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Abstract: Manipulation planning under incomplete information is a highly challenging task for
mobile manipulators. Uncertainty can be resolved by robot perception modules or using human
knowledge in the execution process. Human operators can also collaborate with robots for the
execution of some difficult actions or as helpers in sharing the task knowledge. In this scope,
a contingent-based task and motion planning is proposed taking into account robot uncertainty and
human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts
of geometric reasoning processes are embedded inside the planner to cope with task constraints like
detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated
with different challenging scenarios in simulation and a real environment.
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1. Introduction

Robotic manipulation tasks become highly challenging when a mobile manipulator is required
to obtain a feasible plan to solve a given problem under potential uncertainties. Uncertainty shall
be viewed in the initial state of the robot environment, e.g., objects may rest in different positions
or some object features (like color) could be initially unknown for a robot. Uncertainty, moreover,
must be considered in the result of manipulation actions (as nondeterministic effects) since there
could be different action outcomes. To deal with such uncertainties, robots generally look for
a sequence of actions to satisfy the goal of a task and perform replanning in the case of action
execution failure or uncertain situations. This process may be costly while a robot requires repetition
of expensive replanning.

To tackle those challenging issues, these problems can rely on contingent task planning which
plans in belief space and can generate conditional plans under uncertainty in terms of initial state and
action effects. Contingent-based task planners can provide a tree of plans rather than a single sequence
of executive actions. Therefore, uncertainty is observed during the plan execution, and the tree of
plans is followed according to the binary observation values.

Other challenges are related to some demanding or difficult tasks which are either not performable
easily by robots or are out of their reach, but that can be done in collaboration with a human operator.
In these cases, the robot can ask the human operator to do some particular difficult actions, to transfer
some objects located in the human workspace or to share knowledge that is initially incomplete to the
robot. Moreover, there could be some geometric constraints imposed in the environment, e.g., lack of
space for placing objects, occlusions, kinematic issues, etc., and the finding of the geometric values for
each manipulation action becomes substantial in order to make a manipulation plan feasible. Therefore,
the way of combining task and motion planning plays a significant role when the manipulation task is
highly constrained in terms of geometric information and there is amount of uncertainty.
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In this paper, we are going to deal with manipulation tasks carried out by a mobile manipulator
assisted by a human operator. The mobile manipulator will be responsible to execute the main
task, while the human operator will be responsible for some difficult actions (like to open some
box-like containers which cannot be opened by the robot), to share knowledge with the robot, and to
transfer objects to the robot when they are not reachable. Uncertainty in the initial state and in some
action effects are considered. Some manipulation and sensing actions are considered in the current
proposal, which allow illustration of the approach, and that can be extended to handle a broader
set of manipulation tasks. No geometric uncertainty is considered, e.g., in the robot motion or the
object poses.

Contributions: To deal with the aforementioned challenges, we propose a contingent-based
task and motion planner based on Contingent-FF [1] that works under uncertainty and considers
human–robot collaboration. The Contingent-FF includes two main components, heuristic evaluation
and search space, and results in a tree-shaped set of plans involving sensing actions. Three main
contributions extend the basic Contingent-FF planner:

• Robot action reasoning. Two types of geometric reasoning are proposed and integrated with
the basic planner: relaxed geometric reasoning and lazy motion evaluation. The former refers to
Reachability, Spatial, and Manipulation reasoning. This reasoning process is embedded within the
heuristic computation of the planner. Motion paths are lazily evaluated when actions are selected
by the state space search. If the reasoning processes fail, geometric constraints are fed back to
the planner. This part of the computation is done offline and aims to prune infeasible actions
due to geometric constraints and to obtain a feasible set of actions in the tree of plans. As the
basic contingent planner considers only symbolic reasoning, this module enables it to incorporate
geometric reasoning to deal with practical applications. The reasoning process provides feasible
initial and goal configurations for motion planning queries, improving its success rate and thus
the overall performance of the planner in the generation of a feasible manipulation plan.

• Human–robot collaboration. There are some actions which can be executed by the robot and others
that require the collaboration of a human operator. The proposed relaxed geometric reasoning is
extended to inform the planner about which actions cannot be executed by the robot, and hand
over them to the human operator, allowing the planner to handle those cases where the selection
of actions to be performed by a human operator is required. In these cases, the geometric world
resulting by these actions is simulated and used in the planning system for further geometric
reasoning evaluation. This step makes the basic planner flexible to consider the result of human
actions, extending its performance to situations it is not able to be handled autonomously.

• State observation. To observe the binary outcomes of actions, two modules are proposed: perception
and human knowledge. Perception is used to detect, e.g., the actual locations of the objects or some
objects feature like color. The knowledge provided by the operator is required for more difficult
observations like determining if a can is filled or empty, or if a glass contains a given drink. Action
observation takes place at execution time. The combining of both modules widens the capacity of
the planner to identify the current situation of the robot’s world and decide the best course of
actions in execution, thus improving the planner performance in finding feasible solutions.

One of the main advantages of the proposed framework is that the offline computation is
valid and works despite the actual values of the uncertainty variables or the actual outcomes of
the executable actions.

