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Abstract

Cloud computing has quickly grown to become an essential component in
many modern-day software applications. It allows consumers, such as a
provider of some web service, to quickly and on demand obtain the nec-
essary computational resources to run their applications. It is desirable for
these service providers to keep the running cost of their cloud application low
while adhering to various performance constraints. This is made difficult due
to the dynamics imposed by, e.g., resource contentions or changing arrival
rate of users, and the fact that there exist multiple ways of influencing the
performance of a running cloud application. To facilitate decision making
in this environment, performance models can be introduced that relate the
workload and different actions to important performance metrics.

In this thesis, such performance models of cloud applications are stud-
ied. In particular, we focus on modeling using queueing theory and on the
fluid model for approximating the often intractable dynamics of the queue
lengths. First, existing results on how the fluid model can be obtained from
the mean-field approximation of a closed queueing network are simplified
and extended to allow for mixed networks. The queues are allowed to fol-
low the processor sharing or delay disciplines, and can have multiple classes
with phase-type service times. An improvement to this fluid model is then
presented to increase accuracy when the system size, i.e., number of servers,
initial population, and arrival rate, is small. Furthermore, a closed-form ap-
proximation of the response time CDF is presented. The methods are tested
in a series of simulation experiments and shown to be accurate.

This mean-field fluid model is then used to derive a general fluid model for
microservices with interservice delays. The model is shown to be completely
extractable at runtime in a distributed fashion. It is further evaluated on a
simple microservice application and found to accurately predict important
performance metrics in most cases. Furthermore, a method is devised to re-
duce the cost of a running application by tuning load balancing parameters
between replicas. The method is built on gradient stepping by applying au-
tomatic differentiation to the fluid model. This allows for arbitrarily defined
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cost functions and constraints, most notably including different response time
percentiles. The method is tested on a simple application distributed over
multiple computing clusters and is shown to reduce costs while adhering to
percentile constraints.

Finally, modeling of request cloning is studied using the novel concept of
synchronized service. This allows certain forms of cloning over servers, each
modeled with a single queue, to be equivalently expressed as one single queue.
The concept is very general regarding the involved queueing discipline and
distributions, but instead introduces new, less realistic assumptions. How the
equivalent queue model is affected by relaxing these assumptions is studied
considering the processor sharing discipline, and an extension to enable mod-
eling of speculative execution is made. In a simulation campaign, it is shown
that these relaxations only has a minor effect in certain cases.
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Nomenclature
Notation Description
R(+), Z(+) Set of (nonnegative) real numbers and integers.
| · | Number of elements in a set.
(a1, a2, . . . )
[a1, a2, . . . ]

Two ways of writing a tuple of two or more elements.

[a, b], a, b ∈ R Closed interval of real numbers between a, b.
a : b, a, b ∈ Z Closed interval of integers between a, b.
(a, b) ∈ (A,Ba) Set nesting, implies b ∈ Ba where a ∈ A.
1 (e) Function yielding 1 if expression e is true, else 0.
Ra×b Matrix of real numbers with a rows and b columns.
AT Transpose of matrix A.
A⊙B Elementwise product between two matrices A,B.
Y ∼ G Stochastic variable Y with distribution G.
E [Y ] Expected value of stochastic variable Y .
Φ(y) Cumulative distribution function.
Q Set of queues in a queueing network.
Cq Set of classes for queue q.
Sq,c Set of phase states for (q, c) ∈ (Q, Cq).
Γ Set of chains in a queueing network.
Q(a) Function mapping phase state or class to its queue.
kq Number of servers in queue q.
tar , t

s
r, t

d
r Arrival, service and departure time of request r.

H Tracing data.
λ, µ Arrival and service rates.
ρ, τ Utilization and throughput.
X,T Queue length and response time.
φ Response time percentile, often 95th.
P Routing probability matrix, between classes.
{Ψ, ψ, ζ}q,c PH distribution matrices in (q, c) ∈ (Q, Cq).
Ψ,B,A Block diagonals of the stacked PH matrices.
W State transition rate matrix, formed as Ψ+BPAT .
θ(X) State transition rate function.
g(x) Processor share function.
η Smoothing parameter.
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Nomenclature

Abbreviation Description
BCMP Theorem for identifying product-form networks.
CDF Cumulative distribution function.
CoC, CoS Cancel-on-Complete/Start cloning policy.
CoV Coefficient of variation.
CTMC Continuous-time Markov chain.
FCFS First-come-first-served queueing discipline.
FedApp Federated application sandbox.
IaaS Infrastructure-as-a-service.
IID Independent and identically distributed.
INF Delay, or infinite, queueing discipline.
JSQ Join-shortest-queue load balancing policy.
LQN Layered queueing network.
LQR Linear quadratic regulator.

M/G/1-FCFS

Kendall’s notation of a queue, here with
- Markovian interarrival time distribution,
- General service time distribution,
- Single server and FCFS discipline.

MPC Model predictive control.
MVA Mean value analysis.
ODE Ordinary differential equation.
p95 95th percentile.
PaaS Platform-as-a-service.
PDF Probability density function.
PH Phase-type distribution.
PMF Probability mass function.
PS Processor sharing queueing discipline.
PSFFA Pointwise stationary fluid flow approximation.
QoS Quality of service.
RE, AE Relative, or absolute, error.
SaaS Software-as-a-Service.
SLA Service level agreement.
SLO Service level objective.
SOA Service oriented architecture.
SV Stochastic variable.
VM Virtual Machine.
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1
Introduction

It is hard to imagine everyday life without all of our countless smartphone
apps and web services that we have come to rely so heavily upon. At the
tip of our fingers, as long as we have a stable internet connection, we are
conveniently provided with direct access to a wide range of services in the
form of search engines, social media, video streaming, and banking services,
to name a few. This has had a profound impact on society, recently made
evident in the ongoing Covid pandemic with the spread of information and
disinformation on social media platforms, and as a key enabler of remote
working through video conference applications such as Zoom or Microsoft
Teams. Furthermore, in certain cases, these services have come to supplant
more traditional means. A clear example is searching for information that
nowadays is mostly performed online, and even has its own verb: to google1.

Running many of these services directly on local devices, be it your laptop
or smartphone, would be unfeasible due to a number of reasons. Depending
on the application, there might be, for example, too little computation power
or storage to spare at the local device or simply a dependence on other users.
The service provider can instead put some parts of the application on a re-
mote server, which the local device then can communicate to via, e.g., an
app or a web browser. This server can then be fitted with enough hardware
to adequately serve all its users. However, in order to ensure some sort of
Quality of Service (QoS) for the users, there needs to be enough hardware
to handle worst-case scenarios in day-to-day user traffic. Furthermore, the
cost to setup and maintain a computing infrastructure is a hindrance, par-
ticularly for startups and small companies that might lack the upfront funds
required. Finally, if demand increases, it will take time to scale the service
to accommodate new users, as this requires purchasing and installing new
hardware components. Hence, it is seldom practical for service providers to
have their own dedicated physical hardware for their services.

1 https://www.dictionary.com/browse/google
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Chapter 1. Introduction

Instead, service providers can leverage cloud computing to rent virtual
resources in data centers hosted by some cloud provider, and thus obtain
(and pay for) the necessary compute power, network, and storage only when
it is needed. This essentially enables the service provider to treat the hard-
ware as an on-demand utility. However, how to leverage these on-demand
resources is not trivial, as the number of users and the type of user request
typically change over time. Furthermore, virtualized hardware has varying
performance, and multiple users sharing the same physical hardware can give
rise to resource contentions. This leads to unpredictable application perfor-
mance and the need to dynamically make decisions in order to ensure some
QoS while keeping costs low. The type of action to take is also a challenge. De-
pending on the specific situation, it might be appropriate to perform some
resource scaling, service migration, or re-tuning of load balancing weights
between multiple instances of the application. Ideally, to ensure speed and
cost effectiveness, these actions should be taken automatically with minimal
interaction from human operators. To automatically make well-informed de-
cisions, a good performance model of the application is needed to infer how
a particular action would affect the QoS.

It is the purpose of this thesis to study such performance models of cloud
applications, in order to enable better automatic decision making at runtime.
In particular, a certain type of dynamical performance model known as the
fluid model will be studied, and how it can be used to decide cost minimizing
strategies for load balancing in a running cloud application. In addition, the
thesis studies request redundancy as a way of reducing response times.

1.1 Cloud Computing

In essence, cloud computing is a business model, as quickly explained in
Figure 1.1. By leveraging the economy of scale2 and the placement of cheap
electricity, a cloud provider can operate its data centers at a relatively low
cost. This allows cloud providers to sell computational power and storage at
a cheaper rate than what it would cost service providers to own and operate
their needed resources. To put things in perspective, a large scale data center
with tens of thousands of servers can operate around 5 times cheaper, even
compared to a medium sized of hundreds to thousands of servers [Armbrust
et al., 2009]. Furthermore, an essential key feature of cloud computing is the
ability for consumers renting resources to quickly obtain and release resources
when the need arise. Thus there is no need to pay upfront for the hardware
nor the resources not currently used.

2 Cost for hardware, bandwidth, software development and operations does not increase
linearly with the amount of servers.
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1.1 Cloud Computing

“The Cloud”

Figure 1.1 The Cloud is just someone else’s computer is a popular say-
ing. Although there is a grain of truth in this statement, that someone can
operate those computers at a low cost and allow consumers to utilize parts
of the pooled computational resources on demand.

Therefore, when comparing operational costs, renting hardware on de-
mand is the preferable choice. This is further made evident in the widespread
adoption and growth of cloud computing. For example, in 2021 an average
of 41% of all enterprises in the European Union utilized cloud computing in
some fashion, an increase of 5% from 2020. In certain member states, such
as Sweden, the percentage is as high as 75%3. Furthermore, in 2021 global
cloud spending amounted to a total of $707 billion, and is forecast to grow
to a staggering total of $1.3 trillion by 2025 according to IDC4.

The concept of cloud computing is very broad and goes beyond service
providers renting virtualized hardware. According to the NIST definition
[Mell, Grance, et al., 2011], cloud computing terminology can basically be
applied to any compute infrastructure that provides resources to consumers
and that (i) pools its own computing resources to serve multiple consumers
simultaneously, (ii) is accessible via a network, and (iii) measures the provided
resources for both internal management as well as transparency on usage for
the provider and consumer. Further, the compute infrastructure needs to
enable (iv) self-provisioning of resources without the need to interact with a
human operator, and (v) quick response in provision and release of resource
demands for its consumers.

Deployment models. Cloud infrastructures can be categorized into de-
ployment models depending on the relationship between the cloud provider
and its customers. The following three models are common:

3 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_
computing_-_statistics_on_the_use_by_enterprises

4 https://www.idc.com/getdoc.jsp?containerId=prUS48208321

13

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises
https://www.idc.com/getdoc.jsp?containerId=prUS48208321


Chapter 1. Introduction

• Public cloud – Operated by, e.g., a business for the general public.

• Community cloud – Operated by a community of organizations, sharing
some common interest, for its members.

• Private cloud – Operated by a single organization for internal use.

A fourth common category is the hybrid cloud, which is a combination of
distinct deployment models linked by some software for easy use.

Service models. How cloud computing can be utilized can also be split
into different categories, known as service models. Different service models
can have different types of resources it provides, not necessarily just virtu-
alized hardware, but also, e.g., access to specific applications. Furthermore,
service models provide different levels of autonomy for the consumer. The
following three are standard.

• Infrastructure-as-a-service (IaaS) – The consumer can directly obtain
different computational resources, such as processing, storage, and net-
work, often in the form of virtual machines (VMs). The management of
these resources to—e.g., deploy an application—is left to the consumer.

• Platform-as-a-service (PaaS) – The consumer can obtain an
application-hosting environment. Within the bounds of this environ-
ment, the consumer can then deploy and manage an application, but
does not have to manage the underlying computational resources which
is left to the cloud provider.

• Software-as-a-service (SaaS) – The consumer can gain access to a spe-
cific software application, deployed on some infrastructure. The appli-
cation, its deployment, and the necessary resources are managed in its
entirety by the provider.

Conceptually, our aforementioned service providers can be seen as providing
a SaaS for their users, while some cloud provider provides the IaaS from
which the providers rents the virtualized hardware.

Cloud Applications
No matter the deployment or service model used, a cloud application is some
software running in the cloud that users can interact with by sending requests
over a communication network. Upon arrival, the request is processed in the
application, and on completion a response is often returned to the sending
user. Multiple requests can be processed simultaneously, and how the re-
sources are shared between them depends both on the implementation and
application type. For some cloud applications, it might be possible to process
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1.1 Cloud Computing

user storagefrontend

Cloud application

Figure 1.2 Modern cloud applications are often comprised of services
that can be deployed separately. In this toy example, an application of
a frontend and a storage part has been split into two different services,
deployed on two separate types of VMs to better facilitate their needs.

each user request simultaneously by, for example, assigning the processing of
each request to a concurrently running thread. For others, access to specific
hardware components, e.g., a disc, might limit requests to be processed one-
by-one in some order depending on attributes such as user priority or time
of request arrival.

To run the application in the cloud, it must be deployed in some man-
ner. Arguably, the most straightforward way is simply to pack the necessary
software into a single monolithic unit and run it on a single virtual machine
acquired from an IaaS provider. In this way, it becomes very simple to mi-
grate existing applications from on-premise servers to the cloud. However,
such a simple application deployment has its downsides. Monolithic deploy-
ments lack modularity, making it difficult for teams to develop and maintain
larger applications, to roll out smaller updates and bugfixes, and to identify
sources of errors. This also implies that monolithic deployments need to be
managed as a single unit. If there are any constrains on parts of the applica-
tion, such as the requirement for expensive access to specific hardware, the
entire monolith will have this constraint. Furthermore, assigning and releas-
ing resources to cope with changing demands must be done for the entire
monolith, not just the parts that constitute bottlenecks.

Instead, modern applications are often comprised of smaller parts, or ser-
vices, each performing a small set of specific and related tasks. Using com-
mon communication protocols, the services can cooperate to jointly deliver
the functionalities of the application. As an example, consider a simple stor-
age application containing a user-facing frontend part and a storage part. It
might be preferable to split the application into a frontend and a storage ser-
vice, and deploy the frontend on VMs with high processing capabilities and
even closer to their end users in a multi-cloud deployment for low latency.
The storage deployment can instead be reserved for VMs with access to more
disc. See Figure 1.2 for an illustration.
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Chapter 1. Introduction

The popularity of the cloud has further led to a plethora of emerging
technologies, solving old challenges and enabling new opportunities for cloud
computing [Buyya et al., 2018]. Multi-cloud strategies including small local
datacenters in fog/edge computing, increased focus on decomposition of ap-
plications into disjoint services under the microservice architecture, and the
use of lightweight containers instead of more cumbersome VMs for isolating
workloads are just some examples that are seeing increased adoption. For
example, Flexera5 reported that almost all of their surveyed enterprises in
2021 used multi-cloud strategies in some manner, and more than half some
type of container technology.

Fog/edge computing. Due to its early stage, the fog/edge computing con-
cept encompasses a multitude of different definitions. But essentially, from a
cloud application point of view, it is all about moving the application, or parts
of it, to smaller local datacenters or devices closer to the end user. Thus, the
concept has strong connections to multi-cloud deployments. Fog/edge com-
puting seeks to address applications with security critical or latency sensitive
components, or that produce massive amounts of data, hindering a deploy-
ment on a faraway data center. Small local clouds, potentially owned by the
users for security concerns, could instead host the constrained components
or perform, e.g., data preprocessing to reduce the data transmitted en masse.
Such applications are expected to increase in the near future, in part due to
the projected growth of connected devices in the so-called Internet-of-Things
(IoT) [Yousefpour et al., 2019].

Microservice architecture. The modern microservice architecture em-
phasizes service modularity when decomposing applications into smaller
parts. The key difference from other related architectures, such as the main-
stream service oriented architecture (SOA), is the focus on that each service
should be lightweight, have only one (or very few) task(s) it should perform,
and that services should be independent of each other, both in deployment
and management. A small size makes each service more comprehensible to de-
velopers, which simplifies development and maintenance. Additionally, their
mutual independence makes it easy to deploy, run updates, and assign/release
resources to individual services. In all, these benefits make microservices very
suitable for advanced applications deployed in the cloud, and a shift to this
architecture is currently underway [Cerny et al., 2018]. This is further evi-
dent by its inclusion in the Cloud Native Computing Foundation charter6, an
organization with heavy industrial backing and part of the nonprofit Linux
Foundation, with the goal of making technologies for building and running
cloud tailored applications ubiquitous.

5 https://resources.flexera.com/web/pdf/report-cm-state-of-the-cloud-2021.
pdf?elqTrackId=28d62429a6ec40d0bb8e92159e68d63a&elqaid=6545&elqat=2

6 https://github.com/cncf/foundation/blob/main/charter.md
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1.2 Application Performance

1.2 Application Performance

Running an application in the cloud is one thing, but running it in a way
that is satisfactory to its users is another. Poor performance can be disruptive
for operations relying on the application, or even outright dangerous if the
application is mission critical. Furthermore, dissatisfied users can abandon
the provider in favor of competitors or other technologies.

However, what constitutes satisfactory performance depends on the type
of application and the need of its users. To specify this, it is normal to
set up a service level agreement (SLA)7 between the provider and its users.
The SLA provides details about, and requirements on, e.g., what service is
provided, the responsibilities of the users and provider, and the quality of
the performance. An SLA can take the form of an explicit agreement to a
paying user or be implicitly based on user expectations. The consequences
of not meeting the requirements are also specified in the SLA; for explicit
agreements this could, e.g., be an agreed upon cost reduction for the user.

Quantifying performance. To quantify the SLA requirements, it is stan-
dard to create service level objectives (SLOs) that define limits on measurable
QoS or performance metrics that should be fulfilled. Although application
specific, common metrics on which to base an SLO are [Beyer et al., 2016]

• Availability – The fraction of time the application is up and running.

• Response time – The time from sending to the response of a request.

• Throughput – The mean number of requests served per time unit.

For example, an SLO could state that the response time should in the mean
not be greater than 1 second or that the application should be available
99.9% of the time.

Influencing Performance Metrics
It is important that the SLOs are fulfilled at all times. By measuring the
necessary performance metrics and comparing with the corresponding SLOs,
it is possible to discover when changes need to be applied to the application
deployment. There exist many different types of actions to exert change in
a deployment in order to influence performance metrics; here, we will state
the most common ones.

Resource allocation. Performance of heavily loaded applications can be
improved by assigning more resources. Due to hardware limits, the services
that make up the application cannot be deployed with an arbitrary amount.

7 SLA is a broad concept that can be applied to most provider/user constellations in IT.

17
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For each service deployment, there will be some quantization, but more im-
portantly some upper limit, in the resources allocatable. To circumvent this,
it is common to deploy each service as a set of multiple copies, also known
as replicas. The requests made from one service to another are then load
balanced between the two sets of replicas, or replica sets, according to some
strategy in order to effectively utilize the available resources. The replica sets
are further beneficial for reliability, as if one replica goes down, the entire ap-
plication would not cease to function. The resources allocated for a service
can then be influenced by scaling its replica set as follows [Qu et al., 2018].

• Horizontal scaling – Create a new replica or remove an old replica.

• Vertical scaling – Assign or release resources to an existing replica.

Horizontal scaling is arguably the most common, as it is simple to implement
in real systems, while vertical scaling serves more a fine tuning purpose.

Where to deploy the replicas is also of importance to, e.g., avoid resource
contentions between services requiring the same type of hardware and to min-
imize communication latency between services. Based on the service model,
the application owner may have a more or less fine-grained control over this
deployment location, which is otherwise left to the cloud provider. Therefore,
a strategy related to horizontal scaling is service migration, where a replica is
moved by reallocating the resources at a new location. This can, for example,
be done to reduce resource contention or to move the service from a suddenly
misbehaving machine or to a data center with lower user latency.

Request handling. Instead of changing the resources allocated to an ap-
plication, it can in some situations be better to change how requests are
handled within the application deployment. For example, it is possible to
influence performance metrics by the following methods:

• Load balancer tuning – The strategy used for request routing between
replica sets can be tuned to better utilize the available resources in a
changing environment.

• Admission control – By prohibiting certain requests from entering the
application, the availability can be reduced in order to save some other
more important SLO. For example, it can be used as a last resort for
applications close to overloading to prevent crashes.

• Request redundancy – The response time, especially the tail of its dis-
tribution, can be reduced by sending duplicate requests to different
replicas and acting on the first response.

The best action to take, be it related to resource allocation or how requests
are handled, will depend inherently on a multitude of different factors, such
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Figure 1.3 A classic illustration comparing static and dynamic resource
allocation. Here, the black line shows the required resources to meet the
SLOs, which changes in a cyclic pattern to, e.g., accommodate for the chang-
ing rates of connecting users during a day. The teal line shows the allocated
resources. If this line lies below the required resources, the SLOs will be
violated due to resource underprovisioning, indicated by the red areas. If
the line instead lies above, we will have overprovisioned the resources, which
is is an unneccesary cost. Static allocation potentially results in high over-
provisioning, and also SLO violations if we are unable to accurately predict
worst-case scenarios. Dynamic allocation on the other hand results in less
overprovisioning, ideally it should be zero but it is still needed as there is a
limit in resource quantization and how fast we can adapt.

as how “best” is defined, the type and current state of the application, and
its SLOs.

Balancing Performance and Cost
The cloud is an inherently dynamic environment. Unpredictable performance
can arise from, e.g., varying workloads and resource contentions, both be-
tween unrelated processes residing on the same physical hardware and be-
tween processes residing in the same service. To cope with this unpredictabil-
ity in application deployments, it is common to overprovision resources to
applications in order to avoid accidental violations of SLOs. Thanks to the
capability of cloud computing, resources can be dynamically obtained and
released when needed, and more optimistic overprovisioning than static provi-
sioning can be performed for the worst-case scenario. A simplistic illustration
of these concepts can be seen in Figure 1.3.

Large overprovisioning leads to poor utilization of the hardware, which is
costly, both in terms of money and in terms of environmental impact [Buyya
et al., 2018]. Keeping this overprovisioning small without violating SLOs is
thus of high importance.
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Problematic decisions. As discussed, by tracking performance metrics
and SLOs, it is possible to discover when some action needs to be performed
on the application deployment. But what action should be made in regard to
cost efficiency or robustness, for what type of application in what situation,
is a difficult and interesting research problem that has historically received a
lot of attention. See, e.g., the survey papers [Ardagna et al., 2014] and [Singh
and Chana, 2015] for an overview of this field.

Considering the modern trends for cloud applications, this research prob-
lem is of high interest due to the increased difficulties they bring. For example,
applications designed for fog/edge computing impose nontrivial constraints
in the form of latency limits to end users and site dependent costs. Further-
more, applications of many independent services, e.g., using the microservice
architecture, create an environment of many changeable parameters and hid-
den dependencies between services [Gan et al., 2019].

Connection to Automatic Control. The act of balancing performance
and costs can be thought of as a control problem and has seen much research
considering the broader field of self-adapting software systems [Filieri et al.,
2017]. Briefly explained, an application deployed in the cloud can be seen as a
dynamical system, with measurements defined via relevant performance met-
rics, and which can be influenced via control signals by, e.g., scaling resources
or tuning load balancers. The balancing act then reduces to designing a con-
troller that via the defined control signals allows the performance metrics to
track their SLO defined setpoints while adequately rejecting disturbances,
such as workflow fluctuations.

Performance Modeling
How available deployment decisions affect important performance metrics is
a nontrivial and application specific question. To make informed decisions, it
is important that these connections are known. This is commonly achieved
by deriving some sort of performance model of the cloud application [Balter,
2013]. The model can then be used to, for example, design strategies for
which decision to make in what situation to adequately fulfill the SLOs.

Modeling using queueing theory. Performance models of cloud appli-
cations are often based on queueing theory, as the processing of a stream
of requests that shares the available computational resources essentially acts
as a queueing system. Furthermore, these queues have direct equivalences to
important performance metrics.

In queueing theory, a queue [Balter, 2013] is defined as some set of servers8
that serve a stream of arriving requests. The stream is characterized by an

8 The term “server” is ambiguous, as it is used to describe objects of similar characteristics
in both computing and queueing theory. It is important to keep this in mind to avoid
confusion.
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interarrival time distribution, defining the times between arrivals. In addi-
tion, each request is assumed to require some time to be served, defined by
a service time distribution. Once a request has been served, it departs the
queue. The requests present in the application might outnumber the avail-
able servers which then need to be shared in some manner. How this is done
is defined by the queueing discipline, and considering modeling of cloud ap-
plications, the most common are

• First-come first-served (FCFS) – On arrival, each request is exclusively
assigned to a free server. If no server is free, the requests are put in a
waiting line, i.e., queue, based on the order of arrival. This is the most
commonly used discipline in general queueing theory, and what we in
everyday language might refer to as a queue.

• Processor sharing (PS) – The requests share the available servers and
are thus served at a speed proportional to the inverse number of re-
quests present in the queue. This discipline is motivated by how CPUs
serve multiple processes simultaneously.

• Delay (INF) – Each request is assumed to always have a free server
to which it can be assigned directly and exclusively. No actual server
sharing is performed, and it can be thought of as a queue with infinite
servers, hence the acronym.

As a simple example, we constructed a monolithic cloud application per-
forming face detection on submitted images. We then tried to model this ap-
plication as a simple FCFS queue with a single server and exponentially dis-
tributed interarrival and service times, normally denoted an M/M/1 queue.
The application was loaded with requests with exponential interarrival times,
also known as Poisson arrivals, with the rate λ = 5 and relevant data logged
to fit the M/M/1 queue model. The fitted model was then used to predict
mean response times over a changing arrival rate. The results seen in Fig-
ure 1.4 shows that this simplistic queue model manages to capture the general
behavior of the mean response time, but not its values.

Applications do not have to be modeled as a single queue; instead, gran-
ularity can be improved by, e.g., using multiple queues in a network, i.e., a
queueing network, to model dependencies between different resources and/or
services in the application. In addition, queues are sometimes allowed to serve
multiple classes of requests, where each class has its own service time distri-
bution and on-completion routing destination, but shares the same servers.

Given a queueing model, closed-form expressions of important perfor-
mance metrics only exist for certain types of queueing disciplines, interar-
rival and service time distributions. Instead, performance metrics are of-
ten obtained via either simulation or approximative methods. Considering
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Figure 1.4 The simple cloud application, modeled as a M/M/1 queue
and loaded with Poisson arrivals with rate λ. The parameters of the queue
model are fitted at λ = 5.

stationary mean values, there exist numerous approximations both for the
single queue and queueing network case. One of the most well-known is the
mean value analysis (MVA) method for obtaining stationary results on queue
length, response time, and throughput for certain types of queueing networks,
known as product-form networks [Bolch et al., 2006]. Another method is the
fluid model, which models the mean dynamics of the queue lengths as a
system of ordinary differential equations (ODEs). Obtaining this system of
ODEs is in general difficult, but the fluid model requires no product-form
assumptions and yields both transient and stationary solutions.

Obtaining a queueing model. Given a cloud application, it is not triv-
ial to derive a queueing model that can adequately capture important per-
formance metrics. Models can be obtained by hand, either directly or via
translation from other handcrafted software models, but this takes time and
requires expert knowledge of the system. Furthermore, for online purposes,
the model might change over time and thus need to be continuously updated.
Hence, how to extract queueing models from a running system that can adapt
to system changes online is an important research question.

Ideally, the usage of the resulting queueing model should be taken into
account when creating it. Certain evaluation methods, such as MVA or the
fluid model, require constraints on, e.g., the type of queueing disciplines and
distributions to be enforced. This is in general not a problem for evaluation
using discrete event simulation, but this can instead be prohibitively ex-
pensive for online evaluation, especially considering larger queueing network
models.
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1.3 Scope and Contributions

The wider scope of this thesis is the study of performance modeling of cloud
applications using queueing theory. We adopt the view of a service provider
managing a single application. Hence, modeling the underlying infrastructure
or multiple applications competing for resources is not explicitly considered.
This is a well-studied field, and our niche lies in approximations using the
fluid model and how such models can be obtained from modern applications
comprised of graphs of smaller services, possibly deployed in multi-cloud en-
vironments. The thesis also considers static modeling of request redundancy.

The contributions of the thesis can be split into three main parts.

1. Chapter 3 considers improvements to the fluid model approximation of
the mean queue length in networks of PS and INF queues.

2. Chapter 4 and Chapter 5 show how this improved fluid model can be
applied to performance modeling of microservice applications and how
such a model can be used to balance cost and performance.

3. Chapter 6 considers modeling of request redundancy using the novel
concept of synchronized service.

The specific technical contributions of each part are summarized below.

1. Improving the mean-field fluid model for PS queueing networks.
The fluid model potentially allows for quick analysis of both transient and
stationary performance metrics. Unfortunately, deriving an adequate fluid
model is generally difficult. Recently, the mean-field approximation was used
to find a fluid model that is exact in the limit for multi-class queueing net-
works of PS and INF queues with general phase-type service time distribu-
tions and no arrivals or departures of requests.

In Chapter 3, this result is extended to allow for arrivals and departures of
requests. A compact matrix form for mean-field fluid models of PS networks is
introduced and used to prove that the mean queue lengths of these networks
converge under normalization to the introduced fluid model when the initial
state, arrivals, and servers per queue scale to infinity.

Furthermore, mean-field approximations are known to experience errors
when this scaling is small, and there exist refinement methods for general sys-
tems. By specifically focusing on networks of PS and INF queues, a simple
yet accurate data-driven refinement method based on smoothing of the pro-
cessor sharing function is introduced. Compared to previous methods, this
smoothed fluid model requires no introduction of extra states and is thus
computationally cheap even for very large models.

Finally, using this refinement, a closed-form approximation of the en-
tire response time CDF over almost any subset of classes in the network is
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introduced, allowing the modeling of response time percentiles. Previously,
this was solved by running an extended state simulation of the fluid model.
The refinement and response time approximation introduced are found to be
accurate across a series of simulation experiments.

2. Using the fluid model to model and manage applications. With
the modern trends in cloud computing, modeling and managing cloud appli-
cations is an increasingly difficult endeavor. It is desirable to obtain applica-
tion models via automatic extraction, but current methods are often intricate
and yield large and complex models that are unsuitable for online evaluation.

In Chapter 4, a fluid model for microservice applications whose services
are potentially distributed over different sites with in-between latencies, such
as deployments in fog/edge computing, is introduced. It is based on an inter-
mediate queueing network model using only PS and INF queues, for which
the aforementioned smoothed mean-field fluid model can be applied. The
model is simple yet general, and is quick to completely extract at application
runtime in a distributed fashion given data commonly gathered in distributed
tracing setups. This enables quick evaluation of important performance met-
rics, most notably response time percentiles, and how they are affected by
deployment changes.

Further, Chapter 4 also introduces the federated application (FedApp)
sandbox for experimentation on applications in modern multi-cloud deploy-
ments. The sandbox is implemented as clusters of virtual machines on Open-
Stack9, a cloud computing platform for IaaS, with the possibility of emulating
desirable cluster-to-cluster network characteristics. On top of each cluster,
the popular Kubernetes container orchestration tool10 is deployed along the
Istio service mesh11 for simplified cross-cluster service communication. On
top of this sandbox, the introduced model is tested on a small microservice
application and is shown to be accurate in most cases.

Later, Chapter 5 demonstrates how automatic differentiation over the
smoothed mean-field fluid model can be used to optimize a running cloud
application. A controller is designed to perform online tuning of load balanc-
ing parameters for minimizing some holistic cost function under constraints
to the response time percentiles. This is more general than existing meth-
ods for optimizing load balancing parameters but does not give guarantees
on neither convergence, speed, nor feasibility. The controller is experimen-
tally evaluated on a simple application distributed across multiple sites with
different costs and latencies, and shown to minimize a cost function whilst
adhering to the SLO constraints.

9 https://www.openstack.org/
10 https://kubernetes.io/
11 https://istio.io/
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3. Analysis of redundant requests using synchronized service. Re-
quest redundancy is a commonly used tool for increasing reliability and com-
putation speed in cloud applications with high uncertainty. Copies of requests
can either be sent immediately, known as request cloning, or they can be sent
after some delay, known as speculative execution. Modeling of these concepts
using queueing theory has traditionally been focused on specific distributions
for the interarrival and service time distributions and the FCFS discipline.

In Chapter 6, a new simplified method is introduced to model cloning,
based on the concept of synchronized service between request clones. It allows
certain cloning systems over n computing servers, each modeled with a single
queue, to be equivalently represented as a single queue. The method requires
no assumption on interarrival and service time distributions, only that the
queueing disciplines are homogeneous and deterministic. For these systems,
existing methods for evaluating single queues can then be used to analyze
the entire cloning system.

The introduced model is thus more general than existing work, but simul-
taneously also more narrow in the assumptions needed to obtain synchronized
service. Focusing on the PS discipline, we further study how synchronized
systems are affected by relaxing these assumptions. Specifically, the effect of
delays in the arrival and cancellation of clones is first considered, and approx-
imate upper bounds on the mean response time are introduced. Then, the
effect of allowing free allocation of clones over the servers according to some
load balancing policy is studied. Finally, this is extended to derive an ap-
proximate model for speculative execution. Via simulations, it is shown that
the induced errors from arrival/cancellation delays are small and that free
cloning and speculative execution behind the popular load-balancing policy
JSQ behaves as a synchronized system.
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1.4 Publications

This thesis is written as a monography, and in this section the papers that it
is based upon will be presented. How the papers connect to the introduced
contributions above and the different chapters in the thesis, and the particular
contributions made by the authors will be discussed.

Ruuskanen, J., T. Berner, K.-E. Årzén, and A. Cervin (2021a). “Improving
the mean-field fluid model of processor sharing queueing networks for dy-
namic performance models in cloud computing”. Performance Evaluation
151, p. 102231. issn: 0166-5316. doi: https://doi.org/10.1016/j.
peva.2021.102231.

This paper constitutes Chapter 3. It presents the compact matrix form
for mean-field fluid models of PS networks, along with the convergence proof.
The paper further presents the simple and computationally cheap refinement
method for the mean-field approximation of the mean queue length dynamics
of these queueing networks. Finally, the closed-form approximation of the
response time CDF is introduced. The introduced mean-field refinement and
the response time approximation are tested on two smaller running examples
and one larger experiment on a simulated cloud application.

The ideas, proofs, and simulations were all developed by J. Ruuskanen
with discussions and input from A. Cervin. The manuscript was written by
J. Ruuskanen with valuable comments from all coauthors.

Ruuskanen, J. and A. Cervin (2022). “Distributed online extraction of a
fluid model for microservice applications using local tracing data”. In:
IEEE 15th International Conference on Cloud Computing (CLOUD ’22),
pp. 179–190. doi: 10.1109/CLOUD55607.2022.00037.

This paper forms the basis of Chapter 4. It introduces a simple, yet gen-
eral, fluid model for microservice applications and shows how it can be com-
pletely extracted at runtime from common request tracing data in a dis-
tributed fashion. Experiments are run on the FedApp sandbox for a small
microservice application of 3 services, deployed over 2 clusters, and it is
shown to accurately both model the current operating condition and predict
previously unseen conditions.

The ideas, formalization, and experiments were all developed by J. Ru-
uskanen with discussions and input from A. Cervin. The manuscript was
written by J. Ruuskanen with valuable comments from A. Cervin.

Ruuskanen, J., H. Peng, A. Åkesson, L. Larsson, and M. Kihl (2021b).
“FedApp: a research sandbox for application orchestration in federated
clouds using OpenStack”. arXiv preprint. doi: 10.48550/ARXIV.2109.
01480.
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This paper forms a section in Chapter 4. It is a white paper that in-
troduces the FedApp sandbox, and discusses the different sandbox design
choices made to promote easy usage/deployment and to enable cluster-to-
cluster network characteristic emulation. The paper further discusses the
different sandbox functionalities, how it can be used, and showcases a small
application deployed over multiple clusters.

The original tool was developed by J. Ruuskanen, H. Peng, and A.
Åkesson with inputs from L. Larsson. All three main developers where ini-
tially involved in all parts, but with an extra focus on monitoring by J.
Ruuskanen, networking by H. Peng, and the example application by A.
Åkesson. After its initial release, the work was continued by J. Ruuskanen.
The manuscript was written by J. Ruuskanen with input from the other
authors, particularly H. Peng.

Heimerson, A., J. Ruuskanen, and J. Eker (2022). “Automatic differentiation
over fluid models for holistic load balancing”. In: IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS
’22), to appear.

This paper forms the basis of Chapter 5. It introduces the cost minimizing
controller for load balancing parameters by automatic differentiation of the
microservice fluid model introduced in [Ruuskanen and Cervin, 2022]. The
controller is experimentally verified using a simple distributed microservice
application deployed on the FedApp sandbox, and found to reduce costs
under disturbances while adhering to percentile constraints.

A. Heimerson and J. Ruuskanen are both first authors of this work, who
together set out to explore model-based optimization of a microservice appli-
cation. The initial idea of using automatic differentiation was suggested by
A. Heimerson, while the microservice fluid model to optimize load balancing
weights was suggested by J. Ruuskanen. The procedure was then realized
by both first authors with input from J. Eker and formalized by J. Ruuska-
nen with input from A. Heimerson. Both first authors were involved in the
experiments, where A. Heimerson constructed the online controller, and J.
Ruuskanen the experimental setup and online model fitting adapted from the
setup in [Ruuskanen and Cervin, 2022]. The manuscript was written by A.
Heimerson and J. Ruuskanen together with J. Eker.

