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CONTINUA
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Communicated by Charles Hagopian

Abstract. A continuous surjection between compacta is called co-existential

if it is the second of two maps whose composition is a standard ultracopower

projection. A continuum is called co-existentially closed if it is only a co-

existential image of other continua. This notion is not only an exact dual of

Abraham Robinson’s existentially closed structures in model theory, it also

parallels the definition of other classes of continua defined by what kinds

of continuous images they can be. In this paper we continue our study of

co-existentially closed continua, especially how they (and related continua)

behave in certain mapping situations.

1. introduction

By a compactum we mean a compact Hausdorff space, a continuum is a connected
compactum. A subcompactum (resp., subcontinuum) of a space is just a subspace
that is itself a compactum (resp., continuum).

Given a compactum X and an ultrafilter D on an index set I (i.e., D is a
maximal filter in the Boolean power set algebra of I), the ultracopower of X via
D is denoted XI \ D. One easy way to describe this construction is to regard I

as a discrete space, letting p : X × I → X and q : X × I → I be the standard
projection maps. Applying the Stone-Čech compactification functor β( ) (see,
e.g., [23, 24]), we regard D as a point in β(I) and define the ultracopower to
be the inverse image of D under qβ . We denote by pX,D the restriction of pβ
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1048 PAUL BANKSTON

to XI \ D. It is the standard ultracopower (codiagonal) projection, a continuous
surjection to X.

The construction of ultracopowers (and, more generally, of ultracoproducts)
of compacta first appeared in [1]; and in [10] R. Gurevič further exploited the
connection between ultracoproducts of compacta and ultraproducts of lattices to
settle some questions raised in [1]. Ultracopowers of arcs (i.e., homeomorphic
copies of the closed unit interval) also figured prominently in the independent
work of J. Mioduszewski [17] to study the Stone-Čech compactification of the
half-open unit interval. (See [11, 21, 22, 25] for further work along these lines.)

A continuous surjective mapping f : X → Y between compacta is called a
map of level ≥ 0. Given n < ω, f is called a map of level ≥ n + 1 if there is
an ultracopower Y I \ D and a map g : Y I \ D → X of level ≥ n such that
the composition f ◦ g equals pY,D. This defines inductively an ordinal-indexed
hierarchy of maps between compacta (the co-elementary hierarchy); for any limit
ordinal α, f is of level ≥ α if f is of level ≥ β for all β < α. By Theorem 2.10 in [5],
the hierarchy ends at level ≥ ω, at which point we have the co-elementary maps
(i.e., maps f : X → Y for which there exists a homeomorphism of ultracopowers
h : XI\D → Y J\E such that pY,E ◦ h = f ◦ pX,D). Because of this, we will
consider only ordinal levels up to and including ω in the sequel. Terms like α± 1
are defined to be α, if α is infinite, and are defined as usual otherwise.

Maps of level ≥ 1 are referred to as co-existential. These mappings were
introduced in [5] as topological analogues (in a category dual sense, see [16]) of
existential embeddings in model theory (see [12, 15, 20]); they also arise naturally
from existential embeddings, giving us more than just an analogue. Suppose X
and Y are compacta with lattice bases BX and BY , respectively. (This means
they are closed-set bases that are bounded lattices under union and intersection.)
If f : BY → BX is an existential embedding (think of one field being algebraically
closed relative to a larger field), and if f∗ : X → Y is the natural continuous
surjection induced by f , then f∗ is co-existential.

Here is a summary of what is already known about co-existential maps. (See,
e.g., [19] for definitions of continuum-theoretic notions.)

Theorem 1.1. (1) (Theorems 2.4 and 2.7 in [6]) Co-existential maps are
weakly confluent; in the case of locally connected range, they are mono-
tone.

(2) (Proposition 2.5 in [6] and Theorem 7.1 in [7]) Co-existential maps pre-
serve the topological properties of: being infinite, being disconnected, being
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totally disconnected, being an indecomposable continuum, being a hered-
itarily indecomposable continuum, and being a hereditarily decomposable
continuum.

(3) (Theorem 2.6 in [6] and Theorem 2.5 in [7]) Co-existential maps (resp.,
maps of level ≥ 2) preserve or lower (resp., preserve) covering dimension.

(4) (Corollaries 5.4 and 5.6 in [8]) Co-existential maps (resp., maps of level
≥ 2) preserve or lower (resp., preserve) the multicoherence degree of con-
tinua.

(5) (Proposition 2.7 in [4] and Theorem 2.7 in [6]) A function from an arc
to a compactum is a co-existential (equivalently, a co-elementary) map if
and only if the range is an arc and the map is a continuous monotone
surjection.