The rest of the paper is structured as follows. First, Section 2 summarizes some related work
and Section 3 explains a proposal for contingent task and motion planning. Afterwards, Section 4
presents and illustrates the proposed relaxed geometric reasoning for mobile manipulators, Section 5
demonstrates contingent heuristic computation using relaxed information, Section 6 details tree-based
planning using search space, and Section 7 presents manipulation plan execution using sensing and
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human interaction. Finally, Section 8 shows some implementation issues as well as empirical results,
and Section 9 sketches the conclusions and future works.

2. Related Work

Manipulation problems of different nature have been tackled in the literature with different
strategies, e.g., the manipulation problem of Navigation Among Movable Obstacles (NAMO) has been
addressed in [2,3] using a backward search algorithm, and dual-arm table-top manipulation problems
by combining motion planning and task assignment [4]. These robotic applications, like many others,
must deal with different sources of uncertainty and the use of sensors and perception strategies may
be required, e.g., the studies in [5,6] have investigated the machine robotic cell scheduling problem
for manufacturing systems with or without sensor inspection. The following sections classify more
approaches in the field of task and motion planning with and without uncertainty.

2.1. Task and Motion Planning without Uncertainty

Recently, much study has been centered to solve robotics manipulation tasks by combining task
and motion planning problems with no consideration on uncertainty. It is assumed that the initial
state of the environment is perfectly known, and actions are deterministic, i.e., state of planning is
only changed by the selected action. There is a huge number of task planners being able to solve
manipulation problems under perfect information [7].

In principle, two methods of combining task and motion planning have been explored: interleaved
or simultaneously. Several studies call first task planning, and then motion planning to determine
whether a plan is feasible or not such as [8–12]. In the case of failure, geometric constraints are identified
and reported to task planning and the procedure continues. This might be costly as a number of times
the process could be repeated in order to find a geometrically feasible plan.

On the other hand, other approaches enable task planning to incorporate geometric reasoning
within the task planning process [13–18]. Hence, in this case, task planning results in a feasible
manipulation plan. In this line, we recently proposed a heuristic-based task and motion planner [19] to
deal with constrained table-top problems for bi-manual robots by offering different type of geometric
reasoners that can be used in heuristic computation or when an action is selected. Our previous
approach does not consider any uncertainty, human actions, and reasoning about mobile manipulation
problems which are the subjects of this paper.

The way of integrating task and motion planning information in the current proposal is based on
the simultaneous approach in order to generate feasible plans, and is an extension of [19] that copes
with mobile manipulators, uncertainty, and to consider collaborative tasks with human operators.

2.2. Task and Motion Planning under Uncertainty

There are some situations in which a robot has incomplete information about its manipulation
environment; therefore, it needs to plan under uncertainty. Task planning under uncertainty is
a well-established field in Artificial Intelligence. Conditional-based task planners can provide
conditional plan to cope with uncertain information when either the initial state is not completely
known, or the result of actions are nondeterministic. There are various classes of planning in this field
like conformant, contingent, or probabilistic planning.

Conformant planning looks for plans under given uncertainty concerning the start state and
the effects of symbolic actions, assuming no sensing capabilities during the execution of the plan.
The plan should be successful regardless of which is the start state. Contingent planning also considers
uncertainty regarding the start state and the effects of actions. However, it can provide some sort
of observation over a conditional plan in execution. Probabilistic planning does planning under
probabilistic uncertainty regarding the start state and the effects of actions.

More details on some approaches following conditional-based task planning are commented
next as we are interested in this type of planner due to its feature of providing observation over
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a conditional plan. Some conditional task planners are Contingent-FF [1], POND [20], and PKS [21].
They plan in the belief space and compute conditional plans in the offline mode, which are guided
by the result of sensing actions. On the other hand, there are some conditional task planners like
K-Planner [22], SDR [23], and HCP [24] solving conditional plans online. Although these planners can
prune some branches by considering online sensing actions, satisfying the goal of task may not be
possible and the planners may face with dead-end even if there is a solution.

The concept of contingent-based task and motion planning has also emerged. For instance,
the Planning with Knowledge and Sensing (PKS) planner considers incomplete information and performs
contingent planning [25] in two main scenarios, using force sensing and visual sensing. In a similar
direction, offline-based hybrid conditional task and motion planning has been proposed [26], i.e.,
task planning is foremost performed, and then geometric evaluation is considered by incorporating
low-level feasibility checks inside conditional planning (assuming that actuation actions are
deterministic). On the contrary, the approach proposed here interweaves simultaneously efficient
geometric reasoning inside the task planning process to provide geometrically feasible plans.
The approach also copes with collaboration between the mobile robot and a human operator to
perform a manipulation task.

3. A Proposal for Contingent Task and Motion Planning

This section first presents a brief overview of the original Contingent-FF task planning, and the
modifications introduced in the present proposal to compute geometrically feasible manipulation
conditional plans.

3.1. Contingent-FF Overview

The Contingent-FF task planner [1] handles uncertainty in the initial state and in the result of
actions. The task planner has two main components which are heuristic computation and search space.
For the heuristic computation, the planner uses a modified version of the Relaxed Planning Graph (RPG)
used in the Fast-Forward (FF) planner [27]. The relaxed plan including a number of relaxed actions is
computed from the RPG, and the heuristic value is the length of this relaxed plan. Also, promising
actions (called helpful actions in FF) are extracted from the relaxed plan as a pruning technique in the
search space, as discussed in FF. The Contingent-FF planner extends the RPG process, called CRPG,
by adding unknown facts in an additional layer in the heuristic phase. Known facts are basically
those which do not have uncertainty and unknown facts are the ones which could be the result of
nondeterministic actions or uncertain in the initial state. It introduces reasoning about unknown
facts that allows such facts to become known in the RPG process. Once CRPG is successfully built,
the relaxed plan is extracted.