Nylander, T., J. Ruuskanen, K.-E. Årzén, and M. Maggio (2020a). “Model-
ing of request cloning in cloud server systems using processor sharing”.
In: Proceedings of the ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’20). Association for Computing Machinery,
Edmonton AB, Canada, pp. 24–35. isbn: 9781450369916. doi: 10.1145/
3358960.3379128.
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This paper forms the basis of Chapter 6. It introduces the concept of
synchronized service and the subsequent equivalent single-queue model for
request cloning. The paper further studies two simple systems that fulfill
the assumptions for synchronized service. In particular, codesign between
two load balancing policies to clusters of servers and the number of clones
is considered. In addition, the paper studies the effects when the necessary
assumptions are relaxed under the PS discipline. It introduces bounds12 on
the mean response time in the presence of delays in arrivals and cancellation
of clones and analyzes the effects of freely choosing servers according to some
load balancer. A discrete event simulator is constructed, and it is found that
the arrival/cancellation delay bounds are tight for low system loads and that
cloning under the JSQ load balancer yields a near-synchronized system.

The idea to try to model request cloning using the synchronized service
criterion came from T. Nylander. The formalization of the concept and the
applications presented in the paper were discussed with all coauthors, es-
pecially J. Ruuskanen. The idea to include analysis for imperfect systems
came from T. Nylander and J. Ruuskanen, and the formalization and proofs
for the error bounds were developed by J. Ruuskanen. The simulations were
performed by T. Nylander and J. Ruuskanen. The manuscript was written
by T. Nylander and J. Ruuskanen, with inputs and comments from the other
coauthors.

Nylander, T., J. Ruuskanen, K.-E. Årzén, and M. Maggio (2020b). “Towards
performance modeling of speculative execution for cloud applications”.
In: Companion of the ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’20). Association for Computing Machinery,
Edmonton AB, Canada, pp. 17–19. isbn: 9781450371094. doi: 10.1145/
3375555.3384379.

This paper forms a section in Chapter 6. It builds on the synchronized
service modeling principles from [Nylander et al., 2020a], and extends the
model to speculative execution in cloning systems with PS queues behind
the JSQ load balancer. In an illustrative example simulation, this model is
shown to be accurate.

The idea to utilize the near-synchronization property of JSQ to model
speculative execution came from T. Nylander and was refined in discussions
together with the other coauthors. The formalization of the procedure was
developed by J. Ruuskanen together with T. Nylander. The simulations were
performed by T. Nylander and J. Ruuskanen, using a simulator extending on
the one developed in [Nylander et al., 2020a]. The manuscript was written
by T. Nylander and J. Ruuskanen, with inputs and comments from the other
coauthors.
12 Due to an error in Lemma 4, the bounds have to be viewed as approximate.
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Publications Not in Thesis
The author of this thesis has further made contributions to the following
papers, mainly in the field of event-based particle filtering, which are not
included in this thesis.

Event-based particle filtering. At the start of his PhD studies, the au-
thor of this thesis explored particle filtering under event-based sampling with
the goal of applying it to state estimation in server systems. As time passed,
it was deemed difficult to adequately fulfill this goal, and a decision was
made to shift the focus from these algorithms to more general performance
modeling in cloud settings. The following contributions made to the field of
event-based particle filtering are thus left out in order to make this thesis
more streamlined and cloud focused.

Ruuskanen, J. and A. Cervin (2018). “Internal server state estimation using
event-based particle filtering”. eng. In: Proceedings of the 4th Interna-
tional Conference on Event-Based Control, Communication, and Signal
Processing (EBCCSP ’18). url: https://lup.lub.lu.se/search/
files/49609380/wip_ebccsp_18.pdf.

Ruuskanen, J. and A. Cervin (2019). “Event-based state estimation using
the auxiliary particle filter”. In: 18th European Control Conference (ECC
’19), pp. 1854–1860. doi: 10.23919/ECC.2019.8796091.

Ruuskanen, J. and A. Cervin (2020). “On innovation-based triggering for
event-based nonlinear state estimation using the particle filter”. In: Eu-
ropean Control Conference (ECC ’20), pp. 1401–1408. doi: 10.23919/
ECC51009.2020.9143748.

Ruuskanen, J. and A. Cervin (2022). “Improved event-based particle filtering
in resource-constrained remote state estimation”. arXiv preprint. doi: 10.
48550/ARXIV.2209.14081.

Other publications.

Ruuskanen, J., H. Peng, and A. Martins (2019). “Latency prediction in 5G
for control with deadtime compensation”. In: Proceedings of the Workshop
on Fog Computing and the IoT (IoT-Fog ’19). Association for Computing
Machinery, Montreal, Quebec, Canada, pp. 51–55. isbn: 9781450366984.
doi: 10.1145/3313150.3313227.

Berner, T., J. Ruuskanen, M. Maggio, and K.-E. Årzén (2022). “Improved
dynamic modeling for controlled server queues”. Under journal submis-
sion.
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1.5 Thesis Outline

This thesis consists of 7 chapters. Next, in Chapter 2 the necessary back-
ground to understand the main parts of this thesis is introduced, along with
extensive discussions on the connection between the contributions of this
thesis and previous published research.

In Chapter 3, the improvements for the mean-field fluid model of PS
queueing networks are presented. This fluid model is later used in Chap-
ter 4 to guide the construction of the intermediate queueing network model
for distributed microservice applications. Later in this chapter, the FedApp
sandbox is introduced and used to experimentally verify the microservice
fluid model. Furthermore, in Chapter 5 this fluid model is used to design
the cost minimizing controller for load balancer parameters using automatic
differentiation. In Chapter 6, the modeling of request cloning and speculative
execution using the concept of synchronized service is presented.

Finally, in Chapter 7 the thesis is summarized, the most important results
are discussed, and some directions for future work are provided.
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2
Background and Related
Work

This chapter gives a more in-depth background and related work connected
to the different chapters and contributions of the thesis.

Outline. In Section 2.1, a quick overview of the queueing theoretical con-
cepts necessary to understand the remaining thesis is introduced. Further-
more, Section 2.2 first introduces queueing networks and, subsequently, the
mean-field approximation for obtaining fluid models. Section 2.3 then dis-
cusses modeling of cloud applications using queueing theory and how these
models can be obtained from a running application. Section 2.4 discusses how
these models can be used to optimize a running application, in particular con-
sidering online tuning of load balancing parameters. Finally, in Section 2.5
the concept of request redundancy is introduced in greater detail.

2.1 Queueing Theory for Performance Modeling

A common methodology for performance modeling of computing systems is
to use queueing theory to model the service of multiple requests competing
for the same software or hardware resources [Bolch et al., 2006; Balter, 2013].

Here, a finite resource is modeled as a set of k servers to which the
arriving requests need access for some time to complete its service. At times,
the available servers might be fully occupied, and thus different forms of
queueing or server sharing need to be enforced to decide when and how the
present requests can access the limited resource. For request r, let tar denote
its arrival time and tdr its departure time from the queue. Furthermore, let
tsr be its necessary service time. See Figure 2.1 for an illustration.

Requests arrive to the queue according to some arrival process, character-
ized by the interarrival time between subsequent requests. The interarrival
and service times are often modeled as stochastic variables, following some
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Servers

Request queueing

DeparturesArrivals

Figure 2.1 Illustration of a single queue with 3 servers. For a request r,
the time of its arrival is denoted tar and the time of its departure tdr .

distributions

tar − tar′ ∼ Ga (interarrival time distribution),
tsr ∼ Gs (service time distribution), (2.1)

for every request r, where r′ is the request that arrives before r.
Stochastic interarrival and service times imply that the total time a re-

quest spends in the queue, known as the sojourn time or response time T ,
becomes a random variable, and that the number of requests present in the
queue, known as the queue length X, becomes a stochastic process. Given
knowledge of the arrivals and departure times, the response time of a specific
request r can be obtained as Tr = tdr − tar . Furthermore, the queue length at
time t can be obtained as the number of requests that has arrived but not
yet departed

X(t) =
∑
r

1 (tar < t)− 1
(
tdr < t

)
, (2.2)

where 1(e) is a function returning 1 if the expression e is true, otherwise 0.
Arrivals and service speeds are often characterized by their respective rate,

which denotes the mean number of requests that arrive or can be served each
second, i.e.,

λ = 1/E [Ga] (arrival rate),
µ = 1/E [Gs] (service rate). (2.3)

Common Queueing Disciplines
The way requests present in the queue share the limited servers is determined
by the queueing discipline. Many different forms of disciplines exist in liter-
ature, and the choice depends on the type of system the queueing model is
to represent. Considering performance modeling of cloud systems three com-
monly used disciplines, due to their simplistic yet often adequate description
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of scheduling in hardware and software resources, are first-come first-served
(FCFS), processor sharing (PS) and pure delay (INF) [Ardagna et al., 2014].

The FCFS discipline is the most common in general queueing theory,
where requests are assigned to servers in the order in which they arrive. If
no server is available at the time of arrival, the request will wait until its
turn. In computing systems, this discipline can be used to model exclusive,
nonpreemptable access to a resource, for example requests of equal priority
trying to access a disc.

For the PS discipline, it is on the other hand assumed that requests
present in the queue share the servers equally at all times. It is furthermore
often assumed that the requests are not parallelizable, meaning that each
request is served by at most a single server. The speed of which a request is
served under this discipline is at any time t scaled with a factor known as
the processor share, described by the following function of the queue length

g [X(t)] =
min [k,X(t)]

X(t)
, (2.4)

where k is the number of servers present in the queue. In computing systems,
the PS discipline is commonly used to model time sharing in CPUs, where
multiple tasks of the same priority are periodically served in time slices in a
round-robin fashion. By assuming that the length of each time slice goes to
0, and that the overhead to switch between tasks is nonexistent, this time-
sharing can be idealized as the PS discipline.

Finally, the INF discipline assumes that every request instantly get ac-
cess to an exclusive server, hence, an INF queue has no resource sharing
and can be seen as having an infinite amount of servers. In computing sys-
tems, this discipline is used to model behavior and situations where requests
are subjected to some delay but where no contention occurs, e.g., a pool of
connecting clients or network delays.

Evaluating Performance Metrics From a Queue Model
Given knowledge of the arrival and service rates and the number of servers,
two important performance metrics that can be obtained are the utilization
and the throughput. The utilization ρ describes the fraction of time the servers
in a queue are occupied, and can be expressed as

ρ =
λ

kµ
. (2.5)

As ρ moves closer to 1, both the stationary mean and the variance of the
queue length will grow. But as long as ρ < 1, these will be finite as the
queue will in average process requests faster than they arrive, and the queue
is denoted as stable.
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Furthermore, the throughput τ describes the mean number of requests
that complete their service per given time unit and can for stable queues be
expressed using the utilization ρ as

τ = kµρ. (2.6)

As can be seen, for stable queues the throughput equals the arrival rate λ.
In contrast, queue lengths and response times are more complex to obtain,

as they depend on the interarrival and service time distributions, as well as
the queueing discipline. Before delving deeper, we first introduce the following
common way of classifying a queue based on its properties.

Definition 2.1—Kendall’s Notation
A queue can be classified with the notation X/Y/k–Z where (i) X, Y are the
types of the interarrival and service time distribution, respectively, (ii) k the
number of servers, and (iii) Z the queueing discipline.

A common distribution type is M (Markovian), which implies that the cor-
responding distribution is exponential, while G (General) implies that no
assumption, apart from positive support, on the distribution is made. The
Kendall notation can also include additional queueing properties not consid-
ered in this thesis.

It is always possible to obtain the queue lengths and response times of
a given queueing model using discrete event simulation, but in some cases
closed-form solutions or approximations exist. A common example is the
M/M/1–FCFS or M/G/1–PS queue, for which the stationary mean queue
length becomes [Balter, 2013]

E [X] =
λ

µ− λ
. (2.7)

For these, the entire stationary queue length distribution is in fact known,
where P (X = n) = ρn (1− ρ). However, this is not commonplace; in most
cases, one has to settle for some approximation of the stationary mean.

Queue lengths and response times are closely related, as captured by
Little’s law, which states that the stationary mean queue length is equivalent
to the product between the arrival rate and the mean response time, i.e.,

E [X] = λE [T ] . (2.8)

Most notably this relationship holds independently of the distributions, num-
ber of servers and queueing disciplines [Little, 1961].

For other response time metrics, such as different α-percentiles φα, such
tidy formulas rarely exist for the arbitrary queue. In a few cases, the response
time distribution has a known closed-form solution from where metrics can be
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derived. For example, revisiting the M/M/1-FCFS queue, its response time
CDF is given by Φ(t) = 1− e−(µ−λ)t [Bolch et al., 2006] and thus the φα can
be obtained as the time t such that Φ(t = φα) = α. More generally, given
the mean response time, φα can be bounded from above using the Markov
inequality to derive φα ≤ E [T ] /(1 − α). This bound can however be quite
loose as shown in the initial motivating example in [Pérez and Casale, 2017].

The fluid model. An alternative to closed-form solutions of stationary
queue lengths is instead to try to approximate the time evolution of the
entire queue length distribution using a diffusion approximation, or the time
evolution of the queue length mean with a fluid model. A clear benefit of
such a model is that it can be used to obtain transient metrics as well as
stationary ones. But, as with closed-form expressions, it is generally hard to
find a good diffusion approximation or fluid model given a general queue, as
made evident by the attention the topic has historically received [Schwarz
et al., 2016, Section 3.3].

In particular, the fluid model expresses the time evolution of the mean
queue length as the flow in and out of some state x, which can be formulated
as the following ODE:

dx

dt
= −qout(x) + qin. (2.9)

In the single queue case, qin = λ and qout(x) is a function relating the current
mean queue length to the rate of which requests depart the queue.

One general method of finding a suitable qout(x) is the pointwise sta-
tionary fluid flow approximation (PSFFA) [Wei-Ping Wang et al., 1996].
Here qout(x) = µG−1(x), where G(ρ) = E [X] is some invertible function
relating the utilization to the stationary mean queue length. This ensures a
stationary solution of (2.9) at x = E [X], as the flow in this case becomes
ẋ = −µρ+ λ = 0. In particular, for M/M/1 queues, the PSFFA model is ob-
tained by inverting (2.7), which yields the well-known Tipper model [Tipper
and Sundareshan, 1990]

dx

dt
= −µ x

x+ 1
+ λ. (2.10)

2.2 Queueing Networks

Considering a computing system consisting of multiple interacting parts, such
as systems often observed in cloud computing, model granularity can be im-
proved by representing the different resource components and their interac-
tions as a network of queues [Bolch et al., 2006]. In the network, when a
request is fully served in a queue it is either routed to a new queue, or it
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Departures

Arrivals

requests in
open chain γ1

requests in
closed chain γ2

Queue q1 Queue q2 Queue q3

Figure 2.2 An example of a mixed queueing network with three queues
and two chains. q1 and q3 each holds a single class, c1 and c4, while q2 holds
the two classes, c2 and c3. Completed requests in (q1, c1) are routed to
(q2, c2), which in turn routes requests either back to (q1, c1) or out from the
network. New external requests can further arrive to (q1, c1). For (q2, c3),
completed requests are instead routed to (q3, c4), and from there back to
(q2, c3). This forms two disjoint chains, one open, γ1 = {(q1, c1) , (q2, c2)},
and one closed, γ2 = {(q2, c3) , (q3, c4)}.

departs the network entirely. Requests can also arrive to queues from out-
side the network. Each queue is allowed to have its own queueing discipline,
service time distribution and number of servers. Arrivals are however both
dependent on the existence of external arrivals to this queue, and the rout-
ing from other queues. Further, the queues in a network are often allowed to
have multiple classes of requests that it can serve, each with its own service
requirements and on-completion routing destinations.

The paths that requests can travel over the network via the class-to-class
routing between queues form disjoint subnetworks over the request classes,
known as chains. As the chains are disjoint, there exists no path in the
network from any class in a chain to any class in any other chain. Further,
every class in every queue will belong to exactly one chain. A chain that
contains classes to which requests can arrive to the network from external
sources, and from where requests can depart the network is known as an open
chain. Similarly, a chain that contains no such classes is known as a closed
chain. The absence of arrival and departures implies that the population of
request will be constant over time in closed chains, while the population in
open chains can vary.

A queueing network consisting only of open or closed chains is termed an
open or closed network respectively, while a network allowed to contain both
open and closed chains is known as a mixed network [Baskett et al., 1975]. In
performance modeling for cloud systems, these mixed networks are of interest
to study as it allows for modeling of advanced behavior such as component
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interactions in software layers subjected to both synchronous (blocking) and
asynchronous (nonblocking) calls [Franks et al., 2009]. An illustration of a
mixed network is presented in Figure 2.2.

Evaluating a Queueing Network
Evaluating different performance metrics of a queueing network is in general
a more difficult procedure than for the single queue case, as arrivals to every
queue can be dependent on both external arrivals and departures from the
other queues. As for single queues, it is always possible to directly estimate
the metrics given a queueing network via discrete event simulation. However,
this can be prohibitively computationally expensive for many use cases, such
as real-time evaluation for online decision making, as the number of states can
be very large. A more tractable approach is to instead rely on approximation
methods of important performance metrics, and in certain cases results from
the single queues can be utilized.

Considering an open network of m M/M/1 queues, an example of a so-
called Jackson network [Jackson, 1957], the total probability of finding all ni
requests in every queue i is given by

P (X1 = n1, X2 = n2, . . . ) =

m∏
i=1

P (Xi = ni) =

m∏
i=1

ρni
i (1− ρi) . (2.11)

Interestingly, the probability of finding the entire network in a certain state
is given as the product of the probabilities for the single queues. Queueing
networks with this property are commonly known as product-form networks.

Extensive research has been conducted on which types of queueing net-
work are classified as product-form networks. A most notable result is the
so-called BCMP theorem [Baskett et al., 1975], which states that multi-class,
mixed networks where each queue is allowed to be any of -/M/k-FCFS, -
/G/1-PS, -/G/∞-INF among others, have this product-form property. There
exist a number of methods to evaluate the steady state performance metrics
for product-form networks, arguably the most well-known is the mean value
analysis (MVA) [Reiser and Lavenberg, 1980], which simultaneously obtains
the throughput, mean response time, and mean queue length for every queue.
We refer to [Bolch et al., 2006, Section 7.3] for a more detailed description
of both the types of networks that classify as product-form and the methods
available to solve them.

For queueing networks not in product-form, or if transient performance
metrics are wanted, one could instead try to find either a diffusion approxi-
mation or a fluid model for the entire network, in order to approximate the
intractable dynamics of the queue length distributions or expected values.
In the case of performance modeling for cloud systems, fluid models in par-
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ticular are of high interest to study, as the time evolution of mean request
population in every queue reduces to solving a set of ODEs.

These sets of ODEs are quick to solve, even for large models given mod-
ern methods, and are of importance when devising control approaches [Fil-
ieri et al., 2017]. Furthermore, from the resulting vector of modeled queue
lengths x, both transient and stationary values can be obtained for impor-
tant performance metrics [Pérez and Casale, 2013]. Assuming stability and a
probabilistic routing policy where Pj,i gives the probability of on completion
routing from queue j to i, the throughput at queue i is obtained as the sum
of external arrival rates and inflows from other queues

τi(t) =
∑
j

Pj,iq
out
j [xj(t)] + λi. (2.12)

Using the throughput, the utilization can be obtained from (2.6) as

ρi(t) =
τi(t)

kiµi
. (2.13)

At stationarity, the mean response time can be obtained from Little’s law
(2.8) together with the stationary mean queue length and throughput

E [Ti] =
xi
τi
. (2.14)

The same formula can also be used to approximate the mean response time
at transient times.

However, just as for the single queue case, it is in general hard to derive
a suitable fluid model, or diffusion approximation for a given system. Some
notable works include; Fluid model and diffusion approximation for state de-
pendent open networks of Markovian FCFS queues [Mandelbaum and Pats,
1998], convergence studies on fluid models for queueing networks with head-
of-the-line proportional PS queues [Bramson, 1996], fluid model for layered
queueing networks with exponential service times via PEPA algebra [Triba-
stone, 2013], and diffusion approximation for queues with phase-type service
time distribution using Stein’s method [Braverman and Dai, 2017].

Response time percentiles. The fluid model allows for a computation-
ally cheap approximation of the response time distribution at stationarity.
It builds on fixing the modeled queue lengths at their stationary values and
numerically computing how much flow mass of a single newly arrived request
remains in the network after some time [Pérez and Casale, 2013].

This is an important property of fluid models, as response time percentiles
are common in SLAs but difficult to obtain for queueing networks apart
from expensive simulations or inexact Markov inequalities. In a few special
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cases, the response time distribution obtains a closed form solution [Har-
rison and Knottenbelt, 2006]. Furthermore, for certain network types, e.g.,
product-form networks of PS and INF queues, computationally efficient ap-
proximations can be obtained by decomposing the queueing network into a
set of Markov processes [Casale, 2010]. Finally, in the more general case that
the queueing network can be translated into a so-called quasi-birth-death
process, matrix-analytical methods [Latouche and Ramaswami, 1999] can be
employed to obtain different performance metrics, including response time
distributions. However, this is more suitable for considering smaller or single
queue models, as the method can be expensive for larger networks.

The phase-type distribution. Many evaluation methods for queueing
networks build on Markovian assumptions on the interarrival and service
time distributions. To circumvent this and allow for more general distribu-
tions, it is common to consider interarrival and/or service times that follow
a phase-type (PH) distribution. The PH distribution represents its random
variable as the time-to-absorption in a single-sink internal Markov chain with
S transient states and one absorbing state, and can approximate any other
positive support distribution [Balter, 2013]. The transition rates between the
transient states are given by the matrix Ψ, while the rates from the transient
states to the absorbing state are given by the vector ψ. Arriving requests are
assigned to one of the transient states according to the probability vector ζ.

For example, a request that enters a queue with a PH distributed service
time will be assigned immediately to one of the internal Markov chain states
according to ζ. The request will then move around in this internal chain
according to the rates in Ψ and ψ, until it reaches the single absorbing state,
where it immediately departs for the next queue or from the network entirely.

The Mean-Field Fluid Model
The mean-field approximation [Bortolussi et al., 2013] gives a way to ap-
proximate the mean dynamics of a stochastic process as a fluid model. It
states that given a special type of continuous-time Markov chain (CTMC),
known as a density-dependent population process, the time evolution of the
mean population in each state can be approximated as the solution of the
following system of ODEs:

dx

dt
= F (x),

x(0) = X(0). (2.15)

Here F (X) is the drift function of the CTMC, dependent on the current
state population vector X. Under certain conditions, it can be shown that
the population dynamics of the CTMC converges to its mean-field approxi-
mation as a property commonly referred to as system size goes to infinity—a
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result commonly known as Kurtz’s theorem [Kurtz, 1970]. However, it is well-
known that mean-field approximations can generate inaccurate results when
the system size is small [Gast, 2020], and bounds for these errors have been
studied using, e.g., Stein’s method in [Ying, 2017]. Based on such results, re-
finements to the mean-field approximation to improve accuracy have recently
been presented in [Gast and Van Houdt, 2017; Randone et al., 2021].

We introduce the following definition to differentiate between (nominal)
fluid models that can be obtained by deciding input/output relationships in
(2.9), and fluid models that can be derived as a mean-field approximation.

Definition 2.2—the mean-field fluid model
For some types of queueing networks, it is possible to translate the stochas-
tic process driving the queue lengths in the entire network to a density-
dependent population process that fulfills Kurtz’s theorem. The resulting
fluid model, given by (2.15), is called the mean-field fluid model.

The mean-field fluid model has been used to examine software systems mod-
eled as queueing networks. For example, [Incerto et al., 2017; Incerto et al.,
2018b; Incerto and Tribastone, 2019] used this fluid model to derive a scheme
for model-predictive control of server systems. It was further used to study
the estimation of service times and transition probabilities using a moving
horizon estimator in [Incerto et al., 2018a; Incerto et al., 2021], and using
reinforcement learning in [Garbi et al., 2020]. Furthermore, [Vasantam et al.,
2018; Kielanski and Van Houdt, 2021] used this fluid model to study the
power-of-d load balancing policy for systems of PS queues.

Recently, in [Pérez and Casale, 2013; Pérez and Casale, 2017] it was shown
that for closed networks, the mean-field fluid model can be obtained for any
combination of multi-class PS or INF queues with general service times in
the form of PH distributions. Later, in [Zhu et al., 2020], this result was ex-
tended to cover discriminatory processor sharing. These results are of great
interest for performance modeling of cloud applications, as both the PS and
INF queues are common when modeling cloud systems. In Chapter 3, we
extend the results from [Pérez and Casale, 2013; Pérez and Casale, 2017] to
also cover mixed networks. Although open chain behavior can be approxi-
mated by closing the chain via the introduction of bottleneck queues [Bolch
et al., 2006, p. 507], which for BCMP networks can be shown to converge in
the limit [Anselmi et al., 2013], we show that the mean-field fluid model can
be obtained directly from a mixed PS network. We also introduce a simple
technique based on data-driven smoothing of the drift function, which, in
contrast to the existing refined mean-field models, is computationally cheap
even at very large scales. Finally, a closed-form approximation for the re-
sponse time distribution over almost any subset of classes in the network is
introduced.
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2.3 Cloud Application Modeling

Modern trends such as the microservice architecture [Gan et al., 2019] and
fog/edge computing [Yousefpour et al., 2019] make the orchestration of cloud
applications more complex. Each service can be scaled individually, the inter-
actions between services can be intricate, and the service graph might span
different machines and even different clouds. Thus, new challenges arise for
old problems in automatic runtime management, such as balancing between
quality of service and cost minimization in these new more complex envi-
ronments. In the literature, it is common to employ analytical performance
models when designing such management methods [Ardagna et al., 2014;
Amiri and Mohammad-Khanli, 2017; Moghaddam et al., 2019].

Performance modeling of cloud applications is a vast research area with
many different modeling methodologies, as shown in the preceding survey
papers. In this thesis, we focus on modeling using queueing theory, especially
on queueing networks for which the mean-field fluid model can be obtained.
A closely related but more advanced modeling method is the layered queueing
network (LQN), where service times for queues in a network are given as the
response time from another "deeper" queueing network. The queues of this
deeper network can in turn have service times given as the response time of
even deeper networks, etc. This layering enables the model to capture detailed
interactions between software and hardware resources [Franks et al., 2009].
Other methods for performance modeling include, e.g., Petri nets [Brogi et al.,
2007], stochastic process algebra [Hermanns et al., 2002], machine learning
models [Yanggratoke et al., 2015a] and network calculus [Duan, 2011].

There exist many examples in the literature where queueing models of
cloud applications have been used. The choice of queueing model depends
both on the type of application and on the context. For example, simpler
applications can sometimes be adequately modeled as single queues, as can
be seen considering, e.g., web server modeling in [Cao et al., 2003] using a
single M/G/1-PS queue with limited queue size, and in [Pacifici et al., 2005]
using a single M/M/1 queue. Furthermore, in [Yanggratoke et al., 2015b] a
part of the storage backend in Spotify was modeled with parallel M/M/1-
FCFS queues, representing access to memory and discs.

Larger applications of multiple tiers are instead commonly modeled as
queueing networks, where each tier is represented by a small number of
queues. In an early work, [Urgaonkar et al., 2005] modeled a multi-tier appli-
cation with a closed queueing network, where each tier replica was modeled
using a single M/G/1-PS queue. A similar model was later adopted in, e.g.,
[Xiong et al., 2011] where an open tandem queueing network with each tier
modeled as a single M/G/1-PS queue was used to optimize both the mean
response time and resource usage. Also, in [Goudarzi and Pedram, 2011] each
tier replica was instead modeled by two queues, one for serving requests going
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forward and one for returning responses, and used in an optimization scheme
to maximize profit while adhering to the SLAs. In [Addis et al., 2013], each
tier was instead modeled as a collection of parallel multi-class M/G/1-PS
queues, in order to model and optimize over multiple applications that in-
habit a cloud service center. Also, in [Kattepur and Nambiar, 2015] each tier
was modeled using a tandem queueing network, with queues adhering to a
product-form constraint but also allowing for multiple servers. This was done
to model, e.g., multi-core CPUs as M/G/k-PS queues, for the purpose of de-
veloping an MVA extension to handle such networks. Furthermore, in [Wang
et al., 2019] a tandem queueing network was used to model and optimize the
size of thread and connection pools between tiers.

Considering the microservice architecture in particular, [Niu et al., 2018]
modeled each service as a single M/G/1-PS queue to optimize load balancing
between replica sets in the presence of multiple chains using the same services.
Furthermore, in [Yu et al., 2019], each service was instead modeled as a
M/M/k-FCFS queue and used in an optimization scheme to minimize power
consumption and response time by request routing and service placement.
Applications deployed in a fog/edge computing environment have also been
modeled using queueing networks, e.g., in [Xiao and Krunz, 2017] where each
fog node was modeled as a single M/M/1 queue and the resulting network
was used to study optimal workload offloading between multiple fog nodes
and a cloud data center.

More advanced application models often utilize layered queueing networks
for increased accuracy, albeit at the cost of being harder to construct and
more expensive to evaluate. Some examples include [Faisal et al., 2013], where
an LQN model was used to study the impact of network delays between dif-
ferent parts of an application deployed in a fog/edge computing environment.
In [Barna et al., 2017], a model for multi-tier applications was developed us-
ing a simple three layer queueing network, where each layer in each tier has
a single multi-server queue representing either the corresponding software,
container, or hardware. In addition, in [Gias et al., 2019] a LQN model of a
microservice application was used to optimize combined vertical/horizontal
autoscaling under SLA constraints.

Runtime Model Extraction
Deriving an adequate queueing model for a cloud application is not a triv-
ial endeavor. One straightforward option to try is to craft such a model by
hand. Furthermore, queueing models can be obtained from certain archi-
tectural models of an application, which are sometimes used during, e.g.,
application development. For example, considering the Palladio component
model [Becker et al., 2009], a layered queueing network model [Koziolek and
Reussner, 2008], or a queueing network model [Pérez and Casale, 2013] can
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be readily acquired.
However, the handcrafting of either queueing models directly or the tran-

sitional architectural models takes time and requires expert knowledge, and
it has to be redone each time the application is updated. An alternative is
instead to try to automatically extract a model from system logs and trac-
ing data. For example, considering the automatic extraction of architectural
models, [Brosig et al., 2011] studied the extraction of application models
based on the Palladio component model from system monitoring data col-
lected at runtime. Furthermore, in [Spinner et al., 2019] runtime extraction
of combined models of both the application and the underlying infrastruc-
ture was studied using an agent-based approach and the Descartes modeling
language.

Considering the extraction of a queueing model directly from data, [Har-
baoui et al., 2010] proposed a method based on decomposing the application
into black box components. Each black box was to be load tested and used to
form a repository of M/G/k-FCFS models, which then the complete applica-
tion model could be derived from. A similar approach was adopted in [Begin
and Brandwajn, 2016], but here the queueing models of the components were
assumed to be precalibrated. The paper instead focused on the combination
of these into a complete application model. In [Desnoyers et al., 2012], a
system was proposed to classify requests visiting each software component
and the component interactions using data mining techniques on system log
data. Each component is then modeled as a multi-class M/G/1-PS queues,
and via the inferred interactions stitched together to form a queueing net-
work model. Furthermore, in [Awad and Menascé, 2020] a large framework
for automatic model extraction was presented. The framework provides a
step-by-step workflow to derive both workload and system models by ana-
lyzing system logs and configuration files. A queueing model is then created
by load testing and matching the extracted models to a repository.

Automatic construction of LQN models has also been studied. For exam-
ple, [Hrischuk et al., 1999] developed a method for extracting LQN models
of distributed software systems that contain both synchronous and asyn-
chronous calls. The method builds on sampling the system with special an-
notated traces to create LQN submodels, which are then merged to create the
application model. In [Israr et al., 2005], this method was extended to give
up the need to annotate traces, but at the expense of capturing the joining
of previously forked request paths. Furthermore, [Mizan and Franks, 2011]
proposed a framework for efficiently capturing LQN models of distributed
systems without the notion of global time. The model is created by exam-
ining traces at each node, which in turn are generated by instrumenting the
software program.

Existing automatic extraction methods such as these are often complex,
rely on offline stages, and produce large scale models. Furthermore, once a
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model structure has been established, service time distributions and routing
probabilities must be estimated, which is not trivial [Spinner et al., 2015].
Although such methods have the potential to produce accurate models, large
and complicated models are detrimental to runtime application management,
as the performance model must be repeatedly updated and evaluated. Hence,
when designing an automatic extraction method to be used in balancing
performance and cost, it is important to take into account the complexity of
both the extraction and model evaluation.

In Chapter 4, we introduce a simple yet general queueing network model
for microservice applications. The model can be completely extracted at run-
time from request tracing data commonly available in software for distributed
tracing. It models each service as a multi-class PS queue and each service-to-
service latency as an INF queue. Each class is further assumed to have PH
distributed service times. This allows the mean queue length dynamics to be
quickly evaluated using the smoothed mean-field fluid model introduced in
Chapter 3.

2.4 Model-Based Optimization at Runtime

As the cloud is an inherently dynamic environment, balancing performance
and cost has to be performed at runtime to ensure that the SLOs are fulfilled
at all times. Designing such balancing methods is, however, a challenging
research problem due to, e.g., the intricate relationship between workload,
actions, and performance metrics. This issue has historically received much
attention, and a typical way to tackle it is by posing the cost and performance
trade-off as an optimization problem. As can be seen in Section 2.3, this is
a common use case for performance modeling of cloud applications. How-
ever, the resulting optimization problem often becomes difficult to solve at
runtime. Especially considering actions such as service scaling or scheduling
replicas across compute instances, which reduces to mixed integer program-
ming or bin packing problems, respectively.

Considering the aforementioned papers in Section 2.3, an example of
model-based optimization is [Xiong et al., 2011], where the simple model
for multi-tier applications yields a closed-form solution to optimally decide
the CPU shares of each tier, in order to minimize the mean response time.
A PI controller was then used to decide the total allocated CPU capacity
in order to keep the response time at some reference. On the contrary, in
[Goudarzi and Pedram, 2011], the slightly more advanced model and prob-
lem statement of maximizing revenue over multiple resources reduce to a
nonlinear mixed integer problem. An upper bound on profit was derived and
a method, similar to gradient descent, was developed to heuristically solve
the problem. Furthermore, [Addis et al., 2013] aims to optimize over VM
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placement, resource allocation, and load balancing simultaneously. The opti-
mization problem is split over different time scales and solved using heuristic
methods such as fixed-point iterations with initial conditions selected using
a greedy approach. Regarding microservice deployments, [Yu et al., 2019]
considered joint power consumption and mean response time minimization
by tuning scaling, request routing, and replica placement. The resulting opti-
mization problem was split into three stages considering each type of action,
where each part was solved using heuristics. Similarly, [Gias et al., 2019]
considered combined vertical/horizontal scaling to maximize revenue while
minimizing allocated CPU capacity under constraints on utilization and re-
sponse time. The resulting problem was solved heuristically using a genetic
algorithm.

Control theoretical methods. Control theoretical methods have also
been proposed to handle the runtime optimization of application deploy-
ments. In [Incerto et al., 2017], model-predictive control (MPC) of a simple
queueing network evaluated using the mean-field fluid model was consid-
ered. The goal was to optimally track reference values for throughput and
queue lengths, by tuning routing and horizontal scaling, and it was shown
that the problem of deciding the optimal control signal reduced to a linear
mixed integer program that can be quickly solved for the considered small
problem. Later, these results were extended in [Incerto et al., 2018b] to also
include vertical scaling, different classes of requests, and response time con-
straints. Furthermore, [Barna et al., 2018] used a linear-quadratic regulator
(LQR) to perform horizontal scaling of replicas and threads per replica to
keep response time at some reference level. The linear model was created by
numerical linearization of an extended LQN model of the target application.

Both MPC and LQR are advanced concepts in control, simpler approaches
more suitable for theoretical analysis has also been considered. For example,
[Robertsson et al., 2004] used PI control and a saturated linear model to
devise, and analyse the stability of, admission control for web servers mod-
eled with a single G/G/1 queue. In [Nylander et al., 2018], it was found
that naively combining load balancing with graceful degradation using the
brownout concept at each replica could produce response times of high vari-
ance. To remedy this, a simple control architecture based on multiple pure
integral controllers was developed. Furthermore, [Millnert and Eker, 2020]
studied combined vertical and horizontal autoscaling by utilizing the differ-
ent time scales of the two actions to explore a mid-ranging control strategy.
A feed-forward approach was used for the horizontal scaling, while a PI con-
troller was used for the vertical scaling.

Reinforcement learning. The infeasible nature of the general optimiza-
tion problem has spawned a recent interest in applying machine learning
methods, especially reinforcement learning, to optimally balance performance
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and costs. For example, [Wang et al., 2021] studied dynamic coordination of
microservice placement in a fog/edge computing setting using reinforcement
learning. The goal was to minimize the total migration cost and long term
delay, while keeping short term delays constrained, for users moving between
edge computing sites. In [Heimerson et al., 2021], the combined problem of
workload load balancing and cooling control within a datacenter was studied
using reinforcement learning, in order to reduce energy consumption. Fur-
thermore, [Rossi et al., 2019] studied combined vertical/horizontal scaling of
microservices using reinforcement learning, where the cost to minimize was a
combination of the cost of performing an action, allocation of resources, and
violation of the mean response time constraints.

Load Balancing
As optimizing over all possible actions reduces to a very difficult problem,
we will in this thesis focus on the subproblem of tuning load balancing pa-
rameters between replicas to minimize the running cost of a microservice
application while adhering to its performance constraints.