In analogy with the model-theoretic notion of a relational structure being ex-
istentially closed relative to a class of structures of which it is a member (again,
see [12, 15, 20]) we define a co-existentially closed continuum to be a continuum
that can be only a co-existential image under maps whose domains are continua.
Co-existentially closed continua were first introduced in [6] (which was written be-
fore [5], despite appearing later). There are other well-known classes of continua
defined in a similar fashion; most notably we have Class(C) (resp., Class(W )),
the class of metrizable continua that can be only confluent (resp., weakly con-
fluent) images under maps whose domains are metrizable continua. These two
classes were first studied by A. Lelek; one of the most interesting results being
that Class(C) consists precisely of the hereditarily indecomposable metrizable
continua. (See [19] for details.)

The following is a summary of what is already known about co-existentially
closed continua.

Theorem 1.2. (1) (Theorem 6.1 in [6]) Every nondegenerate continuum is
a continuous image of a co-existentially closed continuum of the same
weight.

(2) (Theorem 2.7 in [7]) A co-existential image of a co-existentially closed
continuum is a co-existentially closed continuum.

(3) (Corollary 4.13 in [8]) Every co-existentially closed continuum is a hered-
itarily indecomposable continuum of covering dimension one.

(4) (Theorem 4.1 in [7]) There are at least two topologically distinct metrizable
co-existentially closed continua.

Remark 1.3. We could just as easily have defined the notion of co-existentially
closed compactum; in this setting, however, there is a simple charactization. By
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Theorem 3.1 in [5], the co-existentially closed compacta are precisely the Boolean
spaces (i.e., totally disconnected compacta) without isolated points. So in partic-
ular, if compactum is substituted for continuum in Theorem 1.2 (and infinite is
substituted for nondegenerate), then clauses 1 and 2 are true, and clauses 3 and
4 are false (no matter how one defines hereditarily indecomposable compactum).

A class of compacta closed under co-elementary images, as well as the taking
of ultracoproducts (like the class of co-existentially closed compacta) is called a
co-elementary class.

We end this and succeeding sections with relevant (annotated) open questions.

Open Questions 1.4. (1) Is the pseudo-arc a co-existentially closed contin-
uum? [See, e.g., [14] and [19] for extensive discussions on this very inter-
esting space, characterized as the unique metrizable hereditarily indecom-
posable arc-like continuum. By Theorem 1.2(3), the answer would be yes if
we could show the existence of a metrizable co-existentially closed contin-
uum that is arc-like. By Theorem 1.2(4), there must be a co-existentially
closed continuum that is not arc-like, hence not a pseudo-arc.]

(2) Is the class of co-existentially closed continua co-elementary? [This would
provide a “ Nullstellensatz” for the class of continua. Since the class is
already closed under co-elementary (indeed, co-existential) images, all we
need to do is show it closed under the taking of ultracoproducts.]

2. terminal wedges of maps

Define a terminal wedge of maps to be a diagram X
f→ Z

g← Y , where X, Y and
Z are compacta and f : X → Z, g : Y → Z are continuous maps. An initial wedge
is defined similarly, with the only difference being that the domains and ranges
are reversed. Z is called the base of the wedge (whether terminal or initial). A

terminal wedge X
f→ Z

g← Y and an initial wedge U r←W
s→ V are commutators

of one another if:
(i) X = U and Y = V ; and
(ii) f ◦ r = g ◦ s (i.e., the obvious mapping square commutes).

Remark 2.1. Every terminal wedge X
f→ Z

g← Y of maps has a commutator,
X

r←W
s→ Y namely the fiber product (or pullback), where W = {(x, y) ∈ X×Y :

f(x) = g(y)}, and r and s are the restricted coordinate projections. If the maps f
and g are of level ≥ 0, then so are the maps r and s. In the setting of continua this
construction need not be connected, however. For instance, if X, Y , and Z are
all simple closed curves; i.e., homeomorphs of (and represented by) the standard
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unit circle consisting of complex numbers of norm 1, and f = g is the squaring
map, then the components of W are the two sets {(x, y) ∈ X ×X : x = y} and
{(x, y) ∈ X ×X : x = −y}.

Let α ≤ ω. A compactum (resp., continuum) Z is a level ≥ α base compactum

(resp., continuum) if for every terminal wedge X
f→ Z

g← Y of maps of level
≥ α, where X and Y are compacta (resp., continua) there is a commutator
X

r←W
s→ Y , where W is a compactum (resp., continuum) and r and s are maps

of level ≥ α. (This is a topological analogue of the notion of amalgamation base
in model theory; see, e.g., [12].) By Remark 2.1, every compactum is a level ≥ 0
base compactum; by Theorem 1.1(2), if α ≥ 1, then a continuum is a level ≥ α

base continuum if and only if it is a level ≥ α base compactum. One goal of this
section is to show that every co-existentially closed continuum is a level ≥ 0 base
continuum.