In Contingent-FF, belief states including known and unknown facts are considered. The search
space starts from the initial belief state and applies an And-Or search. The search space progress is
guided by the heuristic value and helpful actions. The result of planning provides conditional plans
that may involve a variety of sensing actions whose outcome causes different plan branches.

3.2. Planning Formulation

Our planning system domain D is a tuple 〈A, Ω,F ,W , Sg〉 where A is the action space, Ω is
the sensing action space, F is a set of literals,W is a workspace involving a mobile manipulator R
(described by the pose of the base Posrob along the arm configuration Qrob) and a number of objects
O, and, Sg is a set of grasping poses described for objects. Objects are denoted as: O={Om

1 (pos,fe)

. . .Om
j (pos,fe), O f

1 (pos,fe) . . .O f
k (pos,fe)}, where j and k are the number of Movable and Fixed objects

respectively, whose initial position and orientation are denoted by pos, and whose features are denoted
by fe.

An action a ∈ A is a tuple 〈name(a), pre(a), effect(a), coneffect(a), geom(a),Q(a)〉, where name(a) is the
action symbolic name, pre(a) is a propositional formula which must hold for the action to be applied,
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geom(a) is the numerical counterpart of an action containing geometric information, effect(a) represents
the negative and positive effects of a on the state it is applied to, and Q(a) is a query function to the
motion planner which computes a motion between two robot configurations and stores the solution
if any. A relaxed action a′ ∈ A′ (where A′ is the relaxed action space) is similar to the action despite
it does not consider any negative effects. Actions refer to executable actions, i.e., requiring motion,
and can be done by either the robot or a person. The following actions types are considered to deal
with some examples of mobile robot manipulation:

• Transit: an action done by the robot to travel from one configuration to another one without
an attached object.

• Transfer: an action done by the robot to move an attached object from one pose to another one.
• Push: an action done by the robot to push an object from one pose to another one.
• Open: an action done by the robot to open a box-like container (articulated cap with prismatic

joint is assumed with two positions corresponding to fully closed and fully opened, the state
being stored in the containers objects features).

• HumanTransfer: an action done by a person to transfer/push an object to the robot workspace.
• HumanOpen: an action done by a person to open a box-like container.

Each sensing action is a tuple 〈pre(a), o(a)〉, where o(a) is a literal with uncertainty. These are
actions not involving motion, devoted to observing the value of o(a). The observation is done in
run-time. Some sample sensing actions are considered in the proposed planning system. They are the
following:

• SenseColor: a sensing action is done by a perception module to determine the color of an object.
• SensePose: a sensing action is done by a perception module to determine the pose of an object.
• CheckContainer: a sensing action is done by a person to evaluate whether a container is open

or not.
• CheckCan: a sensing action is done by a person to evaluate whether can-like objects are filled

or not.

A belief state S is a tuple S = 〈P ,V〉 where P includes a set of known literals which hold in that
state and a set of uncertain literals which may hold or not in the state, and V represents a full geometric
description of the scene, i.e., configurations of robots and poses of objects corresponding to certain
and uncertain literals. An executable action from a state S1 results in a new world state using the state
transition functions S2.P := S1.P − effect−(a) + effect+(a) and S2.V := S1.V − geom−(a) + geom+(a).
A sensing action splits a belief state and introduces two branches into the plan marked with o(a), and
∼ o(a).

The planning problem T is expressed by a tuple 〈D,S0,G〉 where D is a domain, S0 consists
of a set of literals representing the initial symbolic state I such that I ⊆ F along their geometric
assignments regarding the initial state of the world W0, and G ⊆ F is the set of symbolic goal
conditions. The solution of a Combined Task and Motion Planning (TAMP) problem under uncertainty,
which we denote by π, is a tree-shaped conditional plan, i.e., a sequence of symbolic actions achieving
G, along with a feasible motion for each action.

3.3. Geometric Constraint Predicates

Basically, three general predicates, evaluated by geometric reasoning, are allocated that set
constraints to the task states: isCrit(Om

j , O′, Pos), infeasByRob(R, O′, Pos), and assist(Human, O′, Pos).
The first predicate indicates that there is a blocking object Om

j which is located towards the target
object O′ placed in the pose Pos. The second one shows that the target object cannot be manipulated
by the robotR in the corresponding pose Pos. The last predicate shows the manipulation action with
the target object O′ and the corresponding Pos must be done by a human operator Human.
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The proposed predicates are interleaved inside the pre- and post-conditions of the actions.
Concerning the actions done by the robot, the predicates ∼isCrit and ∼infeasByRob are inserted within
the preconditions of the actions Transit, Open, Transfer, and Push in order to avoid moving the robot
to any unreachable or infeasible configuration. Referring to the post-conditions, the last two actions
may include the negation of the predicate isCrit if they are moving a blocking object to a placement
where the obstruction does no longer hold. With respect to the actions performed by a human,
the preconditions of the actions HumanTransfer and HumanOpen may include the predicate assist in
order to indicate the requirement of a human operator.