There exist many load balancing strategies to determine where to route
new requests. Most strategies are model free approaches, and the “best” choice
depends on the characteristics of the workload and the system, as well as the
desired outcome [Wang and Morris, 1985]. Arguably, the most commonly
used strategies are round robin (RR), random and join-shortest-queue (JSQ)
(also known as shortest-queue-first/least-connected/least-requests) and their
weighted counterparts [Sharma et al., 2008; Lee and Jeng, 2011]. These strate-
gies are available in many modern software tools, such as the proxies Envoy1

and Nginx2. JSQ has in general better performance than both random and
RR, and is considering balancing over PS queues near optimal in minimiz-
ing the total mean response time [Gupta et al., 2007b]. However, it requires
knowledge about the current state in each replica, and for each decision the
replica with the shortest queue length has to be found, which makes JSQ
less ideal to implement and run at scale. To handle these drawbacks, many
improvements have been suggested, such as power-of-d (SQ(d)) [Azar et al.,
1994; Bramson et al., 2010], join-idle-queue (JIQ) [Lu et al., 2011] and join-
the-best-queue (JBQ) [Spicuglia et al., 2013].

Optimal probabilistic routing. Although JSQ and its extensions promise
a good mean response time in a load balancing scenario, they are difficult to
analyze under more general settings and costs. We thus restrict ourselves to
study the weighted random policy, which allows us to adequately model the
microservice application as a queueing network with probabilistic routing.

1 https://www.envoyproxy.io/docs/envoy/v1.5.0/intro/arch_overview/load_
balancing

2 https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
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The problem thus reduces to finding the routing probabilities that minimize
cost while adhering to the SLOs.

This problem is well-investigated in the queueing theory community. Re-
garding open networks, response time minimization has been studied in, e.g.,
[Fratta et al., 1973] considering M/M/1 FCFS queues with link constraints
using flow deviation, [Borst, 1995] considering M/G/1 FCFS queues over a
weighted sum of response times, and [Guo et al., 2004] considering G/G/1
queues of either FCFS and PS discipline with constraints on response time
variance. For closed networks, throughput maximization has been studied
for product-form networks in, e.g., [Kobayashi and Gerla, 1983] using gra-
dient stepping as the gradient is readily obtained from the MVA algorithm,
and [Anselmi and Casale, 2013] using closed-form heuristics based on heavy
traffic limits. In [Hordijk and Loeve, 2000] it is shown that for product-form
networks with a general cost function and constraints on queue states, a Nash
equilibrium can be obtained via deterministic routing. To make the resulting
optimization problem feasible, these methods typically only consider simple
cost functions and performance metric constraints (if any) over specific types
of queues and networks.

Similar conclusions can be drawn in the vast body of literature dealing
with the tuning of load balancing parameters. For example, in the two afore-
mentioned papers [Addis et al., 2013; Yu et al., 2019], the joint optimization
problems over both request routing and resource allocations must be solved
heuristically, and only considering average response times as part of the cost
function. Further, in [Wang and Casale, 2014] the results from [Anselmi and
Casale, 2013] are evaluated for heuristic weighting of the RR policy in or-
der to maximize a linear revenue function of the throughput. In [Javadi and
Gandhi, 2017] a load balancer accounting for hidden interference was devel-
oped to minimize response time percentiles. The method builds on using an
approximate formula for the percentiles and assuming M/M/1 queues, which
yields a closed-form solution for weighting the RR policy. Further, [Yao et al.,
2022] uses a Kalman filter to track processing speed at servers from measured
average response times. This information is then used to heuristically route
requests to servers with the shortest expected delay.

In Chapter 5, we take an alternative approach that enables us to tune
the weights of multiple load balancers using the random policy under general
costs and constraints. The method is based on online gradient stepping, where
the gradient is obtained via automatic differentiation of the microservice fluid
model from Chapter 4. This allows us at runtime to optimize a microservice
application distributed over multiple sites, with arbitrarily defined costs and
constraints from any performance metric obtainable from the fluid model,
most notably response time percentiles. However, by adopting such a general
approach, we forgo any theoretical results on global optimality, feasibility,
and convergence speed.
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(a) Request cloning
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(b) Speculative execution

m1

m2

t1

ro

rc1

rc2

ro

rc1

rc2

t0t0
C C

Figure 2.3 Comparison of (a) request cloning and (b) speculative exe-
cution over two replicas m1,m2 of the same server. At time t0, a request r
arrives at some cloning dispatcher C. In (a), the request gets immediately
copied into request clones rc1, r

c
2 and dispatched to m1,m2. The request

clone that first finishes being served, rc2 in this case, gets returned while rc1
is removed. In (b), rc2 instead gets dispatched first at t1 after some specula-
tion time has passed and rc1 has not yet completed. In this illustration, rc2
is dispatched and completes before rc1.

2.5 Request Redundancy

In cloud computing, request cloning refers to the generation of redundant
requests. Instead of sending a user request to only one computing server, the
request is copied into clones and sent to multiple servers. The response to the
original request is then set to the result of the server that first completes the
processing of its cloned request. When this happens, the pending requests
(i.e., the other clones that are queued or still being processed in the other
servers) are typically canceled, a policy known as Cancel-on-Complete (CoC)
cloning. Another less common policy is to cancel the remaining clones once
the first clone starts its service, known as Cancel-on-Start (CoS) cloning
[Gardner, 2017].

The motivation for request cloning comes from the desire to reduce the
mean and tail response times of applications running in uncertain environ-
ments. For cloud applications, the method can be seen as an intuitive way
to increase the predictability of responses, and can in certain cases yield
a significant improvement in performance [Ananthanarayanan et al., 2013].
However, launching more copies of the same request increases the overall
utilization, which leads to a trade-off between reducing response times by
multiple requests and increasing response times by increasing the load.

Speculative execution. Cloning can be seen as a special case of specu-
lative execution. Here, instead of immediately replicating requests, copies of
the original are sent out only after some set waiting time has passed. The
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(a) Central queue (b) Server-side queue

Figure 2.4 Illustration of request cloning using (a) a central queue to
dispatch request clones to free servers, and (b) server-side queueing for
immediately dispatching clones to servers.

difference between the two concepts is illustrated in Figure 2.3. The gen-
eral aim of speculative execution is, as for cloning, to increase the response
time predictability of requests in uncertain environments. However, by only
acting on the slow running requests, the effect of these can hopefully be mit-
igated without incurring the cost and load increase of cloning every request.
Speculative execution is particularly popular in big data frameworks such as
MapReduce [Dean and Ghemawat, 2008] or Spark [Zaharia et al., 2012].

Modeling Redundancy Using Queueing Theory
Recently, there has been an upsurge in interest in modeling applications sub-
jected to cloning and speculative execution. Most approaches adopt queueing
theory in some form, often considering either central queueing or server-side
queueing, see Figure 2.4 for an illustration.

Cloning can be seen as a particular case of the (n, k) fork-join model,
where a request is split into n subtasks that are distributed to servers. The
request completes when at least k ≤ n of those tasks are completed. Cloning
implies that the n subtasks are identical and k = 1. Approximate analysis
and latency bounds have been extensively studied for general (n, k) fork-join
systems, see, e.g., [Joshi et al., 2012; Shah et al., 2014; Wang et al., 2018],
but unfortunately no exact analysis exists when n ≥ 3.

The same can be said regarding the modeling of speculative execution. As
the scheme is mostly applied to distributed computing settings, where each
incoming request has a set of tasks that need to be completed before the
request is done, most existing results consider heuristics for joint codesign
with task scheduling [Zaharia et al., 2008; Ren et al., 2015; Xu and Lau, 2017;
Joshi, 2018]. These approaches do not consider queueing at the individual
servers. An exception is [Aktaş and Soljanin, 2019], where the authors study
speculative execution across servers modeled using limited processor sharing,
i.e., a PS queue with a maximum amount of requests behind an FCFS queue.

49



Chapter 2. Background and Related Work

On the contrary, exact analysis exists in the case of cloning. It was first
studied by [Gardner et al., 2015] with servers modeled as single M/M/1
queues. Other notable contributions concerning cloning to single-queue
servers with exponential distributions include [Qiu et al., 2016; Gardner et
al., 2017; Ayesta, 2019]. Qiu et al. [Qiu et al., 2016] compare the use of multi-
ple single-queue server models with a central queue. Gardner et al. [Gardner
et al., 2017] derived results on the largest marginal improvement that can be
obtained using the Redundancy-d cloning policy, which clones each request
to exactly d servers. Ayesta et al. [Ayesta, 2019] improved the analysis of
Redundancy-d, including using CoS.

Subsequently, researchers began investigating cloning with specific prob-
ability distributions for interarrival times and service times, identifying the
characteristics of the stochastic processes that make cloning beneficial [Shah
et al., 2016]. In [Qiu et al., 2017], the results regarding the usage of a central
queue were extended to the no-cancel policy, PH distributed service times and
arrivals according to a Markovian arrival process. Furthermore, Redundancy-
d over homogeneous servers with scaled Bernoulli-distributed service times
was studied in [Raaijmakers et al., 2019]. In [Joshi et al., 2015], and later in
[Joshi et al., 2017; Joshi, 2018], many of the results obtained with the M/M/1
model were extended to the M/G/1 model. However, an underlying assump-
tion for the extension was that all service time distributions are independent
and identically distributed (IID), which rules out heterogeneity.

In an attempt to bring cloning models closer to real implementations, Lee
et al. [Lee et al., 2017] worked on modeling and analyzing the overhead of
cancellations and the effects on the optimal scheduling policy. Cancellation
overheads were also briefly touched upon in the model used in [Joshi, 2018].

A common theme with the above-cited works for cloning is that they all
rely on the FCFS discipline, either for the central or the server-side queues.

In Chapter 6, we introduce the concept of synchronized service that en-
ables certain server-side cloning systems to be equivalently represented as
a single G/G/k queue. This extends the previous state-of-the-art, as the
equivalent G/G/k queue requires no assumptions on either interarrival or
service time distributions for the involved queues, effectively handling both
dependencies and heterogeneity. It is also valid in any queueing discipline
and any number of processors k, as long as they are the same across all
queues. However, the considered cloning system must fulfill the assumptions
for synchronized service, which are limiting and not very realistic to obtain
in practice. Focusing on the PS discipline, we thus study what happens if
these assumptions are relaxed. Finally, the concept is used to study server
systems under speculative execution.
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3
An Improved Fluid Model
for PS Queueing Networks

The fluid model offers one potential way of quickly evaluating important
performance metrics, both at stationary and transient times, for large-scale
queueing networks that are not in product-form. However, it is in general
hard to find a good fluid model of a queueing network, and most results
consider single-queue models. If the queueing network can be reduced to
a density-dependent population process, then the mean-field approximation
yields one quick way of obtaining an often adequate fluid model.

Introduction
Recently, it was shown in [Pérez and Casale, 2013; Pérez and Casale, 2017]
that closed multi-class networks of PS and INF queues, where each class
is assumed to have a PH distributed service time, can be translated into a
density-dependent population process that fulfills Kurtz’s theorem. This is
of high interest for performance modeling of cloud applications, as PS and
INF queues are common when modeling cloud systems and that multi-class
networks with PH service times can capture quite general system structures.
In this chapter, we extend these two previous results by proving that mixed
PS networks can also be translated into a density-dependent population pro-
cess that fulfills Kurtz’s theorem. We also introduce a compact matrix-form
representation that describes the drift function in a mixed PS network. This
drift function is shown to be globally Lipschitz, implying that the mean-field
fluid model will always have a solution.

Moreover, despite its theoretical convergence properties, it is well-known
that the mean-field approximation can experience serious errors when the
system size is small. To improve the accuracy of the mean-field fluid model in
these cases, we in this chapter also derive a simple technique based on data-
driven smoothing of the drift function. The technique is computationally
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cheap even at very large scales, in contrast to existing more general refined
mean-field models such as [Gast and Van Houdt, 2017; Randone et al., 2021].

We also derive an accurate closed-form approximation of the entire re-
sponse time CDF over any subset of classes and queues in the network. This
contrasts with the current state of the art for mean-field fluid models, which
achieves this by solving an extended state fluid model [Zhu et al., 2020].

The contributions are finally evaluated in a large simulation experiment,
which shows that they can be used to accurately predict performance metrics
of a simulated cloud application under the system perturbations common in
cloud computing; Workload change, horizontal scaling and vertical scaling.

Outline. This chapter is structured as follows. In the end of this intro-
duction, some necessary modeling assumptions and two example systems
are introduced. In Section 3.1, we provide the necessary background on the
mean-field fluid model for closed PS networks. In Section 3.2, we introduce
the compact matrix form for the drift of mixed networks and prove its mean-
field convergence. In Section 3.3, we present the mean-field improvements
using smoothing, and following that, in Section 3.4, we give the closed-form
approximation of the response time CDF. To validate our claims, an exten-
sive simulation experiment is reported in Section 3.5. Finally, the chapter is
summarized in Section 3.6.

Assumptions and Notation
We assume a queueing network where Q denotes its set of queues, and ki the
amount of servers in queue i. All queues in the network are assumed to follow
either the PS or INF discipline. Furthermore, let C be the total set of classes
in the queueing network, and Ci the set of classes in queue i. We assume that
each class has its own service time distribution, and further that all classes
are unique such that |C| =

∑
i∈Q |Ci|. Each class can potentially be subject

to Poisson arrivals as defined by the rates in λ ∈ R|C|×1
+ .

To keep track of class-to-class transitions and departures in the network,
we introduce the substochastic matrix P ∈ R|C|×|C|

+ , such that
∑
j,s P

r,s
i,j ≤ 1

where P r,si,j ≥ 0 gives the probability that a request completed in class r in
queue i gets routed to class s in queue j. We disallow completed requests from
any class/queue to be directly routed back to itself, hence P r,ri,i = 0 ∀(i, r) ∈
(Q, Ci). Let the dot notation in the sub/superscript denote a submatrix over
all the affected elements, e.g., P ·,·

i,j represents the matrix in R|Ci|×|Cj |
+ of class-

to-class transition probabilities from i ∈ Q to j ∈ Q.

The PH distribution and phase states. Each class in each queue in the
network is assumed to have a PH distributed service time. This implies that
we for each (i, r) ∈ (Q, Ci) will have an internal, single-sink Markov chain.
Denote its set of transient states as Si,r, and the state-to-state transition
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rates as Ψi,r ∈ R|Si,r|×|Si,r| between the transient states, and ψi,r ∈ R|Si,r|×1
+

from the transient states to the single absorbing state. Due to properties of
the CTMC, Ψi,ra,a ≤ 0, Ψi,ra,b ≥ 0, and

∑
bΨ

i,r
a,b + ψi,ra = 0 for any a, b ∈ Si,r.

Furthermore, let ζi,r ∈ R|Si,r|×1
+ be the entrance probability vector of the

same PH distribution.
A request entering (i, r) will be assigned to its internal states according

to ζi,r. Once it reaches the absorbing state, it will immediately depart for
another class in the network according to P r,·i,· , or depart the network entirely.
This implies that the location of all requests in the network is captured by
the transient states alone at any time. We will refer to these transient states
as phase states or simply states.

Let S denote the total set of phase states in the network, and let the
vector valued stochastic variable X(t) ∈ Z+

|S|×1 be the number of requests
populating the phase states at a given time instance t ∈ R+. Although the
states X are time dependent, we will for brevity not be consistent in writing
it out. Let X∗ denote this stochastic variable at stationarity. Following the
notation of [Pérez and Casale, 2017], let Xi,r,a denote the population of
requests in queue i, class r ∈ Ci, and phase state a ∈ Si,r. To map a state
a ∈ S to its corresponding queue, we introduce Q(a) ∈ S → Q, and we let
XQ(a) ⊂X be the vector of all states in the same queue as state a.

The concept of chains. Similarly to [Bolch et al., 2006], we define the
concept of chains as follows.

Definition 3.1
The set of classes C can be partitioned into a set of chains Γ, such that
there exists no path in the network from any class in a chain to any class
in any other chain. Each chain γ ∈ Γ is constructed from collections of
(i, r) ∈ (Q, Ci), and every class will belong to exactly one chain.

Let γo denote an open chain, and γc a closed chain. Due to the existence of
arrivals and departures in open chains, it holds that ∃(i, r) ∈ γo s.t. λi,r > 0
and

∑
j,s P

r,s
i,j < 1, while for closed chains

∑
j,s P

r,s
i,j = 1, λi,r = 0 ∀(i, r) ∈ γc.

This implies that the total population for each closed chain is constant over
time, while it can vary for open chains. Also, let Γo ⊂ Γ and Γc ⊂ Γ be the
sets of open and closed chains in a network. Further, we assume the following.

Assumption 3.1
Every open chain γo is transient, and that every closed chain γc is irreducible.

A transient chain implies that a request starting from any (i, r) ∈ γo will
leave the network in finite time, while an irreducible chain implies that there
is a nonzero probability that, starting from any (i, r) ∈ γc, we will visit any
(j, s) ∈ γc in a finite amount of steps.
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q2 (PS) q3 (PS)q1 (INF)

Figure 3.1 The closed cyclic network for the second running example.

Two Simple Running Examples
To provide some intuition regarding the new theory and methods to be pre-
sented, here we introduce two simple but illustrative examples that will follow
us in the remainder of this chapter.

Example 1. As a first example, we consider one of the simplest open queue-
ing networks possible, namely, the M/M/1-PS queue. It follows the PS disci-
pline, has a single server, and a single class with an exponentially distributed
service rate subjected to external Poisson arrivals. Two parameters are free
to set, namely λ—the rate of the Poisson arrival process and µ—the rate of
the exponential service time distribution. We set µ = 1 and let λ vary in the
experiments.

Example 2. As a slightly more advanced example, we consider a closed
cyclic queueing network of three single-class queues where queue 1 (q1) is
an INF queue, and queues 2 and 3 (q2, q3) are PS queues. The network can
be seen in Figure 3.1. This closed network is given a population of N = 50,
and the two PS queues q2, q3 are given k2 = 4, k3 = 8 servers. Further, q1 is
given an exponential service time with rate µ1 which we will let vary in the
experiments, while q2 and q3 are given Coxian service time distributions with
rates µ2 = 0.5, µ3 = 1 and the coefficient of variations σ2µ2 = 0.5, σ3µ3 = 10,
resulting in the PH distribution matrices

Ψ2,1 =

[
−4.0 4.0
0 −4.0

]
, ψ2,1 =

[
0 4.0

]
,

Ψ3,1 =

[
−2.0 0.1
0 −0.1

]
, ψ3,1 =

[
1.9 0.1

]
, (3.1)

and where ζ2,1 = ζ3,1 =
[
1 0

]
.

3.1 The Mean-Field Fluid Model for Closed PS Networks

In [Pérez and Casale, 2013; Pérez and Casale, 2017], it is shown that a closed
network of multi-class PS and INF queues with PH distributed service times
can be expressed as a type of CTMC known as a density-dependent popula-
tion process. The possible transitions in the Markov chain are given by either
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a request moving from a transient phase a ∈ Si,r to another b ∈ Si,r in some
(i, r) ∈ (Q, Ci), or by the request leaving the phases of (i, r) and entering the
phase b ∈ Sj,s in (j, s) ∈ (Q, Cj). Let ei ∈ Z|S|×1

+ denote a zero vector with a
single value of 1 at index i, and let f(X, l) ∈ R|S|×1

+ ×Z|S|×1
+ → R+ describe

a function for the density-dependent transition rate for some transition l. As
presented in [Pérez and Casale, 2013; Pérez and Casale, 2017], the possible
transition types and transition rate functions are given by:

Between classes: transition type lc = ej,s,b − ei,r,a and

f c(X, ej,s,b − ei,r,a) = ψi,ra ζj,sb P r,si,j θi,r,a(X). (3.2)

Between phases: transition type ln = ei,r,b − ei,r,a and

fn(X, ei,r,b − ei,r,a) = Ψi,ra,bθi,r,a(X), (3.3)

where θi,r,a(X) = Xi,r,agi,r,a(X). We will refer to the function g(X) ∈
R|S|×1

+ → [0, 1]|S|×1 as the processor share of X which is given as

gi,r,a(X) =
min

(
ki,

∑
s∈Ci

∑
b∈Si,s

Xi,s,b

)
∑
s∈Ci

∑
b∈Si,s

Xi,s,b
. (3.4)

Let L be the set of all possible transitions in the CTMC. The drift of the
population process is then given by

F (X) =
∑
l∈L

lf(X, l). (3.5)

The CTMC dynamics can be evaluated using simulations, but this gives
rise to a high computational cost as the state space grows. Instead, using
a mean-field approximation it is possible to approximate E(X(t)) with the
solution of a system of ODEs. Using (3.5), we can introduce x(t) ∈ R|S|×1

+

as a continuous-time vector of states that is given as the solution to

dx

dt
= F (x(t)),

x(0) = X(0). (3.6)

If we introduce a sequence of population processes,
{
X(v)

}
v≥1

, such that
for each v, the population process jumps from X(v) to X(v) + l at a rate of
vf
(
1
vX

(v), l
)

for each l ∈ L, it can be shown under some mild assumptions
[Kurtz, 1970, Th.3.1] that for every δ > 0,

lim
v→+∞

P
{
sup
t≤T

∣∣∣∣X(v)(t)

v
− x(t)

∣∣∣∣ > δ

}
= 0. (3.7)
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I.e., the error of the mean-field approximation goes to zero as the system size
v approaches infinity. As shown in [Pérez and Casale, 2017, Th.1] a sequence
of closed queueing networks of PS and INF queues, where both the initial
population N and servers per queue ki are scaled as vN and vki, fulfills this
convergence property.

3.2 Extension to Mixed PS Networks

The convergence property according to Kurtz’s theorem has so far only been
shown to hold for closed networks of PS and INF queues. In this chapter, we
will extend this result and show that it holds for mixed multi-class networks as
well. First, we must introduce the concepts of external arrivals and departures
to the queueing network in a form that is compatible with the transformation
to a density-dependent population process.

For the external arrivals, we let each class in C be subjected to Poisson
arrivals with the rates defined in λ. This yields a new type of transition
lλ = ei,r,a in the population process, where a request arrives at some phase
state (i, r, a) ∈ (Q, Ci,Si,r) with the transition rate function

fλ(X, ei,r,a) = ζi,ra λi,r. (3.8)

By definition, λi,r = 0 ∀(i, r) ∈ Γc. Furthermore, we let requests leaving
(i, r) ∈ (Q, Ci) have the probability 1 −

∑
j,s P

r,s
i,j to depart the network

entirely. Considering some phase a ∈ Si,r, this yields a new transition type
ld = −ei,r,a with the transition rate function

fd(X,−ei,r,a) = ψi,ra

1−
∑
j∈Q

∑
s∈Cj

P r,si,j

 θi,r,a (X) . (3.9)

Since the drift function (3.5) is defined as the sum over all possible tran-
sitions times their rate functions, we can then write out the drift affecting
an arbitrary state i, r, a as follows:

Fi,r,a(X) = −
∑
j∈Q

∑
s∈Cj

∑
b∈Sj,s

ψi,ra ζj,sb P r,si,j θi,r,a(X)

+
∑
j∈Q

∑
s∈Cj

∑
b∈Sj,s

ψj,sb ζi,ra P s,rj,i θj,s,b(X)

−
b ̸=a∑
b∈Si,r

Ψi,ra,bθi,r,a(X) +

b̸=a∑
b∈Si,r

Ψi,rb,aθi,r,b(X)

− ψi,ra

1−
∑
j∈Q

∑
s∈Cj

P r,si,j

 θi,r,a(X) + ζi,ra λi,r. (3.10)
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Factorizing all θi,r,a(X) and using
∑
bΨa,b + ψi,ra = 0 yields that

Fi,r,a(X) =
∑
b∈Si,r

Ψi,rb,aθi,r,b(X)

+ ζi,ra
∑
j∈Q

∑
s∈Cj

∑
b∈Sj,s

ψj,sb P s,rj,i θj,s,b(X) + ζi,ra λi,r. (3.11)

Compact Matrix-Form Representation of the Drift Function
To represent the drift function in a more manageable form, we will here
derive a simple matrix expression for it, which is easily obtainable given the
routing probability matrix P , the arrival rates λ and the matrices of the PH
distributions

(
Ψi,r, ψi,r, ζi,r

)
∀(i, r) ∈ (Q, Ci). Thus far, we have not assumed

any particular ordering of the states, but this is now needed.

Assumption 3.2
Let X1 = X1,1,1. For every i, r, a, s.t. Xj = Xi,r,a, define for j + 1 ≤ |S|

Xj+1 =


Xi,r,a+1 if a+ 1 ≤ |Si,r|,
Xi,r+1,1 if a+ 1 > |Si,r|, r + 1 ≤ |Ci|,
Xi+1,1,1 if a+ 1 > |Si,r|, r + 1 > |Ci|.

(3.12)

I.e., the phases of subsequent classes are subsequently ordered, and the queues
containing those classes are in turn also subsequently ordered.

Given this ordering, the positions of the states Si,r for (i, r) ∈ (Q, Ci) in S are
given by m⃗i,r = mi,r : mi,r + |Si,r|, where mi,r =

∑im<i
im=1

∑|Cim |
rm=1 |Sim,rm | +∑rm<r

rm=1 |Si,rm |. Similarly, the position of the classes Ci for i ∈ Q in C is
given by n⃗i = ni : ni + |Ci| where ni =

∑in<i
in=1 |Cin |. Also, the position of

(i, r) ∈ (Q, Ci) in C is given by ni,r = ni+ r. The following theorem can then
be stated.

Theorem 3.1—Compact Matrix-Form
Given Assumption 3.2, the drift function of any mixed queueing network of
PS and INF queues can be expressed as

F (X) = W T θ(X) +Aλ, (3.13)

where

• θ(X) ∈ R|S|×1
+ → R|S|×1

+ s.t.

θa(X) = Xa

min
(
kQ(a),

∑
XQ(a)

)∑
XQ(a)

∀a ∈ S,
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• W = Ψ+BPAT ,

• P ∈ R|C|×|C|
+ s.t. Pn⃗i,n⃗j

= P ·,·
i,j ∀i, j ∈ Q,

• Ψ ∈ R|S|×|S|, B ∈ R|S|×|C|
+ and A ∈ R|S|×|C|

+ are block diagonal
matrices s.t ∀(i, r) ∈ (Q, Ci),

Ψm⃗i,rm⃗i,r
= Ψi,r, Bm⃗i,r,ni,r

= ψi,r, Am⃗i,r,ni,r
= ζi,r.

Proof. See Appendix A. 2

The theorem states that the entire mean-field fluid model can be decomposed
into a product between (i) a constant matrix W that describes the complete
graph of transition rates between phase states, (ii) a vector valued function
θ(x) that describes the effect of the queueing disciplines on those transition
rates, and (iii) a vector Aλ that describes the external arrival rate to each
phase state. At a glance it might look complex, but W can be created by
simply combining block diagonals of the PH distribution matrices with P .

This matrix-form can also be used to incorporate the method of approxi-
mating open chains with bottleneck queues [Bolch et al., 2006, p. 507]. After
introducing the bottleneck queues, it is sufficient to set λ = 0 and expand
P and the block diagonal matrices Ψ,B,A to also cover these. If we then
let X(0)→ +∞ in these new bottleneck queues, (3.2) would essentially turn
into (3.8) for transitions between the bottleneck queues and their recipients,
and the resulting mean-field fluid model should in general yield the same
result as for the original model.

A comment on sparseness. As the size of W is |S|× |S|, we can expect
the number of possible elements in W to be large for interesting systems.
However, the following can be stated regarding the sparsity of W .

Proposition 3.1
W will be at least as sparse as the combined sparsity of Ψ,B,P ,A, if

max
(i,r),(j,s)

(
nψi,r · nζj,s

)
nP ≤ nP +

∑
i,r

(
nψi,r + nζi,r

)
, (3.14)

where nM denotes the number of nonzero elements in some matrix M .

Proof. As

Wx,y =

{
Ψi,rb,a if x = (i, r, a), y = (i, r, b),

ψi,ra P r,si,j ζ
j,s
b if x = (i, r, a), y = (j, s, b),

(3.15)
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we get that

nW = nΨ +
∑
i,r,a

∑
j,s,b

1

(
ψi,ra P r,si,j ζ

j,s
b > 0

)
= nΨ +

∑
i,r

∑
j,s

nψi,rnζj,s1
(
P r,si,j > 0

)
≤ nΨ + max

(i,r),(j,s)

(
nψi,rnζj,s

)
nP . (3.16)

As the total sparsity of Ψ,B,P ,A is nΨ + nP +
∑
i,r nψi,r + nζi,r , the

inequality is shown. 2

Sparseness is a desirable property, as it reduces the number of computations
needed when evaluating a matrix expression. Using, e.g., the common Coxian
PH distribution [Cox, 1955], where ζ1 = 1, ζa = 0 ∀a > 1 and where each
internal transient state n can only transmit to n+ 1 or the absorbing state,
would yield both a small max(i,r),(j,s)

(
nψi,rnζj,s

)
and a sparse Ψ. Further,

we would in general expect that request paths are fairly deterministic for
queueing network models used in cloud computing, leading to a sparse P .
These paths ultimately model the often fixed order that resources are visited
by external requests to complete their service. Requests can however be load
balanced over multiple instances of the same resource which decreases spar-
sity of P , but only marginally if the number of different resources are large.
Hence, from Proposition 3.1 we could for many cases expect that W is both
sparse and that we would actually gain sparseness by creating it.

The Resulting Mean-Field Fluid Model
The drift function introduced in Theorem 3.1 yields the following mean-field
fluid model for mixed networks of PS and INF queues,

dx

dt
= W T θ(x) +Aλ,

x(0) = X(0). (3.17)

We refer the point x∗ as a fixed point iff F (x∗) = W T θ (x∗) +Aλ = 0.
Further, the drift function obtains the following important property.

Theorem 3.2
The drift function of the mixed network of INF and PS queues (3.13) is
Lipschitz continuous in R|S|×1

+ .

Proof. See Appendix A. 2

Via Picard-Lindelöf’s theorem [Sideris, 2013, Section 3.3], this global Lips-
chitz property implies that the corresponding mean-field fluid model (3.17)
is guaranteed to have an unique solution for each choice of x(0) ∈ R|S|×1

+ .
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Proof of mean-field convergence. We will now prove that there exists
a sequence of mixed PS queueing networks under increasing system size that
converges to the mean-field fluid model (3.17). The proof is similar to [Pérez
and Casale, 2017, Th. 1] for the mean-field convergence of closed networks,
but it cannot be directly applied as it relies on the property that closed
networks have a fixed population size.

Introduce a sequence of mixed PS networks {X(v)}v≥1, such that
X(v)(0) = vX(0), k(v)i = vki ∀i ∈ Q, and λ(v) = vλ. The transition rate
function f (v) for the arrivals can trivially be seen to uphold f (v)

(
X(v), l

)
=

vf
(
1
vX

(v), l
)
. The remaining f (v) are all defined as some constant multiplied

by θ(v)a (X) a ∈ S, which becomes

θ(v)a

(
X(v)

)
= X(v)

a

min
(
k
(v)
Q(a),

∑
X

(v)
Q(a)

)
∑

X
(v)
Q(a)

=
1

v
X(v)
a

min
(
vkQ(a),

∑
v
vX

(v)
Q(a)

)
∑

1
vX

(v)
Q(a)

= vθa

(
1

v
X(v)

)
. (3.18)

Hence, f (v)
(
X(v), l

)
= vf

(
1
vX

(v), l
)
∀l ∈ L. The following theorem can

then be stated.
Theorem 3.3
Let {X(v)}v≤1 be the sequence of mixed PS networks introduced above and
x(t) the solution of the mean-field fluid model (3.17). Furthermore, let E ⊂
R|S|×1

+ be some open subset and T ≥ 0 some finite constant, such that x(t) ∈
E , ∀0 ≤ t ≤ T . Then, for any δ > 0,

lim
v→+∞

P
{
sup
t≤T

∣∣∣∣X(v)(t)

v
− x(t)

∣∣∣∣ > δ

}
= 0. (3.19)

Proof. According to [Kurtz, 1970, Th. 3.1], this is fulfilled if

(i) limv→+∞ v−1X(v)(0) = x(0),

(ii) for some constant ME , ||F (x)− F (y)||1 < ME ||x− y||1 ∀x, y ∈ E ,

(iii) supx∈E
∑
l∈L ||l||1f(x, l) < +∞,

(iv) limd→+∞ supx∈E
∑

||l||1>d ||l||1f(x, l) = 0.

(i) follows directly from X(v)(0) = vX(0), (ii) directly from Theorem 3.2,
and (iv) directly from the fact that supl∈L ||l||1 = 2. The remaining condition
(iii) holds as all constants in any f(x, l) are finite, and θa(x) is bounded from
above by kQ(a) for PS queues and by xa for INF queues ∀a ∈ S. 2
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This theorem does not depend on any assumption of the structure of W or
Aλ other than constant and finite elements. Hence, the convergence holds for
any valid structure of W according to Theorem 3.1, such as multiple chains
or even unstable queues. It can further be shown that if the mean-field fluid
model converges to an unique fixed point, then the probability distribution
of its corresponding sequence of population process X(v)(t) converges to x∗

no matter the order of the limits in t or v [Benaïm and Le Boudec, 2008].

A comment on global asymptotic stability. The property of conver-
gence to an unique fixed point, limt→∞ x(t) = x∗, independent of the initial
conditions x(0), is known as global asymptotic stability (GAS) and an often
desirable trait in ODEs. Unfortunately, this is in general hard to prove for
nonlinear systems such as (3.17). Regarding the mean-field approximation,
some special cases where GAS can be found are discussed in [Gast, 2020]. We
however suspect that for a general mixed PS network, then (3.17), if stable,
converges to an unique fixed point independent of x(0) as long as the sum
over each closed chain is fixed. We have no proof of this, but in accordance
with [Zhu et al., 2020], we have found no system where it does not hold.

In certain special cases, this property becomes straight forward to prove.
For example, if we consider a system of only INF queues.

Proposition 3.2
Given a mixed queueing network of only INF queues. Then (3.17) converges to
an unique fixed point x∗ for all x(0) ∈ R+ where

∑
(i,r)∈γc

∑
a∈Si,r

xi,r,a(0) =
Nγc for each γc ∈ Γc. Here, Nγc is the population of the closed chain γc.

Before proving this, we will remark on some properties of the eigenvalues
of W . Let {Wγ}γ∈Γ be a set of submatrices corresponding to the constant
transition rates between each state in chain γ. Notice that, since each state
belongs to exactly one class and Γ is a partition of C, {Wγ}γ∈Γ is a partition
of W , and subsequently Wx,y = 0 ∀(x, y) ∈

(
Si,r,Sj,s

)
where (i, r) ∈ γa and

(j, s) ∈ γb when a ̸= b. The values and row sums of Wγ , and thus W , can
be quantified in the same manner as P as follows.

Proposition 3.3
Let V = Wγ , then Vi,i ≤ 0 ∀i, Vi,j ≥ 0 ∀i ̸= j. Furthermore,

(i) If γ is closed, then
∑
j Vi,j = 0 ∀i.

(ii) If γ is open, then
∑
j Vi,j ≤ 0 ∀i and ∃i s.t.

∑
j Vi,j < 0.

Proof. The first statements, Vi,i ≤ 0 ∀i, Vi,j ≥ 0 ∀i ̸= j hold by construction
as all involved elements are nonnegative except for the diagonal of Ψ, for
which the diagonal of V is a subset of.
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For an arbitrary a ∈ Si,r, (i, r) ∈ γ, from (3.15) we get that
∑
y V(i,r,a),y =∑

b∈Si,r
Ψi,ra,b + ψi,ra

∑
j∈Q

∑
s∈Cj

P r,si,j . Here, we have used that
∑
b ζ

j,s
b = 1.

As for PH distributions
∑
b∈Si,r

Ψi,ra,b + ψi,ra = 0, (i) follows from that for
closed chains

∑
j∈Q

∑
s∈Cj

P r,si,j = 1. (ii) follows from that for open chains
that

∑
j∈Q

∑
s∈Cj

P r,si,j ≤ 1 for all i, r and further as we by definition have
departures ∃(i, r) s.t.

∑
j∈Q

∑
s∈Cj

P r,si,j < 1. 2

From this we can derive that all the eigenvalues V of Wγ have nonpositive real
parts, which follows directly from Gershgorin’s circle theorem [Varga, 2004].
Furthermore, for closed chains, we can recognize Wγc as a negative Laplacian
matrix, and due to γc being irreducible, it will have exactly one zero-valued
eigenvalue [Merris, 1994]. In a similar fashion, from [Shivakumar and Chew,
1974] we get that Wγo for an open chain is nonsingular, as γo is assumed to
be transient. Nonsingularity implies that det (Wγo) =

∏
v∈V v ̸= 0; hence all

of its eigenvalues have strictly negative real parts.

Proof of Proposition 3.2. For any state in an INF queue, we get that
θi,r,a(x) = xi,r,a. Thus the mean-field fluid model becomes a linear ODE on
the form ẋ = W Tx+Aλ, where each chain can be considered separately.

For each open chain γo, Wγo only has eigenvalues of negative real part.
The corresponding system is well-known to have a single steady-state solution
independent of x(0).

For each closed chain γc, Wγc has one eigenvalue of value zero while the
rest have negative real part. The steady-state solution of the corresponding
system becomes a scaling of the eigenvector for the zero-valued eigenvalue
[Sideris, 2013, Section 2.5]. As no flow can enter or leave the closed chain,
this scaling must be the same for all x(0) in γc as long as its sum is Nγc .

Compact Matrix-Form of the Running Examples
Here we will show how the corresponding compact matrix-form of our two
running examples introduced in the beginning of Chapter 3. According to
Theorem 3.1, the compact matrix-form of the mean-field fluid model is given
as dx

dt = W T θ(x) +Aλ where W = Ψ+BPAT .