Theorem 2.2. Let X
f→ Z

g← Y be a terminal wedge of maps, where f and g

are maps of levels ≥ α and ≥ β, respectively, α, β ≤ ω.
(1) If α is positive, the wedge has a commutator X r← W

s→ Y , where r and
s are maps of levels ≥ min{α−1, β} and ≥ ω, respectively. Furthermore,
if Y is a continuum, then so is W .

(2) If both α and β are positive, the wedge has a commutator X r← W
s→ Y ,

where r and s are maps of levels ≥ α − 1 and ≥ β − 1, respectively.
Furthermore, if Z is a continuum, then so is W .

Proof. Ad (1): Let X
f→ Z

g← Y be the given terminal wedge, where f and g

are maps of levels ≥ α ≥ 1 and ≥ β, respectively. Then there is an ultracopower
map h : ZI\D → X, of level ≥ α − 1, such that f ◦ h = pZ,D. Using the func-
toriality of ( )I\D, we set W := Y I\D and r := h ◦ (gI\D). By Corollary 2.4 in
[5], the ultracopower map gI\D is of level ≥ β. Also we have the commutativity
pZ,D ◦ (gI\D) = g ◦ pY,D. By Proposition 2.5 in [5], the composition of two maps
of level ≥ λ is again a map of level ≥ λ; hence r is a map of level ≥ min{α−1, β}.
Setting s := pY,D, we have our advertised map of level ≥ ω, and f ◦ r = g ◦ s. By
Theorem 1.1(2), W is a continuum if Y is.

Ad (2): Now assume both α and β are positive. Then there are:
(i) compacta U , V ; maps h : U → X, j : V → Y , of levels ≥ α − 1 and
≥ β − 1, respectively; and

(ii) maps p : U → Z, q : V → Z, both of level ≥ ω, where f ◦ h = p and
g ◦ j = q.
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By the argument in the last paragraph, there is a compactum W and maps
m : W → U , n : W → V , both of level ≥ ω, such that p◦m = q◦n. Set r := h◦m
and s := j ◦ n. Then, again by Proposition 2.5 in [5], r and s are maps of levels
≥ α− 1 and ≥ β − 1, respectively, and f ◦ r = g ◦ s. Finally, if Z is a continuum,
then so are U and V ; hence so is W (again by Theorem 1.1(2)). �

The following is now an immediate consequence of Theorem 2.2.

Corollary 2.3. (1) Every co-existentially closed continuum is a level ≥ 0
base continuum.

(2) Every compactum (resp.,continuum) is a level ≥ ω base compactum
(resp.,continuum).

The next result summarizes what we know about level ≥ α base compacta, for
α ≤ ω.

Corollary 2.4. All compacta are level ≥ α base compacta for α ∈ {0, ω}; all
Boolean spaces without isolated points are level ≥ α base compacta for α ≥ 2.

Proof. The first clause of the assertion follows from Remark 2.1 and Corollary
2.3(2). From Remark 1.3, the class of co-existentially closed compacta is closed
under the taking of ultracoproducts. It is not hard to show, then, that continuous
surjections between co-existentially closed compacta are maps of level ≥ ω. (This
actually follows from closure under ultracopowers.) Now the property of being a
co-existentially closed compactum is preserved by inverse images of maps of level
≥ 2. Consequently if X

f→ Z
g← Y is any terminal wedge of maps of level ≥ α,

for α ≥ 2, and if Z is a co-existentially closed compactum, then so are X and Y ;
and f and g are maps of level ≥ ω. We finish by applying Theorem 2.2. �

We turn now to strengthening the notion of level ≥ α base compactum/conti-
nuum. Among several possibilities, the most obvious is to allow more than just
two maps in the definition. A generalized terminal wedge of maps is an indexed
diagram 〈Xi

fi→ Z : i ∈ I〉, where each fi is a continuous map from the compactum
Xi to the compactum Z (the base of the generalized wedge). A commutator for the
generalized terminal wedge is just a generalized initial wedge 〈Xi

ri← W : i ∈ I〉,
where W is a compactum and each ri : W → Xi is a map such that whenever i
and j are in I, we have fi ◦ ri = fj ◦ rj .

Let α ≤ ω. We define a compactum (resp., continuum) Z to be a generalized
level ≥ α base compactum (resp., continuum) if for every generalized terminal

wedge 〈Xi
fi→ Z : i ∈ I〉 of maps of level≥ α, where each Xi is a compactum (resp.,
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continuum), there is a commutator 〈Xi
ri← W : i ∈ I〉, where W is a compactum

(resp., continuum) and each ri is a map of level ≥ α. In [13] J. Krasinkiewicz
proved the (surprisingly difficult) result that any arc is a generalized level ≥ 0
base continuum. It turns out that the use of the adjective generalized, as it applies
to level ≥ α base compacta/continua, is redundant.

Theorem 2.5. Let α ≤ ω. Then every level ≥ α base compactum (resp., contin-
uum) is a generalized level ≥ α base compactum (resp., continuum).

