean spaces. For each ordinal Ī± and pair āŸØK,LāŸ©\langle K,L\rangle of subclasses of CH, we define Levā‰„Ī± K,L), the class of maps of level at least Ī± from spaces in K to spaces in L, in such a way that, for finite Ī±, Levā‰„Ī± (BS,BS) consists of the Stone duals of Boolean lattice embeddings that preserve all prenex first-order formulas of quantifier rank Ī±. Maps of level ā‰„ 0 are just the continuous surjections, and the maps of level ā‰„ 1 are the co-existential maps introduced in [8]. Co-elementary maps are of level ā‰„Ī± for all ordinals Ī±; of course in the Boolean context, the co-elementary maps coincide with the maps of level ā‰„Ļ‰. The results of this paper include: (i) every map of level ā‰„Ļ‰ is co-elementary; (ii) the limit maps of an Ļ‰-indexed inverse system of maps of level ā‰„Ī± are also of level ā‰„Ī±; and (iii) if K is a co-elementary class, k \u3c Ļ‰ and Levā‰„ k(K,K) = Levā‰„ k+1 (K,K), then Levā‰„ k(K,K) = Levā‰„Ļ‰(K,K). A space X āˆˆ K is co-existentially closed in K if Levā‰„ 0(K, X) = Levā‰„ 1 (K, X). Adapting the technique of adding roots, by which one builds algebraically closed extensions of fields (and, more generally, existentially closed extensions of models of universal-existential theories), we showed in [8] that every infinite member of a co-inductive co-elementary class (such as CH itself, BS, or the class CON of continua) is a continuous image of a space of the same weight that is co-existentially closed in that class. We show here that every compactum that is co-existentially closed in CON (a co-existentially closed continuum) is both indecomposable and of covering dimension on

    Some applications of the ultrapower theorem to the theory of compacta

    Full text link
    The ultrapower theorem of Keisler-Shelah allows such model-theoretic notions as elementary equivalence, elementary embedding and existential embedding to be couched in the language of categories (limits, morphism diagrams). This in turn allows analogs of these (and related) notions to be transported into unusual settings, chiefly those of Banach spaces and of compacta. Our interest here is the enrichment of the theory of compacta, especially the theory of continua, brought about by the immigration of model-theoretic ideas and techniques
    • ā€¦
    corecore