To illustrate the use of these predicates, the actions Transit and HumanOpen are described next.
The action template Transit(R, Om

i , Surface, Pos) is designed to move the robot R (arm and base),
without holding any object, towards a grasp configuration of a manipulatable object Om

i located on
a surface Surface at pose Pos. In the final configuration, the robot holds the target object. The action
is applicable if the following preconditions hold: the object is located on a surface, top of the object
is clear, the robot arm is empty, it can reach the grasp configuration if there is no movable objects
blocking its way to Om

i . The last precondition is represented by fact isCrit(Om
j , Om

i , Pos); objects that
make this fact to hold are called Critical Objects which are the objects blocking the way of reaching the
object. As a result of the action, the robot holds an object.

Transit(R, Om
i , Surface, Pos):

Pre: onSurface(Om
i , Surface, Pos), armEmpty(R), clear(Om

i ), ∼infeasByRob(R, Om
i , Pos),

∀Om
j ∼isCrit(Om

j , Om
i , Pos)

Effect: holding(R, Om
i , Pos), ∼clear(Om

i ), ∼armEmpty(R), ∼onSurface(Om
i , Surface, Pos)

The action template HumanOpen(Human, Om
i , Pos, Closed, Open) is used to open a box-like

container Om
i when it is closed. The action is applicable if the robot needs the assistance from a human

operator, represented by the assist predicate, and its status is closed, shown by the predicate status.
These conditions are introduced in the action preconditions. As a result of the action, the corresponding
container will be open.

HumanOpen(Human, Om
i , Pos, Closed, Open):

Pre: assist(Human, Om
i , Pos), status(Om

i , Closed)

Effect: status(Om
i , Open), ∼status(Om

i , Closed)

3.4. The Proposed Framework

The proposed framework for task and motion planning under uncertainty extends the basic
Contingent-FF planner, aiming to incorporate different geometric reasoning procedures, observations
on sensing actions, as well as human–robot collaboration within planning. The overview of the system
is sketched in Figure 1. It involves three main parts: Heuristic Computation, Space Search, and Conditional
Plans Evaluation.

Heuristic Computation basically provides a value which is distance to goal and promising actions
for each belief state. The basic CRPG is initially computed and the associated relaxed plan is obtained.
This plan is forwarded to the relaxed geometric reasoner determining the feasibility of actions in terms
of reachability, collisions, manipulation constraints, and graspability. The heuristic value is returned
along with helpful actions if such constraints are met. If a constraint is violated, the associated belief
state is updated with facts describing the cause of failure, and an alternative relaxed plan is looked for.
Hence, the heuristic function is informative both in terms of symbolic and geometric constraints.

Space Search maintains the basic algorithm of the Contingent-FF planner that is based on the And-Or
search strategy. From each belief state, the action resulting in the state with lowest heuristic value
is selected and is a candidate to be added to the conditional plans. The only difference is that the
heuristic value now accounts for geometric constraints.
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Conditional Plans Evaluation tries to solve motion planning for an action if possible. It considers
sensing procedure to evaluate sensing actions and may assign actions, which are infeasible for robots,
to operators.

If motion planning fails, the current belief state is updated with the cause of failure and the search
resumes. In general, the geometric failure could be due to collisionable objects, so the literal isCrit is
added to the belief state. If the failure is because of fixed obstacles blocking the way of reaching an
object, inverse kinematic problems, or motion planning time-out problem, the literal infeasByRob is
added to the state. In such failure, if the type of the evaluated action is either transit or open, the literal
assist is also inserted.

Otherwise, when motion planning succeeds, the action is added to the tree-shaped conditional
plans at hand. After finding the complete conditional plans, feasible actions are executed by a robot
or a human operator in the real world and sensing actions are observed either using a perception
module or the information provided by the human operator in run-time. Therefore, the robot plan can
determine the correct branch to follow up its plan.

Figure 1. The proposed system overview of contingent task and motion planning using the extended
version of Contingent-FF.

4. Relaxed Geometric Reasoning for Mobile Manipulators

Relaxed geometric reasoning is the evaluation of geometric conditions of actions with no call to
motion planning. It indicates that a feasible motion is likely to be obtained for the selected actions
if certain task constraints are satisfied. Therefore, the relaxed geometric reasoning process contains
three modules: reachability reasoning, spatial reasoning, and manipulation reasoning. This set of reasoning
extends our previous relaxed geometric reasoning process [19] to consider reasoning on mobile
manipulation along human actions.

Reachability reasoning (Rrch): This reasoning is applied for only transit action. To transit the robot
to a target position, a feasible arm configuration and robot base pose must be first obtained. A set
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of robot poses is considered in the workspace of the robot. From each pose, an Inverse Kinematic (IK)
solver is called for each candidate grasping pose, and moreover the result of IK is determined whether
it is collision-free or not. The first collision-free IK solution along the corresponding grasping pose
is reported if possible. Otherwise, failure is reported if there is neither IK solution nor collision-free
configuration among a set of robot poses. Accordingly, the reasoner returns the collisionable objects.

Spatial reasoning (Rsp): This reasoning is applied for the transfer, push, open, humanOpen, and
humanTransfer actions. This is considered to find a valid placement for an object within a given region
with no consideration of the robot. A pose is sampled, i.e., an object lies in the target region and the
initial stable posture is maintained. The feasibility of the sampled pose is also determined through
a collision-checking procedure to verify whether there are any collisions with other objects in the robot
environment or not. If it is valid, the sampled pose is stored in the geometry details of the action which
transfers the object. Otherwise, another sample will be attempted. In the case that all tried samples
are not valid, failure occurs and the collisionable objects are reported. Moreover, some constraints are
taken into consideration while the sample placement is accomplished. For example, in the case of the
push action, the sample is considered in the direction in which the object is being pushed. In the case of
humanOpen and Open, the valid object placement is extracted from the object feature (the box cap is
assumed to have a single full-open position).