Proof. Fix α ≤ ω and assume Z is a level ≥ α base continuum. Let I be any
set (which we may as well assume to have cardinality ≥ 2), and fix a generalized

terminal wedge 〈Xi
fi→ Z : i ∈ I〉, with base Z, where each fi is a map of level

≥ α. In order to obtain the desired commutator 〈Xi
ri← W : i ∈ I〉 such that

each ri is also a map of level ≥ α, we first assign a well ordering < to I, letting
i0 denote the <-first element.

Next we construct inductively an inverse system 〈Ui, gij : i ≤ j ∈ I〉 of com-
pacta and bonding maps of level ≥ α (i.e., each gij : Uj → Ui, i ≤ j ∈ I, is a
map of level ≥ α, each gii is the identity map on Ui, and, for i ≤ j ≤ k ∈ I,
gik = gij ◦ gjk), as well as maps hi : Ui → Xi, i ∈ I, also of level ≥ α, in such a
way that:

(i) hi0 is the identity map witnessing that Ui0 = Xi0 ; and
(ii) for each i ≤ j ∈ I, we have fj ◦ hj = fi ◦ (hi ◦ gij).

For the moment let us assume such a construction possible. Then we set the
compactum W to be the limit of the inverse system 〈Ui, gij : i ≤ j ∈ I〉, with
projection maps gi : W → Ui, i ∈ I. Then, by Theorem 3.4 in [5] (the α-chains
theorem), each gi is a map of level ≥ α. Set ri := hi ◦ gi : W → Xi, i ∈ I. Then
each ri is a map of level ≥ α (Proposition 2.5 in [5]). To show commutativity,
if i, j ∈ I, say i ≤ j, we have fi ◦ ri = fi ◦ (hi ◦ gi) = fi ◦ (hi ◦ (gij ◦ gj)) =
fj ◦ (hj ◦ gj) = fj ◦ rj .

The actual construction is easy: at successor levels use the fact that Z is a
level ≥ α base compactum; at limit levels use inverse limits and argue as in the
last paragraph.

Finally the argument above works equally well with compactum replaced with
continuum. �

We do not yet know whether the arc is a level ≥ α base continuum for α ≥ 1,
but there is a small amount we can say on the subject nonetheless. First we define
a generalized terminal wedge to be jointly injective if for any point in the base,
at most one inverse image of that point has more than one element.
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Theorem 2.6. Let V := 〈Xi
fi→ Z : i ∈ I〉 be a generalized terminal wedge

consisting of arcs and maps of level ≥ 1, with 〈Xi
ri← W : i ∈ I〉 the associated

fiber product.

(1) If V is not jointly injective, then W is a continuum that is not an arc and
no projection ri is a map of level ≥ 2.

(2) If V is jointly injective and the index set I is at most countable, then W

is an arc and each projection ri is a map of level ≥ ω.

Proof. Ad (1): By Theorem 1.1(1), all the maps fi are monotone surjections.
So let i0 ∈ I and x ∈ Xi0 be fixed. Then r−1

i0
[{x}] is the product

∏

i∈I Fi, where
Fi is {x} if i = i0, and is f−1

i [{fi0(x)}] otherwise. Since each fi is monotone,
each ri must be monotone too, and W is therefore a continuum.

Now suppose V is not jointly injective. Then there is some z ∈ Z and two
distinct i0, i1 ∈ I such that f−1

i0
[{z}] and f−1

i1
[{z}] are subarcs of Xi0 and Xi1 ,

respectively. So
∏

i∈I f
−1
i [{z}] is a subcontinuum of W that contains a homeo-

morphic copy of the closed unit square; hence, by elementary dimension theory,
the covering dimension of W is at least 2. Thus W is a continuum that is not an
arc. Furthermore, by Theorem 1.1(3), no projection ri can be a map of level ≥ 2.

Ad (2): Next suppose V is jointly injective and that I is at most countable.

We lose no generality in assuming I = ω, and we write V = 〈Xn
fn→ Z : n < ω〉.

By Theorem 1.1(5), since the projections rn are monotone surjective maps, all we
need to show is that W is an arc. And for this, since our index set is countable
and therefore W is a metrizable continuum, it suffices to show (by a classic result
of R. L. Moore, see Theorem 6.17 in [19]) that W has just two noncut points (the
minimum number allowed for any nondegenerate continuum, see Theorem 6.6 in
[19]).

