40 research outputs found

    Robust Fluid Processing Networks

    Get PDF
    Fluid models provide a tractable and useful approach in approximating multiclass processing networks. However, they ignore the inherent stochasticity in arrival and service processes. To address this shortcoming, we develop a robust fluid approach to the control of processing networks. We provide insights into the mathematical structure, modeling power, tractability, and performance of the resulting model. Specifically, we show that the robust fluid model preserves the computational tractability of the classical fluid problem and retains its original structure. From the robust fluid model, we derive a (scheduling) policy that regulates how fluid from various classes is processed at the servers of the network. We present simulation results to compare the performance of our policies to several commonly used traditional methods. The results demonstrate that our robust fluid policies are near-optimal (when the optimal can be computed) and outperform policies obtained directly from the fluid model and heuristic alternatives (when it is computationally intractable to compute the optimal).National Science Foundation (U.S.) (Grant CNS-1239021)National Science Foundation (U.S.) (Grant IIS-1237022)United States. Army Research Office (Grant W911NF-11-1-0227)United States. Army Research Office (Grant W911NF-12-1-0390)United States. Office of Naval Research (Grant N00014-10-1-0952

    Investigation of a Neural Network Methodology to Predict Transient Performance in Fms

    Get PDF
    Most rapid analytical evaluative models for Flexible Manufacturing Systems (FMSs) are based on the steady-state performance. There is a practical need to develop robust, easy to construct, and transportable transient-state evaluative models for FMSs. This study proposes an ANN based metamodeling framework that can capture various post disruption system behaviors of FMS. The proposed ANN based meta-modeling scheme consists of a hierarchical taxonomy of mutilple ANNs. Each set of ANNs collectively represents a different part of the underlying system modeling domain. The taxonomical arrangement of multiple ANNs overcomes shortcomings often found in single ANN based meta-modeling schemes. These shortcomings are generally related to the limited knowledge acquisition capability of these schemes. The study uses an Extend based discrete simulation model that is built after an experimental FMS with a limited disruption trigger and handling capabilities. The simulation model is used to study various post-disruption behaviors by a given FMS and to study the feasibility of the proposed modeling scheme as a viable means to provide "lookahead" capability for a low level controller.Findings and Conclusions: The proposed ANN based metamodeling approach using multiple ANNs, in a taxonomically organized modeling structure, is an efficient way to capture multiple target performance index observation processes with a similar overall post-disruption behavior pattern. Despite its accuracy issues, this methodology was proven especially effective when it has to deal with noisy time series such as TIS at observation under a data rich environment. The study is to prove that the proposed methodology could be a viable means to model transient system behaviors. As long as individual observation processes of the selected performance index can keep their variances smaller among themselves, the accuracy of the overall model would be acceptable. This non-parametric performance modeling technique using hierarchically organized multiple ANNs, is worth further investigation.Industrial Engineering & Managemen

    Performance of Computer Systems; Proceedings of the 4th International Symposium on Modelling and Performance Evaluation of Computer Systems, Vienna, Austria, February 6-8, 1979

    Get PDF
    These proceedings are a collection of contributions to computer system performance, selected by the usual refereeing process from papers submitted to the symposium, as well as a few invited papers representing significant novel contributions made during the last year. They represent the thrust and vitality of the subject as well as its capacity to identify important basic problems and major application areas. The main methodological problems appear in the underlying queueing theoretic aspects, in the deterministic analysis of waiting time phenomena, in workload characterization and representation, in the algorithmic aspects of model processing, and in the analysis of measurement data. Major areas for applications are computer architectures, data bases, computer networks, and capacity planning. The international importance of the area of computer system performance was well reflected at the symposium by participants from 19 countries. The mixture of participants was also evident in the institutions which they represented: 35% from universities, 25% from governmental research organizations, but also 30% from industry and 10% from non-research government bodies. This proves that the area is reaching a stage of maturity where it can contribute directly to progress in practical problems

    Dynamical Modeling of Cloud Applications for Runtime Performance Management

    Get PDF
    Cloud computing has quickly grown to become an essential component in many modern-day software applications. It allows consumers, such as a provider of some web service, to quickly and on demand obtain the necessary computational resources to run their applications. It is desirable for these service providers to keep the running cost of their cloud application low while adhering to various performance constraints. This is made difficult due to the dynamics imposed by, e.g., resource contentions or changing arrival rate of users, and the fact that there exist multiple ways of influencing the performance of a running cloud application. To facilitate decision making in this environment, performance models can be introduced that relate the workload and different actions to important performance metrics.In this thesis, such performance models of cloud applications are studied. In particular, we focus on modeling using queueing theory and on the fluid model for approximating the often intractable dynamics of the queue lengths. First, existing results on how the fluid model can be obtained from the mean-field approximation of a closed queueing network are simplified and extended to allow for mixed networks. The queues are allowed to follow the processor sharing or delay disciplines, and can have multiple classes with phase-type service times. An improvement to this fluid model is then presented to increase accuracy when the \emph{system size}, i.e., number of servers, initial population, and arrival rate, is small. Furthermore, a closed-form approximation of the response time CDF is presented. The methods are tested in a series of simulation experiments and shown to be accurate. This mean-field fluid model is then used to derive a general fluid model for microservices with interservice delays. The model is shown to be completely extractable at runtime in a distributed fashion. It is further evaluated on a simple microservice application and found to accurately predict important performance metrics in most cases. Furthermore, a method is devised to reduce the cost of a running application by tuning load balancing parameters between replicas. The method is built on gradient stepping by applying automatic differentiation to the fluid model. This allows for arbitrarily defined cost functions and constraints, most notably including different response time percentiles. The method is tested on a simple application distributed over multiple computing clusters and is shown to reduce costs while adhering to percentile constraints. Finally, modeling of request cloning is studied using the novel concept of synchronized service. This allows certain forms of cloning over servers, each modeled with a single queue, to be equivalently expressed as one single queue. The concept is very general regarding the involved queueing discipline and distributions, but instead introduces new, less realistic assumptions. How the equivalent queue model is affected by relaxing these assumptions is studied considering the processor sharing discipline, and an extension to enable modeling of speculative execution is made. In a simulation campaign, it is shown that these relaxations only has a minor effect in certain cases

    Solving Multi-objective Integer Programs using Convex Preference Cones

    Get PDF
    Esta encuesta tiene dos objetivos: en primer lugar, identificar a los individuos que fueron víctimas de algún tipo de delito y la manera en que ocurrió el mismo. En segundo lugar, medir la eficacia de las distintas autoridades competentes una vez que los individuos denunciaron el delito que sufrieron. Adicionalmente la ENVEI busca indagar las percepciones que los ciudadanos tienen sobre las instituciones de justicia y el estado de derecho en Méxic
    corecore