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Abstract

This paper presents a substantially simplified axiomatization of Map Theory
and proves the consistency of this axiomatization (called MT) in ZFC under
the assumption that there exists an inaccessible ordinal.

Map Theory axiomatizes lambda calculus plus Hilbert’s epsilon operator.
All theorems of ZFC set theory including the axiom of foundation are provable
in Map Theory, and if one omits Hilbert’s epsilon operator from Map Theory
then one is left with a computer programming language. Map Theory fulfills
Church’s original aim of lambda calculus.

Map Theory is suited for reasoning about classical mathematics as well as
computer programs. Furthermore, Map Theory is suited for eliminating the
barrier between classical mathematics and computer science rather than just
supporting the two fields side by side.

Map Theory axiomatizes a universe of “maps”, some of which are “well-
founded”. The class of wellfounded maps in Map Theory corresponds to the
universe of sets in ZFC. The first axiomatization MT(y of Map Theory had ax-
ioms which populated the class of wellfounded maps, much like the power set
axiom et al. populates the universe of ZFC. The new axiomatization MT of Map
Theory is “synthetic” in the sense that the class of wellfounded maps is defined
inside Map Theory rather than being introduced through axioms.

In the paper we define the notions of canonical and non-canonical k- and
ko-expansions and prove that if o is the smallest strongly inaccessible ordinal
then canonical ko-expansions are models of MT (which proves the consistency).
Furthermore, in Appendix A, we prove that canonical w-expansions are fully
abstract models of the computational part of Map Theory.
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1. Introduction

1.1. What Map Theory is

Intuitively, Map Theory is the theory of a universe M which is a Big ordered
model of untyped lambda calculus. The universe M is big enough to contain
a model of ZFC. The elements of M are called maps. Applying any map to
any map yields a map, and Map Theory supports unrestricted use of lambda
abstraction. Application is monotonic in the order of M.

Closed lambda terms are, of course, interpreted by maps, but this is also
the case for sets, classes, set- and class-constructors, logical connectives and
quantifiers (c.f. Section 3 of [9]). Any wellformed formula of ZFC is a term of
Map Theory (through definitions in Map Theory of €, -, = and V, cf. Example
4.5.1).

Map theory interprets ZFC as follows: A closed, wellformed formula A of
ZFC is a closed term of Map Theory. If A is a theorem of ZFC then A =T
is a theorem of Map Theory where T is a special map which represents truth.
If the negation of A is a theorem of ZFC then A = F where F is another map.
Russell’s paradoxical sentence R is not a wellformed formula of ZFC but is
easy to express in Map Theory; it satisfies R = L where L is the minimal
element of M and that does not give rise to any inconsistency (cf. Section
2.4). Computationally speaking, R evaluates to “does not terminate” in the
A-calculus sense (cf. Section 2.6).

Map Theory has several axiomatizations like the axiomatization MT con-
sidered in the present paper and the original axiomatization MTy in [9]. This
is like Set Theory which has e.g. the axiomatizations ZFC and NBG. MT is
defined in Section 3.2 and Section 4. Appendix D contains a summary of MT.

As shown in [4], some big Scott-like models can be enriched to be suitable
universes of Map Theory.

Syntactically, Map Theory comprises a computer programming language
plus Hilbert’s epsilon operator. All theorems of ZFC set theory including the
axiom of foundation are provable in all the various axiomatizations of Map
Theory, and if one omits Hilbert’s epsilon operator from Map Theory then one
is left with a computer programming language (cf. Section 2.5).

Map Theory is suited for reasoning about classical mathematics as well as
computer programs. Furthermore, Map Theory is suited for eliminating the
barrier between classical mathematics and computer science rather than just
supporting the two fields side by side. A core benefit of Map Theory is that it
allows to mix recursive programs and quantifiers freely, as exemplified in Section
2.3 and Example 4.5.2. All this was largely developed in [9, Part 1].



1.2. Map Theory and its axiomatizations

The first axiomatization of Map Theory [9], which we call M T in this paper,
had complex axioms and a complex model. [4] provided a simpler model. The
present paper provides a simpler and more synthetic axiomatization which we
call MT and which is summarized in Appendix D, and proves the consistency
of the enhanced system starting from the canonical models of MT built in [4].
On a quite solid basis we conjecture (Conjecture 2.2.3 and Appendix B) that
MT is more powerful than MT,. We also introduce (in Section 3.4) a natural
and minor variant MTqes of MT, and derive its consistency from that of MT.

When speaking of “Map Theory” in this paper we always refer either to
the generic intuition or to properties shared by all the axiomatizations we have
proposed for that underlying intuition.

Map Theory is an axiomatic system, but it does not rely on propositional
and first order predicate calculus. Rather, it is an equational theory which relies
on untyped lambda calculus. In particular, models of Map Theory are also
models of untyped lambda calculus. We refer to the elements of such models as
maps. As for A-calculus, programming is made possible in Map Theory by the
adjunction of compatible reduction rules.

Map Theory generates quantifiers and first order calculus via a construct
(i.e. language construct) €, whose semantics is that of Hilbert’s choice operator
acting over a universe ® of “wellfounded maps”. The € construct is axiomatized
through the “quantification axioms” (four equations).

Apart from e, MT and M T have in common a few elementary constructs (A-
abstraction, application, T, L and if) and related axioms and inference rules (the
Elem group, cf. Section 4.1) which take care of the computational part of Map
Theory. These constructs simultaneously bear set theoretical and/or logical
meanings [9]. Some “sugar” (the construct Y and parallel or and the associated
Elem’ group of rules) has also been added to MT, but this is inessential.

1.8. How MT enhances MT

We now explain why we felt a need for designing MT, and what is the key
difference between MT and MT(. While MT to some extend obsoletes M Ty (cf.
Section 14.4), MTy is still important here since the consistency proof of MT
builds on that of MTj.

Apart from e and the elementary constructs, MTy has only one construct
¢, which is in spirit the characteristic function of ®. As a set of rules (where
“rules” means “axioms and inference rules”), and with the terminology above,
we have

MT, = Elem + Quant[¢] + WF[¢]

cf. Section 5.1. Quant[¢] axiomatizes the notion of quantification over ® and
WF[¢] contains ten axioms, each axiomatizing one specific closure property of
®, plus one inference rule of transfinite induction (cf. Section 5.1). MTy has the
power to embody ZFC because ¢ satisfies WF[¢)].



Having ten axioms, even if some of them are not intuitive, was acceptable
(after all ZFC also has many existence axioms) but not satisfactory in that
all the closure properties are instances of a single, although non-axiomatizable,
Generic Closure Property (GCP, [4], also stated here in Section 7.8). GCP was
one of the founding intuitions behind Map Theory (cf. [9]), it was satisfied in
our models of MTy, and our desire was to reflect it at the syntactic level.

With the present MT not only do we solve this problem (whence “synthetic”)
but we also eliminate ¢ and WF[¢], replacing them by ... nothing (whence
“simpler”). Moreover, the new system is stronger (Provided Conjecture 2.2.3
is true). Nothing should be taken with three grains of salt as explained in the
following.

The Definability Theorem (Theorem 10.1), which is the most difficult result
of the present paper, tells us that if we take ® to be the smallest universe
satisfying GCP, then its characteristic function ¢ happens to be definable from
other MT constructs as a term ¢ (defined in Section 4.7).

The first grain of salt is that we replace Quant[¢] by Quant[¢)]. In other
words, when we eliminate ¢, we replace it by .

The second grain of salt is that for defining ¢ we need to add a construct
E (“pure existence”) and its related axioms (the Exist group, cf. Section 4.4).
However, and in contrast to ¢, E is very simple to describe, to axiomatize and
to model, so the cost of that is small.

The third grain of salt is that the definition of v also requires a minimal fixed
point operator. Fixed point operators come for free with untyped A-calculus,
but forcing minimality at the syntactic level requires to axiomatize it w.r.t. some
pertinent and MT-definable order. This too can be done, and at a rather low
syntactic and semantic cost. In fact, besides finding the order, the cost is the
addition of three inference rules which express monotonicity (Mono), minimality
of the fixed point operator Y (Min) and extensionality (Ext), c.f. Section 4.2
and 4.3 and the table in Section 5.5.

Thus, we can summarize MT by

MT = Elem + Elem’ + Mono + Min + Ext + Exist + Quant[¢)]

cf. Section 5.1.

Finally, MTg4es is just the “economical” version of MT where all the oc-
currences of Y and L are replaced by Ycury = Af. (Az. f(zz))(Az. f(zz)) and
Lewry = YounyAz. ¢ = (Az.2zz)(Az. zz). In this paper, = is used for defini-
tions.

1.4. The consistency of MT

Finding the right MT was of course already a challenge, but proving its
consistency was another one. Fortunately, the consistency of a system only has
to be proved once, while hopefully the system will be used many times, so having
a simpler system is a gain, even if its consistency proof is demanding.

To give an idea of the difficulty of finding an appropriate and consistent
MT, it is worth noticing that a first “synthetic” version of MT, called MT,,



was present in [10], that many proofs have been developed in it (which should
be easy to translate to MT), but that the consistency of MT, is still an open
problem. We will come back to MT, in Section 2.2.

We prove the consistency of MT in ZFC+SI where ZFC+SI is ZFC extended
with the assumption that there exists an inaccessible ordinal (where inaccessible
means strongly inaccessible, c.f. Section 6.1).

We prove the consistency by showing that some of the models of MT( built
in [4] can be expanded to model MT also. More specifically, the “canonical”
models of MT( are also models of MT, provided they are constructed using the
first inaccessible ordinal o, (Theorem 2.2.1/Theorem 13.1).

The most difficult part of the consistency proof for MT is the Definability
Theorem (Theorem 10.1) which states that ¢ = 1. The proof can be found in
Sections 10-12 and uses that g, is the smallest inaccessible.

Furthermore, MT has some new inference rules (Mono, Min and Ext) whose
satisfaction requires canonicity. They are treated in Section 9.

Not all models of MT( can be enriched to a model of MT; in fact MT has
necessarily much fewer models than MT c.f. Section 5.4.

The natural and minor variant MT g of MT mentioned in Sections 1.2 and
1.3 and defined in Section 3.4 (the one where Ycyyry and Loy replace Y and
1) has even less models than MT and is a bit more difficult to prove consistent.
This is one reason why we chose MT as the main subject of the present paper
and present the consistency of MTg4er as a corollary of the consistency of MT
(c.f. Section 13).

1.5. Relation to the consistency proof for MTy

The present paper reuses a substantial amount of material from the con-
sistency proof for MTy in [4]. In the present paper we repeat definitions and
theorems from [4] that we need, but we do not repeat proofs. The intention
is to keep the size of the present paper down and at the same time make the
present paper readable without having [4] available. MT can be seen as obso-
leting MTy, but the present paper cannot be seen as obsoleting [4] since some
theorems needed in the present paper are proved in [4].

Furthermore, as stated at the end of Section 5.4, it is infeasible to prove
the consistency of Quant[y] directly due to the complexity of the definition of
¥ (cf. Section 4.9). Instead, we reuse the consistency of Quant[¢] from [4] and
prove ¥ = ¢ in Section 10-12. Since ¢ only lives in MTy and not in MT, this is
another point in favor of keeping MT( around.

Thus, we compare MT and MT, throughout the present paper so that we
may reuse results from [4] and explain which new theorems are needed.

Quant[¢)], Quant[¢] and the other sets of rules of MT and MTj are discussed
in Section 5.5.

1.6. Relation of Map Theory to other systems

MT, was the first system fulfilling Church’s original aim at the origin of the
creation of (untyped) A-calculus [5, 6]. Church’s aim was to give a common



and untyped foundation to mathematics and computation, based on functions
(viewed as rules) and application, in place of sets and membership. As is well
known, Church’s general axiomatic system was soon proved inconsistent, but
its computational part (the now usual untyped A-calculus) had an immense
impact on computer science. The various intuitions behind Map Theory, its
very close links to Church’s system, its advantages w.r.t. ZFC, including an
integrated programming language, and a much richer expressive power (since
classes, classes of classes, operators, constructors, etc. also quite directly live in
Map Theory), all this was developed in [4, 9] and remains true for MT.

For a comparison of Map Theory with other foundational4+computational
systems see [4, 9] and also Section 2.2 below. For a version of MT with anti-
foundation axioms & la Aczel [1], see [16, 17].

1.7. Computational properties of the canonical models

As a bonus, Appendix A explores the computational properties of the sim-
plest (i.e. the canonical) models of the equational theory MT, w.r.t. the com-
putational rules which are behind it (see Sections 5.2-5.3 for an introduction to
canonical and non-canonical models and premodels). Among others, Appendix
A addresses the adequacy, soundness and full abstraction of canonical models.
In particular we will prove that the “smallest” canonical premodel of MT (case
Kk = w) is fully abstract w.r.t. the computational rules.

These supplementary results are deferred to an appendix because they are
independent of the consistency proof and are quite technical.

1.8. The structure of the paper

To ease navigation, the paper ends with an index (Appendix E). The table of
contents of course also supports navigation in addition to exposing the structure
of the paper.

Section 2 gives a preview of MT.

Section 3 presents the semantics of MT informally.

Section 4 presents the axioms and inference rules.

Section 5 describes the consistency proof, the models in use and compares

MT to MTO

Sections 6-13: The consistency proof. See Section 5.6 for an overview.

Sections 14-15: Conclusion and acknowledgements.

Appendix A explores computational properties of canonical models.

Appendix B compares the strength of MT and MT\.

Appendix C ties up a loose end.

Appendix D summarizes the rules (i.e. axioms and inference rules) of MT.

Appendix E contains the index.

2. Preview of MT

2.1. Map Theory is an equational theory
MT is a Hilbert style axiomatic system which comprises syntactic definitions
of terms and wellformed formulas as well as axioms and inference rules.



MT has two terms T and F which denote truth and falsehood, respectively,
and MT formulas have form A = B where A and B are MT terms. We refer to
such formulas as equations. In MT one cannot (Theorem 2.2.1) prove T = F.

2.2. Relation to ZFC

Set membership of ZFC is definable as a term E of MT such that Ezy = T
iff the set represented by x belongs to the set represented by y (c.f. Example
4.5.1). We use the infix notation x€y for Exy. Also definable in MT are universal
quantification 9, negation =, implication =, the empty set { and so on.

For suitable definitions of set membership and so on, each formula A of ZFC
becomes a term A of MT. The general idea is that if A holds in ZFC then
A = T holds in MT. As an example, Vz: x¢( is a formula of ZFC, V. x¢(2) is the
corresponding term of MT and V. x¢(2) T holds in MT. The term Vz. x%@ is
shorthand for V(Az. = (z&0)).

We now make the statements above more precise. Let o, be the smallest
inaccessible. Let x be a regular cardinal greater than o,. Let M, be the
canonical ko,-expansion built inside ZFC+SI in Section 8 (cf. Definition 8.6.2).
The present paper proves the following main theorem:

Theorem 2.2.1 (Consistency Theorem). M, satisfies MT.

Stated another way, the xo,-expansion M, is a model of MT. Since T trivially
differs from F in all ko-expansions, the statement trivially implies the consis-
tency of MT. We prove the Consistency Theorem in Sections 6-13 and conclude
the proof in Section 13 where we restate the theorem as Theorem 13.1.

Now let —SI be the assumption that there exist no inaccessible ordinals
and let V,, be the usual model of ZFC+-SI in ZFC+SI. For arbitrary, closed
formulas A of ZFC we have:

Theorem 2.2.2. V. satisfies A iff Mo, satisfies A=T.

Theorem 2.2.2 follows easily from [4, Appendix A.4] and the fact that M,,,
builds on top of the model built in [4]. As a technicality, MT and MT, have
slightly different syntax, but for closed formulas A of ZFC, A only uses con-
structs which are common to MT and MTy, and Theorem 2.2.2 carries over
from MT, to MT without changing the definition of A.

Conjecture 2.2.3. If A is provable in ZFC+—SI then A = T is provable in
MT.

Conjecture 2.2.3 is supported by the following;:
Theorem 2.2.4 ([9]). If A is provable in ZFC then A = T is provable in MTy.

Theorem 2.2.5 ([10]). If A is provable in ZFC then A = T is provable in
MT. where MT,. is the version of Map Theory defined in [10].

10



MT, resembles MT, but all attempts to prove MT, consistent have failed. A
proof of (=SI) = T in MT, should be easy. To prove Conjecture 2.2.3 one has
to prove (—SI) = T in MT and to translate the proof of Theorem 2.2.5 to MT.
This remains to be done.

It is not really intended that (—SI) = T should be provable in MT; it is
rather a side effect. The original MT( was designed to be “as flexible as ZFC”,
and is in particular consistent with ST =T as well as (—SI) = T. As mentioned
in Section 1.3, the MTy system has a constant ¢ and a group WF[¢] of rules.
MT replaces the characteristic function ¢ of ® by . That makes MT more rigid
since ¢ corresponds to the minimal possible ®. This should make (=SI) = T
provable since the minimal ® is analogous to the minimal V,, in ZFC+SI. The
proof of (=SI) = T in MT remains to be worked out.

2.8. Recursion

MT has a number of advantages over ZFC. One is that it allows to combine
unrestricted recursion with arbitrary set constructors. As an example, suppose
that zUy, Jz, {z} and {A[z] | xEB} are the binary union, unary union, unit
set and replacement set operators of ZFC, respectively, translated into MT. One
may define the successor ordinal succ(z) thus in MT:

suce(z) =z U {z}

And then one may define the set rank operator p(z) thus:

p(x) = | Jlsuce(p(y)) | yéa}

Recall from Section 1.3 that we use = for definitional equality. In MT,
definitions are allowed to be recursive like the definition of p above where the
defined concept p appears in the right hand side of its own definition. Recursive
definitions in MT are shorthand for direct (i.e. non-recursive) definitions which
involve the fixed point operator (cf. Section 3.2).

ZFC includes no fixed point operator. ZFC permits definition by transfi-
nite induction, which resembles primitive recursion, but does not support unre-
stricted recursion like MT does.

Now let 3z. A and ex. A be defined as in Section 4.5 and let €y and zAy
be defined as in Example 4.5.1. Under reasonable conditions, ez. A chooses a
wellfounded x such that A is true. The definition of p in MT above does not
rely on ordinals or transfinite induction. Rather, in MT, one may define p as
above and then use it to define the class Ord of ordinals:

Ord(z) = Jy. 2€p(y)

As another example, in MT we may use Hilbert’s choice operator € recursively
to define a well-ordering of any set. Let a be a map which represents the set
to be well-ordered (for the representation of sets by maps see Example 4.5.1).
Then define:
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fla) = ex.x€gla)
9(@) a\{f(y) | v€a}

r<y = da.z€a\gla)AyE gla)

Above, < is a well-ordering of the set represented by a. Note that succ, p, Ord,
< and so on can themselves be taken to be terms of MT since we could define
e.g. Ord = \z. Jy. 2€p(y).

2.4. Russell’s paradox

In naive set theory, define S = {z|x ¢ 2} and R = S € S. We have
reSsrdrand R& Se S & S¢S < —R which is Russell’s paradox.
The paradox states that negation has a fixed point, which is impossible in a
consistent, two-valued logic.

In ZFC, the paradox is avoided by restricting abstraction {x | p(z)} (and
thereby banning S), but that is not an option in MT which allows unlimited
use of abstraction and recursion. As an example, one may define a variant R of
Russell’s paradoxical statement as follows in MT:

R =R

In MT,if R=T then R =T =F and if R = F then R = “F = T so R equals
neither T nor F. Indeed, MT has a fixed point operator Y and an element _L
playing, among others, the role of the third logical value “undefinedness”. In
particular, =1 = 1. The definition R = <R is shorthand for R = Y+ and it is
indeed provable in MT that R=Y-= L.

One question remains: Map Theory allows to model ZFC and classes, so one
may ask what happens to {z | x € 2} in Map Theory. We return to that in
Example 4.5.1.

2.5. Programming

Another advantage of MT over ZFC is that if one removes Hilbert’s £ from
the core syntax of MT then one is left with a Turing complete computer program-
ming language. This language is a type free lambda calculus with ur-elements
and the programs are closed e-free MT-terms.

The present paper is about MT as an equational axiomatic theory. That MT
can be used for programming should be seen here as motivation only. When
speaking of programming with MT it is understood that we have furthermore
included compatible reduction rules (cf. Section 3.5). We now elaborate on the
programming motivations.

Having a computer programming language as a syntactical subset of the
theory allows to reason about programs without having to model the programs
mathematically. That simplifies the field of program semantics considerably.
For a simple example of programming and reasoning in MT, see Example 4.2.1.
Map Theory also provides good support for reasoning about languages different
from its own.

Since MT contains a computer programming language, a programmer may
ask questions like:

12



e Is it possible to implement arbitrary algorithms efficiently in the language?

e Is it possible to download compiler, linker and runtime system for the
language?

e Is it possible in the language e.g. to receive mouse clicks from a user, to
write bytes to a disk and to display graphics on a screen?

The answers to these questions are yes (cf. http://lox.1la/).

Sections 3.5-3.9 describe the computational aspects of MT. Appendix A
proves some results on computational adequacy, soundness and full abstraction.
http://lox.la/ elaborates on MT as a programming language.

2.6. Computation of Russell’s paradox

Russell’s paradoxical statement R = <R does not contain ¢ so one may ask a
computer to compute it. If doing so, the computer will loop indefinitely. Thus,
according to the computer, R = L (even if the computer never says so).

If one asks the computer to compute <R it also loops indefinitely. Thus,
<R = L according to the computer. Hence, R = =R as expected.

3. Informal semantics

3.1. Introduction

To introduce ZFC one will typically give some examples of finite sets first.
Actually, ZFC is nothing but the theory of finite sets extended by an infinite set
w. Likewise, MT is nothing but the theory of computable functions extended
with Hilbert’s non-computable epsilon operator.

The syntax of MT is stated in Section 3.2 and the rules (i.e. axioms and
inference rules) in Section 4. Appendix D provides a summary of MT.

3.2. Syntax

The syntax of variables (var), terms (term) and wellformed formulas (wff)
of MT reads:

(var) w= x|ylz|--
(term) (var)

A(var). (term)
(term) (term)

T

if[(term), (term), (term))
1

Y (term)
(term)||(term)
E(term)
e(term)

(term) = (term)

(wif)
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Or, terser:

v oam aly|z]-
T o= VIXNVTI|TT|T|K[T, T, TV | LIYT|TIT|ET |eT
W = T=T

Recall from Section 1 that we use construct as shorthand for language construct
and from Section 1.3 that we use = for definitional equality. The intuition
behind the constructs above is as follows:

Az. A denotes lambda abstraction.

juxtaposition denotes functional application. As an example, fx denotes f
applied to x.

T denotes truth. Falsehood F is not included in the syntax; we define it by
F = Ax. T. Later, we also use T to denote the empty set, the empty tuple
and the natural number 0.

if denotes selection; we have if[T,b,c] = b and if[Axz.A, b, ¢] = ¢. Later, we also
use selection to define a pairing construct b::c = Ax.if[z, b, c].

L denotes undefinedness or infinite looping.
Y denotes a fixed point operator; we have Y f = f(Yf) for all f.

|| denotes parallel or; a || b equals T if a or b or both equal T. Parallel or || is
neither needed for developing ZFC in MT nor convenient when program-
ming. Parallel or is merely included for the sake of a full abstraction result
(Theorem 3.8.2). We use full abstraction to explain equality in Section
3.8.

E denotes pure existence; we have Ea = T iff az = T for some z.

¢ denotes Hilbert’s choice operator; under reasonable conditions, €a is a well-
founded x such that ax = T. Wellfoundedness is explained in Section
3.10

= denotes equality. Equality is described in Section 3.8. As a preview, terms
which are af-equivalent are equal. The opposite does not hold.

We use Azy. A to denote Ax. Ay. A. Furthermore, application AB is left associa-
tive and has higher priority than Az. A so e.g. Axy. zyy means Az. Ay. ((xy)y).
The term aMb. cd means a(Ab. (cd)) since abstractions extend as far as possible
to the right but cannot extend to the left. Binary operators like x || y have prior-
ity between application and abstraction so Az. zz || zz means \x. ((zz) || (zx)).
Occasionally, formally superfluous parentheses are added for the sake of read-
ability.
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3.3. Fxpansions and models

In Section 5.2 we introduce the notions of k- and ko-expansions.

k-expansions are mathematical structures defined for all regular ordinals
k > w and they model all constructs of MT except €. In contrast, Ko-expansions
are defined for all regular k > o where ¢ is inaccessible, and ko-expansions
model all constructs of MT. Apart from that, x- and ko-expansions are identical.

All k- and ko-expansions satisfy some axioms and inference rules of MT and
some ko-expansions satisfy all of MT. We refer to ko-expansions which model
all of MT as ko-models.

Let M, and M, be the canonical k- and ko-expansion, respectively, as
introduced in Section 5.3. For each regular x > w there are many k-expansions
but M, is the only canonical one, and likewise for xko-expansions.

As already stated in the Consistency Theorem (Theorem 2.2.1/Theorem
13.1), M, models MT if g, is the first inaccessible and k > o, is regular.

3.4, MTqet
Define
J—Curry = YCurryAx- x = ()\ZL’ l’l’)()\l’ :BZL')

In canonical k-expansions we will prove (Theorem 9.5.3) that
Yf=Ycuryf

Then, by the Min rule stated in Section 4.2, we trivially have
1 = Lcumry

Thus, without loss of power and consistency, one might omit L and Y from the
syntax and use Lcurry and Ycurry instead. Doing so, however, would reduce the
number of possible models of MT.