Manipulation reasoning (Rmnp): This reasoning is considered to evaluate the compatibility of the
grasp poses to move an object from the initial position to the final one (usingRsp). The process applies
Rrch reasoning to return on of the feasible ways to transfer an object from initial to final position in
terms of collision-free IK solution. In the case that there is no possible solution meeting these conditions
because of collisions, then the collisionable objects are returned. In this way, it can obtain the valid
robot pose and grasping configuration when the robot manipulates an object.

Algorithm 1 describes the relaxed geometric function when applying the actions. Algorithm is
detailed below:

• Reasoning about the robot actions [lines 5–15]: The transit action calls the reachability reasoning
by the function Rrch [line 6]. The transfer, push and open actions call the spatial reasoning by the
function Rsp [line 11], and then call the function Rmnp [line 13]. If the reasoning processes are
successfully done, the corresponding response is set to feasible and geometric details are appended
to the evaluated action [line 8] and [line 15]. On the contrary, if the failure is due to manipulatable
objects, the response is set to infeasible-criticalObjects and the collisionable objects are stored in
CO. In other cases of failure, the response is set to infeasible-infeasByRob that could be because of
collisions with fixed obstacles or because the IK module is not able to find a configuration.

• Reasoning and finding the geometric values of the human actions [lines 16–23]: The humanTransfer
action calls the spatial reasoning by the function Rsp [line 17]. This function is responsible to find
the pose of the object placement for the human action and inserts it to the action [line 19]. For the
humanOpen action, the pose of the container object being opened is extracted from the object
feature by the spatial reasoner function Rsp [line 21] and is stored into the action details [line 23].



Appl. Sci. 2020, 10, 1665 9 of 20

Algorithm 1: RelaxGeomReas(a)

1 CO ← ∅
2 a.geom+ ← ∅
3 i← 0
4 Res = False
5 if a.name = Transit then
6 {Res, Qrob, Posrob, CO, g}← Rrch(a)
7 if Res = f easible then
8 a.geom+.add(Qrob, Posrob, g)

9 else if a.name = Transfer or Push or Open then
10 while i < Max do
11 {Ressp,Om

j (posgoal), CO}← Rsp(a)

12 if Ressp = f easible then
13 {Res, Qrob, Posrob, CO, g}← Rmnp(a,Om

i (posgoal))

14 if Res = f easible then
15 a.geom+.add(Qrob, Posrob,Om

j (posgoal), g)

16 else if a.name = HumanTransfer then
17 {Res,Om

j (posgoal)}← Rsp(a)

18 if Res = f easible then
19 a.geom+.add(Om

j (posgoal))

20 else if a.name = HumanOpen then
21 {Res,Om

j (posopen)}← Rsp(a)

22 if Res = f easible then
23 a.geom+.add(Om

j (posopen))

24 else
25 //a is not required to be checked;

26 return Null

27 return {Res, CO}

5. Contingent Heuristic Computation using Relaxed Information

Heuristic computation returns the heuristic value as well as helpful actions using relaxed symbolic
along geometric reasoning from each state. Algorithm 2 explains the modified version of Contingent-FF
heuristic computation for a given belief state S and goal G by taking into account geometric information.
This involves three steps: computing the CRPG and the relaxed plan π′, determining π′, and computing
the heuristic value and the helpful actions, as follows.

Computing the CRPG and π′ [lines 1–2]: The CRPG graph CRPGgr involving state layers and action
layers is built by the function CRPGConst [line 1]. The function CRPGPlan extracts π′ from that graph
[line 2]. The process is performed in a similar way to the standard Contingent-FF.

Evaluating π′ [lines 3–13]: Actions in π′ are sent to the relaxed geometric reasoning for the
feasibility evaluation [line 5]. Basically, this process tries to figure out whether there is any feasible
world to meet the action conditions or not as we proposed in [19]. Upon failure, the function MaxUp

[line 9] determines whether a predefined maximum number of trials is reached or not to update
the belief state and find another relaxed plan. If updating the state is required, the feedback of the
geometric reasoner is evaluated. In the case of failure because of infeasible-criticalObjects, the literal
isCrit(CO, O′, Pos) with critical objects is added to the current belief state. Otherwise, the failure is
because of infeasible-infeasByRob and the literal infeasByRob(R, O′, Pos) is added to the state. In this
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case, if the type of action is either transit or open, the literal assist(Human, O′, Pos) is also added to
the state.

Computing the heuristic value and with helpful actions [lines 14–15]: In the case that the relaxed plan
is geometrically feasible with respect to the geometric reasoning evaluation, the heuristic value along
the helpful actions are achieved. The function HValue extracts the heuristic value h(S) [line 14] and the
function HelpAct reports helpful actions H(S) [line 15] as the generic Contingent-FF.