Example 1. For the M/M/1 queue, we get that Ψ = −1, B = 1, A = 1
and P = 0, resulting in W = −1 and the mean-field fluid model

dx

dt
= −min (1, x) + λ. (3.20)

Example 2. See Appendix B.
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3.3 The Smoothed Mean-Field Fluid Model

It can be expected from Theorem 3.3 that, the more we scale X(0), k,λ, the
more accurate the corresponding mean-field fluid model will be. However, it
does not state how accurate the model is for a given system size, which is
of interest when considering scenarios with nonideal (smaller) systems. This
error is a known issue for general mean-field approximations, and it arises as

d

dt
E [X] = E [F (X)] ̸= F (E [X]) =

dx

dt
, (3.21)

in most cases. An exception is if the drift function is linear. It can further
be shown that the approximation in fact corresponds to a first order approx-
imation of E [F (X)] [Bortolussi et al., 2013]. For the mixed PS queueing
network, the mean drift is given as

E [F (X)] = W TE [θ(X)] +Aλ, (3.22)

where it can be seen that the inequality arises if E [θ (X)] ̸= θ (E [X]). We
can then compare the drift and its first order approximation by comparing
the corresponding θ:

E [θa(X)] =
∑

z∈Z|S|×1
+

P (X = z) za
min

(
kQ(a),

∑
zQ(a)

)∑
zQ(a)

,

θa (E [X]) = E [Xa]
min

(
kQ(a),

∑
E
[
XQ(a)

])∑
E
[
XQ(a)

] . (3.23)

As can be seen, the stochasticity of
∑

XQ(a) is not accounted for in the first
order approximation, which can cause some peculiar errors close to kQ(a)

when E
[∑

XQ(a)

]
is either smaller or larger than kQ(a) while the PMF of

X has a large support on the opposite side. As an illustration, consider the
two running examples from Chapter 3.

Example 1:. The shortcomings of the mean-field fluid model become
obvious when considering the M/M/1 queue. The fluid model becomes
dx
dt = −min (1, x) + λ whose unique fixed point is given by x∗ = λ as long
as λ ≤ 1. However, it is clear that the true mean E(X) of the Markov chain
does not converge to this limit as its probability distribution is given by
P (X = n) = λn (1− λ). In fact, E(X) = λ/ (1− λ) can converge to any pos-
itive value if we let λ move arbitrarily close to 1, which makes the mean-field
fluid model arbitrarily bad in this specific situation.

Example 2:. The errors observed above can also be found in closed net-
works. Example 2 is constructed such that both the PS queues have similar
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mean service times but different support in the tails. If we vary µ1 in an
increasing sequence of µ1 ∈ [0.05, 0.95] and for each µ1 calculate x∗ and sim-
ulate the system until stationarity to obtain X̂∗, we get the values seen in
Figure 3.2. Here, it can clearly be seen that the mean-field fluid model fails
to take into account the stochasticity of X, and hence converges to a vastly
different stationary solution for many values of µ1.

Heuristic Utilization Tracking via P-Norm Smoothing
Instead of directly relying on the drift to obtain the time derivatives for the
fluid model, one could try to form a better approximation to E [θ (X)] by tak-
ing into account the stochasticity of X. A natural way to achieve this is to
include higher-order moments, as presented in [Gast and Van Houdt, 2017].
Unfortunately, this requires that F (x) is at least twice differentiable, which
is not true for the types of queueing networks we are considering, as θa(x),
a ∈ S, contains a min() function for each phase state in a queue that follows
the PS discipline. To circumvent the differentiability requirement, another
refined mean-field model was presented in [Randone et al., 2021] by solv-
ing multiple truncated versions of the problem. The accuracy of this refined
model is dependent on the number of problem versions used, which makes for
poor time scaling when accurate approximations for large scale systems are
sought. Here, we will instead present a simple, novel approximation based on
heuristic smoothing of the mean-field fluid model, which does not need any
new introduction of states.

Using the processor share function, we can decompose θa(x) = xaga (x),
where by construction ga (x) = gb (x) ∀b ∈ SQ(a),· . Instead of forming
an approximation with θ (E [X]) directly, we can introduce a new function
h(x,v) ∈ R|S|×1

+ × R|S|×1
+ → R|S|×1

+ with some time dependent parameter
vector v(t) ∈ R|S|×1, such that for any valid X,

E [Xa]ha (E [X] ,v) = E [θa (X)] ∀a ∈ S. (3.24)

The parameter v is needed as E [θa (X)] is dependent on the PMF of X,
and not only its mean. It is desirable for this function that v can be easily
determined, and that it is robust in the sense that, for a given v, small
changes in X should still yield a good approximation in (3.24). The question
is whether it is possible to find such a function. We can try to approximate
it by replacing h(x,v) with an approximation ĝ(x,η) by introducing the
processor share constraint ĝa (x,η) = ĝb (x,η) ∀b ∈ SQ(a),·, where η(t) ∈
R|Q|×1. This constraint allows us to approximate the total E [θ (X)] in each
queue i as ∑

E [Xi]⊙ ĝi (E [X] ,η) = ĝi (E [X] ,η)
∑

E [Xi] . (3.25)
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(a) Stationary mean queue length in INF queue i = 1.
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(b) Stationary mean queue length in PS queue i = 2.
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Figure 3.2 Comparison of the stationary mean queue lengths in Exam-
ple 2 over different service rates for queue 1, considering values obtained
from simulation (blue line) and the mean-field fluid model (red dashed). As
Xi where i ∈ Q gives the vector of requests in each state belonging to i,
the total queue length is given as

∑
Xi.

65



Chapter 3. An Improved Fluid Model for PS Queueing Networks

Equivalently, summing over all states in the same queue as phase state a for
the right hand side in (3.24) yields

∑
E [Xi ⊙ gi (X)] =

∑
a∈Si,·

∑
z∈Z|S|×1

+

P (X = z) za
min (ki,

∑
zi)∑

zi

=
∑

z∈Z|S|×1
+

P (X = z)min
(
ki,
∑

zi

)
, (3.26)

which can be recognized as the total utilization over queue i, i.e., ρi(X),
multiplied by ki [Bolch et al., 2006]. The utilization is usually considered
in stationarity, but here we consider X at an arbitrary t ≥ 0, hence the
dependence.

By then setting (3.25) equal to (3.26) ∀i ∈ Q, the following necessary
condition for equality in (3.24) for ĝ(x,η) is obtained

ĝi (E [X] ,η) =

∑
c≥0 P (

∑
Xi = c)min (ki, c)∑
E [Xi]

=
kiρi(X)

E [
∑

Xi]
. (3.27)

The value of ρi (X) is dependent on the PMF of X, but we can isolate the
following two extreme cases for (3.27).

Case 1: P (
∑

Xi ≤ ki) = 1,

kiρi(X)

E [
∑

Xi]
=

∑
c≥0 P (

∑
Xi = c) c

E [
∑

Xi]
= 1. (3.28)

Case 2: P (
∑

Xi ≤ ki) = 0,

kiρi(X)

E [
∑

Xi]
=

∑
c≥0 P (

∑
Xi = c) ki

E [
∑

Xi]
=

ki
E [
∑

Xi]
. (3.29)

Due to the minimum, (3.27) is always bounded from above by these two
extreme cases. Furthermore, if we assume that there is no uncertainty in X
for any t ≥ 0, then one of the two extremes will always hold, and it will
give us back the original gi (E [X]) and with it the mean-field fluid model.
Further, (3.27) is bounded from below by 0. Hence, for any valid X

0 ≤ kiρi(X)

E [
∑
Xi]
≤ min (ki,E [

∑
Xi])

E [
∑

Xi]
. (3.30)

It is difficult to say how an arbitrary time evolving PMF of Xi in a queue-
ing network behaves, but we can assume that P (

∑
Xi ≤ ki) is in general de-

creasing in E [
∑

Xi]. This implies that we can expect kiρi(X)/E [
∑
Xi] to
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also be decreasing in E [
∑

Xi]. We can then try to model ĝi as some decreas-
ing function in

∑
xi ≥ 0, where the relation between ρi (X) and E [

∑
Xi] is

shaped by ηi. A function that fulfills these specifications is

ĝi (x, ηi) =
1(

1 +
(
k−1
i

∑
xi
)ηi)1/ηi ηi > 0, ∀i ∈ Q, (3.31)

which can be recognized as the inverse p-norm of the vector function
v (z) = [1, z] where z = ki (

∑
xi)

−1 and where p = η. This choice of func-
tion is motivated by the following desirable properties. First, the function is
monotonic.
Proposition 3.4
ĝi (x, ηi) is monotonically decreasing in

∑
xi ≥ 0 if ηi > 0, and monotonically

nondecreasing in ηi ∈ R|Q|
+ ∀i ∈ Q.

Proof. Differentiating the inverse p-norm of v(z) yields

d

dz
∥v(z)∥−1

η =
d

dz
(1 + zη)

− 1
η = −zη−1 (1 + zη)

− η+1
η , (3.32)

which is negative for all z ≥ 0 and η > 0. Hence, ĝi is monotonically decreas-
ing in

∑
xi ≥ 0 for all ηi > 0 as z = ki (

∑
xi)

−1
> 0 in this domain. Further,

a classic result for p-norms gives that ∥x∥η ≥ ∥x∥η+a for any η > 0, a ≥ 0.
Inverting both sides yields that ĝi is monotonically nondecreasing in ηi. 2

Furthermore, notice that we in the limit ηi → +∞ regain the original gi
of the mean-field fluid model, hence the existence of an optimal η can be
guaranteed.

Proposition 3.5
For any valid X, ∃ηo for (3.31) such that equality holds in (3.27), ∀i ∈ Q.

Proof. For any x ≥ 0, the upper and lower bounds of ĝi in η become
supp ĝi (x, η) = gi (x) and infη ĝi (x, η) = 0 if

∑
xi > 0. As kiρi(X)/E [

∑
Xi]

is bounded by these two quantities as seen in (3.30), and (3.31) is continuous
in η, such a ηo must exist. 2

Finally, any choice of ηi ≥ ηoi is guaranteed to yield a better approximation
in (3.27) than the standard mean-field model.

Proposition 3.6
For any valid X, if ηoi ≤ ηi then∣∣∣∣ kiρi(X)

E [
∑

Xi]
− ĝi (E [X] , ηi)

∣∣∣∣ ≤ ∣∣∣∣ kiρi(X)

E [
∑

Xi]
− gi (E [X])

∣∣∣∣ . (3.33)
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Proof. As ĝi is monotonically nondecreasing in ηi and ĝi = gi if ηi → +∞,
we get that if ηoi ≤ ηi then ĝi (E [X] , ηoi ) ≤ ĝi (E [X] , ηi) ≤ gi (E [X]). 2

Finally, (3.31) can be recognized as a smoothing of the two extreme cases
(3.28) and (3.29). From this inverse p-norm smoothing of the processor share
function, an improved mean-field fluid model can be created as

Definition 3.2—The Smoothed Mean-field Fluid Model
The smoothed mean-field fluid model is defined as the following ODE:

dx

dt
= W T θ̂ (x,η) +Aλ,

x(0) = X(0), η(t) > 0, (3.34)

where θ̂a (x,η) = xaĝQ(a)

(
x, ηQ(a)

)
∀a ∈ S, and ĝQ(a)

(
x, ηQ(a)

)
is defined

as (3.31).

Further, let x (t,η) be the solution to (3.34) for a given η, and x∗ (η) its
fixed point. It is important to remember that a trajectory ηo(t) does not
necessarily imply that E [X (t)] = x (t,ηo), as xaĝQ(a)

(
x, ηoQ(a)

)
only forms

an approximation to (3.24) via a necessary condition.

Finding a Suitable Smoothing Value
Given a trajectory of Xi i ∈ Q in some time interval t ∈ [0, T ], the optimal
value ηoi will likely be different at different t. In general, we could expect that
there is little hope of obtaining such a trajectory ηoi (t). A more suitable trade-
off for usability would be to assign ηi some static value. From Proposition 3.6
we know that the approximation error to the necessary condition will be
smaller if ηoi ≤ ηi, but we could probably expect at least a similar accuracy
compared to the standard mean-field fluid model if we simply choose some
fixed ηi ≈ ηoi (t) ∀t ≥ 0 as long as ∄η≪ηoi (t) ∀t ∈ [0, T ].

Further, we can always quickly find a ηo such that the equality holds
in (3.27) for stationary systems. To do this, the utilization must first be
obtained which can be done via the utilization law (2.6) as ρi =

∑
r ρi,r =∑

r λi,r/ (kiµi,r) if µi,r∀r ∈ Ci are known, otherwise it can be estimated by
forming an empirical approximation of the queue length invariant probability
distribution {πc}c∈0:R for some upper bound on R s.t.

∑R
c=0 πc ≈ 1. Each

πc can be obtained as the fraction of time spent with queue length c, i.e.,
πc ≈ T−1

∫
1 (
∑

Xi(t) = c) dt ∀c ∈ 0 : R. From this we can approximate the
utilization at queue i as ρi ≈ k−1

i

∑R
c=0 π̂cmin(ki, c).

Finding ηi for queue i then reduces to solving the optimization problem

minimize
ηi∈R+

f(ηi) =

∣∣∣∣ ĝi (E [X] , ηi)−
kiρ̂i

E [
∑

Xi]

∣∣∣∣ , (3.35)
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which is guaranteed to have a solution f (ηoi ) = 0 via Proposition 3.5, and
easily solved using e.g. bisection search as Proposition 3.4 gives us that ĝi is
monotonic in ηi. We denote ηo that is optimal for a stationary system η∗.

Comments
Compared to the other approaches for improving the mean-field approxi-
mation [Gast and Van Houdt, 2017; Randone et al., 2021], the smoothed
mean-field fluid model (3.34) does not introduce any extra states. Instead,
its computation time scales just as the standard mean-field fluid model with
increasing state space. The two cited approaches are however more general in
tackling arbitrary mean-field approximations, while our approach is tailored
for multi-class PS queues. However, as the main ingredient of our approach is
to approximate the spread of a stochastic process over a discontinuity with a
smoothing function, the method should be extendable to any type of mean-
field approximation that deals with discontinuities. This includes mean-field
approximations over discriminatory PS or FCFS queues.

Furthermore, the smoothed model with η∗ has strong similarities with the
PSFFA method [Wei-Ping Wang et al., 1996] for nonstationary queues, see
Section 2.1. In this method, the fluid model is represented as ẋ = µG−1(x)+λ,
where the function G(ρ) = x∗ is some approximation of the stationary queue
length of the modelled queue. The smoothed model can thus be seen as a
PSFFA model where G−1(x) is obtained using data-driven smoothing of the
mean-field model.

Testing Predictive Power on the Two Running Examples
To be usable as a performance model in cloud systems, it is paramount that
the accuracy of ĝ for an obtained η∗ is robust to system perturbations, so
that it can be used to accurately predict performance. Exactly what per-
turbation yields a robust ĝ will be system dependent, but it should remain
accurate as long as a perturbation does not radically alter η∗. In Chap-
ter 3.5, we will investigate the effect of three common perturbations on a
simulated cloud application. For now, let us compare both stationary and
transient mean queue lengths E

[
X̂
]

obtained from simulation with values
from the smoothed mean-field fluid model for the two running examples in-
troduced in the beginning of Chapter 3. Let the fixed point be defined as
limt→+∞ x (t,η) = x∗ (η) for the smoothed mean-field fluid model for some
static value of η.

Example 1:. Considering the M/M/1 queue, the results for the stationary
mean queue length are shown in Figure 3.3 over an increasing sequence of
λ ∈ [0.05, 0.9]. Here, it can be seen that the smoothed model manages to
provide a good approximation of the stationary mean queue length. Further,
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(a) Stationary mean queue length.
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Figure 3.3 Comparison of the stationary mean queue length in Exam-
ple 1 over different arrival rates, shown in (a) considering values obtained
from simulation (blue line), the mean-field fluid model (red dashed) and
the smoothed model using η∗ estimated from data at every λ (black dash-
dotted). In (b), η∗ is displayed.

the η∗ found is consistently near 1. A value of p = 1 yields ẋ = − x
x+1 + λ,

which corresponds to the well-known PSFFA model for M/M/1 queues, also
known as the Tipper model [Tipper and Sundareshan, 1990]. The smoothed
model thus manages to find the closed-form of this G−1(x), which is expected
considering that ĝa

(
x, ηQ(a)

)
is monotone in ηQ(a).

Furthermore, in Figure 3.4 the mean queue length transients are shown.
As can be seen the smoothed mean-field fluid model manages to capture the
transients well, in contrast to the nominal mean-field fluid model.

Example 2:. Considering the three cyclic queues, the results for the sta-
tionary mean queue lengths are shown in Figure 3.5 over an increasing se-
quence of µ1 ∈ [0.05, 0.95]. Here, both η∗, which is estimated from data for
every value of µ1, and η̂ estimated at µ1 = 0.2 are considered. Fitting η
when µ1 = 0.2 for the two PS queues yields that η̂2 ≈ 2.24 and η̂3 ≈ 3.5,
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(b) Mean queue length transients for λ = 0.7.

Figure 3.4 Comparison of the mean queue length transients in Example 1
for different values of λ. The blue lines shows the queue length estimated
from 250 repeated simulations, the red dashed lines the mean-field fluid
model, and the green dotted lines the smoothed mean-field fluid model
with η∗ = 1.

which results in the following smoothed version of the θ(x) function:

θ̂ (x, η̂) =



x1

x2 ·
(
1 +

[
4−1 (x2 + x3)

]2.24)−1/2.24

x3 ·
(
1 +

[
4−1 (x2 + x3)

]2.24)−1/2.24

x4 ·
(
1 +

[
8−1 (x4 + x5)

]3.5)−1/3.5

x5 ·
(
1 +

[
8−1 (x4 + x5)

]3.5)−1/3.5


. (3.36)

As can be seen, using η∗ yields a very good approximation of the station-
ary mean queue lengths but creates a dependency on data generated for µ1.
Instead, using η̂ manages to provide a good prediction of the mean queue
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lengths for each perturbation of µ1 from the nominal value of µ1 = 0.2, de-
spite the apparent dissimilarity between η̂ and η∗. This hints at some form
of insensitivity in how similar η and η∗ need to be in order to provide an
adequate prediction. Moreover, using η̂ outperforms the standard mean-field
model by a large margin for most µ1, which is not surprising given that the
mean-field fluid model can be obtained by setting η = +∞.

Further, the mean queue lengths transients are shown in Figure 3.6. Simi-
larly to Example 1, the smoothed mean-field fluid model manages to capture
the transients well both at µ1 = 0.2 and for predictions over different µ1.
Here, the performance of the nominal mean-field fluid model is better than
in Example 1. It manages to capture the initial quick transients, but then
converges towards the wrong stationary value.

3.4 Closed-Form Response Time CDF Approximation

Various percentiles of the response time are important metrics when modeling
the performance of systems in cloud computing. As shown in [Pérez and
Casale, 2013; Pérez and Casale, 2017] and later refined in [Zhu et al., 2020],
for a closed PS queueing network at stationarity, it is possible to obtain better
approximations to the percentiles than simply using the Chebyshev bound
by approximating the response time CDF as the solution of a state-space
extended mean-field model. Shortly explained, the extended model can be
created by duplicating the states of interest with the same out-connections
as the original states but with no in-connections. By then calculating the
trajectory of x, it is possible to obtain the relative loss of mass at the states
of interest at any t ≥ 0, which can be used to approximate the CDF. We
refer to the original papers for a more thorough explanation.

However, it is possible to obtain a closed-form approximation of the en-
tire response time CDF of a mixed PS queueing network at stationarity over
almost any subset of classes and queues. Start by considering the case of a re-
quest that at t = 0 enters class r in queue i. The request will enter any a ∈ Si,r
with the probability ζi,ra and be served at a speed of min(ki,

∑
Xi(t))∑

Xi(t)
Ψi,ra,a,

before departing (i, r) or entering another state in Si,r. Via the Chapman–
Kolmogorov equation [Gardiner, 1985], the probability π ∈ R|Si,r|×1

+ of find-
ing the request in a given state at time t then evolves according to

π̇(t) =
(
Ψi,r

)T min (ki,
∑

Xi(t))∑
Xi(t)

π(t), π(0) = ζi,r. (3.37)

Due to its dependence on
∑

Xi(t), π is itself a stochastic variable. Obtaining
its mean becomes tricky as we have little information regarding the statistics
of
∑

Xi(t). Instead, we can create a manageable approximation by assuming
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0.2 0.4 0.6 0.8

2

2.25

2.5

2.75

Service rate µ1

η
2

va
lu

e

η∗
i

η̂i

(c) Estimated ηi for queue i = 2.

0.2 0.4 0.6 0.8
2.5
3

3.5
4

4.5
5

5.5

Service rate µ1

η
3

va
lu

e

(d) Estimated ηi for queue i = 3.

Figure 3.5 Comparison of the stationary mean queue lengths in Exam-
ple 2 over different service rates for queues 2 and 3, shown in (a) and (b)
considering values obtained from simulation (blue line), the mean-field fluid
model (red dashed) and the smoothed model using both η̂ estimated from
data at µ1 = 0.2 (green dotted) and η∗ estimated from data at every µ1

(black dash-dotted). In (c) and (d), η∗ (blue line) and η̂ (black dotted) are
displayed. As Xi where i ∈ Q gives the vector of requests in each state
belonging to i, the total queue length is given as

∑
Xi.
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(b) Mean queue length transients for µ1 = 0.5.
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(c) Mean queue length transients for µ1 = 0.8.

Figure 3.6 Comparison of the mean queue length transients in Example 2
for different values of µ1. At t = 0, there are 50 requests in queue 1. The full
lines shows the queue lengths estimated from 100 repeated simulations, the
dashed lines the mean-field fluid model and the dotted lines the smoothed
mean-field fluid model with η̂ estimated from data at µ1 = 0.2. The blue
lines shows the transient values for queue 1, the red lines for queue 2 and
the green lines for queue 3.
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stationarity and that
∑

X∗
i (t) and π(t) are independent, which yields that

E [π̇(t)] ≈
(
Ψi,r

)T∑
c≥0

P
(∑

X∗
i = c

) min (ki, c)

c
E [π(t)] . (3.38)

The sum
∑
c≥0 P (

∑
X∗
i = c) min(ki,c)

c can be recognized as E [gi(X
∗)], thus

the approximation can be motivated as assuming that the request receives
the mean processor share during its duration. Using the smoothed mean-
field fluid model from Chapter 3.3, we readily have an approximation of it
via (3.31). This yields that

E [π̇(t)] ≈
(
Ψi,r

)T
ĝi [x

∗ (η) ,η]E [π(t)] . (3.39)

For simplicity, let ĝi (η) = ĝi [x
∗ (η) ,η]. The mean derivative can thus be ap-

proximated by a system of first-order linear ODEs, which yields the following
closed-form solution:

E [π(t)] ≈ exp
[(
Ψi,r

)T
ĝi (η) t

]
π(0), (3.40)

where exp[·] is the matrix exponential. Let τ ∈ R+ be a stochastic variable
representing the response times at stationarity over (i, r). Its CDF can be
expressed as Φi,r(t) = P (τ ≤ t) = 1 − P (τ > t). The probability of τ being
larger than some t is the same as the probability of the request remaining in
any a ∈ Si,r at that time. Thus, the response time CDF can be approximated
as

Φi,r (t | η) ≈ 1− π(0)T exp
[
ĝi (η)Ψ

i,rt
]
1. (3.41)

Using the same technique, it is further possible to obtain a closed-form
approximation of the response time CDF over an almost arbitrary subset
of classes and queues. Let CR ⊂ C denote such a subset; it is valid as long
as for each closed chain γc ∈ Γ, ∃(i, r) ∈ γc s.t. r ̸∈ CR. This is needed,
as otherwise situations might occur where a request would never depart CR.
Let τCR

∈ R+ be a stochastic variable that describes the response time in
stationarity over CR. Define β ∈ R|C|×1

+ as the probability of entering specific
states in CR at t = 0, i.e.,

∑
β = 1, βr ≥ 0 if r ∈ CR else βr = 0. Now

reintroduce π(t) ∈ R|S|×1
+ to describe the evolution of the probability that a

request remains in S over time.
To only consider the probability over states in CR, we introduce the matrix

PR ∈ R|C|×|C|
+ that is given the same values for all routing probabilities in P

that occur between classes in CR, i.e., ∀r, s ∈ C (PR)r,s = Pr,s if r, s ∈ CR
otherwise (PR)r,s = 0. Furthermore, let WR = Ψ + BPRA

T . In order to
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only consider arrivals to CR, let π(0) = Aβ. The probability then evolves
forward in time as

π̇(t) = W T
RD

g(X(t))π(t), π(0) = Aβ, (3.42)

where g(X(t)) is the processor share at some time t, and D ∈ R|S|×|S| is a
diagonal matrix s.t. Dg(X(t))

a,a = gQ(a)(X(t)) ∀a ∈ S. Following the same logic
as for the single class/queue case, the expected value of the time derivative
of π can be approximated as

E [π̇(t)] ≈W T
RD

ĝ(η)E [π(t)] , (3.43)

which by fixing β, yields the following CDF approximation of τCR
:

ΦCR
(t | β) ≈ 1− βTAT exp

[
Dĝ(η)WRt

]
1. (3.44)

Thus far we have only considered the case of a single request where we
are free to set β, but in order to approximate the CDF of τCR

for an arbitrary
request in some system the corresponding β needs to be obtained. First, let
CcR denote the complement of CR in C. Introduce µd ∈ R|C|×1

+ as the average
outflow at stationarity from each class in C. It is given as

µd = BTE
[
Dg(X∗)X∗

]
, (3.45)

which can be approximated as

µ̂d (η) = BTDĝ(η)x∗ (η) . (3.46)

Let Pλ(Cc
R)
∈ R|Cc

R|×|CR|
+ be a submatrix of P describing the transitions from

CcR to CR. The total mean external flow to CR can then be approximated as

β̂vCR
(η) = P T

λ(Cc
R)

[µ̂d (η)]Cc
R
+ λCR

. (3.47)

Thus ∀r ∈ C, β̂r =
(
β̂vCR

)
r
/
∑
β̂vCR

if r ∈ CR else β̂r = 0 if r ∈ CcR, and a
closed-form approximation of ΦCR

(t | β) for an arbitrary request entering CR
is given by

ΘCR
(t | η) = 1− β̂ (η)T AT exp

[
Dĝ(η)WRt

]
1. (3.48)

The validity of this approximation is determined in the following proposition.

Proposition 3.7
The introduced ΘCR

(t | η) is a valid CDF for all valid choices of CR and flow
matrices as defined in Theorem 3.1.
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Proof. For a function to be a valid CDF, it must satisfy the following three
criteria; (i) Φ(t) should be monotonically nondecreasing in t, (ii) Φ(0) = 0,
and (iii) limt→+∞ Φ(t) = 1.

(ii) can be seen to hold right away as ΘCR
(0 | η) = 1 − β̂ (η)

T
1 = 0

by construction. To show the remaining two conditions, we first introduce
πR ∈ R|CR|×1

+ as the approximated probability vector for the classes in CR,
and Λ ∈ R|CR|×|CR| the submatrix of Dĝ(η)WR that describes the change of
πR such that π̇R = ΛTπR and by construction (3.48) = 1− πR(t)

T
1.

Now, let ΓR be the set of chains present in CR. Each chain γR ∈ ΓR
is a subset of a chain γ ∈ Γ. As γc ∈ Γ are considered irreducible, the
corresponding γR ∈ ΓR will be open and transient. Thus, all γ ∈ ΓR are
open and transient, and since Dĝ(η) only imposes a positive scaling constant
for each row in WR, Proposition 3.3 applies to all matrices in the partition
{ΛγR}γR∈ΓR

and subsequently will have eigenvalues with strictly negative real
values. This implies that Λ only has eigenvalues with strictly negative real
values, and thus the time limit of πR is given by limt→+∞ πR(t) = 0, which
gives that limt→+∞ Θ(t | ·) = 1 − 0, proving (iii). Furthermore, as the row
sums of Λ are nonpositive, πR(t)T1 is moreover monotonically nonincreasing,
thus proving (i). This can be seen by considering that for any valid π we get
that d

dtπ
T
R1 =

∑
j (
∑
i Λj,i) (πR)j ≤ 0. 2

In practice, akin to the proof above, the CDF approximation can be more
efficiently formed by first removing all elements in the involved matrices and
vectors corresponding to state whose classes are not in CR. By construction,
these states will not receive any probability mass and no probability mass
will start here, hence they can simply be removed.

The accuracy of the response time CDF approximation mainly depends
on how accurate the required assumption is, which states that every request
receives the mean processor share. Thus in general, the larger the variability
in X(t) becomes, the worse the approximation will be, as we will get a larger
portion of requests whose received processor share differs significantly from
the mean. However, this should imply that the approximation becomes more
accurate the larger the system size becomes.

CDF Approximation Over the Two Running Examples
We will now compare both the CDF and 95th percentile of τCR

from simu-
lated data with the closed-form approximation on our two running examples.
Denote φCR

as the 95th percentile of τCR
, and φ̂CR

(η) its approximation via
(3.48). We will consider E [g (X∗)], approximated both with ĝ (η) from the
smoothed model, and with g (x∗) from the standard mean-field fluid model
which should yield similar results as the simulation method used in [Pérez
and Casale, 2013; Pérez and Casale, 2017; Zhu et al., 2020].
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Figure 3.7 Comparison of (a) the CDF of τCR for λ = 0.6, and (b) φCR

over increasing λ, for Example 1 considering values obtained from simulation
(blue line), the mean-field fluid model (red dashed) and the smoothed model
with η = 1 (green dotted). The squares and triangles display the mean value
and 95th percentile of the corresponding CDF.

Example 1:. Considering the M/M/1 system, the response time CDF can
be obtained directly from (3.41), which for the given η∗ ≈ 1 yields that

Φ(t | η = 1) ≈ 1− exp

[
− t

1 + x∗

]
. (3.49)

This holds for any fixed point of the smoothed model x∗ generated by an ar-
bitrary λ < 1. The resulting CDF approximations are displayed in Figure 3.7.
As can be seen, using the standard mean-field fluid model to approximate
E [g (X∗)] results in bad accuracy, whereas the smoothed model with the
well-chosen η = 1 gives an accurate approximation. The accuracy decreases
the larger λ becomes, due to the increasing variability in X∗.
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Example 2:. For the closed cyclic network, we chose CR to include the
classes in q2 and q3, hence the response time CDF will be approximated over
the two PS queues q2, q3, i.e., CR = Cq2 ∪ Cq3 and CcR = Cq1 . See Appendix B
on how to obtain the CDF approximation for this example.

The resulting CDF approximations compared to simulated data are dis-
played in Figure 3.8. As can be seen, the smoothed mean-field fluid model
manages to provide both an accurate CDF approximation at µ1 = 0.2 where
η was estimated and a prediction of φCR

when perturbing µ1. In contrary to
Example 1, using the standard mean-field fluid model to approximate β and
E [g (X∗)] seems to produce a fairly accurate approximation. However, this
should be taken with a grain of salt, as considering each queue separately
instead leads to large errors as can be seen in Figure 3.8(c) and 3.8(d).

3.5 Evaluation on a Simulated Cloud Application

As demonstrated by the running examples, the proposed smoothed mean-
field fluid model gives an increased accuracy both when approximating and
predicting (under changing load) the stationary and transient mean queue
lengths and CDFs of the response times. In general, we have noticed that it
is easy to generate other example systems where the smoothed model out-
performs the standard in terms of approximation error and systems where
the models provide similar accuracy. As long as for some i ∈ Q, the PMF X∗

i

has large support on both sides of ki, the smoothed model using η∗ seems to
provide a clear benefit. However, the question remains how these results hold
up for prediction when the system is perturbed. To examine this, we studied
a more advanced queueing network, representing the two-tier cloud applica-
tion shown in Figure 3.9. To limit the set of potential types of perturbations,
we considered three relevant types that are common in cloud computing,
namely workload change (changing the rate of user arrivals), horizontal scal-
ing (changing the number of replicas to an existing service), and vertical
scaling (changing the allocated resources to a replica of an existing service)
[Vaquero et al., 2011].

The Simulation Experiment
The two-tier system shown in Figure 3.9 comprises two services, denoted
frontend f and backend b. The frontend service has two replicas, while the
backend has four. We assumed a random load balancing strategy such that
each request making a user-to-service or service-to-service transition will have
an equal probability to end up in any replica of the target service. Using this
two-tier system is a population of N clients c as well as occasional external
users e. Any request from either a client or an external user is processed
first at f , then at b, and then finally at f again. When a client’s request
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Figure 3.8 Comparison of (a) the CDF of τCR for µ1 = 0.2, and (b) φCR

over increasing µ1, for CR = C2∪C3 in Example 2 considering values obtained
from simulation (blue line), the mean-field fluid model (red dashed) and the
smoothed model with η̂ estimated from data at µ1 = 0.2 (green dotted).
The squares and triangles display the mean value and 95th percentile of
the corresponding CDF. In (c) and (d), φC2 and φC3 are shown respectively
over increasing µ1. Here, the same legend as in (b) applies, but where CR is
either C2 or C3.
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Figure 3.9 Example two-tier cloud application.

completes a trip through the two-tier system, the client will wait a random
time before sending a new request. Requests from external users are assumed
to be Poisson arrivals, and when completed, they depart from the network
entirely.

By letting the waiting clients be represented by a single-class INF queue
and f and b by PS queues with four and two classes, respectively, the two-tier
system can be translated into a complex mixed PS queueing network. The
network will contain one open and one closed chain corresponding to requests
from e and c, who will make the following transitions:

open chain: e→ f i1 → bj1 → fk2 → e i, k ∈ [1, 4], j ∈ [1, 2],

closed chain: c→ f i3 → bj2 → fk4 → c i, k ∈ [1, 4], j ∈ [1, 2].

The service times of each class in each service are characterized by a mean
1/µ and a coefficient of variation σµ (CoV), which are used to fit the corre-
sponding phase-type distributions. The baseline 1/µ and σµ that were used
are shown in Table 3.1; these particular values were chosen to provide an
interesting system, i.e., classes of both light- and heavy-tailed distributions
and a similar mean in both tiers. For each replica, 1/µ and σµ were further
scaled elementwise with random variables uniformly sampled from [0.8, 1.2]
to model heterogeneity. In order to provide an environment where the perfor-
mance of the two fluid models differs, we chose the client population N = 50,
mean interarrival time of the external arrivals 1/λ = 10, and mean time and
CoV for the clients as 1/µc = 25, σcµc = 1.

Table 3.1 Baseline values for the two services.

frontend backend
k 8 4
1/µ [8.0, 8.0, 8.0, 8.0] [16.0, 16.0]
σµ [5.0, 0.5, 5.0, 0.5] [10.0, 10.0]
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For this system, data was generated via simulation from which a smooth-
ing parameter η is estimated. To test how well η̂ generalizes in predicting the
performance, a randomized simulation study was then performed in which
random system perturbations were sampled from the following three types:

(i) Workload change: A new mean interarrival time between exter-
nal users is drawn from 1/λ ∼ U(2, 20), while a new client wait-
ing time mean and CoV are drawn as 1/µc ∼ U(5, 50) and σcµc ∼
C ({U(0.1, 1.0), U(1.0, 10)}).

(ii) Horizontal up-scaling: With equal probability, a new f or b replica
is created from the baselines with mean 1

µ ⊙ u
(1) and CoV σµ ⊙ u(2)

where u(1,2)i ∼ U(0.5, 1.5). This is done to emulate potential slowdown
or speedup at the new replica location compared to the baseline. The
replica is further given a smoothing value equal to the mean η̂ of all
other replicas of the same service.

(iii) Vertical scaling: A random replica r is chosen among all frontend
and backend replicas, and its mean service times scaled as 1

µr
⊙u where

ui ∼ C ({U(0.2, 1.0), U(1.0, 5.0))}).

Here, U(a, b) denotes the uniform distribution over the continuous interval
[a, b], and C(A) the categorical distribution over each element in the set A
with equal weights. The particular values were chosen such that the system
remains stable for all possible perturbations. As there are only six possible
combinations of horizontal downscaling, they were not part of the random-
ized simulation study but studied individually. In total, we generated 500
samples for each perturbation type, and each corresponding perturbed sys-
tem was simulated for 500,000 time units to give enough datapoints to enable
adequate approximations of stationary performance metrics for all possible
perturbations.

Transient class populations. Before running the randomized simulation
experiment, we examined the transient values of the request population in
each class of the original system. Comparisons were made using the absolute
error, since early t will have a disproportionately large relative error due to
the noisy near-zero class population estimates. Furthermore, only classes in
the application C were considered as the client queue will otherwise have a
large impact on this metric. We define the absolute error over the different
class populations as ω (x) = {|E [

∑
Xr(t)]− x|}r∈cC . In Figure 3.10 the

mean and maximum of these absolute errors are shown over time t ∈ [0, 500].
As can be seen, both the nominal and smoothed mean-field fluid models
yield rather small errors when comparing them to the mean class population.
However, the smoothed fluid model outperforms the nominal model at almost
all times, as expected.
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Figure 3.10 The absolute errors between mean class population tran-
sients estimated from 250 repeated simulations and values obtained via the
fluid model. The red lines shows the nominal fluid model, and the green
lines the smoothed mean-field fluid model with η fitted at this operating
condition. In (a), the mean absolute error over all classes in the simulated
application is shown. In (b), the maximum absolute error is instead shown.
For comparison, the mean class population at t = 500 is E [

∑
Xr] = 2.24.

Implementation. The code for running the randomized simulation exper-
iment is available on GitHub1. Included is also the code for the presented
experiments with the running examples. It is mainly implemented in Ju-
lia2, but uses the tool LINE [Casale, 2020] to construct the correspond-
ing queueing network model, which in turn interfaces with JMT [Bertoli
et al., 2009] to perform the simulations. The fluid models are solved using
the DifferentialEquations.jl [Rackauckas and Nie, 2017] library together
with the LSODA solver [Hindmarsh and Petzold, 2005].