We include L and Y in the syntax. We prove Y f = Ycuny f as a separate
theorem (Theorem 9.5.3) which is only guaranteed in canonical expansions.
Inclusion of 1 and Y also simplifies the consistency proof since modelling of Y f
and proving Y f = Ycury f can be treated separately.

We use MTger to denote the version of MT where we omit L and Y from
the syntax.

3.5. Basic computation

The constructs A\x. A, AB, T and if[A, B, C] together with adequate reduction
rules (defined below) form a computer programming language. The language is
Turing complete in the sense that any recursive function can be expressed in it.

In this section, A and B denote terms, a, b, ¢ and r denote closed terms, and
x, y and z denote variables. (A | x := B) denotes substitution with renaming
of bound variables as needed.
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From a theoretical point of view, and very remote from the implementation

in [11], one can define the programming language by the smallest relation EN
which satisfies:

Tb 50T
(Az. A)b 5 (Al z:=0)
if[T,b, ] = b
if[Az. A, b, ] RN
1 1
a—>r = ab—>rb
aSr = if[a,b, ] N if[r, b, c]

As an example of a reduction, if[Az. z, Ay. y, A\z. 2] T reduces to T:
if[Az. 2, A\y. y, Az. 2| T RN (Az.2)T 5T

We have specified leftmost reduction order so that e.g. if[T, T, (Az. zz)(Az. zz))
reduces to T without (Az.zx)(Az.zx) being reduced.

Suppose a L b. Under this assumption, a = b is provable in MT using only
elementary axioms and inference rules. Hence, a = b holds in all models of MT.
Also, a = b holds in all k-expansions, even those which do not model all of MT
(cf. Theorem 7.5.2). That holds for the definition of a 2 b given above as well
as for the extensions given in the following.

We say that a term is a root normal term if it has form T or Az. A. Reduction
stops when a root normal term is reached. As an example,

Azy. 2)((Az. zz)(Az. z2x))
reduces to

Ay. (Az. zz)(A\z. zax)

which cannot be reduced further. In particular, the term above does not reduce
to Ay. (Az. xzx)(Ax. zzx). We refer to terms of form T and Az. A as true and
function normal terms, respectively.

3.6. Further computation

One may extend the programming language by the constructs L, YA, A || B
and EA. One cannot extend the programming language by €A because € cannot
be seen as computable.

In this section, a, b, ¢, f and r denote closed, epsilon free terms.

The constructs | and Y may be defined or may be included in the syntax. If
they are defined (case MTqef), they need no reduction rules. If they are included
in the syntax (case MT), their reduction rules read:

15 1
Yf S f(YS)
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The construct a || b can be computed as follows. Reduce a and b in parallel. If
one of them reduces to T, halt the other reduction and return T. If both reduce
to function normal terms, return Az. T.

The construct Ea can be computed as follows. Reduce ab for all closed terms
b in parallel. If ab reduces to T for some b, halt all reductions and return T.
Otherwise, proceed computing indefinitely.

The construct Ea is not very useful in computer programs since Ea either
loops indefinitely or returns T. The construct a || b is slightly more useful
since it has two possible return values, T and Az. T, but it is still not a pop-
ular programming construct, and few programming languages support it. The
implementation in [11] supports neither Ea nor a || b.

The construct Ea is needed for defining v (c.f. Section 4.7) and so is indirectly
needed for axiomatizing Hilbert’s choice operator e. The construct a || b is
included for the sake of full abstraction.

Reduction rules for a || b read:

T b RN
Az. A)||b > i, T, 2. T]
a7 = (allb) S|

Note the swapping of arguments in the third rule above. The swapping makes re-
duction alternate between reduction of @ and b. As an example, (Az. zz)(Az. x) ||

TST| Az2)haz) 5T
Giving a reduction rule for Ea is more complicated. To reduce Ea we need
to reduce ab for all closed terms b in parallel. Now define

S = G = Jzyz.az(yz)
K = G = M\y.x
C3 = T
Cs = IAayz.if[z,y, 2]
C5 = L
Cs = .Yz
Cr = day.(zy)
Cs = Mv.Ezx

We refer to terms built up from the eight combinators above plus functional
application as combinator terms. Every closed, epsilon free term of MT is com-
putationally equivalent to a combinator term. Thus, we may compute Ea by
applying a to all combinator terms b:

Ea 5 aG Il - |l aCs || Ez. Ey. a(zy)
abr = Ea->Er

Above, Ex. A denotes E(Az. A). To see how E works, first note that Ea by
definition reduces to

aCy || -+ || aCs || Ex. Ey. a(zy)
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Second, note that the last factor Ez. Ey. a(zy) in turn reduces to

(Ey.a(Cyy)) || -~ || (Ey.a(Csy)) || Eu. Ev. By. a((uv)y)

Third, note that the first factor Ey.a(Cyy) in turn reduces to
a(C1Cy) || -+ || a(C1Cg) || Eu. Ev. a(Cy(uv))

The penultimate factor a(C;Cs) shows that a, among other, is applied to the
combinator term C;Cg. In general, reduction of Ea causes a to be applied to all
combinator terms in parallel.

We have now given reduction rules for reducing arbitrary closed, epsilon
free terms. We give no reduction rules for ea since, as mentioned, it is not
computable.

3.7. Programs

We refer to closed, e-free MT terms as MT programs. Likewise, we refer to
closed, e-free MTger terms as MTyer programs and to closed, e- and ¢-free M T
terms as MTy programs.

The programs of each of the theories are exactly the closed terms which are
reducible by machine. Here we do not require reduction to terminate: a machine
is supposed to loop indefinitely when reducing e.g. L, and L is counted among
the programs.

3.8. Equality
Wellformed formulas of MT have form A = B where A and B are terms. We

now present some intuition concerning equality.

Let A be the set of MT programs that reduce to T, let Ny be the set
of MT programs that reduce to function normal form and let N/} be the set
of the remaining MT programs. We now define root equivalence a ~ b and
observational equality a =qps b.

Definition 3.8.1. For MT programs a and b define:
Root equivalence  a~b  iff (aeN, SbeN)N(ae Ny beNy)
Obs. equality a=obs b iff ca~cb for all MT programs c.

Intuitively, equality of MT is observational equality. Technically, matters
are a bit more complicated:

Recall that the canonical k-expansion M, models all constructs of MT ex-
cept ¢ for all regular k > w. Now let a =, b denote M, = a =b. We have:

Theorem 3.8.2 (Full Abstraction of M,). a =us b & a =, b for all MT
programs a and b.
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See Theorem A.7.2 for a proof and Appendix A for related positive and negative
results. Full abstraction may help understanding MT except €.

Wehavea ~b< (a €Ny & be M)A (a e N < be N|) since each of a
and b belongs to exactly one of Ny, Ny and V. Now for all a,b € M, define

ar~vgbe (a=,Teb=,T)A(a=, Lo b=, 1)

Let a =0, b denote VceM,;: ca ~, cb. The closest one can get to full abstraction

in the general case is the following purely semantic observation:
Fact 3.8.3. a= . b a=,b foralla,be M,, k> w, Kk regular.

The fact follows trivially from the definition of M, (cf. Section 8.7).

3.9. Semantic extensionality

Two MT programs a and b happen to be observationally equivalent iff

ayl.yanyl.yn

for all n > 0 and all MT programs ¥, ...,y,. That follows directly from Theo-
rem 3.8.2 (=Theorem A.7.2), Theorem 9.1.2 (using x = w) and Theorem A.5.5,
and provides another intuitive description of equality. We also have:

Fact 3.9.1. Let a,b € M, kK > w regular. The following are equivalent:
ca ~,, cb for all c € M,
ay1 - Yn ~e by1 - yn  foralln >0 and all y1,...,y, € M.

Fact 3.9.1 follows from Fact 3.8.3 and Theorem 9.1.2. The ZFC equivalent of
Fact 3.9.1 reads:

accebecforallsetsciff y€ca< yebfor all sets y

We refer to Fact 3.9.1 as semantic extensionality; we express it axiomatically in
Section 4.3.

8.10. Wellfoundedness

We have now described all constructs of MT except . To describe & we first
have to introduce the notion of wellfoundedness.

To explain wellfoundedness we resort, as in [4], to any x-expansion M (cf.
Section 3.3) where & is regular and greater than at least one inaccessible ordinal.
We refer to elements of M as maps.

For each inaccessible 0 < k there is a set ® of maps as defined in Definition
7.8.2. At the present stage there is no need to know what & is precisely except
that given k there is one for each inaccessible o < k. We refer to elements of ¢
as wellfounded maps.

As before, let V,, be the usual (wellfounded) model of ZFC inside ZFC+SI
in which M itself is built. There exists [4, Appendix A.4] a surjective function
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Z: ®—V, which allows to represent all sets of V, by elements of ®. Example
4.5.1 defines Z and elaborates on that.

The semantic definition of wellfoundedness given in Definition 7.8.2 is robust
in that it is pertinent for a large class of structures, it is close to the semantic
intuitions behind Map Theory and it is independent of its diverse possible ax-
iomatisations. Therefore, it is the definition we retain in this paper, as we did
in [4] when treating MT\.

8.11. Provable wellfoundedness

Suppose now that o is the first inaccessible. Then, by the Definability
Theorem (Theorem 10.1), we have ® = {xeM | o = T} where ¢ is the term
defined in Section 4.7.

Starting from 1 could hence give us an alternative definition of wellfound-
edness, but only pertinent for MT. The interest of the second definition is that
it comes with the proof theoretic notion of being provably wellfounded in MT,
which we describe now.

By definition, a closed term a is provably wellfounded in MT if ¢pa = T is
provable in MT. Likewise a is provably wellfounded in MTy if ¢a = T is provable
in MT( where ¢ is a construct of MT intended to be the characteristic function
of ®.

In Section 4.8 we give examples illustrating that usual data structures are
provably wellfounded in MT (they were also provably wellfounded in MTy, but
with very different proofs).

Provable wellfoundedness is the relevant tool for developing proofs inside
MT and for interpreting ZFC in MT. But for the purpose of this paper, which
is to prove the consistency of MT, wellfoundedness as defined in Definition 7.8.2
is the most relevant and enlightening.

Now let ¥curry be defined exactly like v except that all occurrences of Y and
1L are replaced by Ycurry and Lcurry, respectively. A closed term a is provably
wellfounded in MTger if Yourya = T is provable in MTqes. In canonical models
we have Y = Ycoury and L = Lcury. Thus, in canonical models, we have

Y = Ycuny and ® = {zeM | Yoy = T}

8.12. Hilbert’s choice operator

To explain £ we resort, like in Section 3.10, to a k-expansion M where x is
regular and greater than at least one inaccessible ordinal.

We say that a € M is total, written Total(a), if ax # L for all z € ®.

We use g to denote the intended interpretation of Hilbert’s choice opera-
tor. More specifically, € is a function of type M—M which has the following
properties for all a € M:

e(a) = 1 if —Total(a)

e(a) € @ if Total(a)

a(g(a)) = T if Total(a) AJz€diax =T

e(a) = ¢b if Total(a) A Total(b) AVze®: (ax =T < bx=T)
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In other words, ¢ is a Hilbert choice operator over ®. The last property above
is Ackermann’s axiom.

The strictness requirement that ea = L if —=Total(a) has two motivations.
First, MT includes an inference rule which implies that application is monotonic
for a certain order a < b so € must be monotonic in the sense that a < b must
imply ea = €b. Strictness together with Ackermann’s axiom and the definition of
a = b given later is sufficient to ensure monotonicity of €. Second, the strictness
requirement simplifies the quantification axioms stated later.

3.13. The need for inaccessibility

We repeatedly assume that o is the first inaccessible and that x is greater
than 0. That may give rise to the questions: Why inaccessible? Why first?
Why greater?

Since we can interpret ZFC in Map Theory it should be no surprise that to
prove the consistency of Map Theory we need something strong enough to prove
the consistency of ZFC. In [9] there are some results which use relativization
and the assumption that ZFC is consistent instead of assuming the existence
of an inaccessible. But those results and their proofs are cumbersome and not
very general. That hints at why we assume the existence of an inaccessible.

Then the Definability Theorem (Theorem 10.1) proves ® = {zeM | Yz =
T} for the first inaccessible o where 1 is the term defined in Section 4.7 and ®
is the “universe of wellfounded maps” that we introduced informally in Section
1.2, and whose formal definition (Definition 7.8.2) depends on o. The term 1
defined in Section 4.7 is the simplest one we have found so far which allows to
formulate a version of Map Theory strong enough to develop ZFC in it.

That term v happens to be the characteristic function of the ® associated
to the smallest inaccessible. One could imagine the use of another v which was
the characteristic function of another ®, but in the present paper we use the v
of Section 4.7 and that forces us to use the first inaccessible.

Fixing 1 is also the point which makes MT less flexible than MTy in terms
of compatibility with extensions of ZFC. For each consistent extension of ZFC
there is an associated consistent variant of MTq [9, Theorem 15.5.1] which can
prove all the theorems of the given extension. To get something similar for MT
one would have to find a new % (if any) for each extension of ZFC.

Finally, we assume that the regular cardinal x satisfies k > 0. The consis-
tency proof presented in the present paper is based on so-called k-Scott seman-
tics and k-continuity (where x-Scott semantics and k-continuity is usual Scott
semantics and continuity, respectively, for kK = w). In the x-Scott approach we
can model ¢ iff € as defined in Section 3.12 is k-continuous, and that happens to
require that ® is the upwards closure of a set of cardinality less than x (Theorem
7.7.3) which is true only if k > 0.

To summarize the above, we use the inaccessibility of o in many places (e.g.
for defining @, for modelling £ and for proving the Definability Theorem). We
only use that o is the first inaccessible in the proof of Lemma 12.4.2 which
constitutes part of the proof of the Definability Theorem.
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3.14. Pure existence revisited

Let k > w be regular and let M be any k-expansion. Pure existence E is
designed to satisfy in M that Ea = T if axz = T for some x and Ea = | otherwise
(cf. Section 4.4). So, Ea = T in M iff ax = T for some 2 € M while the reduction
rule for Ea given in Section 3.6 gives that Ea = T iff ax = T for some program
x. We now compare these two notions of existential quantification. Define pure
and computational existence as follows:

Epwre = Aa.Ea

Ecomp = Aa.[aCq |- - || aCs || Ecomp At. Ecomp Av. a(uv)]
We have

Epwea = T iff az =T for some map =

Ecompa = T iff ax =T for some program x

The canonical w-expansion M, happens to be a simple and very pertinent
model for the computational and elementary part of MT even if M, is not a
model of the full theory. We will see this later on, and we will prove in Appendix
A that, among other nice properties, M, satisfies Epyre = Ecomp (cf. Lemma
A.4.1). Now, this equation can be proved to be false in M, K > w (cf. Theorem
A.8.1 and its proof), and more generally should be false in all the models of
MT built from s-premodels (k > w), for a similar reason (these models are in a
sense “too big”).

The E of MT is the pure one. Indeed, the computational intuition behind E
that we provided at the end of Section 3.6 is valid in M., but does not hold in
full MT.

4. Rules (i.e. axioms and inference rules)

MT has six groups of rules (where rules means azioms and inference rules):

Elem Elementary rules common to MT and MT,; Section 4.1
Elem’ Further elementary rules Section 4.1
Mono/Min  Monotonicity and Minimality Section 4.2
Ext Extensionality Section 4.3
Exist The axioms on E Section 4.4
Quant[yy]  Quantification axioms Section 4.5

The syntax of MT was stated in Section 3.2 and Appendix D summarizes MT.

4.1. Elementary axioms and inference rules

Let A, B, C and D be (possibly open) terms and let  and y be variables.
Let 1 = Azy.xy, i.e. let 1 be the term that Church happened to use for the
number 1. The two first sets of rules (i.e. axioms and inference rules) of MT
read:
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Trans A=B,A=C+FB=C

Sub A=B;C=DF AC = BD

Gen A=BFXx. A= Xz. B

Al TB=T

A2 (B) M. A)B=(A|x:=8B) if Bis free for z in A
A3 1B=1

Rename (a) MAz. (A|y:=x)=Xy. (A|z:=y)
if = is free for y in A and vice versa

11 if[T,B,C] =B

12 if(Az. A, B,C] =C

13 if[L,B,C] = L

QND Alz:=T)=(B|z:=T),
(A|x:=1x) = (B |z := 1x);
(Alz:=1L)y=(Blx:=1)F
A=D8B

The Elem group of rules

P1 TI|IB=T

P2 AlT=T

P3 Ar. Al Ady.B=Xz.T

Y YA=A(YA)

The Elem’ group of rules

Quartum Non Datur (QND) approximates that every map x satisfies x = T or
x = L or x = 1z, there is no fourth possibility.

Example 4.1.1. As an example of use of QND, define

F = Xo. T
~x = iflx, T,F

Using the definitions above, QND allows to prove the following:

TNy = yAzx
(xAyY)ANz = A (yAz2)
TN = =Rz

4.2. Monotonicity and Minimality

Monotonicity was part of the founding intuitions behind Map Theory [4],
even if it was not reflected in the first axiomatization MTy of Map Theory.
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Expressing this intuition at the syntactic level can of course only be done using
a syntactic order =< which has to be defined first:

if[z,if[y, T, L],ifly, L, Az. (x2) | (y2)]]

r=xzly

rly
Ty

The recursive definition of x | y is shorthand for:

xly= YAfay. if[z,ifly, T, L], ifly, L, Az. f(x2)(y2)]])zy

In canonical models, x < y coincides with the order of the model and x | y is
the greatest lower bound of x and y. That < is an order is forced by Rule Ext
introduced in Section 4.3; this is explained in Example 4.3.2.

The rules of Monotonicity and Minimality read:

Mono B<C+FAB =< AC
Min AB=<BFYA=<B

The Mono and Min rules

Mono and Min force the constant Y to behave, at the syntactic level, as a
fixed point operator which is minimal w.r.t. the syntactic order <.

As illustrated by the following example, the principle of induction follows
from minimality.

Example 4.2.1. We now introduce a primitive representation of natural num-
bers. We first do so semantically. Let M be a model of MT. We refer to elements

of M as maps.
We say that a map x is wellfounded w.r.t. a set G of maps if, for all
Y1,Y2, . .. € G there exists a natural number n such that xy; - - -y, = T. We say

that a map x is a natural number map if it is wellfounded w.r.t. {T}. Thus, x
is a natural number map if

/—L
2TT--T=T

for some natural number n. As examples, Azyz. T is a natural number map and
Azyz. L is not. We say that a natural number map x represents the smallest n
which satisfies the equation above so Azyz. T represents ‘three’.

We now formalize natural numbers in MT in the sense that we give a number
of syntactic definitions which allow to reason formally about natural numbers
in MT. The definitions read:

T
Azy.

Kz

M. iflz, T, f(aT)]

Yw

y = iffa,ifly, T,FLif[y, F,2T = yT]

w
AL.X =2

5 xOo

~

lle

SN
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As an example, 0" denotes one among many maps which represents ‘two’.

The semantics of ¥ in the model M is that xyz = T if x is a natural number
map and yx = L otherwise. For that reason we refer to x as the characteristic
map of the class of natural number maps (cf. Definition 4.6.1). We say that a
map m is a covariant representation of {x€M | mx = T} so y covariantly repre-
sents the set of natural number maps (Example 4.5.1 introduces a contravariant
representation). The covariant representation is the one used by Church and
others for representing sets.

For all natural number maps = and y we have (zr = y) = T iff 2 and y
represent the same number.

In MT, we can prove wé = Az.if[z, T, 2T = 2T]. Furthermore, we can prove
£ = (\r.x £ ) = . if[x,if[x, T,F),if[z,F, 2T £ 2T]] = Az.if[z, T,2T £ 2T]
where the latter equality requires QND. Hence, we can prove wé = £ so wé < &€
(cf. Example 4.3.2). Hence, we can prove ¥ < & by Min.

Semantically, Y < & expresses that (z = z) = T for all natural number
maps: for each natural number map x we have yr = T and yxr =< £z which
shows Ex = T.

Thus, the syntactic statement y < £ formalizes the semantic statement that
every natural number equals itself and the syntactic statement ¥ < &£ has a
formal proof in MT.

From a program correctness point of view we have now done the following:
We have defined an inductive data type (the natural numbers) and we have
represented it by its characteristic map . Then we have written a program
Azy. (z £ y) which can compare two natural numbers for equality. And finally
we have proved y < £ which expresses that every natural number equals itself.

While this is a very simple example and even though we do not write out
detailed proofs, this still gives a first, small example of the fact that MT allows
programming and reasoning inside the same framework. For a continuation of
the present example which uses quantifiers see Example 4.5.2.

Note that A\zy.z = y is a program; one can compile it and run it on argu-
ments z and y using the system described in [11].

In other logical frameworks than MT, given a recursive program like A\zy. 2 =
y, proofs of theorems like (z £ x) = T for all natural numbers x usually requires
some sort of Peano induction. In MT, induction is expressed by Min.

In the example above, we applied Min to the characteristic function Y of natural
number maps to get something equivalent to Peano induction (cf. [10, Section
7.13]). Ome can do the same for arbitrary inductive data types and even for
®: applying Min to the characteristic map 1 defined in Section 4.7 yields an
induction scheme which resembles but is stronger than transfinite induction (cf.
[10, Section 9.13]).

4.3. Rule Ext

Recall =z = if[z, T, F] from Example 4.1.1. For all terms A, B and C
(possibly containing free variables and possibly containing epsilon), the inference
rule of extensionality reads:
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Ext If z and y are not free in A and B then
~(Az) = =(Bz); Azy=AC; Bxy=BC - Az = Bx

The Ext rule

Note that if the premises of Ext hold, if ¢ = Azy.C and if yq,yo, ... are not free
in A and B, then we have e.g.

~(Azy1y2) = =(A(cxyr)y2) = ~(A(c(czyr)y2)) =
~(B(c(exyr)y2)) = ~=(B(cxy1)y2) = =(Bry1y2)

More generally, we have ~(Axy; - -yn) = ~(Azy; - - - yn). Now, canonical k-
expansions M, have a semantic extensionality property which says that if a,b €
M, and if

oy yn) = =(byr )

for all natural numbers n and all y,...,y, € M, then a = b (cf. Fact 3.9.1).
Rule Ext is a syntactical approximation of this property which works in those
cases where one can find a C for which one can prove the premises of Ext. It is
typically rather difficult to find a witness C but it is possible more often than
one should expect.

The relation between Ext and semantic extensionality as defined in Section
3.9 is: the premises of Ext entail ~(Axy; - y,) = ~(Bzyi---y,) which by
semantic extensionality entail Ax = Bx which is exactly the conclusion of Ext.

Extensionality in MT corresponds to extensionality in set theory, where the
latter says that if y € a < y € b then a = b. The set theory formula P < Q
corresponds to ~P = ~Q in MT, and y € a corresponds to ayy - - - Y.

Example 4.3.1. Let i = Az.if[z, T, A\y.i(zy)] and I = Ax.z. To prove
iz = Iz by Ext take C to be zy and prove ~(iz) = ~(Ix), izy = i(zy) and
Ixy = I(zy). The two first statements above can be proved using QND and the
third is trivial.

Example 4.3.2. Extallowstoprovez |z =z, zly=ylzandz | (y|z2)=
(z | y) | z. Those results are useful since they entail z <z, 2 <y;y Jzkz =y
and z <X y;y <X zF 2 < z. (For proofs, see [10]).

When developing ZFC in MT, Ext plays a marginal but essential role [10].
In Example 4.2.1, Min replaced usual Peano induction and Min was used in the
essential step in proving (r = 2) = T, but Ext was also in play for proving
wé X € from w& = £. Likewise, when developing ZFC, the results listed in
Example 4.3.2 are used in many places. Among other, it is used for proving the
MT version of transfinite induction which in turn is used for proving most of the
proper axioms of ZFC. Concerning Ext, the development of ZFC only depends
on the results listed in Example 4.3.2.
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Example 4.3.3. Ext also allows to prove F5 = F3 where

Iy
F3

AT, Ay. Az, F3

F5 and F3 both denote Axq. Axs. Axs. - -- and we have Fy =.,¢ F3. Thus, F5 and
F3 provide an example of two pure lambda terms which are provably equal in
MT and observationally equal from the point of view of a computer, but not
beta equivalent in lambda calculus. We conjecture that F» = F3 is not provable
in MTy (there is no reason why it should be).

Proving F» = Fj3 directly (i.e. without establishing a collection of convenience
lemmas first) is a tricky exercise. To get started, define Fy = Az. Fy, A =
Me.if[z, Fy, Fi |, B= Azx.if[z, Fy, A\y. F»] and C = if[x, F, T]. Then, using
QND, prove the premises of Ext and conclude Ax = Bx. Then AT = BT gives
Fy = F5. Proceed by proving Fy = Fj.

Section 14.1 mentions yet another use of Ext.