To set things up, assume each arc Xn is the standard unit interval [0, 1]. For
each n < ω we may order Xn via the usual ordering or its reverse, depending
upon whether or not fn is ≤-preserving with respect to the usual ordering. For
this reason, we are safe in the assumption that each fn is ≤-preserving. Denote
points in W as sequences x = 〈x0, x1, . . . 〉, and define x < y in W to hold just in
case x 6= y, and if n is the first index where xn 6= yn, then xn < yn. (This is just
the lexicographic ordering restricted to W .) Since each fn(0) is 0 and each fn(1)
is 1, the points p := 〈0, 0, . . . 〉 and q := 〈1, 1, . . . 〉 are respectively the minimal
and the maximal elements in this linear ordering on W . We show that every other
point of W is a cut point.
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Fix a ∈ W \ {p, q}. We endeavor to show that the “half-open” intervals [p, a)
and (a, q] (necessarily forming a cover of W \ {a} by nonempty disjoint sets)
are open sets in W . For each m < ω, set Um := W ∩ (

∏

n<ω Bn) and Vm :=
W ∩ (

∏

n<ω Cn), where, for n < ω, Bn (resp., Cn) is [0, an) (resp., (an, 1]) if
n = m, and is [0, 1] otherwise. Then Um and Vm are disjoint open subsets of W ,
each contained in W \ {a}; a point x ∈ W is in Um (resp., Vm) if and only if
xm < am (resp., xm > am). We are done once we show that, for some m < ω,
[p, a) = Um and (a, q] = Vm. Indeed, equality will follow once we show [p, a) ⊆ Um
and (a, q] ⊆ Vm.

We start by noticing that, since the maps fn are ≤-preserving, there must be
some entry, say am, of a that is neither 0 nor 1. Since all the compositions fn ◦ rn
are equal, we may fix a single b ∈ Z that is equal to fn(an) for each n. If it
happens that b = 0, then, by joint injectivity, it must be the case that an = 0 for
all n 6= m. Suppose x < a. Then xn < an for some n < ω; hence xm < am. Thus
[p, a) ⊆ Um. If now x > a and it is not the case that xm > am, then (because
each fn is ≤-preserving) fm(xm) ≤ fm(am) = 0. By joint injectivity we know
that xn = 0 for n 6= m. But xn > an for some n < ω, and no such n can equal
m. This contradiction tells us that (a, q] ⊆ Vm.

In the event b = 1 we argue much as we did above, so suppose 0 < b < 1. Then
0 < an < 1 for every entry an of a. Pick (the unique) m such that f−1

m [{b}] is
nondegenerate, if there is one; otherwise let m be arbitrary. The argument is now
similar to that in the last paragraph: If x < a, but xm ≥ am, then for some n 6= m

we have xn < an. By joint injectivity, fn(an) < b; hence fm(xm) < b. Since
xm ≥ am and fm is ≤-preserving, we have a contradiction. Thus [p, a) ⊆ Um;
similarly we conclude (a, q] ⊆ Vm, and the proof is complete. �

Remark 2.7. Define a continuum to be a generalized arc if it has exactly two
noncut points (like an arc, but not necessarily metrizable). From the proof of
Theorem 2.6(2) it is easy to show that the fiber product of a terminal wedge of
generalized arcs and monotone continuous surjections is again a generalized arc,
no matter what the size of the index set. (Of course a suitable lexicographic order
on the fiber product depends on a well ordering of that index set.)

Open Questions 2.8. (1) Is the pseudo-arc a level ≥ 0 base continuum?
[Clearly yes if Open Question 1.4(1) has an affirmative answer, because
of Corollary 2.3(1).]

(2) Which compacta are level ≥ 1 base compacta?
(3) Give nondegenerate examples of continua that are level ≥ α base con-

tinua, 1 ≤ α < ω. For example, is the arc a level ≥ 1 base continuum?
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[If Open Question 1.4(2) had an affirmative answer; indeed if the class of
co-existentially closed continua were closed under the formation of ultra-
copowers, we could conclude, as in Corollary 2.4, that the co-existentially
closed continua are level ≥ α base continua for α ≥ 2.]

(4) Find examples (if such exist) of continua that are not level ≥ α base
continua, for α < ω.

3. α-equivalence

In this section we show that the co-existentially closed compacta (resp., continua)
share much in common with one another. Let 1 ≤ α ≤ ω. For compacta X and
Y , we say X is α-dominated by Y (and write X ≤α Y ) whenever there is an

initial wedge X
f← Z

g→ Y , where f and g are maps of level ≥ α − 1 and ≥ ω,
respectively.

Remark 3.1. (1) The model-theoretic analogue of X ≤α Y may be written
the same way, A ≤α B, and interpreted to mean that every Π0

α sentence
true in B is also true in A. This is equivalent to there being an embedding
of level ≥ α− 1 from A into an ultrapower of B (see, e.g., [9]).

(2) Clearly saying X ≤α Y is weaker than having X be an image of Y under
a map of level ≥ α− 1.

(3) If X ≤1 Y and Y is connected (resp., discrete with ≤ n points), then so
is X.

(4) In the definition of X ≤α Y above, the map g may be taken to be of level
≥ α. For in that case, we may construct an ultracopower triangle over
g and use the fact that the class of maps of any fixed level ≥ β is closed
under composition.