1 https://github.com/JohanRuuskanen/Performance2021_code/tree/thesis
2 https://julialang.org/
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Results
To compare the accuracy, we considered the relative error (RE) of the
stationary mean class population and the 95th percentile of the response
times for every class in the network. Transient values were not consid-
ered as they would yield a very long computation time for every simu-
lation experiment. We further considered φCR

over CR =
⋃
i∈f1

3,4,b
1:4
2
Ci,

i.e., all classes in the first frontend replica and the four backend repli-
cas in the original closed chain. Let Xr be the vector of phase states
belonging to r ∈ C. We define RE of stationary mean class population
over class r as εE (x, r) = |E [

∑
X∗
r ]−

∑
xr| /E [

∑
X∗
r ], and RE of φr as

εφ (x, r) = |φr − φ̂r (x)| /φr. The set of REs over each r ∈ C for the sta-
tionary mean class population then becomes EE(x) = {εE (x, r)}r∈C , and for
the 95th percentile Eφ(x) = {εφ (x, r)}r∈C . For the baseline system without
any perturbations, the obtained results are presented in Table 3.2. Unsur-
prisingly, the smoothed mean-field fluid model (indicated with x = x∗ (η̂))
outperforms the standard model (indicated with x = x∗), obtaining both a
lower mean RE and maximum RE over all classes in all queues.

The results of the randomized simulation experiment are presented as
histograms in Figure 3.11. Each data point corresponds to a specific RE for a
random perturbation, using either the standard mean-field model (blue), the
smoothed model with η∗ refitted for each perturbation (red), or the smoothed
model with η̂ fitted to the baseline system (green). From it we can deduce
mainly three things: firstly, the smoothed model in general outperforms the
standard model by quite some margin; secondly, the response time percentiles
are fairly accurate despite the approximation; and finally, the results using η̂
fitted to the baseline system seem robust to the three types of perturbations.
It can also be seen that the standard mean-field fluid model sometimes yields
good results, which most likely occurs when a random perturbation places
the support of X∗

i on a single side of ki ∀i ∈ Q. The results of the horizontal
down-scaling are left out, as they follow the same pattern. As the prediction
accuracy of the smoothed model with η̂ is this robust for such a fairly complex
queueing network, we generally expect a comparable result considering other
queueing networks over similar perturbations.

Table 3.2 Different RE metrics of the original system for the standard
(x∗) and smoothed (x∗ (η∗)) models.

E [EE (x)] max [EE (x)] E [Eφ (x)] max [Eφ (x)] εφ (x | CR)
x∗ 0.23 0.54 0.25 0.61 0.32
x∗ (η∗) 0.02 0.05 0.07 0.20 0.07
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Figure 3.11 Histograms with a bin width of 0.01 for five different RE
metrics of 1500 random system perturbations, considering values obtained
from the standard mean-field model (blue), the smoothed model with η̂∗

refitted for each perturbation (red), and the smoothed model with η̂ fitted
to the baseline system (green). The bins are given a low opacity to better
perceive overlapping histograms from the three sets.
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3.6 Summary and Discussion

In this chapter, we have extended previous results and made improvements
to the mean-field fluid model of mixed multi-class networks of PS and INF
queues with PH distributed service times, for the purpose of improving per-
formance modeling in cloud systems. In particular, we have for these types
of networks

• derived a compact matrix-form for the mean-field fluid model, and
shown convergence according to Kurtz’s theorem,

• introduced a computationally cheap improvement for the mean-field
fluid model based on data-driven smoothing of the drift function, and

• obtained a closed-form approximation of the response time CDF over
an arbitrary subset of classes in the network.

These contributions were later evaluated on two small and one larger simu-
lation experiment with promising results.

Discussion. As shown in Section 3.2, that Kurtz’s theorem should hold
for mixed PS networks is quite intuitive, as it has previously been proven for
closed PS networks. It is nevertheless a useful result, and there is an innova-
tion in the compact matrix form presented in Theorem 3.1 that provides an
intuitive and easily constructed mean-field fluid model to reason about the
system. This matrix form should be generalizable to any form of queueing
network that can be expressed as a density-dependent population process.

The smoothed mean-field fluid model introduced in Section 3.3 shows
promising improvements to the standard model for systems of lower system
size, and parallels can be drawn to the PSFFA method for single queues.
Compared to other methods, it is simple and computationally cheap, but not
as general. We only derive it for networks of PS and INF queues, but it could
potentially be extended to single-class FCFS and discriminatory PS with
minor effort. Another downside is that the smoothed model needs data to fit
η, but as the standard mean-field fluid model can be seen as a special case
of the smoothed model without uncertainty in X, simply putting η to some
upper conservative value should in general outperform the standard model.
From a performance modeling perspective, data from a running system is
not an issue if the model is used for online decision making in e.g. resource
management or scheduling.

The closed-form approximation of the response time CDF from Sec-
tion 3.4 yields a practical and quick-to-evaluate method to retrieve per-
centiles. For the systems considered, the approximation seems to be accurate,
but this depends on the assumption that every request receives the mean pro-
cessor share. For certain systems, the assumption could hold for an adequate
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approximation of the CDF at transient times, as the smoothed mean-field
fluid model gives us an approximation to E [g (X(t))] ∀t ≥ 0.

The simulation results in Section 3.5 promisingly suggest that the
smoothed model is robust in predicting mean queue lengths under pertur-
bations common in cloud computing. It might seem odd that we have only
considered the accuracy of stationary solutions in the randomized simulation
experiment, but as can be seen in Figure 3.4, 3.6 and 3.10 the transients of
the mean-field fluid models appear to be well-behaved. The transient val-
ues are thus likely to follow the same accuracy pattern as the stationary
results. Another potential critique is that we have only considered idealized
simulated systems, and in reality no computing system will behave exactly
like a network of PS queues. However, both the smoothed model and the
closed-form CDF approximation are approximations of metrics in a mixed
PS queueing network. Therefore we wanted to evaluate the accuracy in such
an idealized environment without worrying about unrelated modeling errors
between a more realistic system and the queueing network itself. Further-
more, in Chapter 4 the smoothed mean-field model will be used to estimate
performance metrics for a microservice application.
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4
Runtime Extraction of a
Microservice Fluid Model

Dynamic resource management is a difficult problem in modern microservice
applications. Many proposed methods rely on the availability of an analytical
performance model, often based on queueing theory. Such models can always
be handcrafted, but this takes time and requires expert knowledge. Various
methods have been proposed that can automatically extract models from logs
or tracing data. However, these methods are often intricate, requiring offline
stages and advanced algorithms for retrieving the service time distributions.
Although accurate, the resulting models can be complex and unsuitable for
online evaluation. Thus, when designing a method for automatic model ex-
traction for runtime management, apart from accuracy, one needs to take
into account both the extraction complexity and the method of evaluation
for the resulting queueing model.

Introduction
In this chapter, we build upon the results from Chapter 3 to propose a fluid
model for microservice applications, that can be extracted at runtime in a
distributed fashion from common local tracing data at each service replica.
The model is derived as the smoothed mean-field fluid model of a simple
yet general queueing network model of the application. In this intermediate
queueing network, each replica is represented as a single multi-class PS queue
and each service-to-service transition as an INF queue, and each class is
assumed to have a PH-distributed service time. The queueing network is
further allowed to be mixed, which implies that it can model applications
subjected to Poisson arrivals and/or a set of connecting clients.

The resulting model and its flexibility are showcased on a multi-cluster
microservice application. However, as it is in general cumbersome to setup
the necessary environment to test such applications, we developed a sandbox
to streamline this effort by emulating a multi-cloud environment on an IaaS
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Table 4.1 Local nomenclature for Chapter 4

Notation Description
Service Graph

M Set of services (instances).
Nm Set of request types in service m ∈M.
km Number of CPU cores in service m (considered known).
Um,n Set of all upstream destinations in (m,n) ∈ (M,Nm).
Dm,n Set of all downstream sources in (m,n).
Eo Set of (m,n) under an open connection.
Ec Set of (m,n) under a closed connection.

Tracing Data (considered known)
Rm,n Set of requests in (m,n).
U r Vector of upstream destinations for r ∈ Rm,n.
Dr Downstream source for r.
tr Arrival timestamp for r.
∆tr Duration for r.
T r Vector of timestamps for the remote calls of r.
∆T r Vector of durations for the remote calls of r.
∆T

r
Vector of upstream durations for the remote calls of r.

platform. The microservice fluid model is found to accurately capture im-
portant performance metrics of the application deployed using this sandbox,
both for the current operating conditions and for predictions under common
system perturbations.

Outline. This chapter is structured as follows. In the end of this introduc-
tion the necessary notation and assumptions on the microservice application,
along a quick recap of the smoothed mean-field fluid model, are given. Sec-
tion 4.1 then introduces the queueing network model and explains the dis-
tributed extraction from local tracing data. Furthermore, Section 4.2 shows
how the model can be adapted to perform predictions under common system
perturbations. In Section 4.3 the multi-cloud sandbox is explained in more
detail, and later used to perform experimental evaluations in Section 4.4
to test the accuracy of both model and predictions. Finally, the chapter is
summarized in Section 4.5.

Assumptions and Notations
For an overview of the introduced notation, see Table 4.1. First, in this chap-
ter (a, b) or [a, b] will denote a tuple of a and b, while a : b denotes the ordered
set {k ∈ Z s.t. a ≤ k ≤ b}. Writing (a, b) ∈ [A,Ba] implies b ∈ Ba, where
a ∈ A. If these (a, b) can partition some set C, they can be used to denote a
subset as Ca,b ⊂ C. Leaving out b implies a union, that is, Ca =

⋃
b∈Ba

Ca,b.
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Microservice application. We assume an application consisting of a set
of microservices that interact in a graph structure. Each service can have
multiple instances, i.e., replicas. Let M be the set of all instances of all
services, and let “service” henceforth in this chapter be synonymous with
“service instance” if applicable. The services are assumed to run in mutually
isolated environments, and in a slight abuse of notation we let km be the
number of CPU cores per service m and considered known.

Each service is assumed to be able to simultaneously handle multiple
requests of different types. These types are assumed distinct to each service,
hence the execution of an external request can visit multiple request types in
the service graph. We define Nm as the set of request types that service m
can handle. Processing a request of type n ∈ Nm is assumed to consist of (i)
an arrival, (ii) a set of sequentially executed remote calls to request types in
upstream services, (iii) a response to the downstream caller upon completion,
and (iv) processing times in service m between the arrival, the remote calls
and the response. We assume that all remote calls are synchronous, meaning
that no processing is performed in the service on the request issuing the call
before a response is returned. Furthermore, a remote call is always made to
a single upstream service, disallowing fork–join behavior. The set of request
types could represent different endpoints in service m, but exactly how the
requests in m are partitioned into types is not important. What is important
is that all requests in each request type n ∈ Nm have the same number of
remote calls. Let a specific request type n in the service m be expressed as
the pair (m,n) ∈ (M,Nm). Furthermore, let Um,n := {(m1, n1) , . . . } be the
set of all upstream request types in services that receive remote calls from
(m,n), and let Dm,n := {(m1, n1) , . . . } be the set of all downstream request
types in services that make remote calls to (m,n). We assume that multiple
downstreams to (m,n) exist only as replicas of the same microservice.

Requests can arrive to (m,n) from external sources, either through an
open connection as Poisson arrivals, or through a closed connection as a set
of external clients utilizing the application. Once a client request has been
returned, the client waits some time before submitting another request. Let
Eo be a set of all (m,n) under an open connection, and Ec be a set of all
(m,n) under a closed connection.

Let Rm,n be the set of requests of type n to visit the service m in some
time window. For each r ∈ Rm,n, let U r be a vector of upstream destinations
for each remote call ordered by their sequential execution, such that each
element is a pair (m,n) of the upstream service and request type. Since
remote calls might be load balanced on different replicas, U r ⊂ Um,n ∀r ∈
Rm,n. The number of remote calls |U r| will be the same for all requests
visiting (m,n). Furthermore, let Dr be the downstream source of the request.
If the downstream is part of the service graph, then Dr = (m,n). Otherwise,
Dr = Dr

c for a closed connection, while Dr = Dr
o for an open connection. We
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Figure 4.1 The local trace of request r ∈ Rm,n of request type n in
some service m, performing two remote calls. This implies that all requests
in Rm,n also performs two remote calls before returning to the downstream.

assume that it is possible to differentiate Dr
o from Dr

c , and furthermore that
the ID of Dr

c is unique for each connecting client.
We define the local request trace of request r in (m,n) as (i) a time of

arrival tr, (ii) a duration ∆tr, and (iii) three vectors T r,∆T r and ∆T
r

containing the timestamp/duration/upstream duration of remote call i. See
Figure 4.1 for an illustration. Let Hr :=

{
Dr,U r, tr,∆tr,T r,∆T r,∆T

r}
be

the local tracing data for request r. We assume that, locally, Hr is known
∀r ∈ Rm in all services m. These local request traces can commonly be
captured in software that supports distributed tracing. For example, see the
documentation on the Envoy proxy regarding access logging1.

Recapping the smoothed mean-field fluid model. We adopt similar
queueing network assumptions and notations to that of Chapter 3. Let Q
define the set of queues in the network, where each q ∈ Q has a set of classes
Cq. Each class c in each queue q further has a PH-distributed service time
with Sq,c as its set of phases, where ψq,c ∈ R|Sq,c|×1, Ψq,c ∈ R|Sq,c|×|Sq,c| and
ζq,c ∈ R|Sq,c|×1 are its three parametrization matrices. Let X ∈ Z|S|×1

+ be
the population of requests in each phase state. Each class can potentially
have Poisson arrivals with rates described by λ ∈ R|C|×1. Furthermore, let
P ∈ R|C|×|C| be the routing probability matrix between all classes. Finally,
each queue q is assumed to follow either an INF or a PS discipline, and for
the PS queues it is assumed that the number of servers is the same as the
number of cores km in the service it models.

The time evolution of X can be described as a continuous-time Markov
chain, and using the smoothed mean-field fluid model from Definition 3.2

1 https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/
access_log/usage
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E [X(t)] can be approximated with the ODE

dx

dt
= W T θ̂ (x,η) +Aλ,

x(0) = X(0), η(t) > 0, (4.1)

where W = Ψ + BPAT , θ̂i (x,η) = xiĝQ(i)

(
x, ηQ(i)

)
, and ĝq (x, ηq) is

defined as (3.31) for some phase state i and queue q. The matrices Ψ,B,A
are block diagonals of the PH distribution matrices stacked in the appropriate
order. Let X∗ and x∗ denote the stationary distribution of the phase-state
populations and the stationary solution of (4.1), respectively. From the mean
queue length and utilization ρ of a stationary system, it is always possible
to find an optimal η for the current operating conditions by solving (3.35).
Furthermore, the response time CDF can be approximated via (3.48).

4.1 Capturing the Model

In this section, we will show how our rudimentary queueing network model is
constructed from a microservice application and how it can be obtained given
the defined tracing data. Later, we show that the model can be extracted in
a distributed fashion and discuss how this may be implemented in a real
system.

From Service Graph to Queueing Network Model
In the queueing network model, we represent each service m as single multi-
class PS queues and the interservice delays and external clients by multi-class
INF queues. An illustration of the translation is shown in Figure 4.2. Here, an
example application consisting of 3 microservices (blue, orange and green) is
considered and its corresponding service graph shown in Figure 4.2(a). Green
has two replicas, while the others have one, yieldingM = {m1,m2,m3,m4}.
Requests visiting either orange or blue can be partitioned into two request
types, while requests visiting green has a single type, i.e., Nm1

= {n1, n2},
Nm2

= {n1}, Nm3
= {n1} and Nm4

= {n1, n2}. External requests arrive
to m1 either to request type n1 in a closed connection, or to n2 in an open
connection. (m1, n1) has one remote call to (m4, n1), and (m1, n2) has one
remote call to either (m2, n1) or (m3, n1) decided by some load balancing
strategy. They in turn have one remote call to (m4, n2). As the single remote
call in (m1, n2) has two potential upstreams, Um1,n2

:= {(m2, n1), (m3, n1)}
while U r is either (m2, n1) or (m3, n1) for every r ∈ Rm1,n2

. Equivalently, as
(m4, n2) is called by two downstreams, Dm4,n2 := {(m2, n1), (m3, n1)} while
Dr is either (m2, n1) or (m3, n1) for every r ∈ Rm4,n2 .

How to translate such an application to the queueing network model will
be explained in more detail in this subsection.

92



4.1 Capturing the Model
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Figure 4.2 The translation from (a) a microservice application graph, to
(c) the corresponding queueing network model. In (b), the paths that all
external requests to either request type in m1 must traverse, along the cor-
responding class decomposition, are shown. Here, the dotted arrows shows
where classes have multiple outgoing connections. In (c), the services have
been replaced by PS queues, the service-to-service connection delays by INF
queues, and the external client waiting times with an INF queue qe. Each
arrow shows a class-to-class transition, where the dashed arrows are part
of the corresponding closed chain, and the solid part of the corresponding
open chain. The grey arrows shows the returning transitions.
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Service queues. Let qm be the PS queue that models the service m ∈M.
Due to the fixed number of sequential remote calls for each r ∈ Rm,n, in
each (m,n), r will be processed in |U r|+ 1 disjoint steps: first after arrival,
and then after each remote call. After all processing steps are completed,
the request is returned to its downstream caller (m,n). Furthermore, while
making a remote call, it is assumed that the processing of r pauses in (m,n)
until the call is completed. Thus, the request r can be considered to “depart”
from the current processing step for the upstream (m,n) and rejoin the next
processing step once the remote call is completed.

This behavior can in turn be captured in a queueing network by letting the
time of each processing step be modeled as the service time in a standalone
class for a total of |Cqm,n| = |U r|+ 1 classes for requests visiting (m,n). We
assume that all requests arriving at any (m,n) enter the first class and depart
from the final class of Cqm,n, and that all remote calls from class c are returned
to c+1. This is illustrated in Figure 4.2(a) and 4.2(b), where the single remote
calls in (m1, n1), (m1, n2), (m2, n1), (m3, n1) give rise to two classes in each
service/request type. Here, requests are assumed to always enter the first
class C1 and depart the final class, i.e., C2 or C1, when completed.

Delay and client queues. As services can be hosted far apart in the
cloud, there might be nonnegligible delays between services that need to be
taken into account. For each remote call between two services m → m, we
introduce an INF queue qm,md to model the transfer delay. For each pair
of request types (n, n) ∈ (Nm,Nm) in such a remote call, we introduce
two classes in qm,md and let the first class handle the delay and routing
for (m,n) → (m,n) and the second class (m,n) → (m,n). Thus, we get
|Cqm,m

d
| = 2|Nm| where Nm is the set of all upstream request types called

from the service m. Furthermore, if Ec is not empty, we introduce a new
INF queue qe with |Cec | = |Ec|. Each class c ∈ Cec models the client waiting
time and handles the routing to an element (m,n) ∈ Ec, which after comple-
tion at (m,n) routes back to c again. Returning to Figure 4.2, (c) shows the
complete queueing model of the example application with the delay queues
q1,2d , q1,3d , q1,4d for each remote call from m1 and q2,4d , q3,4d for the remote calls
from m2 and m3, along with the client waiting queue qe.

Properties of the routing probability matrix. In the queueing model,
most classes will have a single outgoing connection. This can in turn be cap-
tured in the routing probability matrix P as static routing, i.e., classes with
a single outgoing connection will have a single nonzero element with value 1
in its corresponding row in P . The only two cases where classes have more
than one outgoing connection are (i) when a remote call has multiple possible
upstreams, and (ii) when a request type receives from multiple downstreams.

In the first case, the class right before the remote call will have a connec-
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tion to the first class in each of the possible upstreams. This can be captured
in P by assuming that each request is assigned to its upstream at random,
e.g., via a load balancer that follows a weighted random policy. Each class
that perform random routing to multiple classes will thus have multiple rout-
ing probabilities in its corresponding row in P .

In the second case, the final class of (m,n) must return responses to the
correct next class in each downstream. This can be captured in P for the
fluid model by using random routing with probabilities chosen such that the
flow back to the downstream classes is preserved. As we only allow multiple
downstreams as replicas to the same microservice, effects such as flow spilling
over between external sources and shortcuts for requests when calculating the
response time percentiles are mitigated. When estimating parameters from
data these flow preserving probabilities will be obtained automatically, but
care should be taken for predictions, as discussed in Section 4.2.

Finally, a class can potentially also have no outgoing connections, which
happens at the final class of (m,n) when the first class is under Poisson
arrivals. This can be captured in P as an empty row.

For example, the resulting queueing network for the example application
shown in Figure 4.2(c) has only single-valued rows in P except for (i) C1

in (m1, n2) which has two nonzero values for routing to C1 in (m2, n1) and
(m3, n1), (ii) C1 in (m4, n2) which has two nonzero values for preserving flow
to C2 in (m2, n1) and (m3, n1), and (iii) for C2 in (m1, n2) which will have
only zero values for departing requests.

The following properties of the paths over the classes created by P can
be stated, which is of importance for the response time CDF approximation.

Remark 4.1
The class-to-class path formed by each open connection is an open chain,
and each closed connection a closed chain. Also,

• the open chains are transient, i.e., starting from any class in the chain,
there is a nonzero probability of leaving the network in finite time.

• the closed chains are irreducible, i.e., starting from any class in the
chain, there is a nonzero probability of visiting any other class in the
chain in finite time.

This holds by construction. Due to the absence of multiple downstreams
(except for replicas of the same microservice), requests from one external
connection will never reach the same (m,n) as another external connection.
Further, from the first class visited by an external request, there trivially
exists a path to any other class that the execution of the external request
can visit. From any of those classes, there exists a path to the final class before
departure. For open connections, the request departs the network while for
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closed connections the request is returned to the first class after some time.
In Figure 4.2, the open and closed connections give rise to one open chain
and one closed chain, symbolized by the dashed and solid arrows respectively
in (c).

Queue and class partitions. The set of queues can be partitioned as
Q = QM ∪Qd ∪ {qe} where

QM := {qm ∀m ∈M} ,

Qd :=
{
qm,md ∀(m,m) ∈ (M,Um)

}
. (4.2)

Furthermore, we can—given an arbitrary class c in the set of all classes C for
which q is its parent queue—partition and express c as the following tuple
depending on the type of q:

c =


[qm, n, u] ∈ [QM ,Nm, Cqm,n] q ∈ QM ,[
qm,md , (n, n), u

]
∈
[
Qd,

(
Nm,Nm

)
, {C1, C2}

]
q ∈ Qd,

[qe, (m,n), u] ∈ [Qe, (M,Nm) , {C1}] q = qe.

(4.3)

This allows us to keep track of the request type and queue that each class
in C belongs to, which will be important for obtaining the network pa-
rameters. For example, considering the example application in Figure 4.2,
class C1 in (m1, n1) can be expressed as [qm1 , n1, C1] and C2 in q2,4d as[
q2,4d , (n1, n2) , C2

]
.

Estimating Network Parameters
Here, we will show how the introduced queueing network model can be ex-
tracted from the tracing data. Assume that we haveHr collected for all r ∈ R
over all services in a system at stationarity, over some time period ∆TR.

Extracting routing probabilities. The routing between services and the
influx of external requests must be transformed into class-to-class transition
rates to form P and λ.

First, we introduce wo ∈ Z|C|×1
+ to denote the number of requests in R

that arrive to the classes from the open connections. Each element in wo is
initially set to 0. For each r ∈ R where Dr = Dr

o, we then identify (m,n)
and increment wo[qm,n,C1]

by 1. The arrival rates can then be estimated as

λc ≈
woc
∆TR

∀c ∈ C, (4.4)

implying that λc ≥ 0 only if c ∈ [QM ,Nm, C1] and (m,n) ∈ Eo.
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For closed connections and routing between classes within the network,
we introduce w ∈ Z|C|×|C|

+ to denote the number of requests in R that initiate
a connection between any two classes a, b ∈ C. Each element in w is initially
set to 0. For the closed connection, for each r ∈ R where Dr = Dr

c , we
identify (m,n) and increment wa,b by 1 for each

(a, b) ∈
{(

[qe, (m,n), C1] , [q
m, n, C1]

)
,(

[qm, n, Cf ] , [qe, (m,n), C1]
)}
, (4.5)

where Cf is the final class of Cqm,n. I.e., for every request from an external
client, we identify its (m,n) and the correct class partitions for the transitions
(i) from client to (m,n), and (ii) returning from (m,n) to client. For both of
these class tuples, wa,b is incremented by 1.

Furthermore, for the routing between classes inside the service graph, for
each r ∈ R we identify (m,n), and for each u ∈ 1 : |U r| where Uru = (m,n),
we increment wa,b by 1 for each

(a, b) ∈
{(

[qm, n, Cu] ,
[
qm,md , (n, n), C1

] )
,( [

qm,md , (n, n), C1

]
,
[
qm, n, C1

] )
,( [

qm, n, Cf
]
,
[
qm,md , (n, n), C2

] )
,( [

qm,md , (n, n), C2

]
, [qm, n, Cu+1]

)}
, (4.6)

where Cf is the final class of Cqm,n . I.e., for every outgoing remote call in
every request, we identify its (m,n) and the correct class partitions for the
transitions (i) from (m,n) to the first class of the corresponding delay queue,
(ii) from the delay queue to (m,n), (iii) returning from (m,n) to the second
class of the delay queue, and (iv) from the delay queue to the next processing
step in (m,n). For all four class tuples, wa,b is incremented by 1.

Finally, the elements of the routing probability matrix can then be esti-
mated as

Pa,b ≈
wa,b∑
c∈C wa,c

, (4.7)

for all permutations of a, b ∈ C. In the case that
∑
c∈C wa,c = 0, all elements

in the corresponding row Pa,· is set to 0.

Extracting service time distributions. To estimate the service time dis-
tribution for each class c, we first obtain the arrival/departure times (ta, td)
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of all requests visiting c. We do this by considering the queues in QM , Qd
and qe separately. First, let Tc :=

{(
tac,r, t

d
c,r

)
r ∈ R

}
be the set of all pairs

of arrival/departure times for requests that visit c.
Taking into account the type of request n in the service m, we can trans-

form all timestamps/durations for each r ∈ Rm,n and its remote calls to
arrival/departure times for each c ∈ [qm, n, Cqm,n]. Let u ∈ 1 : |Cqm,n|, then
if |Cqm,n| > 1

Tc =


{(tr, T r1 )} u = 1,{(
T ru−1 +∆T ru−1, t

r +∆tr
)}

u = |Cqm,n|,{(
T ru−1 +∆T ru−1, T

r
u

)}
otherwise,

(4.8)

else Tc = {(tr, tr +∆tr)} , ∀r ∈ Rm,n. This can be clearly seen by considering
Figure 4.1.

Considering the delay queues, there are no direct timestamps/durations
available as they do not correspond to any measured services. Instead, for
each r ∈ Rm,n and for each u ∈ 1 : |U r| where Uru = (m,n), we can esti-
mate the delay from the upstream duration ∆T

r

u assuming equality in both
directions, i.e., τ ru =

(
∆T ru −∆T

r

u

)
/2, and find

Tc = {(T ru , T ru + τ ru)}r∈Rm,n
,

Tc′ =
{(
T ru +∆T

r

u + τ ru, T
r
u +∆T ru

)}
r∈Rm,n

, (4.9)

where c =
[
qm,md , (n, n), C1

]
, c′ =

[
qm,md , (n, n), C2

]
.

Finally, considering the client waiting time queue qe, we also here have nei-
ther direct timestamp/duration measurements of requests visiting its classes.
However, as we know that a departing request of request type n in service m
to [qe, (m,n), C1] will return to (m,n) once the waiting time has passed, we
can obtain the arrivals/departures by finding which r ∈ Rm,n is the next ar-
rival to (m,n) of the client that sent r ∈ Rm,n. As we assume that Dr = Dr

c

constitutes a unique ID for each connecting client for r when (m,n) ∈ Ec, we
can thus for each c = [qe, (m,n), C1] find the arrival/departures as

Tc =
{(
tr +∆tr, tr

)}
r∈Rm,n

,

where r = argmin
r∈Rm,n

Dr=Dr

(
tr > tr +∆tr

)
. (4.10)

Repeating (4.8), (4.9), and (4.10) for all (m,n), we can retrieve the com-
plete dataset of arrivals/departures for every class in the queueing network
under R.
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For any c ∈ C, the class population can then be calculated at any time t
as the difference between the number of arrivals and departures

Xc(t) =
∑

(tac,r,tdc,r)∈Tc

1
[
t > tac,r

]
− 1

[
t > tdc,r

]
. (4.11)

The total queue length in any q ∈ Q is further given by

Xq(t) =
∑
c∈Cq

Xc(t). (4.12)

For a given c ∈ C, if the corresponding queue q follows an INF discipline, i.e.,
q ∈ Qd ∪ {qe}, then the service times can be obtained directly as

T sc :=
{
tdc,r − tac,r

}
(tac,r,tdc,r)∈Tc

. (4.13)

If the class instead belongs to a PS queue, extracting the service times be-
comes more complicated. Consider r ∈ Rm,n, and let V r be the sorted vector
of all arrival/departure times to any class in Cqm that lies within the bound
[tac,r, t

d
c,r], that is,

V r = sort
({
tm ∈ Tm s.t. tac,r ≤ tm ≤ tdc,r

})
, (4.14)

where Tm is the union of all arrival and departure times in service m. The
service time tsc,r can then be obtained as [Perez et al., 2015]

tsc,r =

|V r|−1∑
i=1

(
V ri+1 − V ri

)
km

max [km, Xqm (V ri )]
, (4.15)

and hence T sc = {tsc,r}(tac,r,tdc,r)∈Tc
. From the sets of service times T sc it is

then straightforward to fit a PH distribution and obtain Ψc, ψc, αc using,
e.g., moment matching [Osogami and Harchol-Balter, 2006] or the EM algo-
rithm [Asmussen et al., 1996], as long as there is enough data to capture the
moments of the underlying distributions.

Extracting smoothing parameters. Good values for the smoothing pa-
rameters can be obtained by using (3.35) together with estimated utilizations
for each qm ∈ QM over R using either the utilization law or an empirical
distribution of the queue length probabilities.

Distributed Tracking
So far, we have assumed that all data is available at some central observer.
This is possible in theory, but not feasible in practice, as the aggregation of
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trace data Hr for each request from each service can create a large overhead
in the cluster. In setups for distributed tracing, overhead is often reduced by
only aggregating data such as Hr on a small subset of all requests. This is a
problem for our model, as all samples are needed to extract the service time
distributions.

However, if we assume that we can gather the necessary data for each
request and store them locally at each service m, then it is possible to extract
the model in a distributed fashion. Assume that in each m we know Hm :=
{Hr}r∈Rm

, then:

Theorem 4.1
Given Hm for m ∈ M. Then Pc,·, (Ψc, ψc, ζc) and λc can be calculated
for all classes in qm, its upstream delays qm,md and associated downstream
classes in qe, i.e., ∀c ∈ Cqm ∪

(⋃
m∈Um

Cqm,m
d

)
∪ Cqe,m where Cqe,m :=

{[qe, (m′, n′) , C1] ∈ Cqe s.t. m′ = m}.

Proof. For λc, Hm contains Dr ∀r ∈ Rm, therefore, from (4.4), we see that
all the information needed to estimate Poisson rates ∀c ∈ [qm,Nm, C1] is
available.

For Pc,·, Hm also contains U r ∀r ∈ Rm, therefore, from (4.6) and (4.7)
we see that the information is available to estimate all outgoing routing
probabilities from c ∈ Cqm ∪

(⋃
m∈Um

Cqm,m
d

)
. Similarly, for c ∈ Cqe,m, from

(4.5) we see that Dr ∀r ∈ Rm is needed which is included in Hm.
Finally, (Ψc, ψc, ζc) can be estimated from T sc . From (4.13) we see that we

only need Tc if c ∈
(⋃

m∈Um
Cqm,m

d

)
∪ Cqe,m, which from (4.9) are obtainable

for upstream delays and from (4.10) for the associated classes in the client
queue given only Hm. If instead we consider the classes in qm, from (4.15)
and (4.14) we need Tc ∀c ∈ Cqm , km, and Xqm . However, km is considered
known, and from (4.8) and (4.12) the other two values can be obtained by
considering only Hm. 2

Therefore, we can obtain local queueing network model parameters for each
service, using only the local tracing data. When all the parameters are com-
bined, the local parameters form the entire model as shown below.

Corollary 4.1.1
Aggregating the local model parameters ∀m ∈M yields the entire queueing
network model, i.e.,⋃

m∈M
Cqm ∪

( ⋃
m∈Um

Cqm,m
d

)
∪ Cqe,m = C. (4.16)
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Figure 4.3 Distributed tracking of the local queueing network model
parameters for the application shown in Figure 4.2. Here C1 = Cqm1 ∪C
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∪Cqe , C2 = Cqm2 ∪C
q
2,4
d

, C3 = Cqm3 ∪C
q
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d

and C4 = Cqm4 . From
Corollary 4.1.1, C1 ∪ C2 ∪ C3 ∪ C4 = C.

Proof. By definition,
⋃
m∈M Cqm∪Cqe,m covers all classes in the services and

the client queue. For the delay queues, we know that every queue is created
as the result of a remote call from any service m to an upstream service m,
and therefore

⋃
m∈M

(⋃
m∈Um

Cqm,m
d

)
must cover all classes in every delay

queue. 2

Finally, to estimate the smoothing parameter ηqm from (3.35) we see that it
only needs data from Hm and local utilization, which from, e.g., (2.5) only
requires information in Hm.

Feasible implementation. Theorem 4.1 allows us to create methods for
the online extraction of our model, which are feasible to implement on a
running microservice application. This could, for example, be achieved using
a service mesh software that uses sidecar proxies, such as Istio2. Each service
is then deployed together with a small, local proxy that handles all incoming
and outgoing network traffic. These sidecar proxies thus offer a natural point
to handle the extraction of local tracing data; Istio, for example, supports
capturing Hm via its Envoy proxies almost out of the box. Thus, each sidecar
proxy could be designed to log Hm for every request in some local buffer.
This data could then be used to estimate the parameters of the local queueing
network model over some sampling period, which could then be sent to the
central observer. See Figure 4.3 for an illustration of such a system.

2 https://istio.io/
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4.2 Prediction Under Structural Changes

To be usable for online decision making, it is important that the model can
be used to make adequate predictions of important performance metrics un-
der perturbations to the running system. The modeled services and delays
will not function as pure PS or INF queues; hence, both service times and
smoothing parameters will likely be workload dependent. In Section 4.4 we
will test both how well the model can capture the current operating condi-
tions and how well it can be predicted from a previously observed condition.

First, we will present how the model can be used to predict performance
metrics under workload changes, scaling, and migration. We assume that
we have obtained a smoothed mean-field fluid model from some running
system and want to predict what happens if we perturb the system at t+.
To make such a prediction, the parameters of the fluid model need to be
updated correctly, depending on the type of perturbation. Let the superscript
+ denote an updated parameter at time t+.

Updating P . A system perturbation could affect the inflow to a request
type n in service m. If there exist multiple downstreams connecting to cin =
[qm, n, C1], care must be taken to ensure that the return flow from cret =
[qm, n, Cf ] is correctly set in P to all (m,n) ∈ Dm,n. Under our assumption
that each request that enters the first class of (m,n) must return to the
downstream after the final class, and assuming stability, the flow from and
back to a downstream (m,n) must be equal. We can thus obtain the return
routing probability as the fraction of inflow emanating from the downstreams.
In the queueing network, the first downstream class c to cin belongs to a delay
queue, from which the inflow simply becomes xTc ψc. Thus, the inflow fraction
becomes

Pcret,c′ (x) =
xTc ψ

c∑
(i,j)∈Dm,n

xTd ψ
d
, (4.17)

where c′ =
[
q
m,m
d , (n, n) , C2

]
when c =

[
q
m,m
d , (n, n) , C1

]
and d =[

qi,md , (j, n) , C1

]
. Division by zero can be solved by setting Pcret,c′ to some

arbitrary value, since this implies that we currently do not have any flow. The
routing matrix P could then be updated with (4.17) for classes where the
inflow is affected. If updated, it becomes dependent on the state population.

An alternative solution would be to give each downstream to (m,n) a
standalone setup of the corresponding classes in the resulting PS queue. This
would simplify the formation of P+, but also lead to a state space explosion
in service graphs with longer chains of services with multiple replicas.
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Workload Change
The workload changes when the arrival rate of external requests changes.
Requests can arrive to our model either via open connections or closed con-
nections. Changes to the open connections are trivial, as λ+ can simply be
formed with the new rates.

Changes in closed connections can occur via changes in the service time
distributions in qe or in the total number of connecting clients. The distri-
butions are changed by updating the corresponding Ψc, ψc, ζc, and the block
diagonal matrices accordingly, to form W+. If predicting transient perfor-
mance metrics is of interest, it is important that the number of phase states
is not changed so that the old values can be used to initialize the new states
at t+. Moreover, the structures of the new phase-type distributions should
be similar to the structures of the distributions they are replacing. Other-
wise erroneous transients could occur, as the new phase states might then
correspond to a highly different internal Markov chain. To add connecting
clients, we can simply update x+

c (t+) = xc (t
+) + ζcY c ∀c ∈ Cqe where Y c

is new clients arriving to the client queue class c and ζc ensures a correct
mapping to the phase states. Clients can in turn be removed by, e.g., direct
cancellation of running client requests or departing clients on request com-
pletion. Client cancellation can be modeled by updating the affected states
as x+

c (t+) = αcxc (t
+) where αc ≤ 1 is some reduction factor to preserve

relative internal state flows. Client departures can on the other hand be mod-
eled by removing returning flow to the client waiting queue until the wanted
quantity has departed.

Scaling & Migrating
Horizontal scaling changes the number of replicas of any microservice in the
service graph, while migration changes the deployment location of a ser-
vice. For the model, this implies that we may need to change the number of
queues, the routing probability matrix P and potentially some service time
PH distribution parameters Ψc, ψc, ζc and smoothing parameters η.