4.4. Azioms on E

Pure existence E is designed to satisfy Ex = T if xy = T for some y and
Ex = L if zy = T for no y in the model. Its axiomatization is a syntactical
approximation of this. Now define:

zoy = MAz.z(yz)
X = Axz.iflzz, T, 1]
x—y = iflz,y, L] =if[x, T, 1]

We have (goh)z = g(hz) so (goh) is the functional composition of g and h. The

equation x — y expresses “if x = T then y = T”. Finally, xg is the characteristic

map (cf. Definition 4.6.1) for which ygx = T iff gr = T and xgz = L otherwise.
The axioms on E read:

ET ET=T

EB EL=1

EX Ex = E(xx)
EC E(zxoy) — Ex

The Exist group of rules

Axioms ET and EB are natural since Te = T and Loz = L are axioms of MT.
The EX axiom says that Ex does not care about the value of zy if xy # T. The
EC axiom says that if z(yz) = T for some z then zw = T for some w.
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4.5. Quantification azioms (i.e. axioms on €)

Define:
lz = if[z, T,T]
S = if[z,F,T]
I = =(plep))
Ju. A = . A
Ve, A = Sdz.5A
ex. A = el A

Note that V, 3 and — are part of the syntax of ZFC+SI whereas Vv, 3 and = are
terms of MT. The quantifier axioms depend on the term 1 defined in Section
4.7. Let M be as in Section 3.12. From the properties of € stated in Section
3.12 and for all maps p € M we have

Vo.pr = T ifVeed:ipr=T
Ve.pr = 1 if Jzedipr=_1
Vez.pr = F otherwise

Hence, V expresses universal quantification over ®. Likewise, 3 expresses exis-
tential quantification over ®. The quantification axioms read:

ElimAll (Vz. A) AYB — (\z. A)B
Ackermann ex. A =ex. (Y A A)
StrictEpsilon 9(cx. A) = Vz.!(A)
StrictAll I(Va. A) = V. 1(A)

The Quant[¢)] group of rules

The quantification axioms are axioms on &, but in some of them e only
appears implicitly.

ElimAll says that if p(x) is true for all wellfounded x and if B is wellfounded
then p(B) is true.

Ackermann (Ackermann’s axiom) says that ex.p(z) only depends on the truth
value of p(z) for wellfounded x. In other words, ex.p(x) does not care about
p(z) for non-wellfounded . Furthermore, if x is wellfounded and p(x) is neither
T nor L, then e considers p(x) false and does not care about the exact value of
p(z).

StrictEpsilon says that e is strict (cf. Section 3.12) in the sense that that
ex.p(x) is L if p(z) is L for one or more wellfounded z. Likewise, StrictAll says
that V is strict.

Example 4.5.1. According to the Strong Induction Property (SIP, c.f. Section
7.8), elements of ® are wellfounded w.r.t. ® (see Example 4.2.1 for the definition
of wellfoundedness with respect to a set). This allows to introduce a representa-
tion of sets of ZFC by elements of ® which we shall refer to as the contravariant
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representation (see Example 4.2.1 for the covariant representation). We define
the set Z[x] contravariantly represented by x € ® thus:

0
{Zzz]) | z€¢®} fa#T

N
=
1]

For the usual model V, of ZFC in ZFC+SI and canonical ko-expansions
Mo of MT we have V, = {Z[z] | z € ®} (cf. [4, Appendix A.4]) so all sets of
ZFC are representable by wellfounded maps = € ®. Now define:

x=y = if[x,ifly, T,F],if[y, T, T]]

zhy = S(z=y)

v=y = if[x,if[y, T, F] if[y, F, (Vudv. zu=yv)A(YoIu. zuz=yv)|]
w&y = if[y,F, 3z a2yz]

For all z,y € ® we have (z€y) = T iff Z[z] € Z[y] and (z=y) = T iff
Z[x] = Z]y]. The definition of = resembles that of = in Example 4.2.1.

Using €, =, => and V we may now express all wellformed formulas of ZFC in
MT. By Theorem 2.2.2 all closed theorems of ZFC are satisfied by the canonical
model M, of MT (actually, they are satisfied by all ko-expansions, o inacces-
sible, kK > o). As a conjecture (Conjecture 2.2.3), closed theorems of ZFEC+-SI
are provable in MT.

The map I = Az.x happens not to be wellfounded. But if it were we would
have Z[I] = {Z[Iz] | x € ®} = {Z][z] | x € ®} so I is a reasonable representation
for the class of all sets. In general, no wellfounded map represents the class of
all sets. )

For all wellfounded = we have z¢x so Russell’s paradoxical {z | = & z} is
the class of all sets, and we could represent it by I. So Russell’s paradoxical set
is in Map Theory, but is not wellfounded in the sense of Map Theory. Likewise,
Burali-Forti’s “set” of all ordinals is in Map Theory, but is not wellfounded in
the sense of Map Theory.

The covariant representation mentioned in Example 4.2.1 where a map m
represents {x | ma = T} was the one used by Church and others for representing
classes. That representation seems to be entirely unsuited for representing ZFC
sets. In contrast, the contravariant representation introduced in the present
example works well for developing ZFC. When working with MT, one typically
has to use both co- and contravariant representations.

Example 4.5.2. As a continuation of Example 4.2.1, define
x+y = iflz,y, (2T)+9]
Having a quantifier in MT allows to prove in MT e.g. that the term
%c,y.x—i—yéy—}—x
equals T. The proof involves a proof of Vy. z +y £ y + z by induction on z (or,

more precisely, a proof of Y < Az. Vy r+1y £ y+x by Min). The proof requires
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the ability to apply induction to a statement which contains both a quantifier
(V) and recursive programs (+ and =) and thus requires the ability to mix
recursive programs and quantifiers. The ability to mix recursive programs and
quantifiers freely is a core benefit of MT.

4.6. Preliminaries for the definition of v

We conclude the presentation of the axioms by defining . Like in Section
3.12 let M be any ko-expansion. We first define some auxiliary concepts.

Definition 4.6.1. for all a € M define:
(a) ais a characteristic map if a € M\{T, L} and ax € {T, L} forallz € M.
(b) Dla]={z e M |ax =T}
(¢) ais the characteristic map of S if a is a characteristic map and S = Dla].

In Example 4.2.1 we referred to y as “the characteristic map of the set of natural
number maps”, which is coherent with the definition above.

Definition 4.6.2.
(a) U= Afy.Ex. foy
(b) z:y=iflz,y, L]
() flg=iflf, T, x.gz: (fz/g)]

The map LI trivially satisfies
Fact 4.6.3. D[Uf] = UgemD[fx].

Furthermore, z : y is “y guarded by x” in the sense that if t =T thenz : y =y
and if x # T then x : y = L. We make x : y right associative so that x : y : 2z
means x : (y: z). Thus, z : y: z is z guarded by both = and y. Since x : y is an
infix operator we have that zu : yv means (zu) : (yv).

One may think of f/g as a projection in the sense that (f/g)/g = f/g9 = f
holds in M (cf. Lemma 10.5.3). The f/g construct equals | f of [4]. Since f/g
is an infix operator we have that fx/gy means (fx)/(gy).

4.7. The definition of 1

We now go on to define 1. To do so we need to define a number of auxiliary
terms. In M, the terms v, s, P, @ and R will satisfy:

P = Us
S0 D[¥] = UgemD][sd]
furthermore sa € {P,Q(s(aF)), Rsyp(aT)(aF), L}
and D[¢] = D[P]U (Ucerm D[Q(sc)]) U (Upcert D[Rsipbe])

For all a, b, c € M we will have that ¥, sa, P, Q(sc) and Rsibc are characteristic
maps or L. For all a € M, D[sa] will be essentially o-small in the sense that
there exists a set A C M of cardinality less than ¢ such that D[sa] = {w € M |
JueA:u < w}. See Sections 10-12 for proofs.

Now, the definition of ) and the auxiliary terms reads:
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Definition 4.7.1.

(a) ¥ =Us

(b) s=YS

(©) 5= Af.57(Uf)

(d) S=Afba.if[a, P, if[aT, Q(f(aF)), RfO(aT)(aF)]]
() P=\y.ifly, T, 1]

(f) Q@ =Xele: Ay Vz.e(y(z/c))

(g) R= Afbbc.0c: Ry fobc: Ry fobe

(h) Ry = AfObe. V2. 1(f(b(cz/6)))

(i) Ro = Afbbcy.Ez.(0z: f(b(cz/0))y)

Like in Section 3.11 let ®cury be defined exactly like v except that all
occurrences of Y and L are replaced by Ycumy and Lcumy, respectively. In
MTgef, Ycury takes the place of 1.

4.8. Some properties of 1

Note that s = YS = S(YS) = Ss = Ss(Us) = Ssi. Hence, in Definition
4.7.1(d-i) above one may think of f and 6 as s and 1, respectively.

Now define b::c = Az.if[z, b, ¢]. For b,c € M we have (b::c)T = b and
(b::c)F = ¢. Thus,

sT = SsyT = P
s(Tue) = Ssyp(Tue) = Q(sc)
s(bize) = Ssy(bie) = Rsybe ifbg {T,L1}.

Accordingly, for b, ¢,y € M we have

If Py=T then Yy =T
IfQ(sc)y=T thenoyy=T
If Rsypbcy =T thenyy=T (bg{T,L})

Thus, P, Q and R represent three ways to prove that y is wellfounded in the
sense of MT.

Example 4.8.1. From PT = T we have ¥ T = T so T is wellfounded. This
may be seen as the base case. Actually, P just has two purposes: it forces T
to be wellfounded and it initiates the recursive population of the universe of
wellfounded maps. ) ) )

From Q(sT)(Au.T) = Vz.sT((Au. T)(z/sT)) =Vz.sTT =Vz. T = T we have
that Az. T is wellfounded.

Recall that we defined 0 = T, 1 = Au. T, 2 = Awv. T and so on in Exam-
ple 4.2.1. We have now proved that 0 and 1 are wellfounded. Furthermore,
s(T::(T=T))2 = T proves that 2 is wellfounded. We may go on and prove that
3 is wellfounded and so on.
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4.9. Discussion of the definition of ¥

The definition of ¥ replaces the WF[¢] group of MTy (ten axioms and one
inference rule). The definition of ¥ in MT covers the following axioms of ZFC:
the null set axiom, the pair set axiom, the power set axiom, the union set axiom,
the axiom of replacement, the axiom of infinity, the axiom of restriction and the
axiom of foundation.

The ability of MT to model ZFC stems from several sources. First, the
quantification axioms (cf. Section 4.5) reference 1 in a way which forces MT
quantifiers to quantify over the universe D[¢)] = {aeM | vz = T}. Second,
as shown in Example 4.8.1, recursive use of s = Y.S populates D[¢], putting a
lower bound on the size of the universe. Third, the minimality of Y permits a
kind of transfinite induction over D[], putting an upper bound on the size of
the universe. Fourth, Ext plays a marginal but essential role in that it forces <
to be a partial order.

When modelling ZFC in MT, one may define €, -, = and V as in Section 4.5.
Then, to prove e.g. the power set axiom one may find an MT term P(z) such
that P(x) represents the power set of the set represented by . Then one may
prove T = Va,y. (y€P(z)&Vz. (2E€y=z€x)) and T = Va.(P(z)) from which
the power set axiom is easy to prove. Proving T = Vz. (P (x)) makes use of the
second point above by using the fact that ¢ makes the universe big enough to
contain P(z). But it also uses the third point above because the proof requires
a kind of transfinite induction on = and thereby uses the fact that the universe
is so small that all sets have powersets.

Note that the definition of ¢ (Definition 4.7.1) is somewhat complicated: E
appears explicitly in (i) and implicitly in (a) through the definition of L. Y
appears explicitly in (b) and implicitly in (f), (h) and (i) through the recur-
sive definition of z/c. Finally, € appears implicitly in (f) and (h) through the
definition of V.

As stated in Section 5.4, the complexity of the definition of ¢ makes it
infeasible to model Quant[¢)] directly. So we instead reuse some results from [4]
and combine them with the investigation of ¥ in Sections 10-12.

That the definition of ¥ is somewhat complicated should not be too surpris-
ing, given that the power of ZFC is hidden in it.

5. Introduction to the consistency proof

We now give some more information on expansions and models for Map
Theory.

Recall from Section 1.2 that the axiomatization MT of Map Theory is the
main topic of the present paper and that MT to some extend obsoletes the
previous axiomatization MTy [4, 9]. Also recall that the consistency proof of
MT of the present paper draws heavily on the consistency proof of MTy in [4]
so that we cannot ignore MT\.

Finally recall that MTges is the minor variant of MT in which we replace
Y by Youny = Af.(Az. f(zz))(Az. f(zx)) and L by Loumy = YoumyAT. 2 =
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(Az.zx)(Ax.zx) (cf. Section 3.4). In Section 13 we prove the consistency of
MTg4et as a corollary of the consistency of MT.

5.1. Axioms and inference rules

The rules (i.e. axioms and inference rules) of MT and MTy fall in the fol-
lowing groups:

Elem The elementary rules of MT except Y and P1-3 (Section 4.1). These are
also rules of MT.

Elem’ The rules Y and P1-3 of MT (Section 4.1).
Mono The rule of monotonicity of MT (Section 4.2)
Min The rule of minimality of MT (Section 4.2)

Ext The rule of extensionality of MT (Section 4.3)
Exist The axioms on E of MT (Section 4.4)

Quant[a] The quantification axioms of MT (Section 4.5) in which 1) is replaced
by a. The Quant[y] and Quant[¢] rules are rules of MT and MT), respec-
tively.

WF[¢] Ten axioms, each axiomatizing one specific closure property of ®, plus
one inference rule of transfinite induction (the ten axioms are presented
as three “wellfoundedness” and seven “construction” axioms in [9]).

We have:
MT = Elem + Elem’ + Mono + Min + Ext + Exist + Quant[¢)]
MT, = Elem + Quant[¢] + WF[¢]

Modulo an inessential change of the definition of A — B, Quant[¢] already
appears in [4, Appendix C]. The four axioms of Quant[¢] are equivalent to the
original set of 541 axioms where the five ones were stated in [9] and the sixth
one, as pointed out by Thierry Vallée, was used but not stated in [9].

5.2. Domains, premodels and expansions

We introduce here informally the notions of ko-ezpansions (o inaccessible,
k > o, k regular) and k-expansions (kK > w, k regular), among which live the
canonical expansions. Certain canonical ko-expansions will be proved to be the
models of MT we are looking for. In contrast, one main result of [4] is that all
ro-expansions satisfy MTy (cf. Fact 5.4.1(a,b)). The notion of xo-expansions
is built in the following stages:

33



Underlying set MO

k-Scott domain M= (M, <) Section 6.3
reflexive -domain ~ M? = (M1, A, \) Section 7.1
k-premodel M3 . An M? which satisfies Definition 7.4.4
K-expansion M= (M3 T, Lif,Y,|,E) Section 7.5
Ko-expansion M5 = (M* ¢, ) Section 7.5

The notions of k-Scott domains, reflexive xk-domains, k-premodels and k-expan-
sions are defined for all regular x > w. For each k-premodel M3 there is exactly
one k-expansion M* = (M3 T, L if,Y,|,E); we shall refer to that uniquely
defined M* as the k-expansion of M3.

The notion of a ko-expansion is defined for all inaccessible o and all regular
k > o. For each k-premodel M3 and given o < k there is exactly one ko-
expansion (modulo the choice of the choice function underlying €); as before we
refer to it as the ko-expansion of M?3.

From now on, z € M! = (M <) means z € M° and likewise for M? to
M?. Furthermore, we drop the superscripts of M and let M denote any one of
MO to M5 depending on context.

5.83. The canonical expansions M, and M,

In Section 8 we construct a canonical k-premodel for each regular cardinal
k > w. For each regular k > w there are many k-premodels but only one
canonical one. We shall refer to the k-expansion of the canonical x-premodel
as the canonical k-expansion M, and likewise for the canonical ko-expansion
M,.s (c.f. Definition 8.6.2).

We use the word canonical for a number of reasons. First, that is the word
we used in [4] so “canonical” is convenient when referring to “the canonical
models of [4]”. Second, for each choice of xk and o there is only one of them
(except for the choice of choice function used to model ¢, cf. Fact 8.3.3). Third,
the k-premodel we call “canonical” is the one which “feels right”, just like w is
the model of the natural numbers which “feels right”. Besides, it is the simplest
premodel one can produce within k-Scott semantics (cf. the introduction of
Section 8), and probably the only one suited to MT (in contrast to MTy).Finally,
the word “canonical” formally does not really mean anything and thus does not
need justification (as opposed to more suggestive words like “minimal”).

5.4. Satisfaction of axioms and inference rules

A ko-expansion interprets application A, abstraction A and the constructs
T, L,if, Y, ||, E, € and ¢. The construct ¢ is not needed for modelling MT and
the constructs Y, || and E are not needed for modelling MTy.

A k-expansion does not define € and ¢ and thus cannot satisfy MT or MTj.
In particular, k-expansions cannot satisfy Quant[y], Quant[¢] and WF[¢] but
can satisfy the other groups of rules.

We shall use M = S to denote that M satisfies the rule or group of rules
S. Now let x be regular. We have:
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Fact 5.4.1.

(a) M = Elem + Elem’ + Exist if M is any s-expansion where x > w (c.f.
Theorem 7.5.2).

(b) M [= Quant[¢] + WF[¢] if M is any ko-expansion where k > ¢ and o is
inaccessible (c.f. [4] or Theorem 7.9.2)

(¢c) My = Mono + Min + Ext if K > w (c.f. Section 7.6).

(d) Myo, = Quant[)] if > 0, and 0, is the first inaccessible (c.f. Theorem
7.9.2 and the Definability Theorem (Theorem 10.1)).

In particular, M,,, = MT if g, is the first inaccessible and x > o,, c.f. the
Consistency Theorem (Theorem 2.2.1) which we restate and prove as Theorem
13.1. In contrast, M,, = MTy for any inaccessible o and k > o.

The proof of (a) is easy, the proof of (b) is less easy (c.f. Section 9) and, as
already mentioned, the proof of (d) is by far the most difficult.

Proving M,,, = Quant[¢] directly is infeasible because the definition of
¢ is complicated (cf. Section 4.9). Instead, we reuse M,, £ Quant[¢] from
[4], prove ¢ = % in Sections 10-12 and conclude M, = Quant[¢] from that.
Reusing M,,,, = Quant[¢p] and several other theorems from [4] substantially
simplifies and shortens the present paper.

5.5. Subjective and objective difficulty of axioms and inference rules

We now move on to consider the “difficulty” of the rules (i.e. axioms and
inference rules) of Map Theory. “Difficulty” is a multi-dimensional and subjec-
tive notion. When looking at the rules it is natural to ask oneself the following
questions:

e Naturality. Are the rules intuitive or “natural” in some sense, i.e. is there
a natural or simple or motivated intuition behind?

e Strength. Do we need k > o for an inaccessible ¢ for modelling them or is
K > w enough?

e Conceptual difficulty. Do we need to introduce original and/or high level
tools for modelling them?

o Technical difficulty. Do we need difficult computations for modelling
them?

The Elem and Elem’ rules are natural (if one is used to A-calculus) and can
be modelled at no cost (i.e. in any k-premodel, k > w).

The Exist rules are at first glance purely technical, but in fact they are easy
from all the above points of view, the reason being that they are just four
instances of a single, simple intuition, which allows us to model them easily and
at “no cost”.

Of course, all the rules of MT are natural in some sense, since they were
designed from semantic and computational intuitions (cf. [9]), but this naturality
may be lost when approximating the ideas through formalization.
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Mono and Min are semantically natural (syntactically a little less because
of the definition of <), and can be modelled at no cost in terms of strength
(k > w), but fixing a syntactic definition of the order induces a technical cost
which drastically reduces the class of possible models but fortunately works for
canonical ones (cf. Sections 7.6 and 9.3).

The Ext rule requires “familiarization” in the sense that it is unintelligible
in itself and requires some explanations like those given in Section 4.3. But the
intuition behind it is easy (if g and h behave the same when applied to arbitrary
lists of arguments, then they are equal). Satisfying Ext is both conceptually and
technically not so easy. Again, Ext reduces the class of possible models, but is
satisfied in canonical ones.

Concerning the Quant[a] rules it is interesting to note that replacing ¢ of MTy
by % in MT induces no change in strength in the sense that an inaccessible is
used (and apparently needed) for modelling M Ty as well as MT, but that they
are conceptually a bit harder for MT (because they refer to the defined ¢ which
replaces the WF[¢] rules) and technically much harder (cf. Sections 10-12).

The WF[¢] rules belong to MTy and are treated in [4]. Some of them are
difficult to satisfy and very difficult to explain.

Elem | Mono | Ext | Exist | Quant[y)] | Quant[¢] | WF[¢)
Elem’ | Min
Naturality | Easy | Easy f Easy q Easy D
Strength K>w | k>w | K>w | K>w K>0 K>0 K>0
Conceptual | Easy ¢ c Easy D d d
difficulty
Technical Easy c c Easy D d d
difficulty
¢ Less easy. Requires canonicity and some less easy developments
d Difficult
D Very difficult
f  Requires familiarization
q Easy in themselves but the definition of v is complicated

5.6. Quverview of the consistency proof

Section 6 presents x-Scott semantics. Section 7 defines the notions of expan-
sions and related structures and treats the satisfaction of Elem, Elem’, Exist and
Quant[¢]. Section 7 also gives some initial results concerning the satisfaction of
Mono, Min and Ext.

Section 8 recalls the construction of canonical models from [4] which allows
Section 9 to finish the treatment of Mono, Min and Ext.

Sections 10-12 prove ©¥» = ¢ where Section 11 proves ¥ <q ¢, Section 12
proves ¢ = ¢ ¥ and Section 10 presents material needed in both Section 11 and
12. Section 13 restates the Consistency Theorem and finilizes its proof.
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6. The k-Scott semantics

As promised in Section 5.6 we now introduce k-Scott semantics. In par-
ticular, we define the notion of x-Scott domains (c.f. Section 5.2) and related
concepts. The treatment is similar to that of [4] but is repeated here for the
sake of self-containedness (c.f. Section 5.6).

Models of Map Theory are, in particular, models of A-calculus (i.e. pure
untyped A-calculus) since Map Theory extends A-calculus.

As is well-known, models of A-calculus are exactly the reflexive objects of the
Cartesian closed categories (cec) with enough points (see e.g. [2]). The purpose
of this section is to describe the ccc we use for modelling Map Theory, while the
reflexive objects of the ccc will be introduced in Section 7.1.

Scott built the first non-syntactic model of A-calculus within the ccc of com-
plete lattices (as objects) with continuous functions (as morphisms), and came
quickly to the more abundant ccc of Scott domains and continuous functions,
usually called Scott semantics for short.

Scott semantics itself is too weak for modelling powerful foundational exten-
sions of A-calculus but, as explained in Section 6.2, it is very easy (as already
Scott was aware) to develop, for each regular cardinal k, a k-Scott semantics,
which has the required ability (for x large enough). Usual Scott semantics (case
Kk = w) is sufficient for dealing with the computational aspects of Map Theory
(c.f. Appendix A).

Sections 6.1-6.5 recall the basics of k-Scott semantics, £ > w, mentioning
why it is enough and convenient to consider only regular k. Section 6.6 intro-
duces a new notion of k-step functions, which happens to be a very convenient
tool (e.g. when modelling epsilon and in Section 11).

6.1. Notation

Let w denote the set of finite ordinals (i.e. the set of natural numbers).

For all sets G let G<¥ denote the set of tuples (i.e. finite sequences) of
elements of G. Let () denote the empty tuple.

For all sets G, let G¥ denote the set of infinite sequences of elements of G.

Let f: G—H denote that f is a total function from G to H.

Given any partially ordered or preordered set (R, <) and S C R, we let 15
and |.S be respectively the upward and downward closure of S for < in R.

We say that a set G is k-small if G has cardinality strictly smaller than .
Let P(G) denote the power set of G and let P, (G) denote the set of k-small
subsets of G.

As usual, the cofinality cf(a) of an ordinal « is the smallest ordinal 8 such
that there is a g: 8—a for which v = {J, 5 9(7). The cofinality cf(a) is always
a cardinal. An ordinal « is a regular cardinal if cf(a) = @ > w. An ordinal o is
inaccessible (i.e. strongly inaccessible) if o is regular, o > w and P(7) is o-small
for all v < 0.

Note that there are many regular cardinals since e.g. all infinite successor
cardinals are regular. In contrast, the existence of an inaccessible ordinal is
independent of ZFC.
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A key consequence of regularity is that s-small unions of k-small sets are
k-small for regular x (and of course likewise for inaccessible o).

6.2. k-Scott semantics

The k-Scott category is the Cartesian closed category whose objects are the
k-Scott domains and morphisms the x-continuous functions. The pertinent x-
Scott notions merely depend on the cofinality of k. Thus, as a convenience and
without loss of generality, we only consider regular k. As k grows (k regular)
there are more and more k-Scott domains and k-continuous functions.

The theory of Scott domains (case k = w) is well known, and its x-analogue
was developed in full details in [4]. For the reader familiar with Scott domain
theory, passing from Scott to k-Scott is straightforward and just amounts (pro-
vided k is regular) to changing everywhere “finite” by “k-small”. We recall
some key definitions and results in the following.

k-Scott semantics was first used around 1987-89 in [7, 8] and was used in-
dependently in [4], but Scott was aware of the notion from the beginning, and
k-Scott semantics appeared in German lecture notes by Scott which are proba-
bly lost now.

From now on & is regular.

6.3. k-Scott domains

Let (D, <) be a partially ordered set (p.o. for short). A subset S of D is
k-directed if all its k-small subsets have an upper bound in S. The p.o. (D, <)
is a k-Scott domain if it has a least (or bottom) element, if all x-directed and
all upper-bounded subsets have sups (suprema), and finally if it is k-algebraic
as defined below. As k grows there are more and more k-Scott domains. The
simplest example of a k-Scott domain is that of the full powerset (P(D), C) of
some set D, which is a k-Scott domain for all k. The domain underlying the
canonical model M, will not be a full power set, but will still be a set of sets,
ordered by inclusion.

