8 research outputs found

    Constructions, inductive types and strong normalization

    Get PDF
    This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and type-checking, based on the equality-as-judgement presentation. We present a set-theoretic notion of model, CC-structures, and use this to give a new strong normalization proof based on a modification of the realizability interpretation. An extension of the core calculus by inductive types is investigated and we show, using the example of infinite trees, how the realizability semantics and the strong normalization argument can be extended to non-algebraic inductive types. We emphasize that our interpretation is sound for large eliminations, e.g. allows the definition of sets by recursion. Finally we apply the extended calculus to a non-trivial problem: the formalization of the strong normalization argument for Girard's System F. This formal proof has been developed and checked using the..

    On Proving the Correctness of Program Transformations Based on Free Theorems for Higher-order Polymorphic Calculi

    Get PDF
    A number of program transformations currently of interest can be derived from Wadler's "free theorems" for calculi approximately modern functional languages. Although delicate but fundamental issues arise in proving the correctness of free theorems-based program transformations, these issues are usually left unaddressed in correctness proofs appearing in the literature. As a result, most such proofs are incomplete, and most free theorems-based transformations are applied to programs in calculi for which they are not actually known to be correct.The purpose of this paper is three-fold. First, we raise and clarify some of the issues that must be addressed when constructing correctness proofs for free theorems-based program transformations. Second, we offer a principled approach to developing such proofs. Third, we use Pitts' recent work on parametricity and observational equivalence to show how our approach can be used to give the first proof that transformations based on the Acid Rain theorems preserve observational equivalence of programs in a polymorphic lambda calculus supporting FPC-style fixpoints and algebraic data types. Correctness of the foldr-build rule, the destroy-unfoldr rule, and the hylofusion program transformation for this calculus follows immediately. The same approach is expected to yield complete correctness proofs for free theorems-based transformations in calculi which even more closely resemble languages with which programmers are concerned in practice

    Recursive program schemes: semantics and proof theory

    Get PDF

    A synthetic axiomatization of Map Theory

    Get PDF
    Includes TOC détaillée, index et appendicesInternational audienceThis paper presents a subtantially simplified axiomatization of Map Theory and proves the consistency of this axiomatization in ZFC under the assumption that there exists an inaccessible ordinal. Map Theory axiomatizes lambda calculus plus Hilbert's epsilon operator. All theorems of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert's epsilon operator from Map Theory then one is left with a computer programming language. Map Theory fulfills Church's original aim of introducing lambda calculus. Map Theory is suited for reasoning about classical mathematics as well ascomputer programs. Furthermore, Map Theory is suited for eliminating thebarrier between classical mathematics and computer science rather than just supporting the two fields side by side. Map Theory axiomatizes a universe of "maps", some of which are "wellfounded". The class of wellfounded maps in Map Theory corresponds to the universe of sets in ZFC. The first version MT0 of Map Theory had axioms which populated the class of wellfounded maps, much like the power set axiom et.al. populates the universe of ZFC. The new axiomatization MT of Map Theory is "synthetic" in the sense that the class of wellfounded maps is defined inside MapTheory rather than being introduced through axioms. In the paper we define the notion of kappa- and kappasigma-expansions and prove that if sigma is the smallest strongly inaccessible cardinal then canonical kappasigma expansions are models of MT (which proves the consistency). Furthermore, in the appendix, we prove that canonical omega-expansions are fully abstract models of the computational part of Map Theory

