8,156 research outputs found

    Contingent task and motion planning under uncertainty for human–robot interactions

    Get PDF
    Manipulation planning under incomplete information is a highly challenging task for mobile manipulators. Uncertainty can be resolved by robot perception modules or using human knowledge in the execution process. Human operators can also collaborate with robots for the execution of some difficult actions or as helpers in sharing the task knowledge. In this scope, a contingent-based task and motion planning is proposed taking into account robot uncertainty and human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts of geometric reasoning processes are embedded inside the planner to cope with task constraints like detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated with different challenging scenarios in simulation and a real environment.Postprint (published version

    Combining task and motion planning for mobile manipulators

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 31/12/2019Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit d’Enginyeria IndustrialThis thesis addresses the combination of task and motion planning which deals with different types of robotic manipulation problems. Manipulation problems are referred to as mobile manipulation, collaborative multiple mobile robots tasks, and even higher dimensional tasks (like bi-manual robots or mobile manipulators). Task and motion planning problems needs to obtain a geometrically feasible manipulation plan through symbolic and geometric search space. The combination of task and motion planning levels has emerged as a challenging issue as the failure leads robots to dead-end tasks due to geometric constraints. In addition, task planning is combined with physics-based motion planning and information to cope with manipulation tasks in which interactions between robots and objects are required, or also a low-cost feasible plan in terms of power is looked for. Moreover, combining task and motion planning frameworks is enriched by introducing manipulation knowledge. It facilitates the planning process and aids to provide the way of executing symbolic actions. Combining task and motion planning can be considered under uncertain information and with human-interaction. Uncertainty can be viewed in the initial state of the robot world or the result of symbolic actions. To deal with such issues, contingent-based task and motion planning is proposed using a perception system and human knowledge. Also, robots can ask human for those tasks which are difficult or infeasible for the purpose of collaboration. An implementation framework to combine different types of task and motion planning is presented. All the required modules and tools are also illustrated. As some task planning algorithms are implemented in Prolog or C++ languages and our geometric reasoner is developed in C++, the flow of information between different languages is explained.Aquesta tesis es centra en les eines de planificació combinada a nivell de tasca i a nivell de moviments per abordar diferents problemes de manipulació robòtica. Els problemes considerats són de navegació de robots mòbil enmig de obstacles no fixes, tasques de manipulació cooperativa entre varis robots mòbils, i tasques de manipulació de dimensió més elevada com les portades a terme amb robots bi-braç o manipuladors mòbils. La planificació combinada de tasques i de moviments ha de cercar un pla de manipulació que sigui geomètricament realitzable, a través de d'un espai de cerca simbòlic i geomètric. La combinació dels nivells de planificació de tasca i de moviments ha sorgit com un repte ja que les fallades degudes a les restriccions geomètriques poden portar a tasques sense solució. Addicionalment, la planificació a nivell de tasca es combina amb informació de la física de l'entorn i amb mètodes de planificació basats en la física, per abordar tasques de manipulació en les que la interacció entre el robot i els objectes és necessària, o també si es busca un pla realitzable i amb un baix cost en termes de potència. A més, el marc proposat per al combinació de la planificació a nivell de tasca i a nivell de moviments es millora mitjançant l'ús de coneixement, que facilita el procés de planificació i ajuda a trobar la forma d'executar accions simbòliques. La combinació de nivells de planificació també es pot considerar en casos d'informació incompleta i en la interacció humà-robot. La incertesa es considera en l'estat inicial i en el resultat de les accions simbòliques. Per abordar aquest problema, es proposa la planificació basada en contingències usant un sistema de percepció i el coneixement de l'operari humà. Igualment, els robots poden demanar col·laboració a l'operari humà per a que realitzi aquelles accions que són difícils o no realitzables pel robot. Es presenta també un marc d'implementació per a la combinació de nivells de planificació usant diferents mètodes, incloent tots els mòduls i eines necessàries. Com que alguns algorismes estan implementats en Prolog i d'altres en C++, i el mòdul de raonament geomètric proposat està desenvolupat en C++, es detalla el flux d'informació entre diferents llenguatges.Award-winningPostprint (published version