An element u of D is compact (resp. prime) if, whenever u < sup(S) for
some k-directed (upper bounded) set S, then u < v for some v € S. The
p.-o. D is k-algebraic if for every u € D the set of compact elements below u
is k-directed and has u as its sup. In k-Scott domains, prime elements are
k-compact. Another key property, which is a straightforward generalization of
the w-case, is that (existing) sups of k-small sets of k-compact elements are
themselves k-compact. A k-Scott domain is prime-algebraic if each element of
D is the sup of the primes below it.

Definition 6.3.1. D, is the set of compact elements of the k-Scott domain D.

Both (P(D), C) and the domain Dy, underlying M, are prime algebraic x-
Scott domains. The compact elements of (P(D), C) are the x-small subsets of D
and its primes are the singletons. The compact elements of D, are downward
closures of adequate k-small subsets of D, while primes are downward closures
of singletons.
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6.4. k-continuous functions

A function between two k-Scott domains is k-continuous if it is monotone
and commutes with all sups of non-empty x-directed sets.

Given k-Scott domains D, D’ we use [D—,D’] to denote the k-Scott domain
whose carrier set is the set of k-continuous functions from D to D’ ordered
pointwise. As k grows there are more and more x-continuous functions.

6.5. Kk-open sets

G C D is k-open if G = TK for some set K C D.. Equivalently, G is k-open
if G = TG and whenever G contains sup(S) for some directed set S then it
contains some element of S. This defines a topology, the x-Scott topology and
the k-continuous functions, as defined above, are exactly the functions which
are continuous with respect to this topology. Finally, it is straightforward to
check but crucial to note that the intersection of a x-small family of k-open sets
is still k-open.

The set G C D is essentially k-small if V. C G C 1V for some k-small V. It
follows that G is an essentially x-small open set if and only if G =1V for some
k-small V C D,.

6.6. k-step functions

We now introduce a notion of k-step functions; such functions are partic-
ularly easy to prove to be x-continuous and they are natural and convenient
tools for our purposes. In particular, the interpretation of € recalled from [4] in
Section 7.4 is a k-step function, and several families of k-step functions will be
used in Sections 10-12.

Definition 6.6.1. For all g: D—D the domain Dom][g] is defined by Domlg] =
{reD|glx) £ 1},

Definition 6.6.2. g: D—D is a x-step function if:
(a) Dom][g] is k-open.
(b) z 2pmy = g(x) = LVyg(r) =g(y)

Lemma 6.6.3. Every k-step function is k-continuous.

Proof of 6.6.3 Monotonicity is obvious. Now let S C D be x-directed. We
shall prove g(sup(S)) = sup({g(z) | = € S}). Because of Definition 6.6.2(b) this
is equivalent to proving sup(S) € Domlg] < Jz€S: x € Dom|g] which is obvious
since Dom|[g] is k-open.

6.7. Conclusion

As promised in Section 5.6 we have now introduced k-Scott semantics. Fur-
thermore, we have introduced the notion of x-Scott domains. As mentioned
in Section 5.2, the construction of an adequate k-Scott domain constitutes the
first step in constructing a model of MT. We have also proved the small Lemma
6.6.3, but it is the presentation of k-Scott semantics which was the main purpose
of Section 6.

39



7. Premodels and expansions.

Having k-Scott domains from Section 6 and following the plan laid out in
Section 5.6, we now proceed with defining the rest of the concepts listed in
Section 5.2 leading up to the definition of ko-expansions (Definition 7.9.1) which
we eventually use to model MT.

In this section k > w is regular.

7.1. Reflexive k-domains as models of pure \-calculus

A Reflezive k-domain (i.e. a reflexive object of the k-Scott semantics)
is a triple (D, A,\) where D is a k-Scott domain and A: D—,[D—.D] and
A: [D—;D]— D are two morphisms such that A o X is the identity. This gives
a model of untyped A-calculus, i.e. of rules Trans, Sub, Gen, A2 and Rename
when we use A and A to interpret the pure A-terms, in the standard way (see
e.g. [2]).

Most of the time A(u)(v) will be abbreviated as wv which we make left-
associative so that wvw means (uv)w. Furthermore, uw = wwy - w, if © =
wy - wy, (n>0).

All n-ary k-continuous functions, n € w, can be internalized in D: for any
such f there is an element v € D such that f(uy,...,u,) = vuy---u, for all
Uy, ..., u, € D. In the case n = 1 we can take v = A(f).

7.2. Tarski’s minimal fized point operators

Let D be a x-Scott domain and let f € [D—,D]. If kK = w then f has a fixed
point and even has a minimal such. That does not always hold for kK > w. As
an example, (w, <) is a k-Scott domain for all regular £ > w but the successor
function has no fixed point.

We now turn to sufficient conditions for the existence of fixed points. For
all f € [D—,D], z € D and ordinals « define

f (@) = sup{f(f°(x)) | B € a}

whenever the sup exists. Furthermore, define

yTarski(f) = fK(J—) yTarski
We say that v is a pre-fized point of f if f(v) =am v.

Lemma 7.2.1. If f*(L) is defined then f¢(L) is defined for all o, f*(L) =
fo(L) for alla > k, f has a fixed (and pre-fized) point, it has a unique minimal
fized (and pre-fized) point and Vrarsii(f) = f(L) is that minimal fized point.

Proof of 7.2.1 Easy and classical.

Lemma 7.2.2.
(a) If kK = w then Yruski € [D—+D]—4D is total.
(b) If f has a fixed point then (f%)a<x and Vrarski(f) are defined.
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(c) If there are A, A making (D, A, \) a reflexive k-domain then Yrarski is total
and k-continuous.

Proof of 7.2.2

(a) Easy.

(b) Note that if f has a fixed point = then z is an upper bound for each
{f(f5(L)) | B € a} which thus has a sup because D is x-Scott.

(c) Totality follows from (b) because YcuryA(f) is a fixed point where
Ycoury = Af. (Az. f(zz))(Az. f(zx)) exists in all models of A-calculus and
thus exists in all reflexive k-domains. Continuity can be proved by a rather
standard proof (which can be found e.g. in [16]).

Now suppose M = (D, A, \) is a reflexive k-domain and define Yru,s € M by
Definition 7.2.3. Yrarski = MVTarski © 4)
Above, o is composition.

Corollary 7.2.4.
(a) YTarskiu = U(YTarskiu) (Y)
(b) uv 2 v = YTarskitt Spm v (Min)

Proof of 7.2.4 First note that A o A is the identity since M is reflexive so
Y Tarskitt = AV arski © 4)) (1) = (Vrarski © A) (u). Then (a) and (b) follow from
the fact that Vmareki is the minimal fixed and pre-fixed point operator.

Hence, Yra.s would be a good candidate for interpreting Y, provided the syn-
tactic order z = y and the model order x <, y coincide, as they do when M
is canonical (c.f. Theorem 7.6.3 which is proved as Corollary 9.3.2):

7.8. The domain equation Eq,,

Let 1" and T’ be arbitrary, distinct constants which are not functions. Given
a k-Scott domain D’ which does not contain T" and 1" we denote by D' @ {T'}
the k-Scott domain obtained by adding to D’ the element T’ which we decide
to be incomparable to all the elements of D’, and the bottom element L’ which
we decide to be below T’ and all the elements of D’.

Definition 7.3.1. Egq, is the domain equation D ~ [D—,D] &, {T'}.

Eq,, asserts that the two sides of ~ are order isomorphic k-Scott domains.
It is the most natural semantic counterpart of rule QND, and the heart of
the notion of a k-premodel. Proving the existence of solutions of Eq, within
Scott’s semantics is a well mastered technique, and passing from w to k is
straightforward. FEgq, admits moreover a canonical solution, which will be re-
built in Section 8.

41

YTarski



7.4. k-Premodels

Given a solution D of Eg,, and an order isomorphism A from [D— D)@ - {T'}
to D, define:

Definition 7.4.1.

T = AT)
L = AL
Fo= M) | feD=:Dl}

We clearly have:

Fact 7.4.2.
(a) L is the bottom element of D.
(b)y F=D\{L, T}
(¢) F and {T} are disjoint, open subsets of D.
(d) Az. L (i.e. Mz — 1)) is the bottom element of F because F is the iso-
morphic image of [D— D] under \.

Now let A be a morphism from D to [D—,D]. Since uv abbreviates A(u)(v) we
have that Tu abbreviates A(T)(u) and likewise for Lu and 1u. The following
theorem is easy to prove and the details can be found in [4, Section 3.1]:

Theorem 7.4.3. If D is a solution of Eq, and if X is an order isomorphism
from [D—,D] @, {T'} to D then there exists an A such that (D, A,)\) is a
reflexive k-domain satisfying:

(a) Tu=T and Lu= L for allu € D.

(b) F={ueD |u=1u} =D\ {L,T}.

(¢c) F and {T} are disjoint r-open subsets of D.

Note that in (b) above, only the last equation (which repeats Fact 7.4.2(b)) uses
the assumption that D is a solution to Eg, ; the first equation is classic.

The interpretation of any term of form Az. A is in F. For all u,v € F we
have u < v iff ux < vz for all x in D.

Conversely, any reflexive x-domain (D, A, \) satisfying (a), (b) and (c) of
the above theorem can easily be turned into a solution of Eq,..

Definition 7.4.4. A k-premodel M is a reflexive k-domain (D, A, \) for which
D satisfies Eq,, and which satisfies the three conditions of Theorem 7.4.3.

7.5. k-expansions

We now define the notion of a k-expansion. Later, in Definition 8.6.2, and
as promised in Section 5.3, we define the canonical k-expansion M, to be the
k-expansion of the canonical k-premodel.

Definition 7.5.1. The k-ezpansion of a k-premodel M = (D, A, \) is the tuple
(M, T, Lif,Y,||,E) where T and L are defined in Definition 7.4.1 and if, Y, ||
and E are defined below.
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Define If (u,v,w) =vifu=T, wifu € F and L if u = L. Now If is clearly
k-continuous. Let if be the unique element of M such that ifuvw = If (u, v, w)
for all u,v,w € M.

Let Y be Yraski as defined in Section 7.2.

Define Paror(u,v) = Tif w or v is T, Aa. T if u,v € F and L otherwise.
Define Ex(u) = T if uv = T for some v € M and L otherwise. Now Paror and
Ex are clearly x-continuous. Let || and E be the unique elements of M such that
|luv = Paror(u, v) and Eu = Ex(u) for all u,v € M.

Note that interpretation of T, L, if, || and E can only be done as above and
that choosing Yrarsii for Y is the most natural (and possibly unique) way to
interpret Y.

Recall Elem and Elem’ from Section 4.1 and Exist from Section 4.4. We have:

Theorem 7.5.2. M |= Elem+Elem’+Exist if M is a k-expansion where k > w.

Proof. The k-premodel underlying the x-expansion M satisfies rules Trans,
Sub, Gen, A2 and Rename since it is a reflexive object of a Cartesian closed cat-
egory. The k-premodel satisfies A1l and A3 and rule QND because k-premodels
by definition satisfy the conditions of Theorem 7.4.3. Axioms I1, 12 and I3 fol-
low from the definition of if. Axiom Y follows from Corollary 7.2.4(a). Axioms
P1, P2 and P3 follow from the definition of ||; and the four axioms on E follow
from the definition of E. O

7.6. Towards modelling of Mono, Min and Ext

We are not yet in a position to prove the monotonicity and minimality rules
Mono and Min (cf. Section 4.2) and the extensionality rule Ext (cf. Section 4.3),
but we have the following:

Theorem 7.6.1. If k > w and if M 1is a k-expansion, then M satisfies the
Monotonicity and the Minimality axioms for the model order <, (but possibly
not for the syntactic order <).

Proof. Monotonicity is for free when M lives in Scott’s semantics and the
rest follows from Corollary 7.2.4. O

In Section 9, we prove Mono and Min in the canonical k-expansion M,; (k >
w) by proving that <, and = coincide in such models. Thus, no inaccessible
is needed, but canonicity is crucial. Modelling of Mono, Min and Ext in Section
9 proceeds thus:

Theorem 7.6.2 (Section 9.2). M, = Ext if k > w.

Theorem 7.6.3 (Section 9.3). M, satisfies that the model order < coin-
cides with the syntactic order = if Kk > w.

Now recall that Y is interpreted by Yrarski-

Corollary 7.6.4. M, = Mono + Min if k > w.
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Theorem 7.6.5 (Section 9.5). M, satisfies YTarski = Ycurry if £ > w.
Corollary 7.6.6. M, satisfies Y = Ycuryf and L = Lcury if £ > w.

Corollary 7.6.7. M, satisfies Mono and Min of MT g if k > w.

7.7. Quantifier axioms

We now turn to the quantifier axioms (cf. Section 4.5). The Quant[¢] axioms
of MT( were easy to model (the difficulty was carried by some of the ¢-axioms).
For MT, the complexity of the term v, whose definition involves € and Y, makes
Quant[¢)] very difficult to model. Our trick will be to use that Quant[¢] holds and
to prove (in Sections 10-12) that ¢ and ¢ coincide in all ko-expansions, provided
o is the first inaccessible and provided € and ¢ are defined as in Definition 7.9.1.

Recall D[w] = {ueM | wu = T} (cf. Definition 4.6.1) and define:

Definition 7.7.1. For allU C M and w € M we let:
(a) wU = {wu|ueU}
(b) xuv: M—M is defined by xu(z) =T if x € U and xuy(x) = L otherwise.

Remark 7.7.2.
(a) Dlw] is a k-open set for all w € M
(b) xu is k-continuous iff U is k-open

Theorem 7.7.3 ([4]). Let M be a k-expansion (k > w), and let & C M be
such that ® = TV for some k-small set ¥ such that T € ¥ and 1. ¢ V. Then
there is an € € M such that, when the syntactical € is interpreted by this e, M
satisfies Quant|ys).

Proof. We first recall the proof in [4, Section 4.1]: let £ be a choice function
on @, i.e. a function &: P(P®)—P such that £(V) € V for all non-empty V C ®.
Let e: M—® U {L} be defined by: e(u) = L if L € u®, e(u) =T if ud C F
and e(u) = £({x€® | ux = T}) otherwise. Then e is a s-step function: It is
indeed clear that u < v = e(u) = L Ve(u) = e(v). It remains to prove
that Domle] = {zeM | e(x) # L} is k-open. Now, Domle] = {ueM | & C
Dom[u]} = {ueM | ¥ C Dom[u]} = Nyew{ueM | uxr # L}. Thus, Domle] is
the intersection of a x-small family of x-open sets, and hence is xk-open. Thus,
e is a k-step function and, hence, k-continuous. Now € = A(e) has the required
properties by [4, Theorem 4.3.1]. O

7.8. The definition of ®

We suppose now that ¢ < k is inaccessible. We define o-small sets and
essentially o-small sets as it was done for k (cf. Section 6.1 and 6.5), and we
note that a x-open set O is essentially o-small if and only if O = 1K for some
o-small set of compact elements of M.

Definition 7.8.1. [/ For any U,V, H C M where H is open define:
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(a) O.,(H) and O.,(H) are the sets of all essentially o- and k-small open
subsets of H, respectively

(b) U=V ={zeM |2U CV}

(c) U° ={zeM |Vus,...,up,...cU¥ In€w:zuy - -u, =T}

(d) Fo(H)={TUU{G° -G |G O.,(H)}

In the present paper we define ¢ thus:

Definition 7.8.2. ® C M is the smallest set such that
Ted and GeO,(P)=G—-GCP

The elements of ® are, by definition, the wellfounded maps.

The & defined above equals the ® defined in [4] (c.f. Lemma 10.4.2). Fur-
thermore, ® satisfies & = F,(®) and is the smallest solution to this equa-
tion. Also, ® satisfies the Generic Closure Property (GCP) of [4] which says
O =U{G°—=P |G € O,(P)} (ctf. [4, Theorem 7.1.1]).

Another important property is ® C ®° which is called the Strong Induction
Property (SIP) in [4] and which is stated here as Lemma 10.4.3(f). Furthermore,
® € O, (M) according to Lemma 10.4.6 or [4]. In fact it is proved in [4] that @
has essential cardinality exactly ¢ in the sense that ® is not essentially o-small
and, furthermore, ® = t¥ where ¥ C M. is defined in [4] and where ¥ has
cardinality o.

7.9. ko-Erpansions

Definition 7.9.1. Given a k-expansion M define the ko-expansion (M, e, @)
of M as follows: ¢ is defined as in the proof of Theorem 7.7.83 and ¢ = A(xs).

Later, in Definition 8.6.2, and as promised in Section 5.3, we define the canonical
ko-expansion M, to be the ko-expansion of the canonical k-premodel.

Theorem 7.9.2 ([4]). M E Quant[¢] + WF[¢] if M is a ko-expansion where
Kk > o and o is inaccessible.

In particular, we have M = MT proving the consistency of MTy. We now
return to models of MT.

To model the quantification axioms of MT it is enough to show that, if o
is the first inaccessible ordinal, then v = ¢. The proof of this result, called
the “Definability Theorem” (Theorem 10.1) occupies Section 10-12 and is, by
far, the most difficult proof in the present paper. The proof of the Definability
Theorem is split into two parts, called the Upper Bound Theorem (UBT) and
the Lower Bound Theorem (LBT).

UBT says ¢ < ¢. It puts an upper bound on 1 and is proved in Section 11.
The proof uses the existence of an inaccessible o (actually, the mere definitions
of ® and ¢ need it). The proof also uses that the construct Y (which is part of
the definition of ) is interpreted by Yrarski-
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LBT says ¢ =aq 9. It puts a lower bound on 1 and is proved in Section 12.
The proof of LBT uses UBT and also uses the assumption that o is the first
inaccessible ordinal (the proof of UBT does not use it).

We interpret ¢ < ¢ ¢ as an upper bound of ¢ rather than e.g. a lower bound
on ¢ since ¢ was given already in [4] whereas v is the quantity being investigated
in the present paper.

We can now outline how Quant[¢] is going to be modelled:

Theorem 7.9.3. (Outline) If o, is the first inaccessible and k > o,, then:
(a) Any ko,-expansion satisfies Quant[y].
(b) The canonical ko,-expansion M, satisfies Quant{¥curry]-

Proof of 7.9.3 (Outline) Let M be a ko,-expansion. From Theorem 7.9.2 we
have M |= Quant[¢]. From the Definability Theorem (Theorem 10.1) we have
¢ = 1. Thus M | Quant[¢p]. Then (b) follows from Corollary 7.6.6.

As already noticed in the introduction (Section 1.4), the minor variant MT g
of MT which is presented in Section 3.4 is a priori more difficult to model
than MT. Fortunately, M,,, models Quant[¢)cury| as noted above and, more
generally, models all of MT 4.

7.10. Conclusion

We have now defined the concepts listed in Section 5.2. We have also proved
some theorems like Theorem 7.5.2 which says that all k-expansions satisfy the
Elem, Elem’ and Exist groups of axioms and inference rules (c.f. Section 5.1).
We have also recalled from [4] that ko-expansions satisfy Quant[¢] (and in fact
all of MTy). In Section 8 we prove that there exist k- and xo-expansions. We
use all that in the proof of the Consistency Theorem in Section 13. However,
the main purpose of Section 7 was to define the notion of ko-expansions.

8. Building the canonical k-premodel

As promised in Section 5.6 we now construct the canonical k-premodel (c.f.
Section 5.3). The treatment is similar to that of [4, Section 8] but is repeated
here for the sake of self-containedness (c.f. Section 1.5).

Constructing the canonical k-premodel has two purposes. First, the con-
struction proves that k-premodels and, hence, k- and ko-expansions exist. Sec-
ond, some axioms and inference rules of MT and MTge do not hold in all
rko-expansions but do hold in canonical ones. Canonicity is needed for the De-
finability Theorem (Theorem 10.1) and for satisfying Mono, Min and Ext. For
MT4ef, canonicity is furthermore needed for satisfying Quanttcurry].

In the following, x > w can be any regular cardinal and no inaccessible o is
needed.

A classical method for building domains or solving recursive domain equa-
tions in Scott’s semantics (or its variants) is to look for webbed domains whose
web satisfies a “derived” but more feasible equation (cf. e.g. [3]). That is what
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we will do here for building the canonical x-premodel. We will indeed replace
the domain equation Egq,, of Definition 7.3.1 by the equation Eq/, of Definition
8.3.1. We will note (Fact 8.3.3) that the simplest solution of Eg/, is in fact its
unique solution. This is of no use in the consistency proof, but can be seen as
a further argument in favor of the word “canonical”.

Here the web is a preordered coherent space (pcs) P = (P,<,C) where <
and C are a preorder and a reflexive, symmetric relation on P, respectively,
and where we refer to < as a coherence relation. The terminology of “webbed
model” was introduced in [3] and preordered coherent spaces (pcs’s) are defined
in Section 8.1.

The canonical s-premodel (M, <), A,A) and the web (P, <,C) from
which it is built satisfy that (M, \ {L}, <aq) is isomorphic to (P, <)/(< N >)
where M,, is the set of prime elements of the x-premodel. Furthermore, a < b
iff the corresponding elements of M, have an upper bound in M.

The notion of pcs’s generalizes the notion of preordered sets as well as Gi-
rard’s definition of coherence spaces, both of which are well known to be relevant
for building mathematical models of A-calculus.

8.1. Preordered coherent spaces (pcs’s)

A pes-structure (or structure for short) is a tuple D = (D, <, ) for which
< and C are binary relations on D.
A pcs is a structure D = (D, <, ) with the following properties:

Partial order < is reflexive and transitive.
Coherence C is reflexive and symmetric.
Compatibility z<a2'Ay<y A vy =x2y.

The compatibility requirement above may be motivated thus: if z and y
have an upper bound (i.e. 3z€D:x < z Ay < z) then they are coherent (i.e.
x C y). The opposite is not true: even if x < y then x and y need not have
an upper bound. However, z < y denotes that x and y are intended to have an
upper bound. Recall that pcs’s are used for constructing x-Scott domains. The
coherence relation x C y is used to record at an early stage of a construction that
x and y are going to have an upper bound at a later stage of the construction.

If z < 2’ and y < ¢ and if z is an upper bound of 2’ and ¢’ then z is also an
upper bound of x and y. Compatibility expresses the reasonable requirement
that if z < 2’ and y <y and if 2’ and 3 are intended to have an upper bound
then x and y are also intended to have an upper bound.

From now on, D = (D, <, ) and D’ = (D', </, ') denote structures. We
say that D is a substructure of D', written D T D', if the following hold:

D C D’
Ve,yeD: z<y < z<y
Ve, yeD: zCy & xzC vy
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A set S of structures is a chain if VD,D’€S:D C D’ v D’ C D. Now for all
structures D = (D, <, ), all u,v C D and all p € D define

u<hv & Vecudycviz <y
ulhHv & VYreuWyevix Ty
Cohpu & ulpu

Ipu = {yeD|Fxcuwy <z}
Ipp = Ipfp}

(D) = {lpu|uC DACohpu}

Intuitively, Cohpu states that the set u is coherent, i.e. it is intended to have
an upper bound. We have that u is coherent iff |yu is coherent. Thus Z(D)
also denotes the set of coherent, initial segments of D.

Fact 8.1.1. For all pcs’s D, (Z(D),C) is a prime algebraic k-Scott domain
whose sets of prime and compact elements are {lpp | p € D} and {{pu | v €
P.«(D) A Cohpu}, respectively.

The goal of Sections 8.2-8.3 is to define a pcs P such that (Z(P), C) satisfies
Lq

K

8.2. Pcs generators
Fact 8.2.1. Let U(t) = ({t},{t} x {t},{t} x {t}). Now U(t) is a pcs for all
objects t (of ZFC).

Fact 8.2.2. Let Dy = (DU {f}, <", &) wherex <"y oz =fVve <y and
O ysr=FfVy=fVaey. IfDisapcs and f ¢ D then Dy is a pes.

Fact 8.2.3. For all chains S of pcs’s D = (Dp, <p,p) let US = (UpesDp,
Upes <p,Upes CTp)- If S is a chain of pcs’s then US is a pcs.

Fact 8.2.4. Let D D' =(DUD’,<U<',cuUl’). If D and D’ are pcs’s and
D and D’ are disjoint, then D @ D’ is a pcs.

Fact 8.2.5. Let D—D’ = (D x D', <" ") where (z,2') <" (y,y) & y <
x ANz’ <y, and (z,2') " (y,v) ez yVvae ' y. If D and D’ are pes’s
then D—D’ is a pcs.

Fact 8.2.6. Let P<oM(D) = (E, <}, Ch) where E = {a€P. (D) | Cohpa}. If
D is a pes and & is a cardinal, then PN (D) is a pes.

8.83. The web of the canonical k-premodel

Recall that & is a regular cardinal. Let ¢ and f be distinct non-pairs (e.g.
t =0 and f = {0}). For all structures D, define

Definition 8.3.1.

(a) H(D) = (RX"(D)=D); & U(t)
(b) Eq., is the equation H(D) = D
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Fact 8.3.2. If a pcs D satisfies Eq., then (Z(D), C) satisfies Eq,,.

Now define
PO = <®7 wv ®>
Ps1 = H(Pp)
Ps = W{Pg|ped}
P = P,

It is easy to prove by transfinite induction that Pg = (Pg, <g, Cﬁ> is a pcs,
that {Ps | 8 € 6} is a chain of pcs’s and that:

Fact 8.3.3. The pcs P is the C-minimal (and in fact unique) solution of Eq.,.