Algorithm 2: CRPG(S,G)
1 CRPGgr ← CRPGConst(G)
2 π′ ← CRPGPlan(CRPGgr)

3 foreach {a′ ∈ π′} do
4 while True do
5 {Res, CO}←RelaxGeomReas(a′)
6 if Res = True then
7 break
8 else
9 if MaxUp(S) < Max then

10 S← UpState(S, Res, CO)
11 return CRPG(S,G)
12 else
13 return {∞, ∅}

14 h(S)← HValue()
15 H(S)← HelpAct()
16 return {h, H(S)}

An example is considered to show how geometric constraints are captured and handled during
the heuristic computation. The initial scene of the example is shown in Figure 2 where the robot is
required to move Can A inside Box. To make the problem challenging, it is assumed that top grasps are
not allowed and some side grasping poses are considered for each can. Several task constraints are
imposed, e.g., there is no direct collision-free motion to reach Can A, and also the robot is not able to
open Box and needs an operator assistant.

The computation of the heuristic process in terms of geometric feasibility is represented in Figure 3.
The corresponding physical world for each relaxed plan has been shown also. Figure 3a shows the
initial relaxed plan extracted. When the first action is forwarded for the relaxed geometric reasoning,
the reachability reasoner fails. This is because when the inverse kinematic module checks side grasping
poses considered for the box cap, all retrieved joint configurations have collisions with the box object.
The geometric reasoning process is done by the proposed function RelaxGeomReas in Algorithm 2 that is
added to the basic planner.

To handle this task constraint, the predicates infeasByRob(tiago, box, posBox) and assist(person, box,
posBox) are asserted to the planning state by the associated reasoning process. The updating sate step
is done by the proposed function UpState as it lets the planner know the detected constraints of the
environment. Figure 3b shows the next heuristic computation taking into account the task constraint.
In this case, the spatial reasoner module successfully finds the geometric state of Box after applying the
action humanOpen. However, the reachability reasoner reports a failure for evaluating the transit action
for the object Can A due to collision between the robot arm and Can B. This object is marked as a critical
object, so the state is updated with the predicate isCrit(can B, can A, pos A). The heuristic computation
is again repeated, and finally the reasoning processes can correctly find feasible geometric details for
the actions. This process results in geometrically feasible heuristic computation.
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Figure 2. The initial scene where the robot requires placement of the object A within the box in the
presence of geometric constrains.

Figure 3. The steps of the computation of heuristic using the relaxed geometric reasoning and the
corresponding physical world. The information highlighted in bold shows the relaxed planning actions
which have been currently tested by the proposed relaxed geometric reasoning. Others are those which
have not been tested yet. True and false values show whether the reasoner is successful or failed.
(a) The transit action to reach the Box fails. (b) The transit action for the Can A fails due to collision
with other objects. (c) The final geometrically feasible heuristic computation.
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6. Tree-Based Planning using Search Space

The And-Or search procedure as considered in the Contingent-FF planner is used to result in
a feasible manipulation plan. The heuristic computation has been modified to incorporate geometric
check and, moreover, selected actions must be evaluated using motion planning. The process is
represented in Algorithm 3.

The algorithm gets T as input and outputs π if possible. First, the trials counter trial is set [line 1]
and the state Si is the initial belief state [line 4]. The function Search performs the standard search
mechanism as Contingent-FF does [line 6]: it provides the next state using the transit function to visit
Si+1 along the promising applicable action(s) with HSi . This step is done with the modified CRPG

function (see Algorithm 2), by taking geometric constraints into account.
In the case that HSi does not exist [line 7], the algorithm performs another search from the

beginning. Until the maximum number of iterations is not reached [line 9], the process is repeated
with the initial state updated by the function UpdateInitState [line 11]. If the maximum number of trials is
reached, the process returns failure [line 14].

Algorithm 3: The Proposed Planning Algorithm

inputs : T =〈D,S0,G〉, D=〈A, Ω,F ,W , Sg〉
output : π

1 trial ← 0
2 i← 0
3 π ← ∅
4 Si ← Sinit
5 while G 6⊆ Si do
6 {HSi , Si+1} ← Search(Si,G,A, Ω)

7 if HSi = ∅ then
8 trial ← trial + 1
9 if trial < Max then

10 i← 0
11 Si ← UpdateInitState()
12 Continue
13 else
14 return fail

15 else
16 if HSi 6∈ Ω And HSi .name 6= HumanTransfer And HS.name 6= HumanOpen then
17 {Q, Res, CO} ← MotionPlanner(HSi )

18 if HSi ∈ Ω Or HSi .name = HumanTransfer Or HS.name = HumanOpen Or Res = f easible then
19 π.append(HSi )

20 else
21 Si ← UpdateState(Res, CO)
22 Continue

23 i← i + 1

24 return π

For those actions that either do not belong to the set of sensing actions and are not assigned to
human, the MotionPlanner function is used to compute a collision-free path for the currently selected
action(s) [line 17]. If a path is found, Res is set to feasible and the path Q is returned. Afterwards,
π is appended with the sensing, human, or normal action(s) [line 19]. In the case of failure due to
infeasible-criticalObjects, the literal isCrit(CO, O′, Pos) with critical objects is added to the current belief
state. Otherwise, the failure is because of motion planning time-out problem or collisionable fixed
obstacles, the type of failure is infeasible-infeasByRob and the literal infeasByRob(R, O′, Pos) is added to
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the state. In this case, if the type of action is either transit or open, the literal assist(Human, O′, Pos) is
also added to the state.