    Combined heuristic task and motion planning for bi-manual robots

    Get PDF
    Planning efficiently at task and motion levels allows the setting of new challenges for robotic manipulation problems, like for instance constrained table-top problems for bi-manual robots. In this scope, the appropriate combination of task and motion planning levels plays an important role. Accordingly, a heuristic-based task and motion planning approach is proposed, in which the computation of the heuristic addresses a geometrically relaxed problem, i.e., it only reasons upon objects placements, grasp poses, and inverse kinematics solutions. Motion paths are evaluated lazily, i.e., only after an action has been selected by the heuristic. This reduces the number of calls to the motion planner, while backtracking is reduced because the heuristic captures most of the geometric constraints. The approach has been validated in simulation and on a real robot, with different classes of table-top manipulation problems. Empirical comparison with recent approaches solving similar problems is also reported, showing that the proposed approach results in significant improvement both in terms of planing time and success rate.Peer ReviewedPostprint (author's final draft

    Task-Consistent Path Planning for Mobile 3D Printing

    Get PDF
    In this paper, we explore the problem of task-consistent path planning for printing-in-motion via Mobile Manipulators (MM). MM offer a potentially unlimited planar workspace and flexibility for print operations. However, most existing methods have only mobility to relocate an arm which then prints while stationary. In this paper we present a new fully autonomous path planning approach for mobile material deposition. We use a modified version of Rapidly-exploring Random Tree Star (RRT*) algorithm, which is informed by a constrained Inverse Reachability Map (IRM) to ensure task consistency. Collision avoidance and end-effector reachability are respected in our approach. Our method also detects when a print path cannot be completed in a single execution. In this case it will decompose the path into several segments and reposition the base accordingly

    Architecture for planning and execution of missions with fleets of unmanned vehicles