We define the rank rk(p) of p € P as the smallest ordinal « for which p € P,.
Recall that Py = () and note that P, = {¢, f}.

8.4. Some properties of the web

From now on | means |p. Define C = PR(P). For all p € P and ¢ =
(c1,...,cn) € C<¥ let £(c) denote n (i.e. the length of ¢) and define

(@ p) = (c1, (ca, (- (en,p) - +4)))

In particular, (¢,p) = p if £(¢) = 0. Using the fact that there are no decreasing
infinite sequences of ordinals we easily get:

Lemma 8.4.1 ([4]). For each p € P there is a unique decomposition of p as
p=(¢,t) orp=(c, f) where ¢ € C<¥.

For p = (¢, ¢q) where q € {t, f} we define £(p) = £(¢) + 1 and refer to q € {t, f}
as the head of p.

Remark 8.4.2.
(e,p) <1 € P implies r = (e, q) for some e,q.
(e;p) < (e,q) iff e C le and p < gq.

8.5. The domain of the canonical k-premodel

The k-Scott domain M of the canonical k-premodel is defined by
M= (Z(P), <)
We have:
Fact 8.5.1.
M, ={lp|p € P} is the set of prime maps of M.

M. ={la|a € C} is the set of compact maps of M.
In M, sups are unions and infs are intersections.

The definition of M, above is compatible with the one in Section 6.3.
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8.6. The canonical k-premodel

Recall that T’ and L’ are arbitrary, distinct constants which are not functions
so T/, 1" & [M—,M]. Now define A\, T, L and A by

A(T) =T = {t}
A(h) = {f}Uu{{a,p) eCxP|peh(la)} forall heM—,M]
A(L") = 1 =0
AMw) = T for all ve M
Au)(v) = {peP|JaCuv:{a,p) € u} for all ue F, veM
A(L)(v) = L for all ve M

We have

Fact 8.6.1

(a) A: ([M—mM] D1 {T’}) — M is an order isomorphism.

)
(b) M is a solution to the domain equation Fg,,.
(c) (M, A, )\) is a k-premodel.

We are now able to define the canonical k-premodel and thus also able to define
the canonical k- and ko-expansions as promised in Section 5.3.

Definition 8.6.2.
(a) The canonical s-premodel is the triple (M, A, \) with M defined as in
Section 8.5 and A and A defined as above.
(b) The canonical k-expansion M, is the k-expansion (cf. Definition 7.5.1) of
the canonical k-premodel.
(¢) The canonical ko-expansion M, is the ko-expansion (cf. Definition 7.9.1)
of the canonical k-premodel.

Note that we have T = {t}, L = 0 and F = M\ {T, L} with F defined as in
Definition 7.4.1. We have:

Fact 8.6.3.
(a) ue Fif ue M and f € .
(b) {f} is the minimal element of F and models A\x. L.

8.7. Tying up a loose end

As promised in Section 3.8, we are now able to prove the non-trivial direction
of Fact 3.8.3. Recall the definitions of a ~, b, a =0, b and a =,; b from Section
3.8. Note that if Vee M,;:ca ~, c¢b then, in particular, (|{{p},t))a = T <
{{pht))b =T sop € a < p e b Thus, a =5, b= a =, b which is the
non-trivial direction of Fact 3.8.3.

8.8. Conclusion

We have now constructed the canonical k-premodel and the canonical -
expansion M, and the canonical ko-expansion M,,. Thus, as promised in
Section 5.6, we have finished the definition of the concepts introduced in Section
5.2-5.3 and are thus prepared to develop the consistency proof in Sections 9-13.
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9. Canonical premodels satisfy Mono, Min and Ext

Recall the Mono and Min rules from Section 4.2 and the Ext rules from
Section 4.3.

In this section we only suppose £ > w, and prove that M, the canonical
k-expansion, satisfies Mono, Min and Ext, that its model order C coincides with
the syntactical order < and that we could eliminate the constant Y in favor of
Curry’s paradoxical combinator. It is essential that M, is canonical since we
constantly use Lemma 8.4.1.

From now on we use the same notation for terms and for their interpretations
in M. Monotonicity of application w.r.t. C will be used constantly, most often
without mention.

9.1. A characterization of the order of M, via application

The following applicative characterization of the model order C of M, is
the key for proving later on that the model order coincides with the syntactical
order < and that M, satisfies Ext.

Definition 9.1.1. Let F = Az. T and r = lu. if[u, T, F].

Thus in M,, we have that ru = T = {t} ifu=T,ru = L =0 if u = L and
ru=FifueF.

Theorem 9.1.2. For all u,v € M, the following are equivalent:
(i) uCw
(i)  For all w € MS¥ we have r(uw) C r(vw)

Proof. (i) = (ii) because application is monotone.

(ii) = (i). The proof is by contradiction. Choose a p in P of minimal length
for which there exist u, v satisfying (ii) such that p € w and p & v.

From r(u) C r(v) we havet cu=t€vand f €u= f €vsop#tand
p # f. Thus, p has form (c, q).

From p = {¢,q) € u we have r(u) = r(v) = F so u,v € F. Hence, using the
definition of A (cf. Section 8.6) we have ¢ € u(lc) & 3¢ C le:(c,q) € u &
(¢,q) € u< p € u. Likewise, ¢ € v({c) & p € v.

From £(q) < £(p) and the minimality of £(p) we have ¢ € u’ = ¢ € v’ for all
o', v satisfying (ii). Thus, p € u & ¢ € u(lc) = g € v({c) & p € v yielding a
contradiction. O

Corollary 9.1.3. For all u,v € M, we have
(i) uwCo ff r(u) Crv) and Vw: (uw C vw)
(i) w=v ff r(u) =r) and Vw: (uw = vw)

Proof. (i) is an immediate consequence of the theorem, from which (ii) follows.
In fact both are also direct consequences of the fact that M, was a premodel
(M, is not required to be canonical for the corollary). O
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9.2. Ext
Theorem 9.2.1. M, = Ext

Proof. Let A and B be two MT-terms that do not contain x and y free and
suppose there is an MT-term C[z,y] such that (for all assignments of values
to free variables) M,, = YwVov: (Awv = AC[w/x,v/y] A Bwv = BClw/x,v/y]).
The task is to prove that M, = Vw: (Aw = Bw) under the hypothesis that
M, E Vw: (r(Aw) = r(Bw)). Now, the hypothesis on A and B obviously imply
that, given w € M,, the elements Aw and Bw satisfy point (ii) of Theorem
9.1.2; by (i) we hence have Aw C Bw. Similarly, Bw C Aw so Aw = Bw. O

9.3. A-definability of the order of M,
Theorem 9.3.1. M, Eulv=unNv for all u,v € M.

Proof. The proof is by contradiction. Choose a p in P of minimal length for
which there exist u,v such that =(p € u [ v & p € unw).

Sincetculveu=v=T<«teunv we have p # t. Likewise, since
feulveuveF & feunv wehave p# f. Thus, p has form (c,q).

If p={c,q) €ulvthenuveF. If p={cq) € unvthen alsou,ve F.
Thus, in any case, u,v € F. Hence, using the definition of A (cf. Section 8.6)
we have ¢ € u(lc) & 3¢ C le:{d,q) € u & (¢,q) € u & p € u. Likewise,
gevllc)epevandge (ulv)(le) epeulv.

From ¢(q) < ¢(p) and the minimality of {(p) we have ¢ € v/ | v/ < g € v/’ NV’
for all w/,v’. Thus,p e ulv < qge (ulv)(e) & qeule)lv(le) &qce
u(le)Nvle) & geulle)Agev(lc) ©@peunp €v s peunu yielding a
contradiction. O

Corollary 9.3.2. (M, Eu=v) < uCwv forall u,v € M,.

Corollary 9.3.3. In M, the binary k-continuous function inf is definable by
a A\-term (using if, L and T), and hence the model order C is equationally
definable.

Remark 9.3.4. It is interesting to compare this last result (which only applies
to canonical premodels of MT) to the following one, which deserves to be known:
the order of a reflexive Scott domain is always definable by a first order formula
using only application (and which is the same for all these domains). This
result, proved by Plotkin in 1972, and only published twenty years later in [15],
was rediscovered independently by Kerth [12], who proved that it also holds in
Berry’s and Girard’s stable semantics, and Ehrhard’s strongly stable semantics
[18] (with different formulas).

9.4. Mono and Min
Theorem 9.4.1. M, = Mono + Min.

Proof of 9.4.1 Follows from Corollary 9.3.2 and from the fact that application
is monotonic w.r.t. the model order, and that Y = Y. acts as a minimal
fixed point w.r.t. the model order.
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9.5. Definability of the fized point operator

Now we show that M, interprets Curry’s fixed point combinator as Yrarski-
A first proof was worked out by Thierry Vallée (private communication, 2002),
the present one is slightly more direct.

Definition 9.5.1. For all u € M,, and ordinals « let ug = L(uNP,) € M.

Lemma 9.5.2. For all u,v € M, we have:
(i)  uo =0 and u, = u.
(i)  usv = Ug<s(ugv) for all limit ordinals 4.
(111)  ug11v = ugr1vg for all ordinals B > 0.

In particular, u;v = ujvg.
Proof. (i) Obvious.

(ii) Obvious when v € {T, L}. Now assume ¢ € F. We have Ug<s(ugv) C
usv by monotonicity. Now assume ¢ € ugsv. Choose ¢ C v such that (c,q) €
us = J(u N Ps). Choose p = (e,q') € unN Py such that {¢,q) < p. Choose
B < 6 such that p € Pg. We have ¢ < ¢’ and e C |c (cf. Remark 8.4.2). Now
¢ <q¢ € ({p)le) Cugvso q e ugv.

(iii) Obvious when u € {T,L}. Now assume ¢ € F. We have ugyivg C
ug+1v by monotonicity. Now assume ¢ € ugyiv. Choose ¢ C v such that
(¢,q) € ugy1 =L (uNPpgiq). Choose p = (e,¢’) € uNPgyq such that (c,q) < p.
We have ¢ < ¢’ and e C |c (cf. Remark 8.4.2). Furthermore, p € Pgyq implies
e CPg. Now ¢ < ¢’ € (Ip)(le) C ugt1vp 50 q € ugr1v. O

Theorem 9.5.3. M, = Ycuny =Y.

Proof. Recall that M, interprets Y as Yraski- Since Yraeki acts as the least
fixed point operator on M, it is enough to prove that, for all uw € M, we have
ww C Yrapskitt, where w = Ax. u(xx). We prove wow C Yraskiv by induction
on a < k. The case o = 0 is clear and the limit case comes by Lemma 9.5.2(ii).
If « = 841 we have wgiw = wgr1wg C wwg = u(wpwg) C u(wgw) C
U(YTarskit) = YTarskill, the first equality coming from Lemma 9.5.2(iii) and the
last inclusion by induction hypothesis. O

Remark 9.5.4. Most usual models of untyped \-calculus are stratified, in the
sense (very roughly speaking) that it is possible to find a way of decomposing them
in such a way that each u is the sup of an increasing sequence Uy, @ € K (usually
Kk = w) satisfying all the properties listed in Lemma 9.5.2 except u1v = uqvp.
This last equation is really the key point here. The equation uiv = ujvg holds
e.g. for Scott’s first model Do, and fails for Park’s variant of De, which does
not satisfy Min.

10. Concepts for proving the Definability Theorem

Recall the definition of ® (Definition 7.8.2), of ¢ as the characteristic map of
®, of 1) (Definition 4.7.1) and of D[g] (Definition 4.6.1). In particular, ® = D[¢].
The aim of Section 10-12 is to prove:

93



Theorem 10.1 (Definability Theorem). If o0 < k is the smallest inaccessi-
ble ordinal then any ko-expansion satisfies ¥ = ¢.

Section 11 proves UBT (b =aq ¢, Theorem 11.3.1) for any inaccessible o us-
ing Y = Yraski- Section 12 proves LBT (¢ < 9, Theorem 12.4.3) for the
first inaccessible 0. The proof of LBT uses UBT (in Lemma 12.4.1) and the
minimality of ¢ (in Lemma 12.4.2).

Section 10 provides preliminary material and results which will be used in
Section 11 and 12. Sections 10.2-10.6 present and reorganize concepts and
results which were either explicit or implicit in [4] (including its appendices).
Section 10.7 applies 10.5-10.6 to the “components” @) and R of 1 and is hence
new material.

The notation is essentially that of [4] except that the notation g/h introduced
here replaces || ;g where H = D[R], and G* replaces G°°.

In the following, o < k is inaccessible and & is still understood to be regular.
We work in a ko-expansion M. We refer to elements of M as maps. Unless
otherwise noted, variables range over M.

10.1. Necessity of assumptions

The proof of UBT uses the minimality of Y and the proof of LBT uses the
minimality of o, the minimality of Y and UBT. The last two dependencies may
be seen as a convenience whereas the two other dependencies are essential. We
elaborate on this in the following.

Recall that UBT says ¢ < ¢ where ¢y = Us and s = Y.S. The proof of
UBT uses that s is the minimal fixed point of S. To see that this is needed, it
is enough to show that S has a non-minimal fixed point for which UBT fails:

Lemma 10.1.1. Let 0 < & be inaccessible and let M be any ko-expansion.
There exists an s’ € M such that Ss' = s’ and D[¢)'] = M where ¢’ = Ls'.

For the proof see Appendix C where Lemma 10.1.1 is restated as Lemma C.1.

For monotonicity reasons, if LBT is true for M when interpreting Y by the
minimal fixed point operator, then it is obviously also true for any other fixed
point operator of M. In other words, the satisfaction of LBT does not require
Y = Yurski and we can conjecture that there exists a proof of LBT not using
it; since the proof of UBT needs minimality (c.f. Lemma C.1), getting rid of
minimality for LBT would also mean getting rid of UBT.

Finally, LBT does indeed depend on ¢ being the first inaccessible: According
to LBT we have D[¢)] = ® when o is minimal, and since different choices of o
give rise to different ® we cannot have D[¢)] = ® for non-minimal o.

10.2. Duals, boundaries, closure and functions

We now state some definitions, many of which are repetitions of earlier def-
initions.

Definition 10.2.1. Let G,H C M and g, h € M.
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(a) G° ={geM |V, x1,...€GIn€w:gzo-- 2, =T} for G # 0
(b) P° =M\ {L} =T, z. L}

(c) G* ={heG° | VgeG°: (g m h=g=h)}

(d) 1G = {heM | 3geG:g =m h}

() G=H ={heM |VzeG: hx € H}

(f) Gt =G°—G.

We refer to G° as the dual of G. The set G* is the set of minimal elements of
G°.

Definition (a) above repeats Definition 7.8.1(c). Definition (b) makes explicit
how to understand (°. Definition (d) makes a definition in Section 6.1 explicit.
Definition (e) repeats Definition 7.8.1(b).

Fact 10.2.2.
(a) GC H = H° CG°
b) G CGANHCH = G—HCG'—H'
(c) G#0=G°=G=G°
d) GC HC H®® = Gt =G°>G C H*—»H®® = H°°

Note that G° is anti-monotonic in G and that G—H is monotonic in H but
anti-monotonic in G. That allows to combine G° and G— H into monotonic
operators G°° and Gt = G°=G:

Fact 10.2.3.
(a) GC H= G*° CH*”
(b GCH=GTCHT"

For all G C M recall from Sections 6.1, 6.5 and 7.8 that G is essentially o-small
if there exists a o-small V' such that V C G C 1V. If G is open then G is
essentially o-small iff G = 1V for some o-small V.

Let O(G) denote the set of open subsets of G. Recall from Definition 7.8.1(a)
that O_,(G) denotes the set of essentially o-small open subsets of G. We define
O.:(G) likewise. We use O(G), O.,(G) and O_.(G) only for G open (and
mostly for G = ® and G = M). From Remark 7.7.2 we have:

Fact 10.2.4.
(a) If g € M then D[g] € O(M).
(b) If G € O(M) then G = DJ[g] for some g € M.
() O(M) = {Dlg] | g € M;}.

We use D[g] only when g € M. Thus, whenever we assume G = Dlg] we
implicitly assume g € M.

As usual, two maps z,y € M are said to be incompatible if they have no
upper bound in M w.r.t. < .

Theorem 10.2.5.
(a) If G € O(M) then G* is a set of incompatible elements, G° = 1(G*), and
if G # ) then G*® is infinite.
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(b) If G € O (M) then G° € O(M) and G* € M.,.
(c) If G € O.;(M) then G° € O.,(M) and G* € P_,(M,).

Proof of 10.2.5 For G # () this is [4, Theorem 6.1.11] adapted to the notation
of the present paper. For G = () the theorem follows trivially from the definition
of ()° (Definition 10.2.1(b)).

Lemma 10.2.6 (Closure properties of O_,(M) and O_,(®)).
(a) If G € O,(M) then G° € O_,(M).
(b) O.x(®) and O_,(M) are closed under o-small unions.
(c) If G € O, (®) then GT € O_,(P).
(d) If G € O_;(P) then G°° € O_, (D).

Proof of 10.2.6

(a) Is part of Theorem 10.2.5.

(b) Follows from the regularity of o, i.e. the fact that a o-small union of
o-small sets is o-small.

(c) Follows directly from the definition of ® (Definition 7.8.2) (and implicitly
uses that o is inaccessible).

(d) Will be re-stated and proved as Lemma 10.4.4; we do not yet have the
material to prove it, but we include it here for the sake of completeness.
Note that O_,(®) is closed under °° but not under °.

10.3. Elementary observations
We now list some facts which we shall use without reference in the rest of
the paper. Some of the facts have been used before.

Fact 10.3.1.
(a) H{L} =M
(b) AT} ={T}
(c) 1F=F
Fact 10.3.2.
(a) (Ex.A) =T& JaeM:(A=T)
(b) (V2. A) =T & Vaeed: (A=T)

xiy)#FLler=TAy#L
(z:y)#Ll=z1y=y
(z:y):z=x:(y:2)
(xry:2)#Lleors=TAy=TAz#L
(r:y:2)#Ll=>2:y:z=2

(a) f 2m g = D[f] € Dlg]
(b) D[Uf] = UremDlfx]
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10.4. On the definition of ®

There are many ways to build ®. The definition chosen in the present paper
was stated as Definition 7.8.2. The one chosen in [4] was to build a set U of
maps as the union of an increasing sequence (¥,,)qc, 0f o-small sets and then
take ® = 1. However, as shown in [4] and below, ® could as well be inductively
defined as the limits of certain increasing sequences (P, )aco and (Hq)aeco of
essentially o-small open sets. Using these two sequences will be pertinent for
proving UBT and LBT.

Note that [4, Theorem 7.1.1] states that there exists a ® with certain prop-
erties which is enough for the development in [4]. Then the proof of [4, Theorem
7.1.1] constructs a concrete ® which is the one we refer to here as “the ® defined
in [4]”.

We now define (®y)acs and (Ha)aco and then move straight to Lemma
10.4.2 which is important because it allows to use all theorems about ® in [4]
in the present paper.

Definition 10.4.1. For all o < o define ¢, and H,, thus:

(a) @0 ={T}
(b (I)a+1 = (I);r
c) &5 = UgesPp for limit ordinals 4.

)

(c)

(d) Ho {T}
) Hat1 =HeS
) Hs = UgpesHp for limit ordinals 4.

Lemma 10.4.2.
a) &=9o,.
b) The ® defined in the present paper equals the ® defined in [4].

Proof of 10.4.2

(a) By transfinite induction using Fact 10.2.3 and Lemma 10.2.6 we have
O, CPgforalla < B <cand @, € O,(P) for all @ < o (for reference,
these two easy results are stated again below as Lemma 10.4.3(a) and
10.4.5, respectively). Thus &, C & by transfinite induction using the
definition of ® (Definition 7.8.2). In particular &, C ®. Now assume
G € O.5(®,). Then G C P, for some a € o since o is regular so
Gt C®, 1 CP,. Thus, G € O,(®,) = Gt C P, so & C &, by the
minimality of ® (c.f. Definition 7.8.2).

(b) Let @ denote the ® defined in the proof of [4, Theorem 7.1.1] and let &/,
denote the ®, defined in the proof of [4, Lemma A.1.1]. We now prove
=9 =, =2>.

Proof of ® = @/ . As stated without proof in the proof of [4, Lemma
A.1.1] we have ®' = @/ ; it is an easy consequence of [4, Lemma 7.1.2].

Proof of ®/ = ®,. By the definition of & we have &) = {T} = P,.
Furthermore, according to the proof of [4, Lemma A.1.1] we have &/ =
Upea(PR—®) if 0 < a < o, so D, = B, for all @ < o by transfinite
induction. In particular, ®, = ®,.

Finally, ®, = ® by (a) which finishes the proof.
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Lemma 10.4.3.
(a) aef= 0, C Py

)
) @0 CHa

) =0, =H,

) VGeO_,(®)Jaco:G C &, C Hy
) & C @°

)

Proof of 10.4.3
(a,b) By transfinite induction using Fact 10.2.3.
(¢) We have Hy C Haot1 = Ho°° by (b) and Definition 10.4.1(e). Hence,
®, C H, by transfinite induction using Fact 10.2.2(d).
(d) For ® = @, see Lemma 10.4.2(a). For H, C ® see [4, Theorem A.2.2] and
its proof. Finally, ®, C H,, is given by (c).
(e) Let V be o-small and such that G = 1V. For each g € V let p(g) be the
smallest ordinal for which g € ®,(,). Take o = Ugecv p(g).
(f) [4, Theorem 7.1.1].
(g) Follows trivially from (a-d,f) and Fact 10.2.2(a).

Lemma 10.4.4. G°° € O_,(®) for all G € O_,(®).

Proof of 10.4.4 This is the announced re-statement of Lemma 10.2.6(d). We
have G°° € O_,(M) by Lemma 10.2.6(a). It remains to prove that G°° C .
Using Lemma 10.4.3(e) take o such that G C H,. Then G°° C HS® = Hoy1 by
Fact 10.2.3(a). Thus G°° C ® by Lemma 10.4.3(g).

Lemma 10.4.5. &, € O_,(®) and Ho € O (P) for alla € o.
Proof of 10.4.5 By transfinite induction using Lemma 10.2.6 and 10.4.4.
Lemma 10.4.6. ® € O_,(M).

Proof of 10.4.6 From Lemma 10.4.5, 0 < k and the regularity of x we have
=30, € O, (M).

10.5. Projections

Definition 10.5.1. Let G,H C M and g,h € M.
(a) g/h=iflg, T, Ax.hx: (gz/h)]
(b) G/h=1{g/h|g€GC}.
(c) gl = {gh | h e H}.

Definition (a) repeats Definition 4.6.2(d).

Recall that since / is an infix operator we have that ab/cd means (ab)/(cd).
Likewise, gH/k means (gH)/k which equals {(gh)/k | h € H}.

As mentioned in Section 4.6, the g/h construct is a kind of “transitive restric-
tion” of the function g to the domain H = D[h]. But what makes the construct
interesting here is that it is a projection in the sense that (g/h)/h = g/h <m g
(cf. Lemma 10.5.3). More specifically, g — g/h is a projection from H° onto
H*:
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Lemma 10.5.2. If H = D[h] then H®* = H°/h.

Proof of 10.5.2 Like was the case for Theorem 10.2.5, this is part of [4,
Theorem 6.1.11] adapted to the notation of the present paper. For H = () the
lemma follows trivially from the definition of (° (Definition 10.2.1(b)).

Lemma 10.5.3. Let H = D[h|. We have:

(a) g/h 2m g

(b) g/h=T iffg=T.

(c) g/h=4g'/h if g€ H° and g <pm ¢
(d) g/he K= getK if KCH®.

(&) g/l =(g/W)/h it D[h] C D[N,

Proof of 10.5.3

(a) In Example 4.3.1 we defined ¢ such that ig = if[g, T, Az.i(gx)]. From
that we proved ig = g using Ext. Now define 7 = Mhg.if[g, T, A\x.ih(gx)].
Repeating the argument in Example 4.3.1 on 7h in place of ¢ we get thg = g.

We have a : b <pq b when a is T, L, or a function, so a : b < b
by QND. Using a : b < b, thg = ¢ and that recursive definitions are
shorthand for definitions that use Y we have

g/h = (YAfhg.if[g, T, Ax. hx : fh(gz)])hg
=m (YAfhg.if[g, T, Az. fh(gz)])hg = ihg=g
Above, we have taken the liberty to consider h as the first and g as the sec-
ond parameter of g/h. That is immaterial, but avoids some technicalities
here.

(b) By the definition of g/h.

(¢) From g € H® and g <y ¢’ we have ¢’ € H°. Then by Theorem 10.2.5(a)
and Lemma 10.5.2 we have g/h € H®, ¢’/h € H® and g/h and ¢'/h are
either equal or incompatible. But g/h < g’/h by monotonicity, so g/h
and ¢’ /h are equal.

(d) First we note that 1K C H° (Theorem 10.2.5) and that = follows from
(a). Suppose now that g € 1K and take ¢’ € K such that ¢' <aq g. By
(¢) we have g/h = ¢'/h. Furthermore, ¢’ € H® implies ¢'/h = ¢’ € K.
Hence, g/h € K.

(e) If D[h] C D[A/] then hy : z = hy : (hW'y : z). The claim then follows from
the definition of g/h.