An example is considered to illustrate how the geometrically feasible conditional plan is obtained
offline under belief information of the initial state. The scene depicted in Figure 4 shows the initial
belief state of the mobile manipulation problem, where the color of the gray cylinder is uncertain
(it could be red or green), it is not known whether the can is filled or not, nor if the containers are open
or closed. The goal is to transfer the cylinder A to either the red or the green tray. Some particular
placements regions allocated for the manipulatable objects if required:

• The green cylinders must be placed on the green tray.
• The red cylinders must be placed over the red tray.
• The blue cylinders must be placed within the containers.
• The can objects may be optionally placed anywhere over the table.

Figure 4. The manipulation example where the goal is to transfer cylinder A to one of the trays with
respect to its color.

The complete conditional plan is represented in Figure 5 that is obtained by Algorithm 3. It is
briefly discussed how this geometrically feasible plan is obtained. While the planning process is taking
place, there are several challenges in terms of geometric constraints which are captured and handled by
the proposed geometry reasoner. These steps are mainly done using the Search function which internally
calls Algorithm 2. To reach the target object, the reachability reasoning process, place in the function
RelaxGeomReas, detects cylinder B and reports that the object is blocking the way of reaching object A in
the heuristic computation. Therefore, the predicate isCrit(cylinderB, cylinderA, posA) is inserted to the
initial belief state of the planner using the function updating the belief state. This predicate says that
cylinder B blocks the way of reaching cylinder A.

Furthermore, when the robot attempts to find a feasible configuration for opening box 1 in the
case that the box is closed, the reachability reasoner fails due to colliding with the box. Here, it is the
case that robot needs to ask a human operator for collaboration. Accordingly, the reasoner appends
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the predicates infeasByRob(tiago, box1, posBox1) and assist(person, box1, posBox1) to the corresponding
state. The humanOpen action then appears.

Figure 5. The conditional plan results from the proposed planning process. The actions highlighted
with the blue color are the ones assigned to the robot or a human operator. Some important actions
parameters are represented. The actions specified by the red color are sensing actions.

7. Manipulation Plan Execution using Sensing and Human Interaction

When the manipulation conditional plan is achieved, it will be forwarded to for the execution
module. Algorithm 4 outlines the process of actions execution performed by the robot or human, and
calls to the sensing actions. The conditional plan is initialized from its root [line 1]. For each action of
the plan, its type first identified whether it is execution or sensing one. In the case of execution action,
if it has to be executed by human, the function executeByHuman asks a person to do the corresponding
action [line 5] and an operator then sends a command to the robot that the action has been done
successfully. Otherwise, the action is executed by the robot [line 7].

On the other hand, if the type of action becomes sensing, the function senseAct determines the
binary value of the sensing action which is True or False. This is done using the perception module
allocated for the robot. Depending on the type of uncertainty, the function may request to human or
activate a sensing module to observe the action value. Regarding the CheckCan or CheckOpen sensing
actions, human information is used, while a sensing module is used for the SensePose and SenseColor
sensing actions.
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Algorithm 4: Manipulation Plan Execution
inputs : π

1 initializePlan(π)
2 foreach {HS ∈ π} do
3 if HS ∈ A then
4 if HS.name = HumanTransfer Or HumanOpen then
5 executeByHuman(HS)
6 else
7 executeByRob(HS)

8 else
9 Res = senseAct(HS)

10 selectBranch(π, HS, Res)

8. Empirical Results and Discussion

This section describes some manipulation problem solved using the proposed framework, and
the implementation issues. The mobile robot considered is TIAGo. It has 7 degrees of freedom arm,
equipped with a gripper, mounted on a mobile platform through a lift torso.

The executive simulated result of the manipulation problem represented in Figure 4, called
Problem-1, is shown in Figure 6. For the domain of the problem, a number of actions is considered
for the robot being transit, transfer, open, and push along with some actions for an operator that are
humanTransfer and humanOpen. Actions are selected according to the planning mechanism in terms
of symbolic and geometric reasoning. We assume that the values of the uncertainty information are
provided in run-time in simulation. Therefore, the executive plan is provided below:

Executive Plan: { Transit-B, CheckContainer-Box1-Open (False), HumanOpen-Box1, Transfer-B-Box1,
Transit-A, SenseColor-A-Red (True), Transfer-A-RedTray }

The states represented in the figure are classified as follows:

(a) is the initial belief state of the robot and environment.
(b) is the state where the robot applies transit action to reach cylinder B.
(c) is the state where the sensing action CheckContainer-Box1-Open showed that Box 1 is

currently closed.
(d) is the state where the HumanOpen action is executed as the robot is not capable enough to open

the box.
(e) is the state where the robot places cylinder B within box 1.
(f) is the state where the robot transits to cylinder A.
(g) is the state where the sensing action SenseColor-A-Red showed that the cylinder is actually red.
(h) is the state where the robot moves its base and the arm configuration to place cylinder A over

the red tray.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The simulation results of the executive plan performed by the TIAGo robot: (a) is the initial
robot and environment state, (b) is the state after Transit action towards cylinder B, (c) is the result of
the sensing action CheckContainer-Box1-Open, (d) is the state after applying HumanOpen action, (e) is the
state after the robot executes the Transfer action for cylinder B, (f) is the state when the robot transits to
cylinder A, (g) is the state resulting from the sensing action SenseColor-A-Red, and (h) is the state when
the robot place cylinder A on the associated tray.