When upscaling, we need to introduce a new PS queue q+ for the new
replica m+ and new INF queues for the new delays in its connections. Let
m ∈ M in this section define a replica to the same microservice as m+. All
replicas to a service will have the same sets of upstreams and downstreams,
and thus the same number of classes and connecting delay queues.

Service time distributions & smoothing parameter. m+ will experi-
ence some change in request processing speed compared to the other replicas
of the same service, but the general characteristics of the service time distri-
butions for the classes should stay similar. Therefore, an easy way to upscale
our model if we suspect that m+ will receive roughly the same service speed
as m, is to reuse (Ψc, ψc, ζc) for all c ∈ Cqm in Cq+ and smoothing parame-
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ter η+q+ = ηqm . Otherwise, these will have to be obtained using some other
method, e.g., by scaling the PH parameters based on some estimate of the
new service speeds.

In the same way, we need to find the PH parameters for all the new delay
queues, that is, (Ψc, ψc, ζc)∀c ∈

⋃
m∈Dm

Cqm,m
d
∪
⋃
m∈Um

Cqm,m
d

. If there exists
some other m close to m+ in terms of latency, its delay queues could, for ex-
ample, be reused for this purpose. Otherwise, if the latencies are measurable,
the PH parameters for the delay queues could be obtained from these.

Routing probability matrix. Introducing m+ also changes P , as the
downstreams and upstreams for m will now also have to take m+ into ac-
count. We assume that these new routing probabilities at time t+ are known.

P can then be updated as follows. First, consider the downstreams. For
every (m,n) in the replica set of m+, and for every (m,n) ∈ Dm,n where
u ∈ 1 : |Cqm,n| − 1 is the remote call calling (m,n), let

cin = [qm, n, C1] , cret = [qm, n, Cf ] ,

c =
[
qm, n, Cu

]
, c′ =

[
qm, n, Cu+1

]
,

d1 =
[
q
m,m
d , (n, n) , C1

]
, d2 =

[
q
m,m
d , (n, n) , C2

]
,

and set P+
c,d1

= Pc,d1 which is considered known, P+
d1,cin

= P+
d2,c′

= 1,
and P+

cret,d2
= Pcret,d2(x) with (4.17). Similarly, for the upstreams, for all

n ∈ Nm+ , u ∈ 1 : |Cq+,n| − 1 and every upstream (m,n) for u, let

c =
[
q+, n, Cu

]
, c′ =

[
q+, n, Cu+1

]
,

cin =
[
qm, n, C1

]
, cret =

[
qm, n, Cf

]
,

d1 =
[
dm

+,m, (n, n) , C1

]
, d2 =

[
dm

+,m, (n, n) , C2

]
,

and set P+
c,d1

= Pc,d1 which is considered known, P+
d1,cin

= P+
d2,c′

= 1, and
P+
cret,d2

= Pcret,d2(x) with (4.17).

Final parameters. As we introduce a set of new empty queues, we get
x+
c (t+) = xc (t

+) for all old classes and x+
c (t+) = 0 for all newly introduced

classes. From our new set of classes and their PH distributions, we can extend
the block diagonal matrices Ψ,A,B, and together with P+(x) form W+ (x).
The place where we introduce these new blocks is not important, as long as
the order of classes is the same in all three and P+, x+ (t+), and η+.

Migration, downscaling, & vertical scaling. Migration can be imple-
mented as a special case of upscaling by simply copying the routing proba-
bilities associated with the old to-be-migrated replica to the newly created
replica, and subsequently setting the routing probabilities to 0 from all down-
streams to the old replica. After some time, the class populations in the queue
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corresponding to this old replica will be empty, and the corresponding states
can be removed. Similarly, downscaling can be implemented by directly set-
ting the routing probabilities to 0 from all downstreams to the to-be-removed
replica. After some time, class populations in the corresponding queue will
be empty, and the states can be removed.

Finally, vertical scaling is difficult to implement without assuming more
knowledge of the system. We need to know how scaling a resource to a service
affects the service time distributions in each class to perform any nontrivial
predictions. We will leave this for future work.

4.3 A Federated Application Sandbox

In this section, the federated application (FedApp) sandbox is introduced,
on top of which the microservice fluid model is later evaluated. The sandbox
was created to provide an experimental multi-cloud environment that (i) is
flexible, yet remains a close approximation of real systems, (ii) is easy to
both deploy and use, and (iii) has an easily extendable implementation. Its
key features include:

• Creation of a user defined, multi-cluster virtual environment in an
OpenStack cloud, with a centralized structure complete with tools for
controlling and monitoring the entire federation, streamlining the setup
and usage of the sandbox.

• Possibility of inducing network characteristics such as delay, jitter, and
packet loss between clusters, thus enabling faithful emulation of real
world environments.

• Application orchestration using Kubernetes complete with a multi-
cluster service mesh layer using Istio, for easy handling and deployment
of applications spanning multiple clusters.

Experimentally evaluating performance models and management meth-
ods for cloud applications in real environments is an important, yet nontrivial
endeavor. Constructing the necessary environment is, in general, difficult and
time consuming, and quickly becomes complicated when dealing with mod-
ern trends such as the microservice architecture or multi-cloud deployments.
Although different simulation or emulation tools [Ahmed and Sabyasachi,
2014; Abreu et al., 2019; Casale, 2020] can play a crucial role in initial design
and evaluation of such models and methods, they ultimately fail to capture
the actual behavior of the system.

The sandbox is released as open source and is available at GitHub3.

3 https://github.com/JohanRuuskanen/FedApp
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Figure 4.4 Illustration of an example setup of the complete sandbox with
3 clusters containing 3 virtual machines each.

Sandbox Design
The design choices made for creating the environment to fulfill the stated
goals are presented here. An illustration of the complete setup can be seen in
Figure 4.4 which can be used as an overview of the sandbox in its entirety.

Topology of the multi-cluster environment. The clusters constitute
the foundation of the sandbox, and they will need some kind of infrastructure
to be realized upon. To provide this in a both flexible and easy to use manner,
we chose to supply the means of creating a suitable virtual infrastructure in
OpenStack, an open source cloud platform commonly used for providing IaaS
in private clouds. This provides both a controlled environment in which the
rest of the sandbox can be deployed in a standardized manner, and makes it
flexible as it is possible to easily scale the size and amount of clusters.

To emulate a multi-cluster environment, each cluster is first provisioned
as a set of virtual machines with their own isolated network. Cluster-to-
cluster communication is then enabled by connecting each internal cluster
network to a gateway virtual machine. At first, this might seem odd as we
are in fact introducing a potential bottleneck. But given the stated goal
of the sandbox, centralizing the network through a VM in this manner is
beneficial. First, from a single point it enables network characteristics to be
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affected and network behavior to be observed. Moreover, a centralized VM
increases usability as it can be deployed in a standardized manner hosting all
the tools necessary for controlling, monitoring, and deploying applications on
the clusters. Finally, the choice of pooling all functionalities for managing the
sandbox makes the setup easy to extend and easy to debug when something
eventually breaks down.

The sandbox comes supplied with scripts to first deploy the gateway
virtual machine using Terraform4 and then to provide it with all the necessary
tools using Ansible5. The rest of the sandbox, including the virtual clusters,
is then deployed from the gateway VM.

Network characteristics emulation. To provide a close approximation
to a real multi-cloud environment, it is vital that desired network characteris-
tics between clusters can be imposed. Benefiting from the chosen centralized
topology, the procedure for mimicking a real world networking environment
is greatly simplified. Each virtual cluster sees itself as a “standalone” clus-
ter on a private network, where all the intercluster communication traffic is
handled by the gateway VM. Thus, by only affecting the intercluster routing
logic on the gateway, an arbitrary network profile can be emulated.

We achieve this emulation by using the Linux Traffic Control (TC) util-
ity on the gateway VM. The TC network emulator (TC-netem)6 provides
the possibility of adding packet loss, delay and other characteristics on the
packets from a selected Network Interface Controller (NIC). By applying de-
sired emulated characteristics on the NICs of the Gateway VM, the network
characteristic to a cluster can be arbitrarily specified, for example, to mimic
the propagation and transmission delay caused by the geographic distance.

Furthermore, by utilizing TC qdisc and filter, it is possible to control
the point-to-point network characteristics between clusters. Each cluster-to-
cluster connection can be given its own network characteristic configuration,
without affecting neither connections between other clusters nor important
meta-communication between the Gateway VM and the clusters, such as
monitoring data or control commands.

The sandbox comes supplied with scripts using TC-netem to make this
cluster-to-cluster network characteristic emulation straightforward to use.

Deploying & managing multi-cloud applications. The services in a
microservice application are often deployed in standalone containers, which
communicate using some communication protocol such as http. To allow
these applications to be efficiently managed in a realistic manner, the sandbox
fits each cluster with the well-known container orchestrator Kubernetes7.

4 https://github.com/hashicorp/terraform
5 https://github.com/ansible/ansible
6 https://www.linux.org/docs/man8/tc-netem.html
7 https://kubernetes.io/
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This creates an abstraction layer between the raw virtual infrastructure and
the application, providing a platform that simplifies the deployment and
management of complex applications. Furthermore, as Kubernetes pools its
resources and allows multiple users to quickly deploy/destroy containers in
this pool, each virtualized cluster can essentially be viewed as a small private
cloud in some sense, providing a PaaS. To enable nontrivial collaboration
in applications spanning multiple of these “clouds”, the sandbox also deploys
Istio8 on top of the Kubernetes instances, which greatly simplifies intercluster
service-to-service networking.

To provide insight on the behavior of the multi-cloud environment and its
applications, the sandbox provides federation-wide monitoring in the form of
data collection using Prometheus9, and a Grafana10 GUI deployed on the
Gateway VM. With this setup, it is possible to inspect important metrics,
such as CPU and memory utilization, out-of-the-box in real time for all parts
of the deployed sandbox from the Gateway VM. Furthermore, the Istio service
mesh makes it possible to retrieve the access logs required for distributed
tracing for every request over all service replicas.

In the sandbox, scripts are supplied that utilize the tool Kubespray11

to deploy Kubernetes on each virtual cluster. Further, via these scripts, Istio
can be deployed preconfigured to support the multi-cluster service mesh, and
the Prometheus/Grafana stack across the entire multi-cluster environment.

Functionalities
Here follows a quick summary on the functionalities the sandbox design pro-
vides, in order to fulfil the goal of providing an an easy-to-use multi-cloud
environment for application experimentation.

First and foremost, the user defined virtual clusters together with the
cluster-to-cluster network emulation can be used to emulate a wide range
of different multi-cloud or fog/edge computing settings. Further, Kubernetes
and Istio simplifies the effort to deploy and manage multi-cloud applications
in these settings. Also, with Istio and Prometheus, request tracing and mon-
itoring of resource usage becomes easy. Moreover, the usage of well-known
cluster software, alongside pooling the tools to manage them in the central
gateway VM, makes it easy to incorporate new tools or software that are
not supplied out-of-the-box. Finally, given access to an OpenStack cloud, the
effort of deploying the entire sandbox becomes simple and flexible thanks to
the standardized environment that the virtualized infrastructure can provide.

The possible use cases of the sandbox are numerous, and many of the open
issues in cloud computing as discussed in [Buyya et al., 2018] could essentially

8 https://istio.io/
9 https://github.com/prometheus/prometheus

10 https://github.com/grafana/grafana
11 https://github.com/kubernetes-sigs/kubespray
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be explored in it. For example, different methods for reliability, resource
management and scheduling of microservices distributed over multiple clouds
can be readily investigated.

Limitations. The sandbox is, however, not without its limitations. First,
it assumes access to an OpenStack cloud, which is not something that is freely
accessible for everyone. Other IaaS providers could be used for the virtual
infrastructure, but this would require adaptation of the Terraform scripts.

Furthermore, the centralized network topology, although good for our
goal, will be problematic if we try experiments of too many clusters or a
too high intercluster load. In these cases, cluster-to-cluster network charac-
teristics could potentially be implemented distributively, by connecting the
cluster networks directly and using TC-netem directly on each cluster.

4.4 Experimental Evaluation

To test the validity of our model, we developed a simple example application
that performs face detection as a service based on three microservices. The
application was then deployed in the FedApp sandbox and loaded with a
stream of images, to test how well the fluid model was able to model and
predict its performance metrics.

Example Application
The three microservices that constitute the application are (i) frontend for
image pre-/postprocessing, (ii) backend for actual face detection, and (iii)
storage for storing results. frontend has two http endpoints: detect/ for
detecting a face in an image and fetch/ for fetching an already detected face
from the storage. Furthermore, backend has a single http endpoint detect/
for detecting a face in a preprocessed image. Finally, storage has two http
endpoints, store/ for storing a preprocessed image and fetch/ for retrieving
a stored image in an internal Redis12 database. Summarized, the microser-
vices have the following http endpoints, which in turn invoke the following
remote calls:

frontend:

{
detect/ → backend/detect/
fetch/ → storage/fetch/

backend:
{
detect/ → storage/store/

storage:

{
fetch/
store/

12 https://github.com/redis/redis
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frontend f

backend b1

storage s

backend b2

Cluster 1 Cluster 2

fetch/detect/

detect/
detect/

fetch/

store/ store/

≈ 25-30
ms delay

Figure 4.5 The experimental setup of the example application with three
microservices. The backend service has one replica in each of the two clus-
ters. Its queueing network model translation is shown in Figure 4.2.

We chose to design our own simple application instead of relying on ex-
isting benchmarks, such as the well-known SockShop13 or DeathStarBench14,
for multiple reasons: (i) It is easier to reason about the results from a smaller
example system, (ii) deployment and validation of correctness are simplified
in our limited experimental setup, and (iii) it took less effort to ensure that
the system is robust to longer periods of heavy traffic. Despite its apparent
simplicity, the application captures a system with multiple endpoints, a net-
work intensive service (frontend), a CPU intensive service (backend), and
a memory intensive service (storage).

Experimental Setup
All three microservices are implemented in Python using Flask15 and de-
ployed using Gunicorn16 to enable robust and easy multi-threaded service
of incoming requests. Every request is served in a standalone thread that is
blocked while calling upstream services. To avoid bottlenecks, the services
were tuned to yield roughly similar utilization for a range of input loads.

To mimic the deployment in a real software stack and test the model in a
more interesting setting, the application was deployed on the FedApp sand-
box introduced in Section 4.3, using two virtual clusters. Each cluster was
given 4 virtual machines, each with 4 vCPU and 8 Gb of RAM. Furthermore,
an additional 25-ms delay was added to all traffic between the two clusters
to emulate a geographical distance. In the first cluster, one replica of each of
the three microservices was deployed. In the second cluster, a second replica

13 https://github.com/microservices-demo/microservices-demo
14 https://github.com/delimitrou/DeathStarBench
15 https://github.com/pallets/flask
16 https://github.com/benoitc/gunicorn
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Figure 4.6 Sparsity pattern of the W ∈ R101×101 matrix from the ex-
ample application. The black squares symbolizes nonzero elements in the
matrix.

of backend was deployed to perform remote offloading. A random load bal-
ancer was used to balance requests between the two backends. The resulting
application deployment is illustrated in Figure 4.5, and as can be seen its
service graph becomes the same as the illustration in Figure 4.2.

The resulting model has |Q| = 10 queues, of which four are PS queues
with km = 4, five are delay queues, and one is the client queue. The PS
queues have four classes for the frontend, and two classes for the backend
and storage, resulting in a total of |C| = 21 classes. For all of our experiments
presented, each class c ∈ C was given |Sc| = 5 phase states, while the client
queue class was given 1 phase state, for a total of |S| = 101. This is a fairly
large number of states, but the resulting W becomes sparse as we fit the PH
distributions to the service times using a Coxian structure [Cox, 1955] with
the EM algorithm from EMpht.jl17. The sparsity of the resulting model is
shown in Figure 4.6.

The code for the experiments is available on GitHub18.

Results
We wanted to test both how well the smoothed mean-field fluid model was
able to capture different performance metrics and how well it was able to
predict performance metrics after a system perturbation. Therefore, we con-
ducted two different types of experiments. In the first, the effect of perturbing
the workload was studied. In the second, the effect of horizontal scaling and
migration was studied. For all experiments, we compared the results of the
data with two smoothed mean-field fluid models; one fitted in the current
operating condition (denoted Ffit) and one fitted in some other operating
condition for predictive purposes (denoted Fpred). The measured stationary

17 https://github.com/Pat-Laub/EMpht.jl
18 https://github.com/JohanRuuskanen/Cloud2022_code
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mean queue length X∗
q and the 95th percentile of response times φ were then

compared with their equivalents generated from Ffit and Fpred. Transient
values of the mean queue lengths were not considered as they are difficult
and time consuming to evaluate in a real experimental setting.

Experiments were carried out using a load generator to strain the system
simultaneously with an open connection to the frontend/detect/ endpoint
with a rate λ and a closed connection to the frontend/fetch/ endpoint with
50 clients each with an exponentially distributed waiting time with mean
1/µc. The images used for the requests were sampled from the UMass face
detection data set and benchmark [Jain and Learned-Miller, 2010]. After each
experiment, the tracing data were extracted from Istio and used to fit the
queueing network model and the smoothing parameter for the fluid model.
For the predictions, we transformed the models according to Section 4.2, but
used the estimates of λ, µc, and P from the data if not noted otherwise.
Although these estimates are similar to the desired values, they vary slightly
due to the dynamics of the cloud and the implementation of our experiment
application.

Workload perturbations. Here, we carried out 16 different experiments,
each for 300 seconds on a grid of workload rates λ = (8, 16, 24, 32) and
µc = (0.2, 0.8, 1.4, 2). In Table 4.2 the estimated utilization from the data
for each grid point can be seen, which shows that the experiments capture
utilizations ranging from low to high. Fpred was fitted to the data from
Experiment 11. As can be seen, increasing λ increases the utilization in all
services as the detect/ endpoint activates all services, while increasing µc
only increases utilization in frontend and storage as these are the only ones
activated by the fetch/ endpoint.

The mean request populations and 95th response time percentiles over

Table 4.2 Estimated utilization for each service for each of the 16 exper-
iments when perturbing the workload.

ρ̂b1, ρ̂b2

ρ̂f , ρ̂s
λ1 λ2 λ3 λ4

µ1
c

.16, .20,
.18, .22

.42, .37,
.24, .27

.63, .64,
.30, .30

.85, .87,
.34, .34

µ2
c

.16, .17,
.40, .60

.36, .39,
.51, .61

.56, .62,
.54, .61

.88, .86,
.62, .64

µ3
c

.16, .17,
.65, .78

.38, .34,
.70, .80

.63, .58,
.74, .79

.84, .83,
.78, .82

µ4
c

.15, .16,
.76, .87

.34, .39,
.80, .88

.53, .63,
.83, .89

.81, .86,
.89, .90
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the two endpoints for the two fluid models are compared with data in Fig-
ure 4.7 for absolute values over the entire application and in Figure 4.8
for absolute errors in the services. In general, Ffit manages to approximate
these performance metrics very well, except for the 95th percentiles of the
frontend/detect/ endpoint at the highest utilization levels, as seen in Fig-
ure 4.7(c). This is to be expected, since the response time CDF approximation
relies on the assumption that every request receives the mean processor share.
For queues under Poisson arrivals, this assumption becomes less accurate the
higher the utilization becomes. A high utlization implies a high queue length
variance and in turn a higher variance for the processor shares.

In the same way, Fpred manages to capture the performance metrics fairly
well in all perturbations tested, except at higher utilizations. For such ex-
periments, Fpred provides a less accurate mean request population, as can
be seen in Figure 4.7(a) and Figure 4.8(a), where errors are concentrated to
the two backends and the storage. Due to this, the 95th percentiles are also
prone to higher errors at high utilizations, which are more pronounced for
the frontend/detect/ endpoint.

Horizontal scaling and migration. Here, we carried out 11 different
experiments with rates λ = 13 and µc = 1.4. The weights of the random
load balancer was changed in incremental steps, from sending all requests to
backend 1 in Experiment 1 to sending all to backend 2 in Experiment 11.
The probabilities and estimated utilizations for each experiment can be seen
in Table 4.3. As can be seen, the chosen values yields a high utilization when
all requests are directed to a single backend. Furthermore, more requests
to backend 2 also increase the utilization of frontend, probably because it
needs to handle the extra delay.

By perturbing the load balancing like this, we can test how well our model
can predict the effects of both service migration and horizontal scaling. For
migration and upscaling, we introduce F1

pred, which we fit in Experiment 1
where all requests are sent to backend 1. Since we do not have data on

Table 4.3 Routing probabilities and estimated utilization for each service
for each of the 11 experiments when perturbing the load balancing.

1 2 3 4 5 6 7 8 9 10 11

Pf,b1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

ρ̂b1 .86 .75 .63 .50 .42 .31 .25 .16 .10 .04 0.0
ρ̂b2 0.0 .05 .11 .20 .27 .34 .42 .52 .66 .71 .83
ρ̂f .55 .60 .63 .65 .67 .69 .70 .72 .73 .73 .73
ρ̂s .74 .77 .79 .79 .79 .79 .77 .77 .76 .75 .76
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Figure 4.7 Results from the 16 workload perturbation experiments con-
sidering gathered data (blue line), Ffit (red dashed) and Fpred (green dot-
ted). The arrow indicates at what experiment Fpred has been fitted. In (a)
the total mean requests over the entire example application is shown. In (b)
and (c) the 95th percentile of the response times for requests visiting the
fetch/ and detect/ endpoints are shown.
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(c) Response time p95 absolute error concerning the detect/ endpoint.

Figure 4.8 Results from the 16 workload perturbation experiments con-
sidering Ffit (red marks) and Fpred (green marks). The arrow indicates at
what experiment Fpred has been fitted. In (a) the absolute error over the
mean requests in the entire example application is shown. In (b) and (c) the
absolute error over the 95th percentile of the response times for requests
visiting the fetch/ and detect/ endpoints are shown. Here, each marker
type represents a service as noted in the legend.
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Figure 4.9 Results from the 11 scaling experiments considering gathered
data (blue line), F1

pred (green dotted), F2
pred (orange dash-dotted). The

arrows indicate at what experiments F1
pred and F2

pred has been fitted. In (a)
the total mean requests over the entire example application is shown. In (c)
the 95th percentile of the response times for requests visiting the detect/
endpoint is shown.

backend 2 at this point, we reused the PH distributions and the smoothing
value of backend 1 for the fluid model. Furthermore, we set the service time
distributions in the delay queues to and from backend 2 as Erlang distribu-
tions that match the mean RTT / 2. Finally, the return routing probabilities
from storage/store/ were updated according to (4.17). For downscaling,
we instead introduce F2

pred, which we fit in Experiment 6 where the load
balancing weights are equal.

The result of the experiments are shown in Figure 4.9 for the absolute
values over the entire application and in Figure 4.10 for the absolute error
in the services. Here, we only consider the mean request populations and the
95th percentiles for the detect/ endpoint. As can be seen, F1

pred is quite
accurate and also coincides largely with Ffit (not shown). Transferring the
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Figure 4.10 Results from the 11 scaling experiments considering F1
pred

(green marks) and F2
pred (orange marks). The arrows indicate at what ex-

periments F1
pred and F2

pred has been fitted. In (a) the absolute error over
the total mean requests in the entire example application is shown. In (c)
the absolute error 95th percentile of the response times for requests visiting
the detect/ endpoint is shown. Here, each marker type represents a service
as noted in the legend.

PH distributions and the smoothing parameter from one replica to another
seems to work very well when predicting these performance metrics. How-
ever, the results would be worse if there were a significant change in service
speed at the new replica location. Finally, it can be seen that F2

pred is un-
able to accurately predict the downscaling to backend 1 in Experiment 1 or
backend 2 in Experiment 11. For both prediction models, the errors seem to
be concentrated in the two backends.
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4.5 Summary and Discussion

In this chapter, we have presented a simple yet general mixed queueing net-
work model for microservice applications, which can be quickly solved using
the smoothed mean-field fluid model. Each service is modeled as a multi-class
processor sharing queue, each service-to-service delay is modeled as a delay
queue, and each service time is allowed to have a phase-type distribution.
We further showed that the model parameters can be extracted online in a
distributed fashion from common tracing data.

Furthermore, we introduced the FedApp sandbox which simplifies the ef-
fort to setup of a multi-cluster environment in OpenStack with the possibility
of introducing arbitrary network characteristics between clusters. This sand-
box was then used to perform experiments on an example application, which
showed that the model can be used to quickly obtain accurate estimates and
predictions of important performance metrics in certain cases.

Discussion on the Experimental Results
From the two sets of experiments, it is evident that there exist some unmod-
eled load dependencies in the processing speeds and interactions between the
two request types. This is to be expected, as modeling each service as a single
multi-class PS queue is quite coarse. Despite this, at least when services are
implemented to handle requests in a PS-like manner, the model can generate
accurate estimations of different performance metrics for the current operat-
ing condition. This implies that we can use the model to accurately predict
performance metrics for small system perturbations.

For larger perturbations, we noticed that the predictions over the work-
load experiments were accurate as long as we predict in directions that do
not result in any major increase in utilization. This is mirrored in the scaling
and migration experiments. Our upscaling and migration only give a moder-
ate increase in the frontend utilization from the fitted operating condition.
On the contrary, our downscaling significantly increases utilization in either
of the two backend replicas. As can be seen, the prediction in upscaling and
migration performs well, while for downscaling, it performs poorly. This sug-
gests that general predictions for large perturbations could be accurate if we
were able to fit the model at high utilization.

Since the prediction errors in both experiment types seem to be mostly
concentrated on the two backend replicas, which are subject to requests from
an open connection, a probable cause for this is the fitting of our smoothing
parameters. This parameter aims to capture the queue population variabil-
ity, and for classes under open connections, this variability increases sharply
at high utilizations. Therefore, since we fit the smoothing parameter accord-
ing to (3.35), we will find a good smoothing value for the current operating
condition that will no longer be valid if the utilization increases too much.
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However, it seems that the value found at high utilization can produce ade-
quate predictions for lower utilizations. Furthermore, due to model errors, the
service time distributions were found to be load dependent, but only slightly.
This is why reusing them for prediction seems to generate only smaller er-
rors. However, if this load dependency were larger, such as if the system had
services with very non-PS-like handling of the request, then predicting in a
direction of decreasing utilization would most probably be problematic as
well.

Model Limitations and Errors
The introduced model has some limitations in terms of the microservice
graphs it can capture and potential error sources if the necessary assumptions
are not fulfilled.

Limitations. The model requires some assumptions on the connection be-
tween request types in services, i.e., every request in (m,n) must have the
same number of remote calls and multiple downstreams to (m,n) are only
allowed if the downstreams are replicas of the same microservice. However,
since “request type” is a user defined classification of requests visiting a ser-
vice, these assumptions can still be fulfilled by simply introducing additional
request types when violated.

However, the model has some hard limitations. Remote calls must be
sequential, and each remote call is assumed to be synchronous implying that
the processing of the calling request is paused until a response is returned.
In addition, each request can call only a single upstream in each remote call.
In particular, this disallows modeling of systems with fork-join behavior.

Still, simple forking of requests could probably be supported in the fluid
model, as long as the returning responses can be correctly handled. This
would allow for the modeling of multiple simultaneous calls, asynchronous
calls and second-phase processing in certain cases. An asynchronous call im-
plies that request processing is not blocked after the call is issued. This could
be modeled by forking the request issuing the call into one outgoing request
bound for an upstream class/queue, and one request that directly joins the
next class in the queue. Moreover, for services with second-phase process-
ing, where the processing of a request continues after a response has been
returned, this second phase could be modeled as a fork from the returning
response that continues being served in the queue. After the forks model-
ing the asynchronous call or second-phase processing completes their service,
they would have to depart the queueing network.

Error sources. Certain assumptions are not breaking but rather introduce
modeling errors when violated. First and foremost, as mentioned above, the
model assumes that each service can be adequately modeled as a single PS
queue, which can be more or less true depending on how the application
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is implemented. Furthermore, the inability to capture request processing in
a service during a remote call, or after a response has been returned, will
create errors if these are present. In addition, the model assumes that every
load balancer between multiple upstreams uses the weighted random policy.
If another policy is used, modeling errors will be introduced. Finally, the
model assumes that each service from an open connection arrives according
to a pure Poisson process. However, this could potentially be remedied by
closing the open connection [Bolch et al., 2006, p. 507].
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5
Holistic Load Balancing via
Fluid Model Differentiation

Runtime management of cloud applications is necessary to balance cost min-
imization while adhering to SLO constraints. Modern trends such as the
microservice architecture and deployments in fog/edge computing environ-
ments add new difficulties to this balancing act. Applications can consist
of many small services interacting in a graph structure, where each service
can be scaled individually and potentially placed on different sites. Requests
accessing the application will traverse this graph over different paths, de-
pending on both the type of request and the load balancing strategy chosen
between replicas. Due to differences in, e.g., communication delays, available
capacity, and resource costs, the choice of request paths will influence the
overall application latency and cost. These can, in turn, be controlled by
tuning the load balancers located between each communicating replica set.

Introduction
In this chapter, we demonstrate how automatic differentiation over the mi-
croservice fluid model introduced in Chapter 4 can be used to optimize a
running application, by tuning the load balancers to minimize some user de-
fined, holistic cost function under response time percentile constraints. We
assume that these load balancers use a weighted random strategy, and hence
the control action boils down to choosing the routing probabilities between
replicas. Furthermore, a multi-cloud deployment as seen in Figure 5.1 is as-
sumed, where replicas of the same service can be placed on different sites.

In summary, the method works as follows. First, a cost function and con-
straints are introduced based on performance metrics retrievable from the
fluid model. Then, the microservice fluid model of Chapter 4 is extracted by
parsing the tracing data of the application. By using automatic differenti-
ation, the cost function gradient can be obtained with respect to the load
balancing probabilities. This enables us to update these parameters, using,
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Figure 5.1 A microservice with its replica sets ri over multiple differ-
ent sites. The load balancer distributes the incoming load according to a
weighted random scheme with probabilities pi over the available replicas.
Multiple such microservices can be joined to deliver a larger application.

e.g., gradient stepping, in a manner that steers the application towards a set-
ting of less cost while adhering to the constraints. As the model extraction
and gradient calculation are relatively cheap, new parameters can be decided
iteratively on a running application to ensure that the system can react to
disturbances and is updated in a robust manner.

In an experimental evaluation on the small microservice application in-
troduced in Section 4.3, it is shown that the method can quickly step towards
optimal values while supporting complicated cost functions based on the so-
lutions to a system of ODEs.

Outline. First, the microservice fluid model is quickly recapped and the
concept of automatic differentiation is introduced. In Section 5.1, we discuss
how to extract the desired performance metrics and relate them to the load
balancing parameters. Then, in Section 5.2, these performance metrics are
used to define the cost function to be differentiated, and the cost optimizing
algorithm for the load balancing parameters is derived. In Section 5.3, the
method is experimentally evaluated on the small multi-cloud microservice
application. Finally, the chapter is summarized in Section 5.4.

Assumptions and Notations
The microservice fluid model introduced in Chapter 4 constructs a simplistic
queueing network model of the application that can be quickly solved using
the smoothed mean-field fluid model from Definition 3.2. The model rep-
resents each microservice replica as a single multi-class PS queue and each
replica-to-replica communication delay as a multi-class INF queue. This al-
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lows the processing stages visited by a request across the entire microservice
application to be modeled as a path over the classes in the network. Each
class is assumed to have a phase-type distributed service time. Furthermore,
external requests are assumed to arrive either as Poisson arrivals or as clients
utilizing the application. Although the individual replica models are simple,
this fluid model can capture quite general graphs of microservices, and be
completely extracted at runtime from commonly collected tracing data de-
noted H. However, due to its simplicity, it can experience modeling errors
when predicting too far from the operating point where it was fitted.

A similar notation to Chapter 3 and Chapter 4 will be adopted in this
chapter. Let Q be the set of queues, C the set of classes, and S the set
of phase states in the network. Each queue q is assumed to have a unique
set of classes Cq, and each queue/class pair (q, c) ∈ (Q, Cq) is assumed to
have a unique set of phase states Sq,c. Furthermore, let kq be the number
of servers in queue q, λ ∈ R|C|×1

+ the Poisson arrival rates to each class
and P ∈ R|C|×|C| the class-to-class routing probability matrix. Finally, let
Ψ ∈ R|S|×|S|,B ∈ R|S|×|C|,A ∈ R|S|×|C| be the parameter matrices for the
PH distributions of each class, stacked into block diagonals in the appropriate
order. Let X(t) ∈ R|S|×1 be the population vector of all phase states at
time t. The smoothed mean-field fluid model approximates E [X(t)] with the
solution x(t) ∈ R|S|×1 to the following system of ODEs,

dx

dt
= W T θ̂ (x,η) +Aλ,

x(0) = X(0), η(t) > 0, (5.1)

where W = Ψ + BPAT , θ̂i (x,η) = xiĝQ(i)

(
x, ηQ(i)

)
, and ĝq (x, ηq) is

defined as (3.31) for some phase state i and queue q.

Automatic Differentiation
Automatic differentiation is a technique for evaluating the derivatives of func-
tions defined by computer programs. The basic idea is to apply the chain rule
to the code in order to reduce it to simpler expressions where the derivative
of each individual operation can be easily defined. There are a few differ-
ent methods to automate this process, for this work we chose an existing
implementation based on dual numbers [Eastham, 1961].

Dual numbers conveniently allow for propagation of information regarding
the value of an expression, as well as the derivative of the expression, at
the same time. Hence, if we have a program where the higher-level code is
agnostic to type, and the lower level operations are defined for dual numbers,
both the value and the derivative can be calculated in one go by supplying
parameters as dual numbers.
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Automatic differentiation distinguishes itself from numerical differentia-
tion by being exact in the mathematical sense. While numerical differentia-
tion approximates derivatives using finite differences, and thus suffers from
the inaccuracies coming from those techniques, automatic differentiation uti-
lizes the exact expression. Furthermore, numerical differentiation has the
disadvantage of being computationally inefficient as the number of variables
grows, especially for higher-order derivatives [Rall, 1981].

5.1 Microservice Application Model

We consider a cloud application subjected to requests from external users
and where there are (soft) constraints on certain performance metrics, e.g.,
response time percentiles, via SLOs. It is assumed that the application con-
sists of multiple microservices that interact in a graph structure to deliver
the full application. Each microservice is assumed to have a set of replicas
that are allowed to span multiple placement possibilities, e.g., machines, clus-
ters, or even different sites, each associated with their own communication
delay. The service of requests incurs a certain cost for the application owner,
depending on things such as the cost of electricity, availability, the specific
cloud provider, etc. This cost is highly specific to the application and the
deployment, but we will assume that it is related to where the requests are
executed among the placement possibilities.

The end goal is to minimize the total cost of running the application,
while not violating the SLO constraints, by tuning parameters related to
the application deployment and management. To effectively determine these
parameters, a model can be used to estimate the impact of them on both
cost and constraints. Moreover, given such a model, it is possible to use
automatic differentiation to differentiate the cost derived through this model
with respect to these parameters. Potentially, one could then devise a control
strategy to steer the entire application towards an operating region of less
cost while keeping clear of the constraint limits. This procedure is exemplified
in this chapter by considering the load balancing between the different replica
sets in the application. Thus, our parameters to tune will be the set of all
load balancing parameters.

An illustration of this kind of setup is presented in Figure 5.2. The load
balancer is placed outside any site for conceptual understanding, but in prac-
tice it would exist on all microservice sites to reduce unnecessary network
traffic. This would also allow for a more general approach where each in-
dividual replica set has its own parameters for load balancing, which could
further reduce redundant traffic.

As our model, we adopt the microservice fluid model introduced in Chap-
ter 4. Here, the routing between services is fully determined by the class-to-
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Figure 5.2 An application consisting of two distributed microservices,
each with an internal load balancer and replicas ri,j spread over different
sites. The control variables are all routing probabilities for the load bal-
ancers, where pi = [pi,1, pi,2, pi,3] are the probabilities for microservice i.

class transitions described in the routing probability matrix P . Therefore, it
captures the more general load balancing model, where all replicas use a ran-
dom policy for load balancing requests, with the routing probabilities given
by specific rows of P . The set of all load balancing routing probabilities is
captured in the following definition.

Definition 5.1
Let pi be a vector of the nonzero probabilities of the row in P corresponding
to load balancer i, and let P = {p1,p2, . . . } be the set of all load balancing
probability vectors in the system.

The load balancing probabilities, along with returning probabilities to multi-
ple downstreams, are the only rows with multiple nonzero values. Therefore,
given P , the set P is easy to identify.

The elements of P constitute our control variables. Changing them will
affect the solution of (5.1), we denote this dependence as x(t | P).

Obtaining the Desired Performance Metrics
The important performance metrics for the application need to be derived
from our model, to form a differentiable mapping from control variables to
costs and constraints. We will base the cost of the application on the mean
number of requests present in each replica and have a single constraint on
the response time percentile, but other costs and constraints obtainable from
the fluid model could likewise be considered.
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Mean requests in replicas. As each replica is modeled by a single queue,
the mean request present at time t can be approximated from the solution
of (5.1) by summing over all the phase states present in that queue, i.e.,

xq (t | P) =
∑
i∈Sq

xi (t | P) q ∈ Q. (5.2)

Furthermore, let xQ ∈ R|Q|×1
+ be the vector of all modeled mean request

populations in each queue q in the network.

