115,892 research outputs found

    An approach to safety analysis of clinical workflows

    Get PDF
    A clinical workflow considers the information and processes that are involved in providing a clinical service. They are safety critical since even minor faults have the potential to propagate and consequently cause harm to a patient, or even for a patient's life to be lost. Experiencing these kinds of failures has a destructive impact on all the involved parties. Due to the large number of processes and tasks included in the delivery of a clinical service, it can be difficult to determine the individuals or the processes that are responsible for adverse events, since such an analysis is typically complex and slow to do manually. Using automated tools to carry out an analysis can help in determining the root causes of potential adverse events and consequently help in avoiding preventable errors through either the alteration of existing workflows, or the design of a new workflow. This paper describes a technical approach to safety analysis of clinical workflows, utilising a safety analysis tool (Hierarchically-Performed Hazard Origin and Propagation Studies (HiP-HOPS)) that is already in use in the field of mechanical systems. The paper then demonstrates the applicability of the approach to clinical workflows by applying it to analyse the workflow in a radiology department. We conclude that the approach is applicable to this area of healthcare and provides a mechanism both for the systematic identification of adverse events and for the introduction of possible safeguards in clinical workflows

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    Human-machine diversity in the use of computerised advisory systems: a case study

    Get PDF
    Computer-based advisory systems form with their users composite, human-machine systems. Redundancy and diversity between the human and the machine are often important for the dependability of such systems. We discuss the modelling approach we applied in a case study. The goal is to assess failure probabilities for the analysis of X-ray films for detecting cancer, performed by a person assisted by a computer-based tool. Differently from most approaches to human reliability assessment, we focus on the effects of failure diversity — or correlation — between humans and machines. We illustrate some of the modelling and prediction problems, especially those caused by the presence of the human component. We show two alternative models, with their pros and cons, and illustrate, via numerical examples and analytically, some interesting and non-intuitive answers to questions about reliability assessment and design choices for human-computer systems

    A safety analysis approach to clinical workflows : application and evaluation

    Get PDF
    Clinical workflows are safety critical workflows as they have the potential to cause harm or death to patients. Their safety needs to be considered as early as possible in the development process. Effective safety analysis methods are required to ensure the safety of these high-risk workflows, because errors that may happen through routine workflow could propagate within the workflow to result in harmful failures of the system’s output. This paper shows how to apply an approach for safety analysis of clinic al workflows to analyse the safety of the workflow within a radiology department and evaluates the approach in terms of usability and benefits. The outcomes of using this approach include identification of the root causes of hazardous workflow failures that may put patients’ lives at risk. We show that the approach is applicable to this area of healthcare and is able to present added value through the detailed information on possible failures, of both their causes and effects; therefore, it has the potential to improve the safety of radiology and other clinical workflows

    Preliminary human safety assessment (PHSA) for the improvement of the behavioral aspects of safety climate in the construction industry

    Get PDF
    Occupational safety in the construction industry still represents a relevant problem at a global level. In fact, the complexity of working activities in this sector requires a comprehensive approach that goes beyond normative compliance to guarantee safer working conditions. In particular, empirical research on the factors influencing the unsafe behavior of workers needs to be augmented. Thus, the relationship between human factors and safety management issues following a bottom-up approach was investigated. In particular, an easy-to-use procedure that can be used to better address workers' safety needs augmenting the company's safety climate and supporting safety management issues was developed. Such an approach, based on the assessment of human reliability factors, was verified in a real case study concerning the users of concrete mixer trucks. The results showed that the majority of human failures were action and retrieval errors, underlining the importance of theoretical and practical training programs as a means to improve safety behavior. In such a context, information and communication activities also resulted beneficially to augment the company's safety climate. The proposed approach, despite its qualitative nature, allows a clearer understanding of workers' perceptions of hazards and their risk-taking behavior, providing practical cues to monitor and improve the behavioral aspects of safety climate. Hence, these first results can contribute to augmenting safety knowledge in the construction industry, providing a basis for further investigations on the causalities related to human performances, which are considered a key element in the prevention of accidents

    A novel qualitative prospective methodology to assess human error during accident sequences

    Get PDF
    Numerous theoretical models and techniques to assess human error were developed since the 60's. Most of these models were developed for the nuclear, military, and aviation sectors. These methods have the following weaknesses that limit their use in industry: the lack of analysis of underlying causal cognitive mechanisms, need of retrospective data for implementation, strong dependence on expert judgment, focus on a particular type of error, and/or analysis of operator behaviour and decision-making without considering the role of the system in such decisions. The purpose of the present research is to develop a qualitative prospective methodology that does not depend exclusively on retrospective information, that does not require expert judgment for implementation and that allows predicting potential sequences of accidents before they occur. It has been proposed for new (or existent) small and medium- scale facilities, whose processes are simple. To the best of our knowledge, a methodology that meets these requirements has not been reported in literature thus far. The methodology proposed in this study was applied to the methanol storage area of a biodiesel facility. It could predict potential sequences of accidents, through the analysis of information provided by different system devices and the study of the possible deviations of operators in decision-making. It also enabled the identification of the shortcomings in the human-machine interface and proposed an optimization of the current configuration.Fil: Calvo Olivares, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Rivera, Selva Soledad. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Núñez Mc Leod, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentin

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cm–1 contains secondary amines. At peak 3307 cm–1 contains alkynes

    Teams and cardiac surgery

    Get PDF
    Motivation\ud Our study is designed to identify human factors that are a threat to the safety of children with heart disease.\ud \ud Research approach\ud After an initial observation period, we will apply a major safety intervention. We will then re-measure the occurrence and types of human factors in the operating room, and the incidence of adverse events, near misses and hospital death, to evaluate if there was a significant post-intervention reduction. \ud \ud Findings/design\ud We focus on challenges encountered during the training of the observers. Research Limitations\ud Because of the complexity of the OR, observations are necessarily subjective. \ud \ud Originality/Value\ud This work is original because of the systematic evaluation of a safety intevention and the training protocol for the observers.\ud \ud Take Away Message\ud Systematic and periodic assessment of observers is required when teamwork is observed in complex, dynamic settings
    • …
    corecore