We use G <. H to denote that G has the same or smaller cardinality than H.
Lemma 10.5.4. D[g]/h <. D[g¢']/R’ if D[g] C D[¢’] and D[h] C D[R]

Proof of 10.5.4 We prove that the function k(x) = x/h is surjective from a
subset of D[g’']/h’ onto D[g]/h. Suppose y € D[g]/h. Let x € D[g] satisfy y =
z/h. Now z = /I € D[g]/h C D[¢']/I satisfies k(z) = (z/W)/h =x/h =y
by Lemma 10.5.3(e).

Lemma 10.5.5. Assume G = D[g] C . We have:
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(a) ®/g C G*
(b) a®/¢ € P.,(®*) ifac d.
(c) ®/g € Peg(M.) if G € O((®).

Proof of 10.5.5

(a) G C & gives & C ®° C G° by Lemma 10.4.3(f) and Fact 10.2.2(a). We
conclude using Lemma 10.5.2.

(b) Choose o < o such that a € ®,41 = P2 —P,. Since & C P (cf. Lemma
10.4.3) we have a® C &, C ®. Thus, a®/¢ C /¢ C ®* by (a). From
Lemma 10.4.5 we have &, € O_,(®). Take K € P.,(®) such that ®, =
TK. We have a®/¢ C ®,/¢ = K/¢ which is o-small.

(¢) By (a) and Theorem 10.2.5(c).

Lemma 10.5.6. Let g € M. Assume G = D[g] € O.,(M). Let k:G*—M.
Then there exists an h € F such that hx = k(x/g) when x € G° and hx = L
otherwise. Note that hx = h(z/g) for all x € M.

Proof of 10.5.6 Let k': M—M satisfy k¥'(z) = k(xz/g) when z € G° and
k'(x) = L otherwise. Then k' is a k-step function. Suppose indeed x =g ¥y
and k'(z) # L; then x € G°, hence z/g = y/g by Lemma 10.5.3. Hence, k' is
k-continuous (Lemma 6.6.3) and h = A(k’) satisfies the first conclusion of the
lemma.

Now if € G° then h(z/g) = hx since h(x/g) = k((z/g)/g) and (x/g)/g =
x/g; finally if x & G° then h(x/g) = h(z) = L.

10.6. Self-extensionality

We now recall the definition of self-extensionality plus some auxiliary con-
cepts from [4, Appendix A.2]. First recall r = Au. if[u, T, \z. T| from Definition
9.1.1. Then recall the definition of x =¢ y from [4]:

Definition 10.6.1. x =g y iff VZEG<¥ : r(2Z) = r(y2)

Note that x = y iff © = y according to Theorem 9.1.2. Now the definition of
self-extensionality reads:

Definition 10.6.2. G C M is self-extensional if
(a) 0 # G € O, (P)
(b) G CG°°
(¢c) z=cy=>zxzlyeGforallz,y e G

The name “self-extensionality” is borrowed from [4] and refers to the property
* =g y = x =¢ y which happens to follow from (c) above and [4, Lemma
A.2.1]. We shall neither use (c) nor z =¢ y = = =¢ y explicitly in the present
paper.

Note that G°° = G°—G°° for all G (cf. Fact 10.2.2(c)).

Lemma 10.6.3. IfG = D[g] is self-extensional then G°° is self-extensional and
G* C Goo/g'

60



Proof of 10.6.3 This is [4, Lemma A.2.4 and A.2.5].
Lemma 10.6.4. If G = D[g| is self-extensional then ®/g = G*

Proof of 10.6.4 We have ®/g C G* by Lemma 10.5.5(a). From Lemma 10.6.3
we have G°° C & and G* C G°°/g C ®/g.

Lemma 10.6.5. H,, is self-extensional for all a € o.

Proof of 10.6.5 By Lemma 10.4.5 and Lemma 10.4.3(b) we have that #,
satisfies Definition 10.6.2 (a) and (b), respectively. By transfinite induction on
a using [4, Theorem A.2.1] H,, also satisfies Definition 10.6.2(c).

Lemma 10.6.6. For all G € O.,(®) there is a self-extensional H such that
GCH.

Proof of 10.6.6 By Lemma 10.4.3(e) and Lemma 10.6.5

10.7. Properties of Q and R

The definition of ¢ (Definition 4.7.1) includes definitions of the auxiliary
maps P, @ and R. The lemma below states the properties of P, () and R that
we use for proving UBT and LBT.

Lemma 10.7.1. Let g,a,b,c,0 € M.

(a) D[Qg] = ®/9—Dlg] if Qg # L

(b) D[Qg] 2 D[g]* if D[g] C® and Qg # L
(c) D[Qg] = D[g]* if D[g] is self-extensional.
(d) D[Rabbc] = U.cpigDla(b(cz/0))] if Rabbe # L

Lemma 10.7.1(c) is used in Section 11 which proves UBT. Lemma 10.7.1(b) is
used in Section 12 which proves LBT.

Note that the definition of @ gives Qg # 1. & g # L.
Proof of 10.7.1

(a) Qg # L gives lg = T. We have

y € D[Qg]
S Qgyu=T Definition of D
& Vz.9(y(z/g) = lg =T and the definition of Q)
& Vzed: g(y (z/g)) = Properties of V
< Vzed:y(z/g) € Dlg ] Definition of D
<y € ®/g—Dlg] Definition of ®/g and —

(b) Follows from (a) and Lemma 10.5.5(a)
(c) From Dlg] self-extensional we have D[g] # 0}, so g # L and Qg # L. Now
(c) follows from (a) and Lemma 10.6.4.
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(d) RabBbc # L and the definition of R gives fc = T and Rjafbc = T. Now:

y € D[Rabbc]

< Rabbey =T Definition of D

< Roabbey =T Oc =T, Riabbc =T,
and definition of R.

& (Ez. (02 : a( 02/0 ) = Definition of Ry

< JzeM: (0z : a(b(cz/0))y = ) Properties of E

& dzeM: (0z=TA a(b(cz/9 )y=T)  Properties of guards

& J2eM: (2 € D[O] Aa(b(cz/0))y =T) Definition of D[¢]

& 3zeD[): (a(b(cz/0))y =T) Trivial

& 3zeD[h]: (y € D[a(b (cz/@))]) Definition of D

Y € UzeppgDla(b(cz/0)))] Trivial

11. Proof of the Upper Bound Theorem (UBT)

Recall that UBT states that ¥ <, ¢ (c.f. Theorem 11.3.1). In this section
we need that o is inaccessible (but not necessarily minimal), that M is any
ko-expansion where k > ¢ is regular and that Y acts as Yoaski. We will use
repeatedly without mention the fact that application is monotonic w.r.t. <.

11.1. Restriction and step maps

We shall say that g € M is a step map if © — gr € M—M is a k-step
function in the sense of Definition 6.6.2. For convenience we drop x in “step
map” and “step chain” below. For all g, h € M we shall say that g is a restriction
of h if VaeM:ga = 1L V ga = ha. If h is a step map and g is a restriction of h
then obviously ¢ is also a step map. Now define

g h & Va,beM: (a Sp bAga# L = ga=hd)

Fact 11.1.1.

(a) If h is a step map then g < h iff g is a restriction of h.
(b) g Qg iff g is a step map.
(¢c) g9hAh<Lk=g<k.

For ordinals o < k we say that (gs)geq is a step chain if g, <gg for all vy < § < a.
In particular, gg < gg implies that the elements of a step chain are step maps.

Lemma 11.1.2. Suppose (g3)geq is a step chain and has a supremum g w.r.t.
=<m. We have:

(a) gg <gforall B € a.

(b) If g5 < h for all B € a then g < h.

Proof of 11.1.2
(a) Assume ¢ = b and gga # L. We shall prove gga = gb. Now gga = ggb
since gg is a step map. Furthermore, for all v € o, g4b = L V g,b = ggb
since (gg)geaq is a step chain so gb = ggb.
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(b) Assume a <a b and ga # L. We shall prove ga = hb. Choose 8 € «
such that gga # L. Now gya = LV g,a = gga for all v € o, so gga = ga.
Furthermore, ggb = gga since gg is a step map, so ggb = hb since gg J h.

Lemma 11.1.3. g<Jh A0 =y ¢ = S’gQ < Shé.

Proof of 11.1.3 Assume a < b and Sgfa # L. We shall prove Sgfa = Shob.
From Sgaf # L and the definition of S we have a # L. If a = T then Skfa = Pa
for all k so Sgfa = Pa = Shfa. Now assume a € F.

From Sgfa # L and a € F we have aT # L. We proceed by two cases:
aT =T and aT € F.

Case 1. Assume aT = T. Now Skfa = Q(k(aF)) for all k. From Q(g(aF)) =
Sgba # 1 we have aF # L. Thus, from g < h we have g(aF) = h(bF) so
Sgba = Q(g(aF)) = Q(h(bF)) = Shob.

Case 2. Assume aT € F. Now Skfa = Rkf(aT)(aF) for all k. From
Rgf(aT)(aF) = Sgha # L we have 0(aF) = T and R,g0(aT)(aF) = T. From
the latter we have g(aT(aFz/0)) # L for all @ € ® and thus in particular
for all @ € D[f] (since 8 <pq ¢). Thus, from g < h we have g(aT(aFz/0)) =
h(bT(bF2z/0)), from which Sgfa = Sh#b follows by the definitions of S, R, Ry
and Ry.

Definition 11.1.4. For all ordinals a < x and for all § € M define 0, by
(a) o=L1
(b) Ootr1 = 50,0

(¢) 05 = sup,es 0o for limit ordinals &

By transfinite induction we have that 6, <x¢ YAf.Sf6 and that all the sups

exist (since (0n)aes is bounded).
Lemma 11.1.5. If 0 < ¢ then (0o)acx is a step chain.

Proof of 11.1.5 From Lemma 11.1.3 we have 9_7 ﬁé’v’ = 9_,y+1 519_7/+1. We now
prove that (0o )a<p+1 is a step chain by induction on 5 € k. The zero case follows
from L = 0y <16;. The successor case follows from @g §1§5+1 = §5+1 §1§5+2. For
limit ordinals § suppose (fa)a<p+1 is a step chain for all 8 € 5. Then (6,)a<s
is a step chain. Then 0, < fs by Lemma 11.1.2(a). Then 0, < 0,1 <0541 so
05 < 05,1 by Lemma 11.1.2(b), so (0a)a<s+1 is a step chain.

11.2. Limited size
Lemma 11.2.1. D[Qg] € O.,(®) if D]g] € O.-(®)

Proof of 11.2.1 Let h = \y.if[gy, T, L]. Now D[h] = D[g] and D[Qh] =
D[Qg]. Furthermore, h is a characteristic map. Using Lemma 10.6.6, choose
K € O.,(®) such that K is self-extensional and contains D[h] as a subset.
Let k be the characteristic map of K. Since h and k are characteristic maps
and D[h] C D[k] we have h < k so Qh =< Qk by monotonicity. Hence,
D[Qh] C D[QK] = D[k]*t € O.,(®) by Lemma 10.2.6(c) and 10.7.1(c). Thus,
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D[Qg] = D[Qh] C ®. Furthermore, D[Qg] is open (c.f. Fact 10.2.4(a)) so it
remains to prove that D[Qg] is essentially o-small. This is trivial for g = L so
assume g = 1. Now Qg # L.

Let G = D[g]. By Lemma 10.7.1(a) we have D[Qg] = ®/g—G. By hypothesis
we have G € O_,(®?), and by Lemma 10.5.5 we have ®/g C G*® and ®/g €
P.o(M.). Choose a o-small V C ® such that G =1V.

Let ' € ®/g—V. Now h' # L. If k¥ € F and using Lemma 10.5.6 let
h" € F be such that h”z = h'(x/g) when x € 1(®/g) and h”z = 1 otherwise.
If ¥ = T let i = T. Using Lemma 10.5.3(a,d) we have h” <,; b’ and
R e ®/g—V. So ®/g—V = 1tW where W = {h” | ' € &/g—V} is o-small,
and ®/g—G = &/g—=1V =1(®/g—V) = W = 1W, which finishes the proof.

Lemma 11.2.2. Assume f,a,b,c,0,0 € M, 0 <y ¢ and VzeM:D[fz] €
O.s(®). We have:

() DIP| = {T} € O, (@)

(b) D[Q(fv)] € O4(®)

(¢) D[RfObc] € O (D)

(d) 5100 € {1, P,Q(f(aF)), Rf6(aT)(aF)}
(¢) DIS/6a) € 0., (%)

Proof of 11.2.2

(a) Trivial.

(b) Follows from Lemma 11.2.1.

(c¢) If Rf6bc = L then D[RfObc] = 0 € O.,(®). Now assume Rfbbc #
1. From the definition of R we have fc = T so ¢ € ® since 0 <y
¢. Hence, ¢c®/¢ C ®* is o-small by Lemma 10.5.5(b). Thus b(cP/¢)
and K = b(cD[0]/¢) are o-small too. Hence, using Lemma 10.7.1(d),
Lemma 10.2.6 and the hypothesis D[fz] € O.,(®) we have D[Rf0bc] =
U-copDLF (b(¢2/0))] = Uz kD[ fz] € Oy (®).

(d) Sfbay _
= ifla, P, if[aT, Q(f(aF)), Rf6(aT)(aF)]]y Definition of S
€ {L,P,Q(f(aF)), RfO(aT)(aF)} Properties of if

(e) Follows from (a-d).

In the following lemma, ((%)[k,g is the step chain produced from § € M by
Definition 11.1.4.

Lemma 11.2.3. If 0 <p ¢ and 8 < k then VaeM:D[0sz] € O_,(®).

Proof of 11.2.3 By induction on 8. For 8 = 0 we have D[#zz] = 0 € O_,(®).
The successor case follows from Lemma 11.2.2(e). The limit case follows from
Lemma 11.1.5.

11.8. Proof of UBT

In this section we prove UBT (i.e. ¥ = ¢), and a refined form of it which
sheds some light on the intuition behind the definitions of ¢ and s (Definition
47.1).

For UBT we need the minimality of Y w.r.t. <4, i.e. that Y is Yrparski-
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Theorem 11.3.1 (Upper Bound Theorem/UBT). ¢ <, ¢ holds in all
ko -expansions where o < Kk is any inaccessible ordinal.

Proof of 11.3.1 Recall that ¢ = Us where s = YS (Definition 4.7.1). From
Lemma 11.2.3 and for all a € o and x € M, we have D[p,x] C ® and so, using
Fact 4.6.3, D[U¢a] = UzemDlpaz] € ® = D[¢]. Since both Up, and ¢ are

characteristic maps we have Ugp, =<1 ¢.
Now define s, for all a < k by:

So = 1
Sa+1 = SSa
Ss = SUP,csSa for limit ordinals &

By transfinite induction we have that s, <A Y.9, that the sequence is increasing
and that all the sups are defined (since (s, )qes is bounded by Y S). Furthermore,
s=YS = s, since Y is Yrarsii (c.f. Section 7.2).

We have s, < ¢o by transfinite induction: The zero and limit cases are
trivial. We now assume s, =< q_ba and prove sgp4+1 =M éf_)a+1~ From s, < m q_ﬁa
and monotonicity we have Us, =< u¢_>a 80 Usq =aq ¢. Hence, sq11 = Ssq =
Ssa(l—lsa) M Sbad = Dat1- B

Now ¢ = Us = Us,, Spm Udk S 0.

Theorem 11.3.2 below is a strengthening of UBT which we do not need but
which captures some of the intuition behind the definitions of s and .

Theorem 11.3.2 (Strong UBT). For all a € M we have D[sa] € O_,(P).

Proof of 11.3.2 We have ¢ <5 ¢ by UBT so D[¢)a] € O_,(®) by Lemma
11.2.3.

Define s,, like in the proof of UBT. We have Us, < Us = 1. We now prove
Sa ZM Yo by ‘Ergnsﬁnitg induction on a. If sq =<p Yo then sq11 = Sso =
S50(Usa) Zm StYat) = Yay1- The zero and limit cases are trivial.

Now D[sa] = D[sxa] C D[¢,a] € O (D).

12. Proof of the Lower Bound Theorem (LBT)

Recall that LBT states that ¢ <aq ¢ (c.f. Theorem 12.4.3). As already
mentioned, the proof of LBT uses UBT (in Lemma 12.2.3 and 12.4.1), the
minimality of Y (in Lemma 12.1.2(b)) and that o is the first inaccessible (in
Lemma 12.4.2). The dependency on UBT and the minimality of Y should be
seen as a convenience whereas the dependency on o being the first inaccessible
is essential, c.f. Section 10.1.

In the following, M can be any ko-expansion (k > o). We only require o to
be minimal when needed (in Lemma 12.4.2 and LBT itself).
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12.1.

Characteristic maps

Recall that we refer to elements of y = (M—{T, L}) N F as characteristic
maps. For all G C M we have D[g] = G for at most one g € x. We refer to
that g, if any, as the characteristic map of G. As examples, ¢ and 1) are the
characteristic maps of ® and D[], respectively. Define x; = x U {L}. Note
that if g € x 1 then D[g] = dom[g] = {xeM | gz # L}. Also recall the following

facts:

Fact 12.1.1. Let g,h € M. We have:

(a)
(b)
()

gEXS g3 A TAg# L
gEXLE g3Mm Az T
If g € x1 and h € x then g <p¢ h < Dig] C D[]

Now recall the definition of s (Definition 4.7.1(b)). We have:

Lemma 12.1.2.

sa = Ssia

sa Sp Ax. T

sa 2pm Y

sa Saq sb < Dl[sa] C D[sb|] provided sa # Az. L

Proof of 12.1.2

(a)
(b)

(d)

12.2.

By the definitions of S and ¢ (Definition 4.7.1).
Let Ty = Az. T and Ty = Ay. T;. It is enough to prove

YaeM:STsa =M T: (1)
since if (1) holds then STy = Aa.STaa <pq Aa. Ty = To s0 YS < To
(since Y = Yrapski)- Hence, sa = YSa < Taa = Ty.

It remains to prove (1). By Lemma 11.2.2 we have

STsa € {L7 P,QT, RTQ(UTQ)(GT)(G,F)}
Since clearly P < Ty, it only remains to c_l_leck that the two 1asj§ terms
are smaller than T;. From QTy =!T; : A\y. V2. T1(y(z/v)) = Ay. V2. T =
Ay. T =Ty we have QT < T1. From Ez. A <, T for all terms A we
have RTo(UTa)bc =+ : Ay. Ez. -+ < T1.
From ¢ = Us and Fact 4.6.3 we get D[sa] C D[¢)]. Thus sa < ¥ by Fact
12.1.1(b,c) and (b) of the present Lemma..
If sb # L then the lemma follows from (b) and Fact 12.1.1(c). The lemma
is trivially true if sb = L. Actually, sa <, sb < D[sa] C D[sb] only fails
for (sa = Ax. L) A (sb=1).

Analysis of s applied to pairs

We analyze here the shape of D[sa] when either a = T or a is a pair as
defined below. UBT is used in the proof of Lemma 12.2.3(c) below.

Lemma 12.2.1.

(a)
(b)

sT=P
D[sT] = {T}
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Proof of 12.2.1

(a) sT = Ssy)T = P by Lemma 12.1.2(a) and the definition of S
(b) Follows from (a) and the definition of P.

Define z::y = Az.if[z, z, y].

Q(sa) #* 1 if sa # L
D[s(T::a)] 2 D[sa]™ if sa# L (Uses UBT)

Proof of 12.2.3

(a) s(T::a)
= Ssp(T::a) Lemma 12.1.2(a)
= Q(s((T=a)F)) Definition of S
= Q(sa) Fact 12.2.2(c)
(b) From sa # L we have !(sa) =T so
Q(sa)
= I(sa) : A\y.--- Definition of Q
=T:y.--- From the assumption
= A\y. - Definition of guards
#* 1 Trivial
(¢) We have D[sa] C ® by UBT (Theorem 11.3.1) and Q(sa) # L by (b).
Hence,
D[s(T::a)]
= Q(sa) (a)

D D[sa]™ Lemma 10.7.1(b)

Lemma 12.2.4. Assume b € F, ¢ =T and Vze®: s(b(cz/¢)) # L
(a) Risyp(buc) =T
(b) s(b:c) = Ay. Ez. (2 : s(b(cz/¢))y)
(c) s(bz:e) # L
(d) D[s(bz:c)] = U.epyDls(b(cz/1))]

Proof of 12.2.4
(a) Rysyp(bric)
= Vz.1(s((b::c)T((b::c)Fz/v)))  Definition of Ry
= Vz.!(s(b(cz /1)) Fact 12.2.2
=T Third assumption
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(b) s(b::c)

= Ssip(b:c) Lemma 12.1.2(a)

= Rsy(b::c) Definition of S

= tc: Rysp(bic) : Rosyp(b:ic)  Definition of R and Fact 12.2.2
= Rosy(b::c) Ye=T and (a)

= Ay.Ez. (¢z : s(b(ez/v))y) Definition of Ry and Fact 12.2.2
(c) Follows from (b)
(d) y € D[s(b::0)]

< s(be)y=T Definition of D
< Ez. (Yz:s(b(ez/Y)y) =T (b)
& dzeM: (Yz:s(b(ez/v))y) =T Properties of E

& zeM:ipz =T As(b(ez/y)y=T Properties of guards
< JzeM:z € D[] Ay € D[s(b(cz/v))] Definition of D
&y € Uzeppy)D[s(b(cz/1))] Trivial

12.3. Further properties of projections

Recall that since / is an infix operator we have that ab/cd means (ab)/(cd).
Likewise, gH/k means (¢gH)/k which equals {(gh)/k | h € H}.

Lemma 12.3.1. If G = D[g] € O.,(M) and ) # G C H C G° then FheG™:
G/g=nhH]/g.

Proof of 12.3.1 If h € Gt = G°—G then hG° C G. From G C H C G° we
have hG/g C hH/g C hG°/g C G/g. Tt remains to find an h € GT such that,
furthermore, G/g C hG/qg.

Let k: G*—G satisfy k(z)/g =z forallz € G/g CG°/g=G*. For z ¢ G/g
we merely require k(z) € G which is tenable since G # (.

Using Lemma 10.5.6 let h € F satisfy hx = k(x/g) when x € G°. Obviously,
heGt.

Assume x € G/g. Let y € G satisly y/g = . By the definition of h and k
we have x = k(z)/g = k(y/9)/9 = hy/g € hG/g; whence G/g C hG/g.

Lemma 12.3.2. If G = D[g] € O.,(M), G C G° and 2 <. G/g then
P(G/g) <c GT/g.

Proof of 12.3.2 Let a,b € G satisty a/g # b/g.
From Lemma 10.5.2 we have G/g C G*. For all U C G/g define ky: G*—M,
hy € F and iy € M as follows using Lemma 10.5.6:

a ifzeU .
ky(x) = b otherwise forall z € G
hve = ky(z/g) for all x € G°
iU = hU/g

Since {a,b} C G we have hy € GT and iy € G /g for all U C G/g.
Thus to prove P(G/g) <. G /g there only remains to prove that U ~ iy is
injective.
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Now assume U,V C G/g and U # V. Without loss of generality assume
U\V # 0 and take x € G such that z/g € U\ V. Thus hyz = a and hyx = b.

Using the definition of / we have iyz = (hy/g9)x = gz : (hyx/g) = T :
(a/g) = a/g. Likewise, iyx = b/g so iy # iy which ends the proof.

Let ¢, be the characteristic map for ®,. We have &, = D[d,].
Lemma 12.3.3. P(®,/da) <c Pat1/Pat1 for alla € o.

Proof of 12.3.3 ®y/¢ is finite and P1/¢; is infinite so the lemma holds
for « = 0. For all @ > 0 we have T,F € ®, and so 2 <. ®,/¢,. Hence,
P(Po/a) <c PL /b0 = Pot1/Pa by Lemma 12.3.2. Furthermore, ®411/¢0 <.
D,11/ba+1 by Lemma 10.5.4 and Lemma 10.4.3(a).

Lemma 12.3.4. a <. ®,/¢, for all a € 0.

Proof of 12.3.4 By transfinite induction using Lemma 12.3.3 for the successor
case and Lemma 10.5.4 for the limit case..

12.4. Proof of LBT

We use UBT twice in the proof of the following lemma.

Lemma 12.4.1. Let o be a limit ordinal. For all v € a assume that b, € M
satisfies ®,, C D[sb,]. Suppose a € M satisfies cf(a) <. D[sa]/sa. Then there
exists a by, € M such that &, C D[sb,]

Proof of 12.4.1 The core idea is to take b, = c::d with ¢ and d chosen as
below, and to apply Lemma 12.2.4(d) to D[s(c::d)].

Let g = sa, G = Dlg] and H = D[¢].

From szy = T = ¢y = T we have D[sa] C D[¢)]. Thus, by UBT we have
Disz] C D[¢)] C ® C ®° C D[sz]° for all x € M.

From the hypotheses we have D[sa] # (0 and D[sb,] # 0, so sa # L and
sby # L for all v € .

Step 1: definition of d and properties. From D[sa] C D[¢)] C Disa]® we
have G € H C G°. Using Lemma 12.3.1 choose d € G* such that G/g =
dH/g. Using Lemma 12.2.3 (and hence once more UBT) we have d € GT C
D[s(T:a)] C H.

Step 2: definition of ¢ and B and properties. Let k' € G/g—a be cofinal in
a, and let k € G*—M be defined by k(x) = by, if 2 € G/g and k(z) = L
otherwise. By Lemma 10.5.6 there exists a ¢ € F such that cx = k(x/g) when
x € G° cx = L otherwise, and cx = c¢(z/g) for all x € M. For such a
¢, using Lemma 10.5.3(e) we have c(z/g) = c(z/v/g) = c(x/¢). Finally, let
B = ¢(G/g) = range[k]. We have B = ¢(G/g) = ¢(dH/g) = ¢(dH /).