    Get PDF
    Esta tesis presenta contribuciones en el campo de la planificación automática y la programación de tareas, la rama de la inteligencia artificial que se ocupa de la realización de estrategias o secuencias de acciones típicamente para su ejecución por parte de vehículos no tripulados, robots autónomos y/o agentes inteligentes. Cuando se intenta alcanzar un objetivo determinado, la cooperación puede ser un aspecto clave. La complejidad de algunas tareas requiere la cooperación entre varios agentes. Mas aún, incluso si una tarea es lo suficientemente simple para ser llevada a cabo por un único agente, puede usarse la cooperación para reducir el coste total de la misma. Para realizar tareas complejas que requieren interacción física con el mundo real, los vehículos no tripulados pueden ser usados como agentes. En los últimos años se han creado y utilizado una gran diversidad de plataformas no tripuladas, principalmente vehículos que pueden ser dirigidos sin un humano a bordo, tanto en misiones civiles como militares. En esta tesis se aborda la aplicación de planificación simbólica de redes jerárquicas de tareas (HTN planning, por sus siglas en inglés) en la resolución de problemas de enrutamiento de vehículos (VRP, por sus siglas en inglés) [18], en dominios que implican múltiples vehículos no tripulados de capacidades heterogéneas que deben cooperar para alcanzar una serie de objetivos específicos. La planificación con redes jerárquicas de tareas describe dominios utilizando una descripción que descompone conjuntos de tareas en subconjuntos más pequeños de subtareas gradualmente, hasta obtener tareas del más bajo nivel que no pueden ser descompuestas y se consideran directamente ejecutables. Esta jerarquía es similar al modo en que los humanos razonan sobre los problemas, descomponiéndolos en subproblemas según el contexto, y por lo tanto suelen ser fáciles de comprender y diseñar. Los problemas de enrutamiento de vehículos son una generalización del problema del viajante (TSP, por sus siglas en inglés). La resolución del problema del viajante consiste en encontrar la ruta más corta posible que permite visitar una lista de ciudades, partiendo y acabando en la misma ciudad. Su generalización, el problema de enrutamiento de vehículos, consiste en encontrar el conjunto de rutas de longitud mínima que permite cubrir todas las ciudades con un determinado número de vehículos. Ambos problemas cuentan con una fuerte componente combinatoria para su resolución, especialmente en el caso del VRP, por lo que su presencia en dominios que van a ser tratados con un planificador HTN clásico supone un gran reto. Para la aplicación de un planificador HTN en la resolución de problemas de enrutamiento de vehículos desarrollamos dos métodos. En el primero de ellos presentamos un sistema de optimización de soluciones basado en puntuaciones, que nos permite una nueva forma de conexión entre un software especializado en la resolución del VRP con el planificador HTN. Llamamos a este modo de conexión el método desacoplado, puesto que resolvemos la componente combinatoria del problema de enrutamiento de vehículos mediante un solucionador específico que se comunica con el planificador HTN y le suministra la información necesaria para continuar con la descomposición de tareas. El segundo método consiste en mejorar el planificador HTN utilizado para que sea capaz de resolver el problema de enrutamiento de vehículos de la mejor forma posible sin tener que depender de módulos de software externos. Llamamos a este modo el método acoplado. Con este motivo hemos desarrollado un nuevo planificador HTN que utiliza un algoritmo de búsqueda distinto del que se utiliza normalmente en planificadores de este tipo. Esta tesis presenta nuevas contribuciones en el campo de la planificación con redes jerárquicas de tareas para la resolución de problemas de enrutamiento de vehículos. Se aplica una nueva forma de conexión entre dos planificadores independientes basada en un sistema de cálculo de puntuaciones que les permite colaborar en la optimización de soluciones, y se presenta un nuevo planificador HTN con un algoritmo de búsqueda distinto al comúnmente utilizado. Se muestra la aplicación de estos dos métodos en misiones civiles dentro del entorno de los Proyectos ARCAS y AEROARMS financiados por la Comisión Europea y se presentan extensos resultados de simulación para comprobar la validez de los dos métodos propuestos.This thesis presents contributions in the field of automated planning and scheduling, the branch of artificial intelligence that concerns the realization of strategies or action sequences typically for execution by unmanned vehicles, autonomous robots and/or intelligent agents. When trying to achieve certain goal, cooperation may be a key aspect. The complexity of some tasks requires the cooperation among several agents. Moreover, even if the task is simple enough to be carried out by a single agent, cooperation can be used to decrease the overall cost of the operation. To perform complex tasks that require physical interaction with the real world, unmanned vehicles can be used as agents. In the last years a great variety of unmanned platforms, mainly vehicles that can be driven without a human on board, have been developed and used both in civil and military missions. This thesis deals with the application of Hierarchical Task Network (HTN) planning in the resolution of vehicle routing problems (VRP) [18] in domains involving multiple heterogeneous unmanned vehicles that must cooperate to achieve specific goals. HTN planning describes problem domains using a description that decomposes set of tasks into subsets of smaller tasks and so on, obtaining low-level tasks that cannot be further decomposed and are supposed to be executable. The hierarchy resembles the way the humans reason about problems by decomposing them into sub-problems depending on the context and therefore tend to be easy to understand and design. Vehicle routing problems are a generalization of the travelling salesman problem (TSP). The TSP consists on finding the shortest path that connects all the cities from a list, starting and ending on the same city. The VRP consists on finding the set of minimal routes that cover all cities by using a specific number of vehicles. Both problems have a combinatorial nature, specially the VRP, that makes it very difficult to use a HTN planner in domains where these problems are present. Two approaches to use a HTN planner in domains involving the VRP have been tested. The first approach consists on a score-based optimization system that allows us to apply a new way of connecting a software specialized in the resolution of the VRP with the HTN planner. We call this the decoupled approach, as we tackle the combinatorial nature of the VRP by using a specialized solver that communicates with the HTN planner and provides all the required information to do the task decomposition. The second approach consists on improving and enhancing the HTN planner to be capable of solving the VRP without needing the use of an external software. We call this the coupled approach. For this reason, a new HTN planner that uses a different search algorithm from these commonly used in that type of planners has been developed and is presented in this work. This thesis presents new contributions in the field of hierarchical task network planning for the resolution of vehicle routing problem domains. A new way of connecting two independent planning systems based on a score calculation system that lets them cooperate in the optimization of the solutions is applied, and a new HTN planner that uses a different search algorithm from that usually used in other HTN planners is presented. These two methods are applied in civil missions in the framework of the ARCAS and AEROARMS Projects funded by the European Commission. Extensive simulation results are presented to test the validity of the two approaches

    Remote real-time collaboration through synchronous exchange of digitised human-workpiece interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, collaborative infrastructures that enable global teams to collaborate with each other in real-time in performing complex manufacturing-related tasks is highly desirable. This work demonstrates the design and implementation of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors and a synchronous data transfer protocol from computer networks. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the workpieces and the task environment. Results show that this platform could enable teams to remotely work on a common engineering problem at the same time and also get immediate feedback from each other making it valuable for collaborative design, inspection and verifications tasks in the factories of the future. An additional benefit of the implemented platform is its use of low cost off the shelf equipment thereby making it accessible to SMEs that are connected to larger organisations via complex supply chains
    corecore