Proposition 3.2. (1) The relations ≤α, 1 ≤ α ≤ ω, are transitive.
(2) If 2 ≤ α ≤ ω and X ≤α Y , then Y ≤α−1 X.

Proof. Ad (1): Suppose X ≤α Y ≤α Z; say we have initial wedges X
f← U

g→ Y

and Y h← V
j→ Z, where f and h are maps of level ≥ α− 1, and g and j are maps

of level ≥ ω. Using Theorem 2.2(1), we have a commutator U r← W
s→ V for

the terminal wedge U
g→ Y

h← V , where r and s are maps of levels ≥ α − 1 and
≥ ω, respectively. Because mapping composition preserves level (Proposition 2.5
in [5]), f ◦ r and j ◦ s now witness that X ≤α Z holds.

Ad (2): Suppose X ≤α Y ; say we have the initial wedge X
f← U

g→ Y , where
f and g are maps of levels ≥ α − 1 and ≥ ω, respectively. Since α − 1 ≥ 1, we
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have an initial wedge X k← Z
h→ U , where k is a map of level ≥ ω, h is a map of

level ≥ α− 2, and k = f ◦ h. Then the initial wedge X k← Z
g◦h→ Y witnesses the

fact that Y ≤α−1 X. �

We now define two compacta X and Z to be α-equivalent, 1 ≤ α ≤ ω (in
symbols, X ≡α Y ), if each is α-dominated by the another. By Proposition 3.2(1),
≡α is a genuine equivalence relation; by Proposition 3.2(2), ω-dominance and
ω-equivalence are the same relation.

Remark 3.3. In [1] the notion of co-elementary equivalence was introduced: two
compacta X and Y are co-elementarily equivalent if an ultracopower of one is
homeomorphic to an ultracopower of the other. This is the topological version
of elementary equivalence in model theory, thanks to the ultrapower theorem of
Keisler and Shelah (see [9]). Indeed, two Boolean spaces are co-elementarily equiv-
alent if and only if their Boolean lattices of closed-open sets are elementarily equiv-
alent; moreover, two compacta are co-elementarily equivalent if some lattice base
of one is elementarily equivalent to some lattice base of the other. It is not hard
to show that co-elementary equivalence and ω-equivalence are the same relation.
[Given a witness X

f← Z
g→ Y for the ω-equivalence of X and Y ; i.e., both f

and g are co-elementary maps, use the definition, plus the fact that compositions
of co-elementary maps are co-elementary, to justify the assertion that we may
take g to be a standard ultracopower projection map. Now apply the definition
of co-elementary map to f , and use the fact (see [1]) that an ultracopower of an
ultracopower of a compactum is itself an ultracopower of that compactum.]

Proposition 3.4. (1) Any continuum is 1-dominated by any co-existentially
closed continuum.

(2) Any two co-existentially closed continua are 2-equivalent.
(3) Any continuous map from one co-existentially closed continuum onto an-

other is a map of level ≥ 2.
(4) Any two co-existentially closed continua that are continuous images of

each other are 3-equivalent.

Proof. Ad (1): Given continua X and Y , where Y is co-existentially closed,
we let X

p← X × Y q→ Y be the standard projection maps from the topological
product, also a continuum. Thus q is a map of level ≥ 1. By Remark 3.1 (4), this
suffices to conclude that X ≤1 Y .

Ad (2): Given co-existentially closed continua X and Y , we consider again the
initial wedge X

p← X × Y q→ Y . We infer X ≤2 Y using the facts that q is a map
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of level ≥ 1 and X is a co-existentially closed continuum. By the symmetry of
the situation, Y ≤2 X.

Ad (3): Let f : X → Y be a continuous surjection, where both X and Y are
co-existentially closed continua. Then, because Y is co-existentially closed, we
have a continuum Z, a map g : Z → Y , of level ≥ ω, and a map h : Z → X, of
level ≥ 0, such that f ◦ h = g. Because X is co-existentially closed, however, h is
actually of level ≥ 1; hence f is a map of level ≥ 2.

Ad (4): This follows quickly from 3.4 (3) above. If f : Y → X is a continuous
surjection between co-existentially closed continua, then f is a map of level ≥ 2;
hence X ≤3 Y . �

Remark 3.5. Two compacta that are 2-equivalent either both share or both fail to
share any topological property of compacta that is preserved by both ultracopowers
and images of maps of level ≥ 1. Indeed, if X ≤2 Y and Y is a Boolean space
(resp., an indecomposable continuum, a hereditarily indecomposable continuum,
a compactum of covering dimension ≤ n, a continuum of multicoherence degree
≤ n), then so is X (see [5, 6, 7, 8]). It is possible for X to be an indecompos-
able continuum when Y is a decomposable one; in fact, maps of level ≥ 1 do
not preserve decomposability in continua. However, if X ≡2 Y , then one is a
decomposable continuum if and only if the other is.