Step 3: computation of D[s(c::d)]. We have ¢ € F, d = T and s(c(dz/v)) =
s(k(dz/v/g)) = sby(azsq) # L for all z € ®, so by Lemma 12.2.4 we have
D[s(c::d)] = U,euDl[s(c(dz/v))] = UuegD[su].
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Step 4: computation of ®,. We now prove ®, = Uyca®y = Upeq/gPr/ () C
Uzei/gD[8bk ()] = UueDlsu]: the second equality uses that « is a limit ordinal,
k' is cofinal in o and the sequence ®, is increasing; the inclusion uses the
hypothesis and range[k’] C «. Taking b, = c::d we have &, C U,ecpDlsu] =
D[s(c::d)] = Dl[sb,]| as required.

The following lemma is the one where we use that ¢ is not only inaccessible
but is furthermore the smallest inaccessible.

Lemma 12.4.2. Suppose o < k is the smallest inaccessible ordinal. Let o € o.
For all v € a assume that by € M satisfies ®, C D[sb,]. Then there exists a
bo € M such that ®, C D[sb,].

Proof of 12.4.2 If « =0 take b, = T. Then ®, = {T} = D[sb,]. fa=0+1
take b, = T:bg. Then &, = q); C DIsbg]™ C Dlsbs]. Now assume that « is a
limit ordinal.

Thanks to Lemma 12.4.1 we just have to find an a € M such that cf(a) <,
D[sa]/sa. Since a € o and since o is the smallest inaccessible ordinal we have
that « is not inaccessible so cf(a) < oV Ipca:a <. P(B). We proceed by
considering two cases: cf(a) < « and cf(a) = .

Case 1. Assume cf(a) < a.. Let 8 = cf(a) and a = bg. From the hypothesis
we have @5 C D[sbg], so ®3/¢3 <. D[sbg]/sbg by Lemma 10.5.4. Furthermore,
B <. ®g/pp by Lemma 12.3.4. Thus, cf(a) = 8 <. ®g/ds <. D[sbg]/sbg =
D[sa]/sa.

Case 2. Assume cf(o) = a. Choose § € «a such that a <, P(8) and let
a = bg41. Since o is a limit ordinal we have 41 < a. Thus, by the hypothesis,
P11 C Dlsbgii]. So cf(a) = a <. P(B) <. P(®s/ds) <c Ppt1/dp+1 <c
D{sbg+1]/sbg+1 = D[sa]/sa by Lemmas 10.5.4, 12.3.4 and 12.3.3.

Theorem 12.4.3 (Lower Bound Theorem/LBT). ¢ <x ¢ holds in all
ko-expansions provided o < k is the first inaccessible ordinal.

Proof of 12.4.3 From Lemma 12.4.2 we have ®, C D[sb,] C D[¢)] for all o« € o
50 ® = Uaeo®y C D[¢p]. Thus ¢ < ¢ since ¢ and ¢ are the characteristic
maps of ® and D[¢)], respectively.

13. The consistency of MT

The main result of the present paper is that MT (as defined in Section 3.2
and Section 4) is consistent (also see Appendix D for a summary of MT). We
formulate the main result thus:

Theorem 13.1 (Consistency of MT). If o is the first inaccessible ordinal
and k > o is reqular then M, = MT and M, = T=F.

Proof of 13.1 From Theorem 7.5.2 we have M, |= Elem+Elem’ +Exist. From
Section 7.6 we have M,,, = Mono + Min + Ext. From UBT (Theorem 11.3.1)

70



and LBT (Theorem 12.4.3) we have the Definability Theorem (Theorem 10.1).
From Theorem 7.9.2 and the Definability Theorem we have M, = Quant[y].
Thus, M, = MT. Finally, from Theorem 7.4.3 and Definition 7.4.4 we have
M, = T=F.

Also the “economical” minor variant MTqes of MT is consistent (both Section
3.4 and Appendix D mention how MTg.s differs from MT). We state that as a
corollary:

Corollary 13.2 (Consistency of MTqs). If o is the first inaccessible ordinal
and k > o is reqular then My |E MTget.

Proof of 13.2 Follows from Theorem 13.1 and Ycumy = Y (Theorem 9.5.3).

14. Conclusion

We have now introduced the axiomatization MT of Map Theory and proved
its consistency. To some extent, MT obsoletes the previous axiomatization [9, 4],
which we call MTy in the present paper.

Furthermore, we have introduced the natural and minor variant MTges of
MT and also proved the consistency of MTqes. This shows that it is a matter
of taste whether or not Y and L are included in the syntax.

What can be learned from Map Theory and its consistency proofs is that
if we make Scott domains big enough, we can use them as universes for all of
mathematics. Or, more precisely, if we make reflexive Scott domains big enough
and use a suitable notion of continuity (k-continuity), then we can interpret ZFC
(including predicate calculus) in them via A-calculus plus Hilbert’s e operator.
Moreover, we can express this ability of these big reflexive Scott domains ax-
iomatically (the equational theories MT, MT4cs and MTy being examples).

MT enhances MT( in three ways: First, it contains three new rules named
Mono, Min and Ext. Second, it contains parallel or. Third, it contains a definition
of wellfoundedness rather than axiomatizing wellfoundedness by a more or less
random collection of rules. We elaborate on that in the following.

14.1. The Mono, Min and Ext rules

The Mono and Min rules express well known properties of Scott domains:
all constructs are monotonic in the Scott order, and Tarski’s fixed point oper-
ator generates minimal fixed points. Maybe somewhat surprising, Min replaces
induction and transfinite induction (see Example 4.2.1 for induction on natural
numbers).

Curiously, the Ext rule does not resemble anything the authors have ever
come across, so it may be an entirely new axiom. The Ext rule corresponds to
extensionality in set theory. Ext may be seen as a transtive version of Gen which
says A = B+ Az. A = A\z.B. Gen merely considers one level of lambdas. In
contrast, Ext compares two maps by traversing their lambdas to an arbitrary
depth. To some extent, one may think of Ext as structural induction on lambdas.
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While the Ext rule seems entirely new, it does not seem to have any surprising
consequences. The results in Example 4.3.1, 4.3.2 and 4.3.3 are representative
examples of uses of Ext. As another example, and as a continuation of Example
4.2.1, one may show that the data type of natural numbers is a retraction: if
we define the set of natural numbers (i.e. the first infinite ordinal number) by
w=Az.if[z, T, Ay.w(zT)] then we can prove w(wx) = wz using Ext.

14.2. Parallel or

The second enhancement of MT over MTy is that MT contains parallel or.
As mentioned in Section 3.2, parallel or is neither needed for developing ZFC in
MT nor convenient when programming. Nevertheless, it is nice to have parallel
or since it allows to prove a full abstraction result (Theorem 3.8.2). That result
in turn makes it easier to explain the notion of equality in Map Theory as is
done in Section 3.8. Thus, full abstraction is a nice to have property when
getting introduced to Map Theory in general and to its computational part in
particular.

14.3. Definability of wellfoundedness

The third enhancement of MT over MT is that it contains a definition of
wellfoundedness rather than axiomatizing wellfoundedness by a more or less
random collection of rules. That gives a number of advantages.

First, it is an interesting result in itself that one can define the characteristic
function ¥ of ® in A-calculus plus Hilbert’s e-operator. In ZFC one has to
populate the universe by axioms like the power and union set axioms. One can
do the same in Map Theory (as is done in MTy). But one also has the choice
just to postulate that A-calculus plus Hilbert’s e-operator makes sense and then
define a 1 which corresponds to the universe of ZFC.

Second, having a precise definition ¢ of the notion of wellfoundedness inside
Map Theory allows to investigate the notion inside the theory itself. In partic-
ular, applying the Min rule to the definition of 1) happens to produce a rule of
transfinite induction [10] which in turn may be used for proving each and every
axiom of ZFC.

Third, having a definition of wellfoundedness allows to build up a better
intuition of what wellfoundedness means. In MT, one was forced to take a
more or less random collection of wellfoundedness axioms for granted, but it
remained unclear what wellfoundedness meant precisely. That was to some
extent solved in [4] where the Generic Closure Property (GCP) and Strong
Induction Property (SIP) provided a clearer picture of wellfoundedness. But
MT takes that a step further by internalizing the notion of wellfoundedness in
the axiomatization itself.

14.4. Does MT obsolete MT(?

As mentioned, MT enhances MTj in three ways: First, it contains three new
rules named Mono, Min and Ext. Second, it contains parallel or. Third, it con-
tains a definition of wellfoundedness rather than axiomatizing wellfoundedness
by a more or less random collection of rules.
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The Mono, Min and Ext rules are uncontroversial. Mono and Min express
well-known properties shared by all the non-syntactic models of untyped \-
calculus. It was not considered to include something expressing monotonicity
and minimality in MTy because these concepts were not needed in MT, for
developing ZFC, and MTj was the first demonstration of the fact that lambda
calculus can be used as a foundation of mathematics. The Ext rule was not yet
conceived at the time MT( was constructed, but it expresses some fundamental
intuition behind Map Theory [9, Section 2.3], and as such is uncontroversial.
Thus, even if one decided to go back to MT( one would probably keep Mono,
Min and Ext and extend MTq by these rules.

The parallel or construct is also uncontroversial; and if one does not like it,
one can just drop it. Having full abstraction can have a reassuring effect, but
apart from that, parallel or can be in- or excluded according to taste. Thus,
like was the case for Mono, Min and Ext, if one goes back to MT( then one may
decide to keep parallel or and include it in MT.

Having a definition of wellfoundedness is more of a game changer. M T leaves
it open whether or not there exist inaccessible ordinals which are wellfounded in
the sense of Map Theory, and MT can consistently be extended to satisfy either.
In contrast, MT is completely clear: inaccessible ordinals are non-wellfounded in
the sense of MT. That is unimportant for the vast majority of mathematicians,
but it is bad news for users of inaccessible ordinals, and could be a reason for
them to prefer MTy.

Note that MT does not say that inaccessible ordinals do not exist. It just
says that they are not wellfounded. Actually, the class of all ordinals exists in
MT and is in some sense the first inaccessible. But since it is not wellfounded,
it is not in the range which quantifiers like € and v quantify over.

If one needs inaccessible ordinals which are wellfounded in the sense of Map
Theory, then the easy solution is to go back to MTy and add an axiom saying
that the needed ordinals exist. A more complicated but probably more viable
solution would be to change the definition of ¢ in MT to make the needed
inaccessible ordinals wellfounded.

On the other hand one may also take the complete opposite point of view.
If one sees undecidable propositions as a nuisance which should be kept to a
minimum, it is nice that the question of existence of wellfounded inaccessible
ordinals has a definite answer.

14.5. Further work

A key benefit of using lambda calculus as a foundation of mathematics is that
it allows to use the same formalism for mathematics and computer program-
ming. That could be particularly useful for proving mathematical results about
computer programs, since theorems, proofs and programs could be expressed
in the same framework. As an example, that could allow to treat numerical
software in a setting where mathematical analysis is available.

To make use of that it would be convenient to have an implementation of the
computational part of Map Theory. The implementation described in [11] is such
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an implementation. Further work could be to make that implementation more
mature by enhancing such practicalities as its I/O capabilities, its responsivity
to external interrupts, its garbage collection and so on.

Another obvious piece of further work would be to port the proof in [10] to
MT. That proof is expressed in the axiomatization MT, (cf. Section 1.4) whose
consistency has never been proved. Porting the proof to MT plus proving the
probably easy —SI would confirm Conjecture 2.2.3 which says that MT can
interpret ZFC+—SI.

Since a proof checker has already been implemented in the system described
in [11], it would also be an obvious piece of further work to run the above men-
tioned ported proof through that proof checker. The proof in [10] has already
been verified by other proof checkers, but it would be interesting to verify the
ported proof in a proof checker which directly implements MT.

On a different note, one could try to add further rules to MT. As an example,
one could imagine a rule saying that all maps are s-continuous. Or, more
precisely, x-continuous for k = o1 where T is the smallest regular ordinal
greater than o. That would express the continuity of maps but would also force
k to be oT. Expressing that maps are s-continuous would be a step forward.
Restricting x to be o™ could be seen as a benefit or a drawback depending on
taste.
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A. Computational properties of canonical premodels

We now proceed to compare the observational, computational behavior of
programs (i.e. closed, e-free MT terms) with their semantics as defined by the
canonical k-expansions M, (cf. Definition 8.6.2).

Recall that M, does not model all of MT. Modelling ¢ requires x > o for
an inaccessible o, but modelling the other constructs just requires £ > w. Now
assume K > w.

Sections A.1 and A.2 introduce and define auxiliary constructs and terms
needed for Section A.3. Section A.3 proves that all the compact (and prime)
elements of M,,, as well as some kinds of “analogues” in M,, Kk > o, are
definable using A, A, T, if and parallel or (Corollary A.3.2). Section A.4 proves
M., = Epure = Ecomp (as defined in Section 3.14). Section A.5 proves that M.,
is computationally adequate for E-free MT and MTges programs, and leaves
open whether this is true for Kk > w. Section A.6 states soundness results and
questions. Section A.7 proves that M, is fully abstract for MT and MTges.
Section A.8 proves that this is false for M, k > w.
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Similar definability, adequacy and full abstraction results (case K = w) were
proved for diverse typed A-calculi, starting from the paradigmatic paper of
Plotkin on PCF [14]. The proofs, already non-trivial in the typed case, are
here (untyped case) technically much more difficult.

For all MT, MTg4es and MT( programs d let d denote the interpretation of
din M,.

A.1. Introduction of T. and auxiliary concepts

Let C, = P%(P,). Recall from Section 8.5 that if p € P, C P then
Ip € M, is a prime map and if ¢ € C,, C C then |c € M, is a compact map.
For all p € P,, and ¢ € C,, we now proceed to define MTqes programs 7, 7,
Xp and x. which satisfy:

T, = p
. = Lo
_ T iflp=mz
Xpt = 1 otherwise
_ T ifle=pmz
Xet = 1 otherwise

To define the terms above, we also define a number of auxiliary concepts. For
all n € w and for n-tuples ¢ = {c1,...,¢c,) and € = (e1,...,e,) in C we define

cCescecpr el N Ney, ey
and
1E={ler,.. ., den)
For Z = (x1,...,z,) and (§J = y1,...,yn) in (M,)" we define
T2MY ST ZMYLN AT ZM Yn
For sets of n-tuples u,v € P, (C}) we define
u v & Jdecudecv:c e

For Z = (x1,...,2y) let A\Z.a and aZ denote A\zy - - - &, a and azy - - - &, respec-
tively.

For all p,q € P, ¢c,e € Cy, ¢, & € C% and u,v € P.,(C) for which p Z ¢,
cLe ¢ L eandu L v, we are going to define MT ger programs dpq, dce, Oce
and ¢, which satisfy:

Opg T iflp=pmzx
me = F iflg=m2
Jeer = T ifle=<yma
deex = F ifle=pmuz
JeeZ = T ifle=pm7
6ee% = F iflexy2
Oy = T if3dceu:lc T
0y = F ifdecv:ile=pm T

(6]



Finally, for all ¢ € C” and u € P.,(C") we are going to define MT4o¢ programs
Xz and x, which satisfy:

T iflepm7T

1 otherwise

T ifdeew:lem T
1 otherwise

e

Xu =

A.2. Parallel constructs

As a supplement to parallel or define parallel and:
vy =55 | =)

For finite sets I = {i1,...,i,} and MT4e¢ programs a;, i € I, define the MT et
programs » ., a; and [[;c; a; by

Yicr® = Fllai - a,
Hielai = T&ail&~~&ain
where the order i1, . ..,1, of elements of I is chosen in some arbitrary, fixed way.

A.3. Definition of T, and 7.

For all p,q € Py, c,e € C,, n € w, ¢, € C!} and u,v € P.,(C!) we define
the following MT4es programs by induction on the set rank of p, q,c, e, ¢, €, u, v:

Ti = T
7—f = Az LCurry
Xt = )\Jj If[.T, T7 J—Ctu]

Xf = Az.if[z, Lowry, T]

Sep = Ax.if[z, T, F] ifp#t

Opt = Az.iflz, F, T] ifp#£t

7—(C,p) = Az If[ XcT 7;7 ) J—Curry]

Xep) = AXp(aTe)

Xe = A if[[[e.xp7, Ty Loumy]

Xe = A.x71 & - & X, Tn

Xu = AZ. ZEEu X1 Tn

Oc.e = \z. Hp@c que Opg® ifce
Supw = ALY ey [lecy OceT ifuzwv

Above, the definitions of d(c p)(e,q), dee and T are missing. For (c,p) £ (e,q)
define

Oe.p)terg) = AT- Opg(2Teuse)

In the definition above note that (¢, p) & (e, q) implies ¢ C e and p & ¢. From
¢ C e we have cUe € C and the set rank of c U e is the larger of the set ranks
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of ¢ and e. Thus, the set rank of ¢ U e is smaller than one of the set ranks of
(c,p) and (e, ¢) which makes it legal to use T._. in the recursive definition.
For {c1,--,cn) & (e1,...,en) define

65@ = \T. 5Ci€z‘xi

where i € {1,...,n} is the smallest index for which ¢; Z e;.
To define T, recall the definition of (¢, p) from Section 8.4 and define

def(n,c) = {ce Cl|IpeP: (¢ p) € c}
true(n,c) = {ceCl|(ct)€c}
false(n,c) = def(n,c)\ true(n,c)

Now let £ be the smallest natural number for which def(¢, ¢) is empty and then
define the monstrous MT g program 7. thus:

T. = !f[étrue(o,c)false(o,c) » Xtrue(0,c) » Xfalse(0,c) * AT1.
|f[5true(1,c)fa|se(1,c)‘r1 y Xtrue(1,c)21 5 Xfalse(1,c)L1 * Az,
|f[5true(2,c)fa|se(2,c)x1m27 Xtrue(2,c)T1L2 5 Xfalse(2,c)L1L2 * Azs3.

i'F[(Strue(é,c)false(é,c)1’1 T ey Xtrue(,e)xyxg J—Curry} e ]H

In the definition above, dtrue(s,c)false(t,c)T1 * * * Te = Oppx1 -~ - T = F.

Theorem A.3.1. Let p,q € P, c,e € C,, ¢,é € C” and u,v € P.,(CI)
satisfy p £ q, ¢ £ e, ¢ £ € and u L v, respectively. Under these conditions,

Tps Tes Xps Xes Xes Xus Opgs Oces Oce and 8y, have the properties stated in Section
Al

Proof. By induction on a we have that the theorem holds for all p, ¢, ¢, e, ¢,
e, u and v of set rank less than a. O

Corollary A.3.2. For allp € P, and c € C,, the MTqet programs T, and 7T
satisfy E =lpand 7. = lc.

Let Cq, ..., Cg be the combinators defined in Section 3.6 where C; and C, are the
usual S and K combinators, respectively. We refer to terms built up from these
combinators and functional application as MT combinator programs. We refer
to the Cs- and Cg-free MT combinator terms as MTqef combinator programs,
where C; and Cg are the combinators corresponding to 1 and Y f, respectively.

For all ¢ € C,, let 7/ denote the result of applying abstraction elimination
using S and K to 7. Thus, the MT4cf combinator program 7/ satisfies 7! = T¢,
so we have: o

Corollary A.3.3. For allp € P, and c € C,, the MT4es combinator programs
T, and T satisfy T, = |p and T! = |c.

Of course Corollary A.3.2 and Corollary A.3.3 also hold for MT. They do not
hold for MT( because parallel or is missing in MT.
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A.4. Semantic and syntactic existence

As promised in Section 3.14:
Lemma A.4.1. Mw ': Epure = Ecomp

Proof of A.4.1 Both E, . and Ecomp are characteristic functions. They
satisfy

Epwep = T iff px =T for some map x
Ecompp = T iff pax =T for some program x

Thus we need to prove
pr =T for some map x iff pxr =T for some program x

The direction <= is trivial. To see = note that if pxr = T for some map x then
py =T for some y € C, so pTy, =T.

Corollary A.4.2. M, |=Ea = Epue ¢ = Ecomp a.

A.5. Computational adequacy
Recall the notions of N;, Ny and N from Section 3.8.

Definition A.5.1. M is computationally adequate for a set T of MTg, MTget,
or MT programs if

aeN;, & MEa=T
aeN; & MEa=A.ax
aeN, & MEa=1

for all a in T, where Ny, Ny and N\ are defined using the reduction rules of
MTy, MTg4et and MT, respectively.

As we shall see in a moment, M, is computationally adequate for MT
programs, for E-free MTgos programs and for E-free MT programs.

Any term a satisfies one of a € N, a € Ny and a € N, and one of
MEaea=T, MEa=Xr.ar and M |=a = L (cf. Section 7.4). So each of the
three statements of Definition A.5.1 follows from the two other ones.

Each statement has a trivial direction:

aeN, = MEa=T
aeN; = MEa=A.ax
aeN,  MEa=1

Furthermore, if

aeN, = MEa=1
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then

aeN; « MEa=T
aeN; « MEa=Az.az

follows trivially. The notion of computational adequacy of a model, as well as the
notion of full abstraction, were introduced by Plotkin in [14] (for a paradigmatic
simply typed lambda calculus called PCF). The definition of computational
adequacy given above is equivalent to the one in [14] which merely requires
a €N & MEa= 1. However, MT is an untyped lambda-calculus which,
for the problems treated in this appendix, considerably increases the technicality
of the proofs.
Theorem B.0.2 of [4] states:

Theorem A.5.2. M, is computationally adequate for MTy programs.
Likewise, we have:
Theorem A.5.3. M, is computationally adequate for E-free MT qer programs.

The proof of Theorem A.5.3 is the same as the proof of Theorem B.0.2 in [4]
with the following two modifications. First, one has to include parallel or at the
relevant places. Second, the proof of Lemma B.0.4 of [4], which is by structural
induction, has one more case, namely the one for parallel or.

Finally, we have:

Theorem A.5.4. M, is computationally adequate for E-free MT programs.

Proof of A.5.4 The theorem follows trivially from
MplEa#l)=aeN,UN;s

which we prove in the following. For all terms g let \?g be the term

(Az. g(zz))(Ax. g(zx))

where z is chosen such that z is not free in g. Here, Y is a term function, i.e. a
function from terms to terms, and Yg denotes application of the term function
Y to the term g. In contrast, Yg denotes the term Y applied to the term g using
the application operation of MT.

Since M,, is canonical we have M, = L = Lcumy and M, =Yg = Yg.

For all terms b of MT we define the LY-less transform [b] of b to be the term
which results when replacing all occurrences of 1 and Yg in b by Lcury and
?g, respectively. In M, we have [1] = Louymy = L and [Yg] = ?[g] = Y]g].
This allows to prove M, = [a] = a for all terms @ by structural induction.
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For each E-free MT program b, [b] is an E-free MTges program. Define b Se
as in Section 3.5 and 3.6. We have:

1 Lo in MT
Yg 5 g(Yg) inMT
Lcurry EN Louwry in MTger
Yg L g(Yg) in MTue
[ 5 4] in MTay
Ygl = [g(Yg)] in MTae

In general, if b — ¢ in MT then [b] RN [c] in MTqef by structural induction on b
and c.
Let a be an MT program and assume M, = a # L. Now M, |= [a] # L.

Recall that for each a, a 2 b holds for at most one b (up to renaming of
bound variables). Let a1, ag, ... be the unique longest finite or infinite sequence

such that a 2 a; = ag = -+ in MT. By Theorem A.5.3, the sequence [a] 5
[a1] N [a2] 2 .. is finite and ends with a term in root normal form (i.e. is
T or an abstraction). Hence, a N ay EN as L ... has the same property, so
a € Ny UN; which was to be shown.

For programs that may contain E we have:

Theorem A.5.5. M, is computationally adequate for MT ge¢ programs and for
MT programs.

Proof of A.5.5 The proof is similar to that of Theorem A.5.4. Define a KN

d< db,c:a Lo e dandlet a = b be the transitive closure of a = b.
Recall the definition of Ecomp from Section 3.14. The definition is recursive
and thus implicitly uses Y. Now define

E=Y\ga.aCy || - || aCr || a(Az. g2) || g(Az. g(Ny. a(zy)))
We have Ecomp = E and

Ea > aCy || - || aCy || a(Aa. Ez) || EQ2. E(O\y. a(2y)))

For all terms b of MT, we define the E-less transform [b] to be the term which
results when replacing all occurrences of Ea by Ea. In M, we have [Ea] = E[a] =
Ecomp [@] = E[a]. This allows to prove M,, = [a] = a by structural induction.
If b= ¢ in MT then [b] RN [c] or [b] 2 [c] in MT and, in any case, [b] — [c].
The theorem follows from M, = a # L = a € N; UNy; which we now
prove. Assume M, E=a# L. Let a N ay N as L ... be the unique reduction
sequence for a. Now [a] = [a1] = [ag] —> --- is finite by Theorem A.5.4, so

aGMUNf.

The case K > w is open:
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Open Question A.5.6. Is M, computationally adequate for MTger programs
and for MT programs for k > w ?

A.6. Soundness
Recall from Section 3.8 that a =, b is shorthand for M, |=a =1b.

Theorem A.6.1 (Soundness of M, and M,).
(a) a =4 b= a=cbs b for all E-free MT  programs a and b.

(b) a =, b= a=cus b for all MT  programs a and b.
(c) a =4 b= a=cps b for all E-free MTqes programs a and b.
(d) a =, b= a=cps b for all MTget programs a and b.
(e) a =4 b= a=cps b for all MTy programs a and b.