Response time percentiles. The fluid model can be used to obtain an
approximation of the response time CDF, as explained in Section 3.4. Quickly
recaptured, assume that we want to obtain the response time over some class
subset CR. Let π(t) ∈ R|S|×1

+ be the probability vector for finding a request in
the corresponding phase state after t time units, WR = Φ+BPRA

T where
PR is a reduced version of P where all transition probabilities except between
classes in CR have been set to 0, and β ∈ R|C|×1

+ a probability vector stating
which class in CR an arbitrary request will start at t = 0. The probability
of remaining in CR at time t can then be approximated using the following
ODE,

dπ

dt
= W T

RD
g(η)π(t), π(0) = Aβ(η), (5.3)

where Dg(z) ∈ R|S|×|S|
+ is a diagonal matrix with elements Dg(z)

ii = gQ(i) (η),
i.e., (3.31) evaluated at the stationary solution x∗ given some η. As (5.3)
is a linear system, the response time CDF approximation has a closed-form
solution as given by (3.48). An approximation of the percentile φα can then
be obtained by either bisection search over this closed-form solution, or by
evaluating (5.3) and finding the t such that

∑
π (t = φα) = 1 − α. As the

percentile and its approximation depend on x∗, they also depend on the
choice of P, which we denote as φα (P).

For the considered application, we are interested in the response time of
external requests entering the system. In the application model, each exter-
nal connection has a single recipient class c; therefore, β can be obtained
simply by setting βc = 1. Furthermore, CR will contain all the classes that
these external requests can visit before departing the queueing network or
reentering the client queue, i.e., the open chain that starts at class c, and ends
at the final class of the same queue and request type as explained regarding
Remark 4.1.

5.2 Route Optimization Using Automatic Differentiation

The performance metrics retrieved through the fluid model allow us to pose
an idealized optimal control version of the cost minimization problem, by
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assuming a set of load balancing probability trajectories P(t) and some cost
function Lo(·), as follows:

min
P(t)

∫
Lo [t,xQ(t),P(t)] dt,

subject to (5.1),∑
p(t) = 1 ∀t,p ∈ P,

φα [P(t)] ≤ φlim ∀t. (5.4)

By minimizing over all P(t) we can try to directly find the optimal load distri-
bution over time that minimizes selected cost. Although feasible, a problem
occurs if we try to use this control signal in a real system. The microser-
vice fluid model, extracted from tracing data from a set operating condition,
becomes less accurate as P(t) moves further from its original position. Fur-
thermore, the optimal P(t) will generally not be convergent, as the underlying
cloud system is a dynamic environment.

This requires an optimization scheme where we perform simultaneous
online optimization and model tuning in order to both update P(t) in a robust
manner and adapt to changes in the system. To create such an algorithm,
some adjustments to (5.4) are needed.

Iterative model refitting & optimization. The model will become less
accurate as the operating state changes from what was used to extract the
model. Thus, we cannot be certain that a control action based on x(t) in
regions far beyond the current state will have the expected effect on the
real system. Taking such an action is dangerous, as it can accidentally move
the system into operating regions that violate constraints or even yield an
unstable system, potentially resulting in application failure.

This can be remedied by continuously updating the model. But due to the
fast timescale of the system dynamics compared to the time needed to gather
enough data for an accurate model fitting, robust online model tracking at
the necessary speed becomes a nontrivial problem. Instead, one possible sim-
ple solution is to update P in discrete steps, where the system is monitored
between each step to gather enough data to refit the model before deciding
the next Pk. By bounding how far Pk can move from Pk−1, it is then possible
to ensure that the system moves within some vicinity of the current operat-
ing condition where the model is accurate, increasing the robustness against
accidentally violating the constraints. We denote tk as the time at step k, the
sample time as h = tk − tk−1, the data gathered between tk−1 and tk as Hk,
and the model refitted on Hk as ẋ = Fk(x), where Fk(x) = W T θ̂(x,η)+Aλ
according to (5.1).

However, this iterative scheme will result in a slower control action, and
thus a potentially slower convergence of the cost function minimization than
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fully relying on the model to decide some trajectory P(t) in a single step. In
fact, the system will reach a stationary operating condition before deciding
the next Pk as this is required to reliably refit the model. But as the overall
goal is to minimize the cost of a running application over a potentially very
long time horizon, this slowdown is acceptable as long as the system is not
subjected to too many disturbances of too high frequency.

Optimizing over weights. Optimizing directly over the probabilities be-
comes cumbersome, as we need to adhere to the constraint

∑
p = 1 ∀p ∈ Pk.

Instead, it is possible to optimize over weight vectors w and enforce the con-
straint via the softmax function S(w) [Goodfellow et al., 2016], where

Si(w) =
exp (wi)∑
j exp (wj)

. (5.5)

The softmax function maps vectors defined on Rn to vectors whose elements
are allowed to take values in the interval [0, 1] and that fulfill

∑
i Si(w) = 1.

Furthermore, the softmax function preserves the order of the vector element
quantities, i.e., if wi ≥ wj , then Si(w) ≥ Sj(w). We let each p ∈ Pk be
associated with a weight vector w, and introduce the following.

Definition 5.2
Let Wk = {w1,w2, . . . } be the set of all weight vectors at step k, and let
P (Wk) := {S(w) ∀w ∈ Wk}.

To clarify the subscript, the set Wk will be decided based on the data Hk
collected between steps k − 1 and k using Wk−1.

Limiting the step size. A natural way to manage the step sizes would be
to introduce some cost on the difference between Wk and Wk−1. However,
certain disturbances such as an increase in the load would increase the overall
cost of the system, and thus change the relative step sizes if care is not taken.
Instead, we will manage the step size limits by introducing the following
constraint on the 2-norm on the change in probability over all weight vectors,√ ∑

w∈Wk−1

||S(w)− S (w+)||22 ≤ dWlim, (5.6)

where w+ is the corresponding updated w in Wk.

Reworking the percentile constraint. Due to the dynamic nature of
cloud systems, we cannot guarantee that any performance metric constraints
can actually be fulfilled at any time step. A disturbance might arise that
pushes the system to an operating region where a constraint is violated. This
can also happen if we are unlucky with the robust stepping of Pk, although
we would still be in the vicinity of the constraint limit.

128



5.2 Route Optimization Using Automatic Differentiation

The optimization algorithm must thus be able to handle such cases and
quickly drive the system back to a viable operating region. To do this, we can
remove the constraint and instead heavily penalize the cost function in the
case of violation by, e.g., an additive cost function term Lφ [P (Wk)] using
a penalty function. The important thing is that the penalization should be
negligent as long as the constraint is not violated, sharply increase around
the constraint limit, and continue to quickly grow the further from the limit
the system moves. This will ensure that the gradient of the cost function
points the parameters towards viable operating regions.

A problem can occur in that the response time percentiles obtained from
the fluid model are approximative. Hence, the model might indicate that
φ̂α [P (Wk)] is below its limit, while the true value is in fact violated. This
can be remedied by basing the activation of the penalty function on the
estimated φα directly from data, while its cost is based on φ̂α [P (Wk)] to
make it differentiable.

New cost function. At time step k, the refitted model Fk(x) can then be
used to determine the next Wk using the following new cost function

Lk (W) =

∫ tk+tf

tk

Lq [t,xQ(t),P (W)] dt+ Lφ [P (W)] , (5.7)

subjected to ẋ = Fk(x), where x [tk | P (Wk)] is set to the stationary solution
of x [t | P (Wk−1)], and the step size constraint (5.6). As we obtain transient
values from the fluid model, we can minimize over these given some arbitrary
cost function Lq(·) from current time tk over some time horizon tf . In general,
as the system will reach a stationary state before the next action is taken,
we should let tf be large enough to capture the stationary values of xQ(t).

Furthermore, this cost function only takes into account the next stepWk,
and there is no prediction horizon for multiple consecutive {Wk+i}i≥0. This is
done for simplicity and because we are simply unsure how the model behaves
when leaving the vicinity ofWk−1. A prediction horizon could potentially be
added together with a decreasing trust further away fromWk−1, to create an
MPC-like problem formulation similar to [Incerto et al., 2017; Incerto et al.,
2018b]. This would, however, result in a quite intricate optimization problem
with no guarantees on convexity.

Cost Optimizing Algorithm
In each step, we use the cost function (5.7) to decide the next Wk. As no
prediction horizon is considered and since the optimization problem is not
convex with potentially multiple local minima, we will not try to optimize
(5.7) until convergence in each time step. This would become unnecessarily
costly, and only result in generating an optimal Wk given the step length
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Controller Application

Model
estimation

H

F

φα

W

Lq, . . . λ, . . .

Figure 5.3 An illustrative block diagram of the cost optimizing algo-
rithm. Data H is collected from the application and used to fit model F
as well as estimate the response time φα. These are then used by the con-
troller to decide W based on the old weights and the gradient of the cost
from the estimated model and percentile. Disturbances can act on both the
controller, in the form of, e.g., changes in the cost Lq, and on the applica-
tion, in the form of, e.g., changing workload λ.

constraint with no guarantees that it would actually move the system towards
its global minimum.

Instead, a more direct approach is suitable. For demonstration purposes,
we use a very simple single gradient step to decideWk, based on the gradient
of (5.7). Using automatic differentiation, this gradient ∇Lk can be obtained
directly, despite dependence on the two ODEs (5.1) and (5.3). Together with
some constant scaling factor δ and a step size limiter c, we can then calculate
the next Wk with the following gradient step update

w+ = w − cδ∇wLk (Wk−1) ∀w ∈ Wk−1, (5.8)

where ∇w is the gradient w.r.t. the elements in w, and w+ the corresponding
weight vector in Wk. If (5.6) is not violated, then c = 1, otherwise it can be
obtained via, e.g, bisection search to find a c ∈ [0, 1] such that

√ ∑
w∈Wk−1

∥S(w)− S [w+(c)]∥22 = dWlim. (5.9)

The complete algorithm can thus be seen as an adaptable gradient descent
scheme, where after each step we reevaluate the model before calculating the
gradient and deciding the next step to take. The algorithm is illustrated
in the block diagram in Figure 5.3, and summarized by the pseudocode in
Algorithm 1.
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Algorithm 1 Cost optimizing algorithm.

Algorithm 1a The control loop; Run N iterations of data collection and
parameter updates. Data collection is run for a duration of h t.u.

Initialize W0

for k ← 1 to N do
Set P(Wk−1) as load balancing strategy
Hk ← collect_data(h)
Fk, φα ← fit(Hk)
Wk ← update(Wk−1, Fk, φα)

end for

Algorithm 1b The controller; Calculate Wk based on Wk−1 and esti-
mated model Fk and percentile φα.

function update(Wk−1, Fk, φα)
Wk ← ∅
for w ∈ Wk−1 do
∇wLk ← gradient(Lk(w | Fk, φα),w)
w+ ← limited_step(w,∇wLk)
Wk ←Wk ∪ {w+}

end for
return Wk

end function

5.3 Experimental Evaluation

To test and showcase the cost optimizing algorithm, three experiments were
performed on the small microservice application from Chapter 4.

Experimental Setup
A similar setup to the one used in Section 4.4 was considered, consisting
of the simple facedetection-as-a-service application deployed on the FedApp
sandbox. In total, three clusters were deployed with 4 virtual machines each,
where each VM had 4 vCPU and 4 Gb of RAM.

The application. Quickly recapped, the face detection example applica-
tion has 3 services; one frontend, one backend and one storage. Users can
interact with the application via two endpoints on the frontend, detect/
and fetch/. The frontend/detect/ endpoint accepts requests with an at-
tached image, that is preprocessed and then forwarded to backend/detect/.
This service endpoint then performs the face detection and sends the detected
image to storage/store/ before returning it to the caller via the frontend.
Similarly, the frontend/fetch/ endpoint accepts requests with an attached
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Figure 5.4 The incoming load passes through the frontend at either the
(i) fetch/ or (ii) detect/ endpoint and is, respectively, balanced over either
the backend or storage replicas according to the associated probability
vector pm. The delay between cluster i and j are given by di,j , which is
assumed to be symmetric. The backend and storage replicas with lower
delays to the frontend are assumed to be more expensive to run.

image name, that is forwarded to storage/fetch/. This service endpoint
then returns the image with that name to the caller via the frontend.

We deployed this application on 3 clusters using FedApp as shown in
Figure 5.4. The user facing frontend has one replica f on the edge close to
its users, while the backend and storage has three replicas bi, si distributed
across the three sites, emulated by our different clusters. Each cross-cluster
connection was associated with a delay di,j , and each bi or si was associated
with a computation cost Ci. We assumed that higher costs were associated
with lower delays, in order to create a trade-off between cost and latency.
Such scenarios could occur in, e.g., fog/edge computing, where low latency
computations can be performed on the device or at geographically close edge
data centers but at an increased cost, while offloading computations to larger
sites is cheaper but subjected to longer communication delays. The more
general load balancing model was assumed, where each replica has its own
set of load balancing probabilities for routing outgoing requests. Hence, as we
have one frontend sending requests to both b1:3 and s1:3, it will have two load
balancing probability vectors pf,b,pf,s with 3 elements each. Furthermore,
as we have bi i ∈ 1 : 3, each sending requests to s1:3, each bi will have a pbi,s

with 3 elements. In total we thus obtain |P| = 5 load balancing vectors and
a total of 15 parameters to optimize over.

Before experimenting on the whole application, we first studied a simpli-
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fied version consisting of only two services, the frontend and the backend.
This simple application was deployed in a similar manner to Figure 5.4
with one frontend replica close to the user at the edge and backend repli-
cas on each cluster. This setup yields only a single application endpoint at
frontend/detect/ and a single load balancing probability vector.

Algorithm implementation. Using a load generator, images were fed
to the frontend/detect/ endpoint as Poisson arrivals with rate λ. When
considering the full application N = 50 clients were also created to fetch
images via the frontend/fetch/ endpoint with exponentially distributed
waiting times with mean 1/µc. At each time step k, tracing data from Istio
was collected to generate Hk, which was then used to fit the model Fk to Hk
and decide the next set of parameters Wk.

The model fit, cost function, and gradient stepping were implemented
using the Julia1 programming language, which has a broad library of differ-
ent methods for automatic differentiation of Julia-native functions. We used
ForwardDiff.jl [Revels et al., 2016] together with the ODE solver pack-
age DifferentialEquations.jl [Rackauckas and Nie, 2017], which allows
for automatic differentiation of the cost function, enabling the gradient ∇Lk
and the next Wk to be effortlessly calculated. The application and our im-
plementation of the cost optimizing algorithm is available on GitHub2.

Two Backends – Fixed Steps in an Offline Experiment
In a first experiment, we considered the simplified example application with
only two services, and further only two replicas of the backend, b1 deployed
on the same cluster as the frontend, and b2 deployed on a different cluster.
All connections between the two clusters were given a Pareto distributed
additive delay with a 25 ms mean, 5 ms jitter (a TC netem term roughly
equating standard deviation) and 25% correlation between samples. Hence,
requests that were load balanced to b2 experienced an additive delay.

The probability constraint enables us to determine the load balancing
probabilities directly by using a single parameter p1, and then determining
p2 = 1 − p1, removing the need for the weights and softmax function. This
makes it feasible to collect data in a grid over p1 ∈ [0, 1], and in turn allows
us to run the cost optimizing algorithm against the recorded data with a
fixed step size over this grid.

We let the cost function be conditional on φα violating φlim for selecting
either Lφ or Lq. Lφ was set to a scaled φ̂α (p1), whereas Lq was set to 0
everywhere except at time tf where it was a linear function of the state. The

1 https://julialang.org/
2 https://github.com/JohanRuuskanen/ACSOS2022_code/tree/thesis
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stationary cost in Lq was chosen to make it easier to compare to data.

Lk(p1) =

{
Cφφ̂α (p1) if φα > φlim,

CTxQ (tk + tf | p1) otherwise .
(5.10)

The conditional uses recorded data, as we would like the constraint to be
active if the estimated φα from data violates the constraint. The actual cost
was then implemented using the model prediction φ̂α (p1) to make it differ-
entiable. We let α = 0.95 to consider the 95th percentile of response times to
the application, φlim = 0.55 s, tf = 5 s, and C be a zero vector, except for
two backend replicas where it was set to Cb = [3, 1]. We set Cφ = 8, although
in this case it only affects the plot scaling, since the cost is conditional and
the gradient step is fixed. For the model, we gave each class in the queueing
network 3 phase states, for a total size of |S| = 24.

Data for the offline experiment was recorded by creating a grid over p1
with steps of 0.05 between 0 and 1. For each value of p1, data was recorded
for h = 300 s using an arrival rate λ = 14. The cost optimizing algorithm
was then run against this recorded data, starting from p1 = 1 and stepping
along the grid in the gradient direction. The results can be seen in Figure 5.5.
Figure 5.5(a) shows the mean total requests present in the application, Fig-
ure 5.5(b) shows the percentiles, and Figure 5.5(c) shows the cost based on
(5.10). The apparent noisiness can be attributed to the noisy data used for
refitting the model.

As can be seen, the algorithm manages to step in the direction of decreas-
ing cost and ultimately find the minimum. Starting at p1 = 1, the system is
passing all load to b1 resulting in φ.95 > φlim and the cost is then based on
the response time percentile. Moving in the direction of −dφ.95/dp1, the per-
centile and the total queue length are decreasing, as we offload b1 by routing
some load to b2 instead. When crossing the threshold φlim, the cost switches
to Lq. Even though we see that the total queue length starts to grow as p1
goes below 0.65, the cost for b1 is higher than b2, and thus the queue-based
cost is still decreasing with decreasing p1. However, before reaching p1 = 0,
we hit the φlim threshold again, and here the simulation is stopped since the
algorithm will start to alternate between fixed steps in different directions.

Three Backends – Online Optimization Experiment
For the second experiment, the entire cost optimizing algorithm was run live
on the simplified example application. We considered the same setup as in the
first experiment, but also introduced the third backend replica b3 deployed
on the third cluster. All connections between the first and third clusters were
given a Pareto distributed additive delay with a 50 ms mean, 10 ms jitter, and
25% correlation between samples. As we now have more than 1 parameter to
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Figure 5.5 Results from the offline experiment with two backend replicas.
The values are plotted over the probability p1. In 5.5(a) and 5.5(b) the values
from recorded data H (blue line) are compared to the corresponding model
fit (red dashed) In 5.5(b) φlim also shows when the cost (5.10) switches
mode. The cost in turn can be seen in 5.5(c) for the cost of the queues
(blue) and the cost of violating the response time threshold (green). The
lines are filled where each cost is active, and dotted where they are inactive.
The red dashed line shows the model’s estimate of the full cost.
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optimize over, we resorted to using the weight vectors in W as described in
Section 5.2.

For the cost function, we again let Lq be a linear function of the queue
lengths at tf and 0 at other times, only to consider stationary values for
simplifying comparisons with data. However, the response time constraint
was included by setting Lφ as an exponential penalty function based on
the difference between φα and φlim. Again, we based the activation of the
constraint on recorded data, as we would like it to be active when the real
φα is near or above its limit. The resulting cost function becomes

Lk(W) = CTxQ [tk + tf | P (W)]

+ Cφe
ν(φα−φlim)φ̂α [P (W)] , (5.11)

where we set α = 0.95, φlim = 0.6 s, ν = 10, Cφ = 5, tf = 5 s and C to a
zero vector except for the backend replicas where it was set to Cb = [3, 2, 1].
Furthermore, the gradient step parameters were set to δ = 0.5 and dWlim =
0.15. For the queueing network model, we gave each class 3 phase states for
a total of |S| = 33.

The system was loaded with Poisson arrivals of rate λ = 15 for a total
of 40 time steps, with the initial weight vector set to w0 = [2, 0, 0], giving
p0 ≈ [0.78, 0.11, 0.11]. Each time step was given a duration of h = 300 s. We
further let the running system be influenced by two disturbances. The first
disturbance was introduced at time step 14, where the arrival rate suddenly
increases by 50% to λ = 22.5. The second disturbance was introduced at time
step 27, where the costs for the backend replicas are changed to Cb = [1, 2, 3].
The results of this experiment can be seen in Figure 5.6, showing the total
mean requests present in the application, the response time percentiles and
the cost based on (5.11) over the time steps. Furthermore, Figure 5.6(d)
shows the three load balancing probabilities from the frontend to b1 (p1,
blue), to b2 (p2, red dashed) and to b3 (p3, green dotted).

As can be seen, the online optimization algorithm manages to drive the
system towards a load balancing setting of less cost and counteract the dis-
turbances in a few steps. At first, the system shifts load from b1 to b2 and b3.
This decreases the cost, but it also increases the total queue length and re-
sponse time percentile, as b2 and b3 are associated with a greater site-to-site
delay. The shift is mostly stopped when the percentile constraint is reached,
but due to the simplicity of the gradient descent approach, the system expe-
riences a slow final convergence. When the first disturbance in the form of
a 50% increase in load is introduced, both the queue length and percentiles
increase immediately. As the percentile constraint is now violated, the cost
function spikes, resulting in the gradient step aggressively moving the sys-
tem back into a parameter configuration where the constraint is no longer
violated. After the constraint is fulfilled once again, the cost function slowly
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Figure 5.6 Results from the online experiment with three backend repli-
cas. The values are plotted over the time steps, each corresponding to a
sampling period of 300 seconds. In 5.6(a), 5.6(b) and 5.6(c) values from
recorded data H (blue line) are compared to the corresponding model fit
(red dashed). Further, in 5.6(d) the three lines corresponds to the three load
balancing probabilities. Finally, the blue shaded area shows where the first
disturbance is active on the arrival rate, while the shaded red area shows
where the first and second disturbance are active on both arrival rate and
queue length costs. A one time step lag can be seen on 5.6(a), 5.6(b), 5.6(c)
compared to 5.6(d) as Hk is recorded using Wk−1.
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settles to a minimum. At the activation of the second disturbance, in the
form of shifting the costs of b1 and b3, the cost function increases while the
queue length and percentile remain the same. The system then quickly shifts
the load probabilities and reduces the cost until the effects of the penalty
function become too large and settles to a slow final convergence.

At a few steps, it seems that the algorithm steps upwards in cost, but
this can be attributed to noise. Furthermore, as can be seen in Figure 5.6(b),
there are at times rather large gaps remaining between the percentile and
its limit. This has to do with the values assigned to the penalty function.
Increasing Cφ and α would lead to more aggressive handling of violations
and a tighter gap, but they were kept fairly low to yield a more presentable
cost function.

Full Application Experiment
For the third and final experiment, we considered optimization at runtime of
the entire example application deployment shown in Figure 5.4. As we here
have 5 load balancing probability vectors in P, for a total of 15 parameters,
we again resorted to optimizing over the weight vectors in W.

Since we load two endpoints with request arrivals, each endpoint was given
a separate percentile constraint on its response times. A similar cost function
to (5.11) was used. The queue length cost Lq was again set to a linear func-
tion of the queue lengths at time tf , and the two response time constraints
were added as separate exponential penalty functions Ldetect/

φ , Lfetch/
φ . The

activation of these penalty functions was again based on recorded data. The
resulting cost function becomes

Lk(W) = CTxQ [tk + tf | P (W)]

+ Coφe
νo(φo

α−φo
lim)φ̂oα [P (W)]

+ Ccφe
νc(φc

α−φc
lim)φ̂cα [P (W)] , (5.12)

where o = detect/ and c = fetch/. Furthermore, we set α = 0.95, tf = 5 s,
and C to a zero vector except for the backend and storage replicas, where
it was set to Cb = [6, 4, 1], Cs = [6, 4, 1]. The two response time percentile
limits were set to φdetect/

lim = 1.25 and φfetch/
lim = 0.4, while the parameters for

the penalty function where set to Cdetect/
φ = Cfetch/

φ = 100, νdetect/ = 12,
νfetch/ = 30. For the queueing network model, we gave each class 3 phase
states for a total of |S| = 139.

The system was then loaded for a total of 25 time steps, each given a
duration of h = 300 s. The Poisson arrivals to the detect/ endpoint were
given the rate λ = 15 and the clients connecting to the fetch/ endpoint
were given the waiting time 1

µc
= 1.0. Initial values for the frontend replica

were set to wf,b
0 = wf,s

0 = [2, 0, 0], prioritizing sending requests to b1 and
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s1 on the first cluster. For the backend replicas, they were instead set to
wb1,s

0 = wb2,s
0 = wb3,s

0 = [0, 0, 0] loading the storage replicas equally across
the clusters. At k = 17 the system was subjected to a load disturbance,
where the Poisson arrival rate was increased by 50% to λ = 22.5 and the
waiting times for the clients were reduced by 50% to 1

µc
= 0.5. The results

can be seen in Figure 5.7, showing the total mean requests present in the
application, the response time percentiles for both endpoints and the cost
based on (5.12) over the time steps. Furthermore, Figure 5.8 shows the load
balancing probabilities over the time steps.

As can be seen, the optimization algorithm manage to drive the queue
length costs down, despite having to simultaneously tune the 15 load balanc-
ing parameters. At first, it seems that the algorithm prioritizes tuning the
frontend load balancing parameters, which decreases costs at the expense
increasing the percentiles and slightly the total mean requests. After about 8
time steps, the response time percentiles, especially φfetch

.95 starts to get close
to its limit, and the algorithm seems to shift its focus to tuning the backend
load balancing parameters, which further decreases the costs. After the work-
load disturbance both response time percentile constraints becomes violated,
but the algorithm manages return to an valid operating condition after a few
steps by focusing on retuning the frontend load balancing parameters.

In this experiment, some downsides of using our simple gradient stepping
optimization scheme can be observed. First, looking closer at Figure 5.7(d),
it can be seen that the algorithm after a few steps actually starts to increase
the cost function that we are trying to minimize. The upward trend is split
between alternating increases and decreases in cost. Hence, this can probably
be attributed to the algorithm stepping back and forth along the edges of
the penalty functions. When a penalty function is small but close to its limit,
naively stepping in the direction of the cost function negative gradient might
yield parameters where the penalty function is much larger. The new gradient
at these parameters can in turn point in a new direction that after another
step yields a higher cost than the parameters two steps back and so on.
This behavior is not desired, but the algorithm still manages to reduce the
queue-length cost, which is what we actually care about.

Furthermore, after the disturbance has been introduced, we can in Fig-
ure 5.8(a) see that the algorithm seems to deal with the constraint violations
one at a time. A probable cause for this is that the exponential penalty func-
tion increases very quickly in cost when its limit is violated. Therefore, if
more than one penalty function is simultaneously violated, one of the func-
tions, in this case Ldetect/

φ , might get a much higher value than the rest.
Reducing this function then becomes prioritized in the gradient step and will
lead to a slower return to a valid operating condition where no constraints
are violated.
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Figure 5.7 Results from the online experiment with the complete face
detect application. The values are plotted over the time steps, each cor-
responding to a sampling period of 300 seconds. In all subfigures, values
from recorded data H (blue) are compared to the corresponding model fit
(red). In 5.7(d), both queue length cost Lq (blue line) and the total cost
(blue dashed) are shown. The blue shaded area shows when the workload
disturbance is active.
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Figure 5.8 Load balancing probability parameters from the online ex-
periment with the complete face detection application. The full lines shows
the probability to send to a replica in cluster 1, the dashed lines to a replica
in cluster 2 and the dotted lines to a replica in cluster 3. In 5.8(a) the
probabilities between the single frontend replica on cluster 1 to the three
backend replicas (blue) and storage replicas (red) are shown. In 5.8(b) the
load balancing probabilities from the backend replicas on cluster 1 (blue),
cluster 2 (red) and cluster 3 (green) to the three storage replicas are shown.
The blue shaded area shows when the workload disturbance is active.

Comment on Evaluation Speed
For the simplified application with three backend replicas, the model fit-
ting and parameter update according to Algorithm 1 take around 15 s. The
majority of the time (≈ 13 s) goes towards fitting the 11 PH distributions
using the EM algorithm, which can be made faster by, e.g., moment matching
[Osogami and Harchol-Balter, 2006]. The differentiation step itself is quick,
taking around 180 ms. However, on the full application, model fitting and
parameter update takes around 80 s, with updating the 47 PH distributions
taking 60 s, and the differentiation step noticeably slower at 4.7 s.

The forward-mode automatic differentiation using ForwardDiff.jl scales
as O (|S| · |P|), i.e., the number of states times the number of parameters
[Revels et al., 2016]. Hence, the evaluation of the gradient should be some-
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where in the vicinity of (139·15)/(33·3) ≈ 21 times slower for the full applica-
tion, which is about right as 4.7/0.18 ≈ 26. This might seem slow, but taking
into account that evaluating the cost function takes approximately 110 ms
and 170 ms for the simplified and standard application, respectively, it is still
faster than estimating the gradient with a naive finite difference. This would
roughly take for the simplified application 3 ·2 ·110 = 660 ms and for the full
application 15 · 2 · 0.17 = 5.1 s. However, a finite difference approach is not
constrained to Julia-native ODE solvers, which could potentially be slower
than other more optimized alternatives.

5.4 Summary and Discussion

In this chapter, we have demonstrated how automatic differentiation can be
used to optimize a running distributed microservice application. This is done
by deriving an online optimization scheme to minimize some holistic cost by
tuning the probabilities of random load balancers between replica sets. Al-
though it is not guaranteed to find the global cost minimum, the algorithm
is shown to reduce cost while adhering to constraints on the response time
percentile in experimental evaluations. As the assumed microservice fluid
model is fairly general and the cost function and its constraints can be arbi-
trarily defined, this online optimization scheme can be quickly adapted for a
multitude of different load balancing scenarios.

Discussion. Automatic differentiation allows us to obtain the derivatives
of functions that would be too difficult to explicitly derive. In our case, it is
used to differentiate through an arbitrary cost function L based on the solu-
tion of two dependent ODEs from our fluid model. Other models, in addition
to our adapted microservice fluid model, can potentially be considered for
this purpose. However, as this model can be quickly extracted online from
data, has expressions for response time percentiles, and is relatively quick to
evaluate and differentiate using the Julia ecosystem, it can be used to derive
an online cost optimizing algorithm that adheres to percentile constraints.

The slow evaluation of our current implementation of the cost optimizing
algorithm is a hindrance for tackling larger systems. For these cases, time
needs to be spent on optimizing the code. Focus should be put on faster
methods for obtaining the PH distributions and faster evaluation of the cost
function. Furthermore, due to the poor scaling of forward-mode automatic
differentiation in the number of parameters and states, other methods for au-
tomatic differentiation with better scaling properties should be investigated,
see, e.g., [Rackauckas et al., 2020, Section 6.3].

The generality of our cost optimizing algorithm is not only a boon but
also gives the approach some drawbacks. First, there are no convergence
guarantees, and the performance is inherently dependent on the accuracy of
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the model. Identifying when a model is performing poorly is thus important to
avoid driving the system into regions of high cost or constraint violations. In
addition, deriving a suitable cost function and good optimization parameters
will require both time and expert knowledge.

Finally, the simplicity of using a single gradient step to update the pa-
rameters can become problematic for more advanced systems. The algorithm
risks getting stuck in local minima, and as seen in the full application exper-
iment, it can potentially also lead to an increase of the total cost. For this
particular experiment, the algorithm still manages to decrease the important
queue length costs, but the question remains if this generalizes to all settings.
We recon that it probably should for most cases, as the gradient step will
always try to move in the direction of decreasing queue length cost as long
as the penalty functions are small.
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6
Modeling Request Cloning
Using Synchronized Service

Request cloning offers a possibility to significantly improve the performance
of cloud applications that experience large uncertainties in the computation
time of its requests [Ananthanarayanan et al., 2013]. By sending copies of
user requests to multiple instances of the same server, both the response time
mean and its tail could potentially be reduced. However, this also introduces
extra load on the system which instead risk increasing the response time.
Thus, to determine the particular benefits and a suitable number of clones, it
is important that the considered cloning system can be adequately modeled.

Introduction
Previous modeling research for request cloning and speculative execution has
mainly focused on queueing theory with specific IID interarrival and service
time distributions under the FCFS discipline. In this chapter, we however
take another approach by introducing a concept we refer to as synchronized
service, that allows certain cloning systems to be equivalently represented as
a single G/G/k queue. This representation requires no assumptions on the
distributions for the involved queues, and is valid under any deterministic
queueing discipline and number of processors k, as long as they are the same
across all queues.

The equivalent G/G/k model implies that if there exists methods for ex-
tracting performance metrics for the resulting queue, then these can be used
to analyze the entire cloning system. This is used to study the optimal number
of clones over sets of M/G/1-PS queues, both for the baseline synchronized
system, and for sets of synchronized systems behind a load balancer. Since
synchronized service requires the introduction of unrealistic assumptions, we
further study what happens to synchronized systems if these assumptions
are relaxed. For this we limit ourselves to the PS discipline, as it is prevalent
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in modeling cloud applications and has not previously been studied in con-
junction with request cloning. Finally, we introduce a method based on the
equivalent G/G/k model that can approximately model speculative execution
in systems with server-side queueing.

The theoretical findings are validated using a discrete event simulator, and
it is shown that we in accordance with theory are able to precisely predict the
behavior of server systems subject to cloning that fulfill the assumptions for
synchronized service. Further, it is shown that for cloning over PS queues,
relaxing the necessary assumptions only has a minor effect on the mean
response time under low loads or certain load balancers such as JSQ. For these
cases, the equivalent G/G/k model serves as an accurate approximation.

Outline. This chapter is structured as follows. In the end of this introduc-
tion, some necessary modeling assumptions and the cloning simulator used
for our experiments are introduced. In Section 6.1 we then introduce the
concept of synchronized service, the necessary assumptions and the equiv-
alent G/G/k model that arises for such systems. In Section 6.2, the usage
of the model is exemplified by studying the optimal number of clones with
respect to mean response time. Further, in Section 6.3 we study what hap-
pens if the assumptions necessary for synchronized service are relaxed, and
in Section 6.4 extend the model to allow for speculative execution. Finally,
the chapter is summarized in Section 6.5.

Assumptions and Notations
We assume a system of n servers, subjected to original requests rorig from
some arrival process. Each original request is then copied into a set of clones
Rc, and dispatched across the n servers in some manner. The first clone in
this set to complete its service becomes the response of its rorig. The rest of
the clones are assumed to be subsequently canceled according to the Cancel-
on-Complete (CoC) principle. This is necessary for synchronized service, and
the PS discipline which we will later focus on is not compatible with Cancel-
on-Start (CoS) cloning as every clone starts its service immediately upon
arrival. Henceforth, we will assume that cloning is synonymous with CoC
cloning, and refer a system of the type introduced above as a cloning system.

Each server will be modeled with a single queue with k internal servers, to
avoid confusion we will refer to these as processors in this chapter. Let Φsi (t)
denote the CDF of the service time distribution for server i, and Φλ(t) denote
the CDF of the interarrival time distribution between requests. At first, no
assumptions on either Φsi (t), Φλ(t) nor queueing disciplines are made, apart
from that the queueing discipline is deterministic and the same across all
servers. To enable further analysis, we will later restrict our assumptions and
require k = 1, the PS discipline and homogeneous service times.
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The Cloning Simulator
In this chapter, we demonstrate and evaluate the to-be-stated examples and
claims using our own discrete event simulator1. We refrained from using
existing simulators like CloudSim [Calheiros et al., 2011] or real experiments,
both due to simplicity and since we wanted to evaluate our results without
having to take modeling errors between the (simulated) infrastructure and
queueing models into consideration.

To construct the simulator, we took inspiration from the brownout sim-
ulator2 (see [Klein et al., 2014]). Modifications were made to remove the
adaptation layer and add cloning functionality. The resulting cloning simu-
lator includes the options to define: (i) the interarrival time distribution and
the service time distributions individually for the n servers, (ii) the number
of clones or cloning factor cf , (iii) the load balancing strategy and (iv) ar-
rival and cancellation delays. The arrival and service time distributions can
be heterogeneous and even allowed to be set based on empirical CDF data.

6.1 Synchronized Service and the G/G/k Model

We define synchronized service of a cloned request as follows

Definition 6.1—Synchronized service
An original request rorig is said to receive synchronized service if all its

clones Rc begins and ends their service at the same time.

To show when this concept holds, the following two central assumption
regarding the number and placement of the clones to every rorig, and the
absence of timing issues between arrivals and cancellations of clones, will
first be introduced.

Assumption 6.1—Clone-to-all
Every original request rorig is cloned once to all available servers s1:n. Denote
this set of clones as Rc := rc1:n, signifying that clone rci is placed on si.

Assumption 6.2—Synchronous arrivals and cancellations
All clones of every rorig arrive at their respective servers at the same time,

and after the completion of the service of the first clone to rorig, all its clones
are removed from service at the same time.

Note that completed clones to rorig are assumed to still occupy processors
until all clones are simultaneously removed. Further, let a ≥ 0 be the time
between arrival of rorig to the cloning system and arrival of rc1:n to the servers,

1 https://github.com/tomminylander/cloning-simulator
2 https://github.com/cloud-control/brownout-simulator
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Figure 6.1 Clone-to-all: A cloning system of 3 servers under synchronized
service. Each server is represented with a single queue. Each arriving request
rorig is cloned to the 3 servers, and by the assumption of synchronized arrival
all clones rc1, r

c
2, r

c
3 will enter their servers simultaneously. The response to

the client is produced by the server that completes its cloned request in the
smallest time (for this particular rorig by server 3). Given CoC cloning and
the assumption of synchronized cancellation, the request processing of the
clones ends simultaneously. Due to the deterministic queueing discipline,
the queue length and order of request clones are identical in each server at
all times, implying that all request clones to every rorig will begin and end
their service at the same time.

and let c ≥ 0 be the time between the completion of the first clone of rorig
and the cancellation rc1:n. Using these two assumptions, the following lemma
can then be stated.

Lemma 6.1
All original requests in a cloning system under Assumptions 6.1 and 6.2
receive synchronized service, as long as the servers have the same k and
deterministic queueing discipline.

Proof. Trivially, since for every rorig its clones arrive and depart each server
simultaneously at all times, and all servers experience the same deterministic
queueing discipline, both the queue length and time-of-arrival order of the
request clones must be the same in each server. Further, as the number of
processors k are the same for each server, all request clones to each rorig

must start (and end) their service at the same time. 2

A cloning system fulfilling Lemma 6.1 is said to be under synchronized ser-
vice, and referred to as a clone-to-all system.