If we are willing to restrict our domain of discourse to Peano compacta (i.e.,
compacta that are both metrizable and locally connected), then we can also add
being an arc (or a simple closed curve) to the list of properties mentioned in
Remark 3.5. The following strengthens the main result (Theorem 0.6) of [2].

Theorem 3.6. Let X be a Peano compactum.

(1) If X is 2-dominated by an arc, then X is an arc.
(2) If X is 2-dominated by a simple closed curve, then X is a simple closed

curve.

Proof. Ad (1): Suppose X ≤2 Y , where Y is an arc. Then there is an ultrafilter
D and a co-existential map f : Y I\D → X witnessing this. We assume, for the
sake of obtaining a reductio ad absurdum, that X is a Peano compactum that is
not an arc.

We begin by noting that, since Y I\D is a continuum, so is X. Next we cite
Theorem 1.1(4) twice: first to infer that Y I\D is unicoherent (i.e., incapable of
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decomposition into a union of two subcontinua with disconnected intersection);
second to infer that X is unicoherent as well.

Now we cite another classic theorem of R. L. Moore (see [18], also Exercise
8.40 in [19]), used extensively in [2], to the effect that any Peano continuum that
is neither an arc nor a simple closed curve must contain a simple triod (i.e., a
homeomorphic copy of the letter T, the cone over a three-point discrete space).
Since X is a unicoherent continuum, it cannot be a simple closed curve; hence,
by the above-cited theorem of Moore, it contains a simple triod.

Using the local connectedness ofX, we argue as in Lemma 1.3 in [2] to construct
subcontinua K,L1, L2, L3 of X such that:

(i) K intersects each Lj , 1 ≤ j ≤ 3;
(ii) all of K \ (L1 ∪L2 ∪L3), Lj \K, 1 ≤ j ≤ 3, have nonempty interiors; and
(ii) the subcontinua L1, L2, L3 are pairwise disjoint.

In the terminology of [2], the collection {K,L1, L2, L3} constitutes a fat 3-
wheel in X (the word fat referring to the various nonempty interiors). Since (by
Theorem 1.1(1)) f is monotone, the inverse images of these subcontinua constitute
a fat 3-wheel in Y I\D.

The point of making sure sets have nonempty interiors (rather than being
merely nonempty) is to enable the construction (see the proof of Lemma 1.3 in
[2]) of a 3-wheel {

∑

DKi,
∑

D L1,i,
∑

D L2,i,
∑

D L3,i}, consisting of ultracoprod-
uct subcontinua, where

∑

DKi ⊇ f−1[K], etc. Then, for almost every index i

(modulo D), {Ki, L1,i, L2,i, L3,i} constitutes a 3-wheel in the arc Y . This is im-
possible; hence X must indeed be an arc.

Ad (2): Retaining the notation of the argument above, but taking Y now to
be a simple closed curve, assume X is a Peano compactum 2-dominated by Y .
Then X is a Peano continuum. And, because simple closed curves cannot contain
3-wheels, X is either an arc or a simple closed curve. Now suppose X is an arc.
Then X contains a fat 2-wheel {K,L1, L2} (like a fat 3-wheel, but with one less
“spoke”) such that X = K ∪ L1 ∪ L2. Arguing as above, we may cover Y I\D
with a 2-wheel {

∑

DKi,
∑

D L1,i,
∑

D L2,i}. This gives rise to the existence of a
2-wheel cover of the simple closed curve Y , an impossibility. �

Remark 3.7. The condition of local connectedness cannot be removed from The-
orem 3.6. This follows from Theorem 2.10 in [3]: Every infinite compactum is
ω-equivalent to a compactum of the same weight, which is not locally connected.
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With the aid of Theorem 3.6(1), we can immediately obtain a variation on
Theorem 2.6 by weakening the hypothesis that all spaces involved are arcs and
strengthening the hypothesis that all maps involved are of level ≥ 1.

Corollary 3.8. Let V := 〈Xi
fi→ Z : i ∈ I〉 be a generalized terminal wedge

consisting of Peano compacta, where Z is an arc and the fi are maps of level ≥ 2.
Let 〈Xi

ri←W : i ∈ I〉 be the associated fiber product.

(1) If V is not jointly injective, then W a continuum that is not an arc and
no projection ri is a map of level ≥ 2.

(2) If V is jointly injective and the index set I is at most countable, then W

is an arc and each projection ri is a map of level ≥ ω.

Proof. In light of Theorem 2.6, all we need to do is show that the spaces Xi

are arcs. But if the arc Z is a level ≥ 2 image of the Peano compactum Xi, then
Z ≤3 Xi; hence, by Proposition 3.2(2), Xi ≤2 Z. Now apply Theorem 3.6(1). �

There is also an analogue of Theorem 3.6 for the pseudo-arc. Recall that a
compactum X is arc-like if for any open cover U of X, there exists a continuous
map from X onto an arc such that each point-inverse under that map is contained
in a member of U . Of course every arc-like compactum is connected; moreover it
has covering dimension one.