Note that observational equality a =qps b of MT, MT4es and MTy is true if
ca ~ cb for all MT, MTg4es and MT( programs c, respectively, so the notions of
observational equality are slightly different. Also note that MTy does not have
E in its syntax, so all MT( programs are born E-free.

Proof of A.6.1 Soundness follows trivially from computational adequacy. We
only prove (a). Assume a =,; b. Assume ¢ is an MT program. We have ca =, ¢b
so ca =, T < cb =, T and, by Theorem A.5.4, ca € N; < cb € N;. Likewise,
ca € Ny & ¢b € Ny and ca € N| < ¢b € Ni. Thus, ca ~ ¢b for all MT
programs ¢ which, by definition of =gps, gives a =gps b.

Above, we use computational adequacy to prove soundness, and Open Question
A.5.6 may be restated thus:

Open Question A.6.2.

(a) Does a =4 b= a =ops b for all MT programs a and b and for K > w ¢
(b) Does a =, b= a =ops b for all MT et programs a and b and for k > w ?

A.7. Full abstraction

Definition A.7.1. A model M is fully abstract for MT/MTget /MTq if a =obs
be MEa=0b for all MT/MTaet/MTo programs a and b.

We now state and prove that M, is fully abstract for MT:

Theorem A.7.2 (Full Abstraction of M,,).
a =obs b a =, b for all MT programs a and b.

Proof. (<) follows from Theorem A.6.1. (=) Assume a =gps b. Assume
p € Py. From a =,ps b we have Tipy 0 € Ny & Tipynb € Ny Hence, by
Theorem A.5.4, Tip1na =w T < Tipy,nb = T. Thus, by Corollary A.3.2,
{pht))a=T e (({p}.t)b=Tsop €a < pebforall p e P,. Hence,
a=banda=,0b. O

Theorem A.7.2 also holds for MT 4e, i.e. M, is also fully abstract for MT ges.
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MT lacks parallel or and Theorem A.7.2 does not hold for MTy, i.e. M, is
not fully abstract for MT(. As a counterexample, take

a = Mx.if[zT LAz LTAS2FF, T, 1]
b Az. L

The map a above is a parallel or tester, i.e. ax = T if zuw is the parallel or of u
and v. We have a =g b in MTY.

A.8. Negative results
We now prove that M, is not fully abstract for MT for kK > w, k regular:

Theorem A.8.1. If k > w, Kk regular, then there exist MT programs a and b
for which a =gps b and a #, b.

Proof. Take a = E,ye = Az. Ez. Take b = Ecomp so that b= Az. (xCq || - ||
xCs || bAu. bAv. z(uv)) (cf. Section 3.6 and 3.14).

We first prove a =qps b. According to Theorem A.7.2 it is enough to prove
a =, b. Furthermore, a and b are both characteristic maps, so it is enough to
prove ap =, T < bp =, T for all p € M,,. Now ap =, T iff px =, T for some
x €M, and bp =, T iff px =, T for some MT program z. If px =, T for some
x € M, then pc =, T for some compact ¢ € M, so p7. =, T proving bp =, T.
Hence, ap =, T=bp =, T. Ilf bp =, T then px =, T for some MT program z,
so pr =, T for some x € M,,, proving ap =, T. Hence, bp =, T = ap =, T,
which ends the proof of a =, b.

We then prove a #, b. Let to = t and t,11 = (,t,) for every n € N.
We have t; & t; & i = j. Now let g : N=+N be non-computable. Let QQ =
{{ti}, tye)) 11 € N}, ¢ =1Q and p = |(Q,t). We have p,q € M, and pg =, T
so ap =, T. Furthermore, we cannot have pr =, T for any program z since g
is non-computable, so bp #, T proving a #, b. O

Theorem A.8.1 is not too surprising since E quantifies over M,, whereas the
computable approximation b in the proof essentially quantifies over {|p | p €
P, }. We may however strengthen the theorem above as follows:

Theorem A.8.2. If k > w, k regular, then there exist E-free MT programs a
and b for which a =ops b and a #, b.

The proof of Theorem A.8.2 spans the rest of this section.

Let I' = [{{{p},p) | p € Py}, i.e. let I’ be the smallest element of M, for
which I'({p) = |p for all p € P,,. Now I’ is compact but I’ ¢ C,,. As we shall
see in a moment, there exists an MT-term b which denotes I'.

To prove the lemma, we take a = Ax.x and we take b to be a term which
denotes I'. Now a =¢ps b is true and a =,. b is false.

The rest of the proof is about the definition of b which is long and technical.

Sections A.1-A.3 define 7, in ZFC. We now reflect that definition in MT.
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Recall that (x:y)T = « and (z::y)F = y. Let (21,...,2,) be shorthand for

Xy nxynT. We refer to (21,...,@,) as a list and use lists to represent finite
sets. We now port the constructs of Section A.2 from ZFC to MT:

Sy A = Yy A)

Y'ya = ifly, F,a(yT) | X' (yF)a]

HmGy‘A = H/y()\xA)

[T ya ifly, T, a(yT) & [T (yF)a]

Above, > ([]) expresses existential (universal) quantification. We also need a
strict version of universal quantification:

Noey A = NyQz. A)
Nya = ifly, T,a(yT)AN (yF)a]

We now proceed to port the definitions of P, and C, from ZFC to MT. We
represent the elements P, thus:

t

f
(¢,p)

11l
vl B
a4

p
Recall that z:y is right associative so that T::c::p means T::(c::p). We have
(¢,p)FT = c and (¢, p)FF = p.

Elements of C,, are finite sets of elements of P, so we represent them
by lists. As an example, ({(¢),t),{(f), f)) represents the element of C, whose
downward closure is the interpretation of \x.if[z, T, Ay. L].

A list like (¢, f) does not represent an element of C, since ¢ and f are
incoherent. We now define the coherence relations <, and <; on P, and C,,
respectively:

poq = if[p,iflg, T,F],if[q, F,
if[pF, T, if[qF, T,
pFT & gFT=pFF & ¢FF]]]]
c Cl e = /\pE(; /\qup CO q
The definitions above allow to define characteristic maps xp,,, xc, and xcs
which test for membership in P,,, C,, and CS¥, respectively:

xe.p = if[pF, T, xc,(PFT)Axp, (pFF)]
Xc,¢ = cCch/\p@Xpwp
Xcz«€ = if[¢, T, xc,(€T) A xgz«(cF)]

We now port the definitions in Section A.3 from ZFC to MT. The definitions of
Ti, Ty and T p) in Section A.3 define 7, for all p € P,,. Below, Top is the MT
translation of the ZFC construct 7p:

Top = if[p, T,
if[pF, Az. Lcumy
Az lf[Xl(pFT)I ’ %(pFF) ) J—Cuny ]]]
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The definitions of X, x¢, Xz and x,, of Section A.3 translate into the following:

Xopr = If[p, If[d), Tv J—Curry] )
if[pF, if[z, Lcury, T,
Xo(PFF) (271 (pFT))]]
Xi1¢cr = /\pec Xopr
x2¢% = if[e, T, eT(ZT) & x=2(cF)(zF)]
X3UT = Yo, X2CT

The union of two sets represented by lists is a classic:

cUe if[c, e, cTu(cFUe)]

The discriminator constructs 6pq, dce, dze and dy,, of Section A.3 translate into
the following:

50pq1. = If[pv If[(E, Tv F]a
if[pF, if[z, F, T],
do (PFF)(gFF)(z(T1(pFT U gFT)))]]
drcer = [le. D qee S0P
dcex = if[eT < eT, d2(cF)(eF)(zF), 61 (cT)(eT)(zT)]
dsuvt = Y .o, [lae, d2cem
The empty set and the singleton set is straightforward:
1} = T
{z} = x:T

The ZFC construct def(n,c) of Section A.3 translates into the MT construct
defZc below where we represent the natural number n in the ZFC construct by
a list = of length n in the MT construct.

defzc = if[c, 0, def’Z(cT)T U defz(cF)]
def'zecc = if[z, {c}, if[pF, 0, def’(zF)(pFF)(pFT::c)]]

def(n, ¢) is a set of tuples and defZc is a list of lists. If (pq,...,p,) is an element

of def(n,c) then (pn,...,p1) is an element of defzc. Note the list reversal.
Note that the parameter ¢ of def’ accumulates a list in reverse order. Use of

such accumulating parameters is a standard trick in functional programming.
We now proceed:

truezc = if[e, 0, true’Z(cT)T U trueZ(cF) |
true’zecc = if[z, if[p, {c}, 0], if[pF, 0, true’(zF)(pFF)(pFT::c)]]
falsezc = if[c, 0, false’z(cT)T U falsez(cF)|
false'zcc = if[z, if[p, 0, {e}], if[pF, 0, false’(ZF)(pFF)(pFT::¢)]]
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We now define 7;c¢ which corresponds to 7. in Section A.3. We do so using an
accumulating parameter Z which accumulates (., ...,z1) where x1,...,z, are
the bound variables in the definition of 7. in Section A.3. The definition reads:

Tic
T cx

LT
if[X3(def§jC)i‘7 J—Cumry ’
if[ 03 (trueZc)(falsezc)z , x3(truezc),
x3(falsezc)z : A\x. T{ ¢(x::7)]]

This completes the port of Sections A.1-A.3 from ZFC to MT. We now define
constructs with the following properties:

apply(z, (Yns---»¥1)) = TY1-Yn
(Cna"'7cl)'_>p = <Cl7"'<cn7p>"'>

Note the list reversal. The definitions read:

if[y, ., apply(z, (yF))(yT)]
if[c, p, ¢F — (T::cTup)]

apply(z,y) =
cC—Dp =
Finally, we may define a term b which denotes I’ where I’ is the smallest element
of M, for which I'({p) = |p for all p € P,,. The definition uses an accumulating
parameter y:

bx = bVaT
Vay = if[apply(z,7), Ec. xgswCAxo(C = t)zAXacy,
Ec. xaswCAXxo0(C = fleAxacy : Ay. b'x(y:y)]

As an example, if bxyy -+ yp—1 € {T,L} and 2y; - - -y, = T then

bxyl “ e yn e b/xTyl “ e yn
= b/l’(ym Tt 2/1) B
= Ee xgs«eAxo(c— t)xAx2l(Yn,---,41)

Thus, in the situation above, bxy; - - -y, returns T iff there exists a ¢ € CS¥
such that {(¢ — t) a2 and J& < (Y1y- -5 Yn)-

B. Conjectures on the strength of MT versus MTy

We now continue the discussion of the strength of MT and MTj initiated in
Section 2.2. The prerequisites for reading the present appendix are included in
Sections 1.1, 1.2, 2.1 and 2.2.

MT is very likely stronger than MTy. Indeed, MT( can prove neither SI =T
nor (—SI) = T since it can be consistently extended by either one. In contrast,
(—=SI) =T is conjectured to be provable in MT (Conjecture 2.2.3). Furthermore,
MT can prove more pure lambda terms equivalent such as Fy = F3 (cf. Example
4.3.3) which we conjecture is not provable in MTy. Furthermore, we conjecture
the following:
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Conjecture B.1. If A = B is provable in MTy and if A’ and B' arise from
A and B, respectively, by replacing all occurrences of ¢ by 1, then A" = B’ is
provable in MT.

If (=SI) = T is provable in MT then Conjecture 2.2.3 follows from Conjecture
B.1 and Theorem 2.2.4. Conjecture B.1 is true if the ¢-axioms of MT, are
provable in MT with ¢ replacing ¢. Less support exists for Conjecture B.1 than
for Conjecture 2.2.3.

C. On the necessity of minimality for proving UBT

We now restate Lemma 10.1.1 which states that the proof of UBT (¢ <aq ¢)
needs that s is the minimal fixed point of S.

Lemma C.1. Let o < k be inaccessible and let M be any ko-expansion. There
exists an s’ € M such that Ss' = s’ and D[¢'] = M where ¢/ = Us'.

Proof of C.1 To prove the lemma it is enough to find s’,u € M such that
Ss' = s and s'u = Az. T, since then D[¢)'] = UgemD[s'a] 2 D[s'u] = M.

For any C' C M let sup(C) denote the least upper bound of C' (when such a
one exists). The idea is to take u = sup(B) for B = {A\z122---2,. L | n €w} =
{K,Ll |né€w}where K = \zy.z, Ko = L and K,,41 = KK,,. And to define s/
from u. Note that B has a sup because B is bounded (e.g. by any fixed point of
K). We prove below that u is k-compact and that we can produce an adequate
s’ from it. The proof has six steps, preceded by two more general lemmas.

Since M is a ko-expansion, it is in particular a x-Scott domain and a k-
premodel. This in particular means that application is monotonic w.r.t. the
k-Scott order < and that if g,h € F = M\ {T,L} and gz <, ha for all
x € M then g < h.

Lemma 1. Let G C M. If h = sup(G) € F then hl = sup(GL), where
GL={gl|geqG}

Note that the hypothesis on h implies that G contains a non-_L element and
does not contain T. The proof of the lemma is trivial if application commutes
with all sups (which is for example true if M is canonical); the proof for the
general case is a little tricky and will be given at the end.

Lemma 2. If p € M is prime then Kp = Ax.p is prime too.

Proof. Suppose \x.p =<p sup(G) for some G C M. We have p =
(Az.p)L = sup(G)L = sup(GL) by monotonicity plus Lemma 1. Since p
is prime we have p < gL for some g € G. Note that g = L could occur only
if p = 1, in which case g could be replaced by any other element of G, so we
can always take g € F. Now p =< gz for all z € M, whence A\z.p <\ Ax. gz
from which we have Ax.p < g since g = Azx. gx because g € F.

Step 1. Recall B = {A\z122---2,. L | n€w} ={K,L|n € w}. We prove
that u = sup(B) is k-compact and that u < ux for all x € M: by Lemma 2,
B is a countable set of primes, and hence a x-small set of k-compact elements
(since k > w). Hence its sup is k-compact too. Now, K,11 =< u implies
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K, = K412 = ux, so ux is an upper bound of B. Hence, u < ux since u
is the least one.

Step 2. Define s by sz = A\y. T if ¢ = v and Sz = L otherwise. Such an s
exists because the corresponding function is k-continuous (since u is k-compact).

Step 3. Now 0 = LUs = A\y. T. Proof: Us = \y. Ex. sxy where Ex.sxy =T,
because Sxy = T for x = u.

Step 4. S5u = Ay. T. Proof: We have that Ay. T is maximal (because M is
a premodel) so it is enough to prove S3u = A\y. T. We have S5u = S5(Us)u =
S30u. Using the definition of S and ux =4 u we have S50u = ¢ R30uu. From
0 = M\y. T we have fu = T. From the definition of Ry we have Ry50uu =
(Vz u(-++)) = (Vz lu) = (VzT) = T. From the definition of Ry we have
Ros0uu = (Ay.Ez. (Bu:5(u(--)y)) =m (Ay.Ez.5uy) = (\y.Ez.T) = Ay. T.
Thus, Rs0uu = (Gu : Ri50uu - R0§9uu) =M (T N )\y.u) = Ay.T. In
conclusion, Ssu = Ss0u = RsOuu = Ay. T as required.

Step 5. 5 a1 S5. Proof: We have sx = \y. T = Ssu < Ssx if u < .
Furthermore sz = 1 <y S8z if u Ap @, so §x < S§x for all x. Hence,
5 2m 5§ as required.

Step 6. Define s’ = f*(3), where f is the k-continuous function coded by
S, so that f(z) = Sz for all z. From § < S5 we have f°(3) <a f1(3). Like
in Lemma 7.2.1, f*(5) =am Aay. T is defined for all & and increasing in «, and
s’ = f*(3) is a fixed point of S (though not minimal). From § < s’ we have
s'u = Az. T as required.

It only remains to prove Lemma 1:

Proof of Lemma 1. The proof only uses that M is a x-premodel. From
h € F we have that G contains a non-_L element and does not contain T. Since
G is bounded, GL is also bounded. Hence, a = sup(GL) exists. Moreover,
a =pm hl, since hl is an upper bound of GL (by monotonicity). Now let
h' € F satisfy h' L = a and h'z = ha otherwise (the existence of b’ follows from
the fact that the corresponding function is easily seen to be x-continuous). Now
g 2m b = h because gx <y W'z 2 hx for all x, and h,h' € F and g = L
or g € F. Hence, b’ = h (by minimality of h) and h.l = a as required.

D. Summary of MT

We now summarize MT as defined in Section 3.2 and Section 4. We also
state how the minor variant MTqer (cf. Section 3.4) differs from MT.

D.1. Syntax
V o= z|ylz|---
T o= VIXTI|TT|T|f[T, T, TV L|Y|TIT|ET |eT
W = T=T

For MT e, L and Y are omitted from the syntax.
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D.2. Definitions

In the following, A, B,C,... denote (possibly open) terms and a,b,...

denote variables.

Elementary definitions

Y = Af. (Qx. f(zz))(Az. f(zx)) (Only in MTger)

L=Y\z.z (Only in MTgct)
Ary. A= e Ay A

F=Xz. T

1= \zy.zy

x by =if[z,ifly, T, L], ifly, L, Az. (z2) | (y2)]]
r<y=s=xly
~r =iflx, T, F]
oy = Az.x(yz)
X = Az Az if[xz, T, 1]
x =y =iflz,y, L] =iflz, T, 1]
le = if[x, T, T)
A = if[x, F, T)

Quantifier definitions

. I ==(p(ep))
Jr. A=3\x. A
Ve. A=33z.5A
ex. A=elx. A
Vp = V. px
Ex. A=E\z. A

The definition of v

P =Us
s=VYS
S=Mf.Sf(Uf)
S = Mfba.if[a, P,iflaT, Q(f(aF)), Rf0(aT)(aF)]]
P=)y.ifly, T, 1]
Q= . lv: Ay Vz.u(y(z/v))
R = A\fObc.Oc: Ry fObc: Ry fobe
Ry = Af0be.Vz.!(f(b(cz/0)))
Ry = AfObcy.Ez. (0z : f(b(cz/0))y)
U= Afy. Ez. fxy
rry=iffz,y, L]
flg=iflf, T, Az.gz: (fz/g)]
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D.3. Rules (i.e. axioms and inference rules)

Elementary rules (Elem)

Trans A=B,A=C+-B=C
Sub A=B;C=DF AC = BD
Gen A=BFXx. A= X\z.B
Al TB=T

A2 (B) Ae. A)B=(A|x:=8B) if Bis free for xz in A
A3 1B=_1
Rename () Az. (A|y:=z)=Ay. (A]x:=1y)

if x is free for y in A and vice versa

I if[T,B,C] = B

12 if(A\x. A,B,C] =C

3 if[L,B,C] = L

QND Alz:=T)=(B|z:=T);
(Al z:=1x) = (B |z := 1x);
Alz:=1L)y=(Blz:=1)F
A=B8

Further elementary rules (Elem’)

P1 TIB=T

P2 A|T=T

P3 e Al dy.B=Xz.T

Y YA=AYA) (Not needed in MTqef)

Monotonicity (Mono) and minimality (Min)

Mono B=CFAB =< AC
Min AB<BFYA<B

Extensionality (Ext)

Ext if x and y are not free in A and B then
~(Azx) = =(Bx); Avy=AC; Bxy=BC + Ax = Bz

Axioms on E (Exist)

ET ET=T

EB EL=_1

EX Ex = E(xx)
EC E(zxoy) — Ex
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Quantification axioms (Quant[¢)])

ElimAll (V. pz) Ay — py
Ackermann  ex.px = ex. (Y A pr)

StrictEpsilon 1 (cz. px) :Vx (px)
StrictAll I(Vz. px) = Va. l(px)
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E. Index

Greek letters

e, 13, 20
ex. A, 28
A(h), 40, 42, 50
Ax. A, 13

d, 6, 45, 53
$a, 69

X, 27

Xu, 44

X, 24

¥, 30

¢Curry7 20, 31
w, 37

Arrows

[D—.D'], 39

a0, 16

f:G—H (ZFC function type), 37
G—H (set of maps), 44, 55

x — y (implication), 27

L&, 37, 48, 49

zly, 24

tx, 37, 55

Equal signs/Equivalences

a = b (definition), 7
A=5,13

(Al x:=B), 15

A =gbs b, 18

a=.b, 18

a~b, 18

T =y, 24

Order relations
G <.H,59

§D7 47

4, 62
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r =2y, 24

Double dot constructs
élp, 28

Jz. A, 28

%’p, 28

Vr. A, 28

=z, 28

zAy, 29

=y, 29

=1, 29

z€y, 29

Superscript set constructs

G+, 55
G*, 55
G°, 44, 55
G« 37
G<v, 37

Uncategorized nulary constructs

0, 24
1,13, 42, 50
17,41
J—Curry7 15
(), 37

1,22

U, 30

Uncategorized unary constructs

lz, 28
', 24
~z, 23, 25

Uncategorized binary constructs



x:y, 31 Definability Theorem, 54
gH (application of a map to a set of Dom][a], 39

maps), 58 r-domain, reflexive, 33, 40
gh (application of a map to a map), 13
xoy, 27 E, 13
T p Y, 47 Ex. A, 17
X |: Y, 34 Epure7 22
TNy, 23 Ecomp , 22
z:y, 30 Elem, 22, 33
Al B, 13 Eq,, 41
G/h, 58 Eq,,, 48
f/g, 30 essentially k-small, 39
essentially o-small, 30, 44, 55

Latin letters Exist, 27, 33

Ko-expansion, 15, 33, 45
A, 40, 42, 50 k-expansion, 15, 33, 42
abstract, fully, 81 ko-expansion, canonical, 10, 15, 34, 50
Ackermann’s axiom, 21 k-expansion, canonical, 10, 15, 34, 50
adequate, computationally, 78 Ext, 25, 33

Extensionality, 25

bottom, 38 extensionality, semantic, 19
C, 49 F, 23
c: G<.H,59 7, 42, 50
c: D, 38 T, 44

canonical, 34

canonical ko-expansion, 10, 15, 34, 50
canonical k-expansion, 10, 15, 34, 50
canonical k-premodel, 34, 50
cardinal, regular, 37

fixed point, pre-, 40

fully abstract, 81
function k-step, 39
function normal term, 16

cf(a), 37 guard, 30

chain, step, 62

characteristic map, 25, 30, 66 head, 49

cofinality, 37

coherent space, preordered, 47 7,48

compact, 38 if, 13

computationally adequate, 78 inaccessible (i.e. strongly inaccessible),

Consistency Theorem, 10, 70 37

construct, 14 incompatible, 55

construct, language, 14 Induction Property, Strong, 28, 45
Kk-continuous, 39

contravariant representation, 28 ¢, 49

covariant representation, 25 language construct, 14

Curry: Lcumy, 15 LBT, 45, 70

Curry: ¥cury, 20, 31 Lower Bound Theorem, 45, 70

Dl[a], 30, 44 M., 49
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My, 15, 34, 50 k-premodel, canonical, 34, 50

M., 10, 15, 34, 50 preordered coherent space, 47
M, 49 prime, 38
map program, MT, 18
characteristic, 25, 30, 66 Property, Strong Induction, 28, 45
step, 62
wellfounded, 6, 19, 45 Q, 30
Min, 24, 33 QND, 22
mlnlmahty, 23 Quant[d)]v 67 337 367 447 45
model’ 15 Quant[w], 7, 287 36, 44, 46
canonical pre-, 33, 50 Quant[¢curry], 46
MT, 35, 45 Quantla], 33
MTy, 35, 45
pre-, 33, 42, 50 R, 30
Mono, 24, 33 Ry, 30
monotonicity, 23 1, 30
MT7 6 T, 51
MT model, see model, MT rank, 49
MT, model, see model, MT, reflexive k-domain, 33, 40
MT program, 18 regular cardinal, 37
MTy, 6 representation
MT gef, 15 contravariant, 28
covariant, 25
N, 18 restriction, 62
Ny, 18 rk(p), 49
N, 18 root equivalence, 18
normal term, function, 16 root normal term, 16
normal term, root, 16 rules (axioms and inference rules), 22
normal term, true, 16
S, 30
O(G), 55 S, 30
0..(G), 55 s, 30
0.+(G), 44, 55 k-Scott domain, 33, 38
obs: @ =ops b, 18 Kk-Scott semantics, 38
observationally equal, 18 semantic extensionality, 19
Kk-open, 39, 55 SL, 8
SIP, 28, 45
P, 30 k-small, 37
P, 37 o-small, 44
P, 37 o-small, essentially, 30, 44, 55
p-o., 38 space, preordered coherent, 47
partially ordered set, 38 step chain, 62
pces, 47 k-step function, 39
pes-structure, 47 step map, 62
pre-fixed point, 40 Strong Induction Property, 28, 45
k-premodel, 33, 42, 50 Strong UBT, 65
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structure, 47

T, 13, 42, 50
T, 41
Tarski’s fixed point operator, 40
Theorem
Consistency, 10, 70
Definability, 54
LBT, 70
Lower Bound, 70
Strong UBT, 65
UBT, 65
Upper Bound, 65
true normal term, 16

U, 30

UBT, 45, 65

UBT, Strong, 65

Upper Bound Theorem, 45, 65

wellfounded map, 6, 19, 45
wellfounded w.r.t. a set G of maps, 24
WF[¢], 6, 32, 33, 36, 45

Y, 13

YCurrya 15
YTarskia 41
yTarskia 40

Z[x], 29
7FC, 5
ZEC+SI, 8
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