    Semantics in a frege structure

    Get PDF

    Realizability and recursive mathematics

    Get PDF
    Section 1: Philosophy, logic and constructivityPhilosophy, formal logic and the theory of computation all bear on problems in the foundations of constructive mathematics. There are few places where these, often competing, disciplines converge more neatly than in the theory of realizability structures. Uealizability applies recursion-theoretic concepts to give interpretations of constructivism along lines suggested originally by Heyting and Kleene. The research reported in the dissertation revives the original insights of Kleene—by which realizability structures are viewed as models rather than proof-theoretic interpretations—to solve a major problem of classification and to draw mathematical consequences from its solution.Section 2: Intuitionism and recursion: the problem of classificationThe internal structure of constructivism presents an interesting problem. Mathematically, it is a problem of classification; for philosophy, it is one of conceptual organization. Within the past seventy years, constructive mathematics has grown into a jungle of fullydeveloped "constructivities," approaches to the mathematics of the calculable which range from strict finitism through hyperarithmetic model theory. The problem we address is taxonomic: to sort through the jungle, set standards for classification and determine those features which run through everything that is properly "constructive."There are two notable approaches to constructivity; these must appear prominently in any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies on a complete constructivization of the basic mathematical objects and logical operations. The other is classical recursive mathematics, as represented by the work of Dekker, Myhill, and Nerode. Classical constructivists use standard logic in a mathematical universe restricted to coded objects and recursive operations.The theorems of the dissertation give a precise answer to the classification problem for intuitionism and classical constructivism. Between these realms arc connected semantically through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses all of the intuitionistic mathematics that does not involve choice sequences. (This includes all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure, V(A7), based on Kleene realizability. Since realizability takes set variables to range over "effective" objects, large parts of classical constructivism appear over the model as inter¬ preted subsystems of intuitionistic set theory. For example, the entire first-order classical theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals and ordinals under realizability. In brief, we prove that a satisfactory partial solution to the classification problem exists; theories in classical recursive constructivism are identical, under a natural interpretation, to intuitionistic theories. The interpretation is especially satisfactory because it is not a Godel-style translation; the interpretation can be developed so that it leaves the classical logical forms unchanged.Section 3: Mathematical applications of the translation:The solution to the classification problem is a bridge capable of carrying two-way mathematical traffic. In one direction, an identification of classical constructivism with intuitionism yields a certain elimination of recursion theory from the standard mathematical theory of effective structures, leaving pure set theory and a bit of model theory. Not only are the theorems of classical effective mathematics faithfully represented in intuitionistic set theory, but also the arguments that provide proofs of those theorems. Via realizability, one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are often more straightforward than their recursion-theoretic counterparts. The new proofs are also more transparent, because they involve, rather than recursion theory plus set theory, at most the set-theoretic "axioms" of effective mathematics.Working the other way, many of the negative ("cannot be obtained recursively") results of classical constructivism carry over immediately into strong independence results from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for instance, turn into independence proofs concerning the structure of the usual topology on the intuitionistic reals.The realizability methods that shed so much light over recursive set theory can be applied to "recursive theories" generally. We devote a chapter to verifying that the realizability techniques can be used to good effect in the semantical foundations of computer science. The classical theory of effectively given computational domains a la Scott can be subsumed into the Kleene realizability universe as a species of countable noneffective domains. In this way, the theory of effective domains becomes a chapter (under interpre¬ tation) in an intuitionistic study of denotational semantics. We then show how the "extra information" captured in the logical signs under realizability can be used to give proofs of classical theorems about effective domains.Section 4: Solutions to metamathematical problems:The realizability model for set theory is very tractible; in many ways, it resembles a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a number of open problems in the metamathematics of constructivity. First, there is the perennial problem of finding and delimiting in the wide constructive universe those features that correspond to structures familiar from classical mathematics. In the realizability model, it is easy to locate the collection of classical ordinals and to show that they form, intuitionistically, a set rather than a proper class. Also, one interprets an argument of Dekker and Myhill to prove that the classical powerset of the natural numbers contains at least continuum-many distinct cardinals.Second, a major tenet of Bishop's program for constructivity has been that constructive mathematics is "numerical:" all the properties of constructive objects, including the real numbers, can be represented as properties of the natural numbers. The realizability model shows that Bishop's numericalization of mathematics can, in principle, be accomplished. Every set over the model with decidable equality and every metric space is enumerated by a collection of natural numbers

    Acta Cybernetica : Volume 19. Number 2.

    Get PDF

    Modelling the algebra of weakest preconditions

    Get PDF
    In expounding the notions of pre- and postconditions, of termination and nontermination, of correctness and of predicate transformers I found that the same trivalent distinction played a major role in all contexts. Namely: Initialisation properties: An execution of a program always, sometimes or never starts from an initial state. Termination/nontermination properties: If it starts, the execution always, sometimes or never terminates. Clean-/messy termination properties: A terminating execution always, sometimes or never terminates cleanly. Final state properties: All, some or no final states of α from s have a given property
    corecore