Theorem 3.9. Let X be a metrizable arc-like compactum that is 2-dominated by
a pseudo-arc. Then X is a pseudo-arc.

Proof. Suppose X ≤2 Y , where Y is a pseudo-arc. Then there is an ultrafilter
D and a co-existential map f : Y I\D → X, as per the definition. By Corollary
4.10 in [8], Y I\D is a hereditarily indecomposable continuum because Y is. By
Theorem 1.1(2) above, then, X is now a hereditarily indecomposable metrizable
continuum that is also arc-like. This (see [14]) characterizes X as a pseudo-
arc. �

Open Questions 3.10. (1) Can we remove the assumption of being arc-
like from Theorem 3.9? [The answer is no if the pseudo-arc is a co-
existentially closed continuum. For, by Theorem 1.2(4), we may choose
X to be a co-existentially closed continuum that is not arc-like. If Y is a
pseudo-arc, assumed to be co-existentially closed, then Proposition 3.4(2)
tells us that X ≤2 Y .]

(2) Is the image of a pseudo-arc under a map of level ≥ 1 again a pseudo-arc?
[The nondegenerate image of a pseudo-arc under a continuous map is a
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pseudo-arc if the map is either open or monotone; it is still an open ques-
tion whether the map may be taken to be merely confluent (see Theorem
4.15 and Question 4.17 in [14]).]

(3) How large a family of pairwise non–3-equivalent co-existentially closed
continua is it possible to have? [This number could conceivably be the
power of the continuum. On the other hand, if the class of co-existentially
closed continua is co-elementary (even closed under ultracopowers), then
all of its members are ω-equivalent to one another (as in the case with
the class of co-existentially closed compacta).]

4. inverse limits

Theorem 1.2(2) above states that the class of co-existentially closed continua is
closed under images of maps of level ≥ 1; here we show the class to be closed
also under limits of inverse systems in which the bonding maps are continuous
surjections. We first recall an earlier result.

Lemma 4.1 (Lemma 3.1 in [5]). Let α ≤ ω, let h : Y → X be a function between
compacta, and let A be a lattice base for X. Suppose that for each finite δ ⊆ A
there is a map gδ : X → Zδ, of level ≥ α, such that:

(i) gδ ◦ h is a map of level ≥ α; and
(ii) for each A ∈ δ, g−1

δ [gδ[A]] = A.
Then h is a map of level ≥ α.

Theorem 4.2. Let α ≤ ω, and let 〈I,≤〉 be a directed set, with 〈Xi, fij : i ≤ j ∈
I〉 an inverse system of compacta and continuous bonding maps. Suppose further
that there is a compactum Y and, for each i ∈ I, a map hi : Y → Xi of level
≥ α such that fij ◦ hj = hi, for i ≤ j in I. If X is the limit of the system, with
projection maps gi : X → Xi, i ∈ I, and if h : Y → X is the limit of the maps hi
(i.e., gi ◦ h = hi, i ∈ I), then h is a map of level ≥ α.

Proof. For any topological space Z, define F (Z) to be the bounded lattice
of closed subsets of Z. F ( ) is a contravariant functor, converting continuous
surjections to lattice embeddings. So, applying F ( ) to the inverse system in
question, we obtain a directed system 〈F (Xi), fFij : i ≤ j ∈ I〉 of closed-set
lattices and lattice homomorphisms. Each hi is a continuous surjection; hence so
is each fij . Consequently the functions fFij are lattice embeddings. Let A be the
limit of this directed system of lattices. Then (see, e.g., [5]) A is isomorphic to
a lattice base A for the inverse limit X above, so we may view the two lattices
as the same . For each i ∈ I, let ri : F (Xi) → A be the limit embedding. for
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each finite δ ⊆ A, fix iδ ∈ I so that riδ includes δ in its image. Then the maps
giδ : X → Xiδ satisfy condition (ii) of Lemma 4.1; they also satisfy condition (i)
because giδ ◦ h = hiδ . Thus h is a map of level ≥ α. �

Corollary 4.3. The class of co-existentially closed continua is closed under limits
of inverse systems with surjective bonding maps.

Proof. Let 〈I,≤〉 be a directed set, with 〈Xi, fij : i ≤ j ∈ I〉 an inverse system
of co-existentially closed continua and continuous surjective bonding maps. If
X is the limit of the system, with projection maps gi : X → Xi, i ∈ I, and if
h : Y → X is a surjective map between continua, let hi := gi ◦h, i ∈ I. Then each
hi is a map of level ≥ 1 because each Xi is co-existentially closed. By Theorem
4.2, h is of level ≥ 1 as well; hence X is a co-existentially closed continuum. �
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