In addition, the proposal has been evaluated for other cluttered problems where the robot needs
to sort objects according to the colors. Regarding the action domain, Robot actions are transit and
transfer, and the action template humanTransfer is considered for an operator. The problem represented
in Figure 7, called Problem-2, shows the initial and goal states of manipulation where the green and red
objects must be located on the green and red regions respectively. The red object is not initially located
on the table. The pink region is considered on the robot workspace where an operator can transfer
objects. The planning uncertainties are the color of the green object which could be actually green or
red and the location of the red object which could be on the robot table or in the human workspace.
Therefore, the humanTransfer action is applied to transfer the object to the robot workspace as the robot
is not allowed to move to the human workspace. The final executable plan would be to transfer the
green object to the target placement region by the robot. It then looks for the red object and figures out
the object is not located on the table and asks an operator to transfer the object. The humanTransfer
action is selected in the conditional plan, so the requested object is transferred to the robot workspace.
The operator updates the robot knowledge through the robot system terminal. The robot is aware
that the human action has been successfully performed, and afterwards it travels to grasp the object.
Eventually, the robot transfers the object to the target region.

The proposed approach has been tested for similar problems by increasing the number of objects
and varying color and/or location uncertainties. The problems performance are represented in
Table 1 in terms of conditional and executive plan length, and moreover planning time. Problems-3
includes a cluttered problem where there are nine objects and three of them need to be sorted. Similar
uncertainty of Problem-2 is considered regarding the color and location of objects. Problem-4 is the one
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where 12 objects exist and four of them must be sorted. In this case, the uncertainty information like
the objects color and locations are considered for more objects.

(a) (b)

Figure 7. The manipulation example where green and red objects must be placed in the green and red
regions. (a) shows the initial state of the problem. (b) shows the final state of the problem. The red object
is not initially located in the robot workspace. The pink region is the place where human can transfer
objects to the robot workspace. The solution can be visualized here: https://sir.upc.es/projects/
ontologies/GreenRedHuman.mp4. The solution for the case that the red object is initially located on
the table is visualized here: https://sir.upc.es/projects/ontologies/TiagoRedGreenRob.mp4.

Table 1. The conditional plan and executive plan length in terms of number of sensing and executive
actions and planning time in seconds for the evaluated problems.

Problem
Conditional Plan Executive Plan

Planning Time
Sensing Executive Sensing Executive

Problem-1 3 10 2 5 35

Problem-2 3 13 2 5 59

Problem-3 3 19 2 8 163

Problem-4 7 41 3 12 449

Concerning the implementation framework, four components are considered: task planning,
relaxed geometric reasoning, motion planning, and executive module. Task planning is developed
using a modified version of the Contingent-FF planner coded in C++. All the action templates are
described using PDDL by considering ADL (Action Description Language, ref. [28]) enabling us to
define operators in a more compact way, using quantifiers and conditional effects. There is not any
pre-processing step to compute geometric details of actions and they are computed and assigned
during the manipulation planning process.

We use The Kautham Project [29], a C++-based open-source tool for motion planning that enables
planning under geometric and kinodynamic constraints for relaxed geometric reasoning and motion
planning. It uses the Open Motion Planning Library (OMPL) [30] as a core set of sampling-based
planning algorithms. In this work, the RRT-Connect [31] motion planner is used for motion planning.
This planner is one of the most efficient motion planners, but it does not guarantee optimal
motions. The Kautham Project involves different collision checking modules to detect robot-object
and object-object collisions, and features a placement sampling mechanism to find feasible object poses
in the workspace. Relaxed geometric reasoning uses these modules to find feasible sample geometric
instances for symbolic actions. The executive module uses a sensing module which uses the 3D camera
mounted inside the TIAGo robot, and also some components provided by PAL Robotics to send a motion

https://sir.upc.es/projects/ontologies/GreenRedHuman.mp4
https://sir.upc.es/projects/ontologies/GreenRedHuman.mp4
https://sir.upc.es/projects/ontologies/TiagoRedGreenRob.mp4
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path to the robot. The communication between task, relaxed geometric reasoning, motion planning,
and executive modules is done via Robotic Operating System (ROS) [32].

9. Conclusions

This paper has proposed a contingent-based task and motion planning approach able to cope
with high-dimension mobile manipulation problems in the presence of high-level uncertainty and
human interactions (referred to the sharing of knowledge and to collaborative actions which are out of
the robot capabilities). For this purpose, the basic Contingent-FF planner has been modified to include
robot action reasoning, human–robot collaboration, and state observation. A set of geometric reasoning
processes has been offered to the planning process to capture the task constraints imposed in the robot
environment and to update belief state while task planning is done. Moreover, some modules linked
with the human knowledge along with the perception system, have been also designed to observe
the binary outcomes of actions. It is worth noting that the proposed approach results in a tree-shaped
conditional plan which is geometrically feasible regardless of the values of sensing actions.

To evaluate the proposed approach, several manipulation tasks have been executed in simulation
and real environments to show the way of tackling human–robot interactions, and identifying and
handling both geometric constraints and high-level uncertainty. Problems performance has been
reported in terms of the length of the manipulation plan and planning time, considering an increasing
number of objects. In all the cases, the robot in collaboration with the human operator has been able to
solve the tasks despite the uncertainty and the constraints.

Future work will concentrate on manipulation tasks also subject to low-level geometric uncertainty,
its effects in sensing and how it is transferred to task planning.
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