An illustrative image of a clone-to-all system can be seen in Figure 6.1.
Deterministic queueing disciplines includes most commonly used ones, such
as the introduced FCFS, PS and INF disciplines. Before continuing, we will
for completeness state the following classic result regarding the CDF of the
minimum over a set of stochastic variables.
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Lemma 6.2
Given a set of n independent random variables {X1, . . . , Xn}, each with their
distinctive CDF denoted as Φi(x) for Xi, the CDF of the random variable
Xmin = min{X1, . . . , Xn} is given by

Φmin(x) = 1−
n∏
i=1

{1− Φi(x)} . (6.1)

A similar, more complex result exists if {X1, . . . , Xn} are dependent.

Proof. This is a well-known fact in statistics. It can be quickly shown by
expressing Φmin(x) = P (min {X1, . . . , Xn} ≤ x) = P

(⋃
i∈1..n [Xi ≤ x]

)
and

expanding the union via the inclusion-exclusion principle [Modica and Pog-
giolini, 2012, Corollary 2.70]. If {X1, . . . , Xn} are independent, the resulting
formula reduces to (6.1). 2

Now, if we assume that the arrivals and cancellations happen immediately,
then the following theorem can be stated.

Theorem 6.1—The Equivalent G/G/K Model
Assume a clone-to-all system with a = c = 0, it will behave equivalently to a
single G/G/k queue of the same discipline and k as the original servers with
interarrival distribution Φλ and service time distribution Φsmin, determined
according to Lemma 6.2 over Φs1:n.

Proof. Due to the assumptions necessary for synchronized service, the queue
lengths and cloned request order are identical in each server at all times.
The entire system can thus be equivalently thought of as a single k-processor
queue of the same discipline, representing the queueing of all original requests.
When rorig arrives to the system, as a = 0 all its clones immediately arrives
at the servers, hence Φλ is the interarrival time CDF to this new equivalent
queue as well. Furthermore, the service of all clones of rorig will start at
the same time, and since c = 0 they will all end their service immediately
at the completion of the first clone. Thus the service time of rorig in this
new equivalent queue becomes the minimum over the service times in all n
servers. 2

Remark 6.1
Theorem 6.1 does not require any assumptions on properties of either the
interarrival distribution or the service time distributions. Furthermore, the
theorem holds for any homogeneous (deterministic) queueing discipline and
value of k across the servers.

The equivalent G/G/k model allows us to directly obtain utilization and
throughput for the entire cloning system, and if there exists approximations
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for retrieving, e.g., mean queue length for the G/G/k model, then these can
be used to analyze the cloning system as well. If not, it is always possible
to obtain the wanted metrics via simulation of the G/G/k model at a lower
computational cost than simulating the entire cloning system.

In contrast to previous research that heavily relies on the FCFS discipline
and specific properties of the interarrival and service time distributions, syn-
chronized service and the equivalent G/G/k model extends the state of the
art. However, we have essentially traded the assumptions on the involved
queues for the assumptions necessary to obtain synchronized service. It is
limiting that synchronized service requires a clone-to-all policy, and the as-
sumptions of synchronized arrivals and cancellation are unrealistic to obtain
in real settings. However, the clone-to-all system can be used as the basic
building block for more complex structures where, for example, a load bal-
ancer can be placed in front of multiple such systems which is studied in
the final part of Section 6.2. Furthermore, in Section 6.3 we study what will
happen if we relax these two necessary assumptions under the PS discipline.

Demonstrating Equivalence via a Simulation Experiment
In this section, we demonstrate that the equivalent G/G/k model is in fact
equivalent to a clone-to-all system, by performing a simulation experiment
using the aforementioned cloning simulator.

Consider a cloning system of 3 servers under synchronized service. Each
server is assumed to be modeled by a single PS queue with k = 1. Assume that
the interarrival times are uniformly distributed between 0 and 4. Further, as-
sume that the service time distributions are independent, but heterogeneous
with the following distributions

(i) Exponential with Φs1(t) = 1− e−0.480t.

(ii) Weibull with Φs2(t) = 1− e−0.125t3 .

(iii) Uniform with Φs3(t) = (t− 0.5)/3.5 if 0.5 ≤ t ≤ 3.5 else 0.

Using Theorem 6.1, we can model this clone-to-all system with an equiv-
alent G/G/k model with the service time distribution Φsmin(t) = 1 −∏3
i=1 [1− Φsi (t)]. The interarrival time distribution of the equivalent G/G/k

model is the same as for the original cloning system.
In total, 20 simulation experiments, each with 106 requests, where per-

formed for both the cloning system and the equivalent model. In Figure 6.2
the the resulting empirical CDFs of the cloning system and the equivalent
G/G/k model are shown to be practically identical.
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Figure 6.2 The empirical response time CDFs from a cloning system of 3
servers under synchronized service (black) and from the equivalent G/G/k
queue (red dashed). The data was retrieved through 20 repeated simulations
of 106 requests each, and the 95% confidence intervals lie within the lines.

6.2 Analyzing Synchronized Cloning Systems

In this section, we exemplify how the equivalent G/G/k model can be used
to analyze cloning systems using existing results in queueing theory. This is
done by investigating the optimal cloning factor cf ∈ Z+, i.e., the number of
clones for each request, with respect to the mean response time in systems
under synchronized service. First, the baseline clone-to-all system will be
considered. Later, we will show how a set of clone-to-all systems can serve as
building blocks when modeling cloning systems behind a load balancer, and
analyze the codesign between load balancer and cloning factor.

Although the equivalent G/G/k model is compliant with any interarrival
and service time distributions we restrict ourselves to the PS discipline, k = 1
and Poisson arrivals with mean λ to simplify the analysis. To add a bit of
realism and showcase how the G/G/k model can handle dependencies the
S&Z model described next will be used for the service time distributions.

S&Z—A dependent service time model. The equivalent G/G/k model
supports dependencies across service time distributions. In Φsmin(t), these
dependencies are normally represented by joint CDFs between service times,
which is in general difficult to determine and analyze. In [Gardner et al.,
2016a] a model is proposed that alleviates this issue by decoupling the task
size of the original request rorig from the server slowdowns affecting clones
rc1:n. This is motivated by the fact that in real systems, the clones to an
original request are all copies of the same task to be processed. Let Zorig
denote the original task size and Sc1:n the slowdowns, both are assumed to be
independent stochastic variables. We will use the multiplicative version that
expresses the service times ts1:n of the clones rc1:n as ts1:n = Zorig · Sc1:n.
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This service time model simplifies our analysis of dependent clones, as
the server slowdowns S1:n can be viewed as independent across servers and
original requests rorig. Hence tsmin can be written as the product distribution
tsmin = Zorig ·Smin, where the CDF of Smin is determined according to (6.1).
Calculating the distribution is cumbersome, but its first moment becomes

E[tsmin] = E[Zorig] · E[Smin]. (6.2)

Hence, if the expected values for Zorig and S1:n are known, the expected
value can be obtained for the service time distribution of the equivalent
G/G/k model. Similar results exists for higher moments.

Assumption 6.3
In the remainder of this section, we will model the server slowdowns S1:n

using the empirical Dolly distribution, with the PMF defined in Table 6.1 for
the Dolly(1,12) case. The task size Zorig will be modeled using a two phase
hyperexponential distribution with balanced means with E[Zorig] = 1/4.7 and
squared coefficient of variation

(
D
[
Zorig

]
/E
[
Zorig

])2
= 2. These particular

values are chosen such that E [tsi ] = E
[
Zorig

]
· E [Si] = 1 for any server i.

First published in [Ananthanarayanan et al., 2013], and later on used in e.g.
[Gardner et al., 2016a], the Dolly distribution is a discrete distribution based
on empirical data on server slowdowns from traces collected from Microsoft
Bing’s Dryad and Facebook’s Hadoop clusters.

Finding Optimal Cloning Factors in Clone-to-All Systems
For the baseline clone-to-all system, the equivalent G/G/k model is directly
obtainable. Whether evaluated by closed-form expression or simulation, it is
possible to check all relevant cloning factors exhaustively to find the optimal
versus some performance metric, as the cloning factor cf is a one dimensional
discrete variable. However, as a clone-to-all system implies that n = cf ,
service times, arrival rates or processors needs to be scaled accordingly to
make any meaningful comparisons.

Regarding the mean response time, many closed-form expressions rely
upon the first and second moments of the interarrival and service time dis-
tributions. As shown, these are in fact obtainable in a simple fashion from
the equivalent G/G/k model, even for dependent service times using the S&Z
model. Considering our example system with PS queues and k = 1 processors,

Table 6.1 The empirical Dolly(1,12) distribution from [Anantha-
narayanan et al., 2013], used to model server slowdowns S1:n.

S 1 2 3 4 5 6 7 8 9 10 11 12
Prob. 0.230 0.140 0.090 0.030 0.080 0.100 0.040 0.140 0.120 0.021 0.007 0.002
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(a) Optimal cloning factors.
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Figure 6.3 Clone-to-all: (a) the optimal cloning factors together with (b)
the corresponding optimal mean response times over an interval of arrival
rates. The figure shows an comparison between theoretical values (blue line)
and simulated 95% confidence interval of the means (red area).

and with Poisson arrivals and service times according to Assumption 6.3, the
expression for E[T ] becomes

E [T ] =
E [tsmin]

1− λE [tsmin]
=

E
[
Zorig

]
E [Smin]

1− λE [Zorig]E [Smin]
. (6.3)

For stability, Equation (6.3) requires the utilization ρ of the clone-to-all sys-
tem to be less than 1, or

ρ = λE
[
Zorig

]
E [Smin] < 1. (6.4)

This allows us to determine utilization, thus stability, and mean response
time for our clone-to-all system for any cloning factor cf . Using (6.3), we can
thus find the optimal cloning factor cof and the corresponding optimal mean
response times E[T ]o using exhaustive search.

An example is shown in Figure 6.3. The top figure shows the optimal
cloning factors cof , whereas the bottom figure shows the corresponding opti-
mal mean response times E[T ]o. The blue lines show the theoretical values,
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while the red areas show the 95% confidence interval of the means for the
simulation results. As expected, the simulated cof and E[T ]o follow their theo-
retical values closely. The comparison between cloning factors was performed
such that the arrival rate per server is preserved, i.e., if a new server (and
clone) is added λ is scaled accordingly. This could, for example, model joining
multiple servers under similar arrival rates, to a single cloning system sub-
jected to the combined arrivals. For each λ/server, the optimal cloning factor
is found by checking each cloning factor cf ∈ 1 : 13 and choosing the one
that yields the smallest mean response time. All simulations where evaluated
over 20 independent runs per combination of λ and cf , each for 106 incoming
requests.

As expected, higher cloning factors are more beneficial for lower system
loads since the clones can utilize servers that otherwise would be mostly idle.
For high system loads, the service time dependencies introduced in the S&Z
model limit the use of cloning and for λ > 0.6 per server, no cloning (cof = 1)
is optimal.

Multiple Clone-to-All Systems Behind a Load Balancer
A partial relaxation of the clone-to-all assumption can be made by allowing
cloning to subsets of servers, i.e., clusters, as proposed in [Joshi et al., 2017].
This is more natural, as it allows us to choose a smaller cloning factor cf than
the available servers n. The clone-to-all assumption can instead be fulfilled
in each cluster, by cloning to all its servers for each incoming request to
said cluster. A load balancer can then be placed in front of the clusters to
determine which cluster to direct the clones of rorig. We denote this a clone-
to-cluster system, and define it as follows.

Definition 6.2—Clone-to-cluster
A cloning system of n serves partitioned into m clusters, each j ∈ 1 : m

containing dj servers s.t.
∑
j dj = n. The servers in each cluster is assumed

to have the same k and deterministic queueing discipline. The clusters are
further assumed to lie behind some load balancer with policy ℓ, which directs
incoming original requests rorig to some cluster cluster j. The request is then
cloned to all servers in cluster j according to Assumptions 6.1 and 6.2.

Each cluster in a clone-to-cluster system becomes its own clone-to-all system,
and assuming a = c = 0, they each have an equivalently G/G/k model. Thus
the entire clone-to-cluster system can be modeled as m G/G/k queues behind
some load balancer. An illustration can be seen in Figure 6.4. In the rest of
this chapter, we will for simplicity assume that dj = d ∀j ∈ 1 : m.

Analyzing a clone-to-cluster system is thus reliant on there existing ex-
pressions for the desired performance metrics of m G/G/k queues behind ℓ.
This is true in certain cases, e.g., for random load balancing with Poisson
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Figure 6.4 Clone-to-cluster: A cloning system where the n = 4 servers
have been partitioned into m = 2 clusters of d = 2 servers each. The two
clusters lie behind some load balancer with policy ℓ, which directs and clones
the incoming requests to the clusters. Each cluster is assumed to fulfill the
assumptions necessary to be considered a clone-to-all system on its own.

arrivals of rate λ, each G/G/k queue simply receives Poisson arrivals of rate
λ/m. However, compared to the clone-to-all system it is in general harder
to determine optimal cloning configurations. It boils down to choosing {dj}
and m with respect to some performance metric and thus exhaustive search
quickly becomes computationally infeasible for large n.

With our assumption dj = d ∀j ∈ 1 : m, exhaustive search can however
still be used. It implies that m = n/d, and thus finding the optimal configura-
tion again becomes the search over a one dimensional discrete cloning factor
cf = d. However, the assumption restricts choices of d to systems where n
and d are evenly divisible.

Codesign example using Random and JSQ. Assume n = 12 servers
under the PS discipline with k = 1, which assuming equal cluster sizes im-
plies that sizes cf = d ∈ {1, 2, 3, 4, 6, 12} are valid choices of cluster sizes.
The extreme cases cf = 1 corresponds to a system with no cloning, while
cf = 12 implies a clone-to-all system. As before, we assume Poisson arrivals
and service times distributed according to the S&Z model defined in As-
sumption 6.3. The two load balancing policies considered are Random and
JSQ.

Random: As the Random policy preserves Poisson arrivals to the clusters
with rate λ/m, the exact analysis regarding the clone-to-all policy pre-
sented in the previous subsection is directly applicable to this codesign.
We denote this codesign as cluster-Random-d (c-R-d).
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Figure 6.5 Clone-to-cluster: (a) the optimal cloning factors, or cluster
sizes, together with (b) the corresponding optimal mean response times over
5 different arrival rates. The figure shows an comparison between theoretical
values for c-JSQ-d (blue circles) and c-R-d (red crosses), and simulated
values for c-JSQ-d (blue) and c-R-d (red dashed).

JSQ: An expression of E [T ] for a JSQ system with PS queues under Pois-
son arrivals can be obtained with the very accurate approximation pre-
sented in [Gupta et al., 2007a], given λ, m and the first moment of
the service time distribution. As these are all obtainable for the equiv-
alent G/G/k queue, the JSQ approximation can be used analyze this
codesign which we denote as cluster-JSQ-d (c-JSQ-d).

In Figure 6.5, the theoretical and simulated optimal cloning factors (or
equivalently cluster sizes) cof = d and corresponding optimal mean response
times E [T ]

o are shown. The blue circles and red crosses show the theoretical
results for the c-JSQ-d and c-R-d strategies, respectively. The blue and red
dashed lines show the respective simulated values, with the 95% confidence
intervals within the displayed lines. As can be seen, the theoretical and simu-
lated values match very well. The c-R-d match is exact as it is obtained using
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exact analysis, while the simulated c-JSQ-d mean response times are slightly
(1-3%) off as they are based on (highly accurate) approximations. Similar
to the clone-to-all system example, we used exhaustive search to find the
optimal cloning factor. All simulations where evaluated over 20 independent
runs per combination of cf , λ and ℓ, each for 106 incoming requests.

As can be seen, the c-JSQ-d cloning strategy is shown to give a lower mean
response time than c-R-d for all possible arrival rates. This is expected, as
the standard JSQ load balancer is well-known to outperform the random
load balancer. As for the clone-to-all system, the trade-off between using idle
servers and increasing the system load is clearly visible in the decreasing cof
over increasing λ. The fact that cof > 1 for certain λ implies that in these
load balancing scenarios, partitioning your servers into cloning clusters will
actually lead to a reduction in the mean response time. However, for both
codesigns, there exist arrival rates large enough for which the found cof = 1,
implying that no cloning is optimal in these cases.

6.3 Imperfect Synchronized Service

In this section we study the impact of relaxing the assumptions needed to
obtain synchronized service. First, we consider the effects of imperfect arrivals
and cancellations in the system. This is of high importance, as it is unrealistic
to assume that it would be possible to design a perfectly synchronized service
in practice. Second, we further relax the clone-to-all policy to allow for a
more general cloning approach, for which we cannot guarantee synchronized
service. Finally, the section is concluded with a larger simulation experiment
to test the robustness of the equivalent G/G/k model to these relaxations. In
order to analyze this imperfect synchronized service, we will limit ourselves
to only considering server systems where the servers have k = 1 and follow
the PS discipline. The following can be stated for such systems.

Remark 6.2
Given a cloning system of PS queues under synchronized service, all clones
rc1:n of an original request rorig will experience identical processor shares, i.e.,
psi = psj ∀i, j ∈ 1 : n.

Introducing Arrival and Cancellation Delays
In real settings, it is highly unlikely that perfect synchronization can be
achieved. Instead, imperfections such as slightly different starting times for
clones or latency differences between canceling requests can occur. We model
these imperfections in arrivals and cancellations using the notion of arrival
delays and cancellation delays.
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Definition 6.3—Arrival and cancellation delay
Let the arrival delay ai ≥ 0 be an SV representing the time difference between
the original request arrival and cloned request arrival on si. Additionally, let
the cancellation delay ci ≥ 0 be a SV representing the time difference between
the first completed cloned request rck on sk and the cancellation of rci .

It was shown in Lemma 6.1 that a system is in fact synchronized if for
each original request ai = aj and ci = cj ∀i, j ∈ 1 : n. Regarding cancellation
delays, it have previously been studied for redundancy with equal delays in
[Joshi, 2018] and with more general delays in [Lee et al., 2017], but these
only considers scheduling policies for central queue systems.

Both types of delay will affect the system in different manners. Consid-
ering cancellation delays, the response time of a specific original request will
not be directly affected, but clones not subject to immediate cancellation
will linger and take up processing power from other requests. On the con-
trary, as arrival delays occur before the clones arrive at the servers, it will
not interfere with the processing of other requests and instead only affect
the response time directly. The presence of either delay type however ensures
that the clone-to-all system is no longer synchronized, and thus the G/G/k
model is no longer exact. However, it is possible to derive an explicit formula
for an approximate upper bound on the expected response time E [T ].

First, we assume that the distributions of ai and ci are independent and
homogeneous, and that the service time distributions are homogeneous. Let
tsi be a SV distributed according to Φsi (t), and let Ti be the response time
of clone rci for some rorig, i.e., the arrival delay ai plus its time in the queue
including the cancellation delay ci. Assuming no cancellation delays (but
potential arrival delays), Ti = Tj ∀i, j ∈ 1 : n which is also the response time
of rorig. Let vi = 1/psi ≥ 1 be the inverse mean processor share in server si
during the lifetime of rci , and let N =

∑n
i=1 vi, i.e., the total inverse processor

share in the system during the lifetimes of the clones of an original request.
Disregarding the delays, conditioned on v the response time of rorig to a

single PS queue is given by vts. Thus, considering a cloning system following
the PS discipline, the mean response time for some rorig cloned to all n
servers and conditioned on v ∈ Rn×1

+ can be expressed as

E[T | v] = E[min({vjtsj}j=1:n)]. (6.5)

Assuming homogeneous service times, the following can be obtained.
Lemma 6.3
The expected response time of an original request cloned to n servers at a
specific N =

∑
v is maximized when all elements in v are equal, i.e.

argmax
v

E[T | v] = vu, where vui =
N

n
∀i ∈ 1 : n. (6.6)
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Proof. (6.5) can be rewritten using the Law of Total Expectation
n∑
k=1

E[min({vjtsj}j=1:n) | tsk ≤ ∀tsi ] · P(tsk ≤ ∀tsi ), (6.7)

as all tsi belong to the same distribution, P(tsk ≤ ∀tsi ) = 1/n. Using that the
minimum over a set is bounded by all of its members gives

E[min({vjtsj}j=1:n)] ≤
n∑
k=1

vkE[tsk | tsk ≤ ∀tsi ]
1

n
. (6.8)

Again, as all tsi belong to the same distribution, we get that ∀k E[tsk | tsk ≤
∀tsi ] = E[min({tsi}i=1:n)] and thus

(6.8) =
N

n
E[min({tsj}j=1:n)] = E

[
min

({
vuj t

s
j

}
j=1:n

)]
. (6.9)

2

For a cloning system under synchronized service, we from Remark 6.2 have
that v = vu at all times, but this is not the case for nonsynchronized service.
This implies that, for any N , a system, when synchronized, will actually form
an upper bound to the mean response time for the original request rorig. To
extrapolate the bound to system averages, we make the following statement.

Remark 6.3
Let S1 and S2 be two, possibly nonsynchronized due to delays, clone-to-all
systems with the same number of servers n and arrival rate λ. If for all N ,
E[Ti | N,S1] ≤ E[Ti | N,S2] ∀i ∈ 1 : n, then intuitively it should hold that
E[T | S1] ≤ E[T | S2].

This statement remains unproven. In our simulation campaigns we have
found no counterexamples, but corner cases for specific choices of delays
and distributions might exist.

It is now possible to compute bounds, although approximate, on the ef-
fects of arrival and cancellation delays on the expected response time, by
letting S1 be a system affected by delays and S2 a constructed synchronized
system, such that S1 and S2 fulfill the conditions in Remark 6.3. Since S2
is synchronized, the equivalent G/G/k model can be applied directly to ex-
plicitly compute the bounds for S1. We proceed by first considering the two
delays separately.

Proposition 6.1—Upper bound considering arrival delays
Let S1 be a clone-to-all system with arrival delay, and S2 an identical system
with no delay. Let S1 and S2 be subjected to the same arrival rate. Then

E[T | S1] ⪅ E[T | S2] + E[a]. (6.10)
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Proof. Consider S1. For a specific N =
∑

v, due to the absence of cancel-
lation delays, all clones will have the same response time T given by

T | v,S1 = min{aj + vjt
s
j}j=1:n, (6.11)

Following Lemma 6.3, the expected response time can be bounded as

E[T | v,S1] ≤
n∑
k=1

E[ak + vkt
s
k | tsk ≤ ∀tsi ]

1

n

= E[a] + E[min{vuj tsj}j=1:n]. (6.12)

This is equivalent to system S1, but where the individual stochastic arrival
delays have been replaced by the constant arrival delay E [a]. By Remark 6.3,
E [T | S1] is approximately bounded by its expected response time. Further, a
clone-to-all system with a constant arrival delay is synchronized according to
Lemma 6.1. Thus, the expected response time can be expressed as E [T | S2]
which can be obtained using the equivalent G/G/k model, plus the additive
delay. 2

Note that for Proposition 6.1, E[a] does not affect the stability of S2 as clones
during their arrival phase do not affect the processing speed. Thus, if S2 is
stable, then so should S1 regardless of arrival delays.

Proposition 6.2—Upper bound considering cancellation delays
Let S1 be a clone-to-all system with cancellation delays and S2 be an identical
system without delay and with service time tsi | S2 = (tsi | S1) + E[c]. Let S1
and S2 be subject to the same arrival rate. Then

E[T | S1] ⪅ E[T | S2]. (6.13)

Proof. Consider S1. For a specific N =
∑

v, the response time of each clone
to an original request becomes

Ti | v,S1 = min{vjtsj}j=1:n +min
(
ci, vit

s
i −min{vjtsj}j=1:n

)
. (6.14)

The second minimum incorporates the possibility that a cloned request com-
pletes after min{qjtsj}j=1:n but before ci. Thus, the expected response time
of each clone can be bounded by

E [Ti | v,S1] ≤ E
[
min{vjtsj}j=1:n

]
+ E [ci] . (6.15)

Contrary to arrival delays, the cancellation delays will have a direct impact
on the processing speed of the servers. Hence, it cannot be isolated in the
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same manner as the arrival delays. Instead, it can be incorporated into the
service times as follows.

E [Ti | v,S1] ≤ E
[
min{vuj tsj}j=1:n

]
+ E [c]

≤ E
[
min{vuj

(
tsj + E [c]

)
}j=1:n

]
= E[Ti | vu,S2], (6.16)

using Lemma 6.3 in the first step, and the fact that by definition v ≥ 1 in
the second step. This is equivalent to system S1 but where the service rates
have been increased with the expected cancellation delay, i.e., S2, and it has
synchronized service as it is subjected to no delay. Remark 6.3 then yields
the original statement, and the expected response time of S2 can be obtained
via the equivalent G/G/k model. 2

Note that for Proposition 6.2, for large E[c] the upper bound can become
infinite despite the potential stability of S1. Thus, the arrival rate of the
system has to be less than 1/(E[ts]+E[c]) for both S1 and S2 to be stable. In
addition, in the second step of (6.16) we need to multiply E [c] by the factor
N/n ≥ 1, potentially leading to large errors at higher utilization.

The following proposition shows that the effect of both arrival and can-
cellation delays is additive.

Proposition 6.3—Upper bound considering combined delays
Let S1 be a clone-to-all system with arrival and cancellation delays, and S2
an identical system but without delays and tsi | S2 = (tsi | S1)+E[c]. Let both
systems be subject to the same arrival rate. Then,

E[T | S1] ⪅ E[a] + E[T | S2]. (6.17)

Proof. Consider S1. For a specific N =
∑

v, the response time for each
clone to an original request becomes

Ti | v,S1 = min{aj + vjt
s
j}j=1:n

+min
(
ci, ai + vit

s
i −min{aj + vjt

s
j}j=1:n

)
. (6.18)

Following the proofs of Propositions 6.1 and 6.2, the expected response time
can be bounded as follows.

E [Ti | v,S1] ≤ E [a] + E
[
min{vuj tsj}j=1:n

]
+ E [c]

≤ E [a] + E
[
min

{
vuj
(
tsj + E [c]

)}
j=1:n

]
. (6.19)

This is equivalent to system S1, but with a constant arrival delay, no cancel-
lation delay, and where service times have been increased with E [c]. Hence,
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following the proofs of Propositions 6.1 and 6.2, this system has synchronized
service and its expected response time can be obtained using the equivalent
G/G/k model on S2, plus the additive delay. 2

The benefit of Propositions 6.1-6.3 is twofold. First, they show that small
imperfections are not detrimental when trying to implement synchronized
service in practice. Furthermore, as long as the expected response time of
the equivalent G/G/k model is computable, these approximate bounds will
also be computable. However, the results are only valid if one assumes that
ai, ci, t

s
i are homogeneous and known, which is not the case for all systems.

Fully Relaxing the Clone-to-All Assumption
The partial relaxation of the clone-to-all assumption introduced in the end
of Section 6.2, by clustering the servers to a clone-to-cluster system, shows
that it is indeed possible to obtain a cloning system under synchronized
service when cf < n. However, pre-partitioning the servers into clusters is
superfluous. In practice, a more natural approach would instead be to allow
the load balancing strategy ℓ to, for each original request, freely choose cf = d
unique servers from s1:n to clone to. We denote this a clone-to-any system
and define it as follows.

Definition 6.4—Clone-to-any
A cloning system of n serves behind some load balancer with policy ℓ, which
takes incoming original requests rorig, chooses d unique servers, and clones
the request to these servers.

Let a-ℓ-d denote a clone-to-any system with load balancing policy ℓ. Given
a Random load balancing policy, a-R-d has obvious similarities to the
Redundancy-d system [Gardner et al., 2016b].

Clone-to-any can be seen as a cloning system with a full relaxation to
the clone-to-all assumption, and thus it does not experience synchronized
service. This implies that the equivalent G/G/k model is not directly appli-
cable. However, a clone-to-cluster system c-ℓ-d with the same load balancing
policy ℓ and cloning factor cf = d as some clone-to-all system a-ℓ-d could
potentially be used as an approximation for obtaining desired performance
metrics. To reason about such an approximation, we introduce the notion of
synchronization error ϵ to quantify the imperfectness of the synchronization.
Regarding the PS discipline, it is defined as follows.

Definition 6.5—Synchronization error in PS queues
The synchronization error ϵ in a cloning system of PS queues is defined as
the coefficient of variation of the processor shares for the clones rc1:d of an
original request, i.e., ϵ = D[ps1:d]/E[ps1:d]·
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For E[ϵ] > 0, the system is nonsynchronized, for E[ϵ] = 0 it is synchronized
and for small E[ϵ] the system is near-synchronized. An a-ℓ-d system that ex-
periences near-synchronized should perform similarly to its c-ℓ-d counterpart.
Furthermore,

Remark 6.4
Consider a clone-to-any system, then ρ→ 0 implies that E [ϵ]→ 0.

The lower the utilization ρ, the higher the probability becomes that all clones
rc1:d to an original request rorig execute alone on their servers. In the limit
this implies that pci → 1 for all rci and E[ϵ] = 0.

Thus, using c-ℓ-d it should be possible to derive accurate approximations
of a-ℓ-d under low utilizations, for any ℓ and cf = d. For more general ρ, the
similarity between a-ℓ-d and c-ℓ-d depends on the choice of ℓ. In particular,
if ℓ is good at keeping pi similar for all clones of the same original request,
a-ℓ-d will be near-synchronized.

Evaluating Relaxations via Simulation Experiments
To perform a general evaluation of what happens to the performance of sys-
tems when the assumptions regarding synchronized service are relaxed as
discussed in this section, we conducted two randomized simulation experi-
ments. In the first simulation experiment, we analyzed the impact of arrival
and cancelation delays to the performance of a clone-to-all system and the ac-
curacy of the derived upper bound. In the second experiment, we analyzed the
synchronization error for two clone-to-any systems using the load balancing
strategies random and JSQ, denoted a-R-d and a-JSQ-d, and the subsequent
E [T ] approximation using the corresponding clone-to-cluster strategy.

The randomized simulation experiments were performed over 1000 ran-
dom scenarios, each with 106 incoming requests from Poisson arrivals. For
each scenario, we randomly selected a service time distribution from the fol-
lowing list.

(i) S&Z model defined in Assumption 6.3.

(ii) Exponential distribution with µ = 1.

(iii) Weibull distribution with Φs(t) = 1− exp
[
−
(
t

0.5

)0.5].
(iv) Pareto distribution with Φs(t) = 1−

(
0.6
t

)2.5 if t ≥ 0.6 else Φs(t) = 0.

(v) Uniform distribution with tsi ∈ [0, 2].

The particular shape and scale values were chosen such that the mean ser-
vice time of all the above distributions at cloning factor cf = 1 is E[ts] = 1.
Furthermore, we randomly selected a number of servers nsim and a cloning
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factor csimf , whose sets are defined separately in the two simulation experi-
ments shown below. Finally, we randomly selected a utilization from the set
ρsim ∈ (1 : 9) /10 and fit the arrival rate λ accordingly.

Arrival and cancellation delays. In this experiment, we considered the
following cloning factor/servers csimf = nsim and normalized delay τsim.

csimf = ssimn ∈ 2 : 10,

τsim ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} · E [ts] . (6.20)

For these parameter sets, we reran the randomized simulation experiment
three times considering (a) only arrival delays with E [a] = τsim, (b) only
cancellation delays with E [c] = τsim, and (c) both delays with E [a] = γτsim

and E [c] = (1− γ) τsim where 0 < γ < 1 was uniformly distributed. Both
arrival and cancelation delays were assumed to be exponentially distributed.

The simulation results together with the approximate bounds can be seen
in Figure 6.6. Here, we have normalized E[T ] from each random scenario to
the corresponding theoretical value when no delays are present. The blue
span shows the simulated E[T ] when the delays are present, while the red
span shows the upper bound. The interval in each span represents the 95%
confidence interval of the corresponding random scenarios.

Here it can be seen that for low normalized delays (0.01-0.05), all nor-
malized E[T ] are close to 1. For higher delays, the normalized E[T ] increases
slightly to a maximum of 15-20% relative error compared to the synchronized
clone-to-all without delays in all three cases. At a first glance this might look
strangely small given the fact that the maximum mean delays are 50% of
the service times. But remember that the arrival delays affects the response
time directly, but are encompassed by the minimum as well. Additionally,
cancellation delays affect only the response time indirectly by slowing down
the system with the remaining clones. There will be servers where the clones
to a completed rorig depart quickly, and these make room for other clones to
complete their processing. Also, at long cancellation delays, remaining clones
will have a significant probability of actually completing before its cancella-
tion time. Finally, the tight spans indicate that the delay induced relative
error in clone-to-all under PS is robust to different utilizations, service time
distributions, and cloning factors. This is not as surprising, as it is well-known
that E [T ] for M/G/1-PS queues are robust to the choice of G.

Hence, exponentially distributed delays whose mean are within 5% of the
mean service time will have no large effect on clone-to-all systems. For larger
mean delays, the impact will be noticeable but not very large. Thus, the
equivalent G/G/k queue can be used to approximately model clone-to-all
systems with high accuracy, even when rather large arrival and cancellation
delays are present.
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Figure 6.6 Arrival and cancellation delay simulation experiment. Com-
pares the normalized E[T ] from simulation (blue span) to the upper bound
(red span) over six different normalized mean delays. The normalization
for E[T ] is performed such that each value is divided by the corresponding
theoretical value without delays. The intervals represent 95% confidence in-
tervals of all associated random scenarios. The legend in (a) applies to all
figures. Note that the values on the x-axis has a logarithmic scaling.
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Considering the upper bounds, for the low normalized delays (0.01-0.05)
they are tight in all three experiments. However, as expected, for the larger
delays the bounds for the cancellation delay become very large, and for some
scenarios with mean delay 0.2 and 0.5 they even become infinite, as the upper
bound cannot guarantee stability for these cases. As none of our simulated
scenarios was unstable, it is obvious that the cancellation delay bound has
limited usage for these higher delays. On the contrary, the bounds for the
arrival delays are tight even at large delays.

Clone-to-any systems. In the second experiment, the synchronization
errors of clone-to-any systems a-ℓ-d were studied and the resulting mean
response times compared to the corresponding clone-to-cluster c-ℓ-d system.
Here, we let

nsim ∈ {4, 6, 9, 12, 15, 21, 27, 30, 45, 48} . (6.21)

In each experiment, we randomly choose a nsim and subsequently an evenly
divisible cf . This enables us to use a c-ℓ-d system with the same cloning factor
cf = d as and load balancing policy ℓ as a-ℓ-d to form an approximation of
its mean response time E [T ].

The results of the experiment can be seen in Figure 6.7 considering a-ℓ-d
for both JSQ (blue span) and Random (red span) load balancing. The interval
in each span represents the 95% confidence interval of the corresponding
random scenarios. The upper plot shows the mean synchronization errors
E[ϵ], while the lower plot shows the normalized E[T ]. This normalization is
performed by dividing each E[T ] from a-ℓ-d obtained by simulation, to the
theoretical value from its c-ℓ-d counterpart.

It can be clearly seen that a-JSQ-d gives a much lower synchronization
error than a-R-d. This implies that a-JSQ-d is a much better approximation
of its synchronized clone-to-cluster counterpart than a-R-d. This is further
confirmed by considering the normalized E[T ], where the values for a-JSQ-d
are much closer to 1. For low values of the utilization ρ, both codesigns ap-
proximate the synchronized behavior fairly well as discussed in Remark 6.4.
Further, the fact that a-JSQ-d has a small synchronization error and E[T ] er-
ror for all utilizations suggests that a-JSQ-d experiences a near-synchronized
service regardless of the arrival rate. This can be intuitively be explained by
considering the JSQ algorithm. As JSQ always sends each batch of clones to
the servers with the least amount of running requests, it will over time cause
the servers to have a similar number of running requests present at all times.
The clones rc1:d of the same original request rorig will then receive similar
processor shares, leading to small synchronization errors.

Further, just as for the arrival and cancelation delay experiments, the
tight spans indicate a robustness to the choice of servers, cloning factor, uti-
lization, and service time distributions. As this experiment is also conducted
over M/G/1-PS queues, this is not that surprising.

165



Chapter 6. Modeling Request Cloning Using Synchronized Service

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3
E[
ϵ]

a-JSQ-d
a-R-d

(a) Mean synchronization errors.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization ρ

N
or

m
al

iz
ed

E[
T
]

a-JSQ-d
a-R-d
c-ℓ-d

(b) Corresponding normalized mean response times.

Figure 6.7 Clone-to-all: Compares (a) mean synchronization error E [ϵ]
for a-JSQ-d (blue span) and a-R-d (red span), and (b) the corresponding
normalized E[T ] to their c-ℓ-d counterparts, over increasing utilization. The
normalization of E[T ] is performed such that each value is divided by the
value for the c-ℓ-d counterpart. The intervals represent 95% confidence in-
tervals for all associated random scenarios.

Looking more closely at the normalized E[T ], it can be observed that the
values for a-JSQ-d and a-R-d never exceed 1. As our simulation study is fairly
general, considering many different parameters, this suggests that the mean
response times for the synchronized c-ℓ-d co-design might actually form an
upper bound for the a-ℓ-d counterparts. This claim is partially supported by
Lemma 6.3, but no proof as so far been found.

6.4 Extension to Speculative Execution

In this section, we develop a novel approximation method that allows us
to analyze clone-to-any systems that has been further relaxed to allow for
speculative execution. The approximation can be seen as an extension to us-
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ing clone-to-cluster to approximate clone-to-any systems, and can apart from
speculative execution also be used in these cases when d and n are not evenly
divisible. It builds on assuming synchronized service to model the system us-
ing a set of equivalent G/G/k queues behind a load balancer, but where the
increased system load from the influx of (speculative) clones is modeled as
a reduction in the available servers. The synchronized service assumptions
will not hold for the general case, but implies that the new approximation
method will perform better with smaller synchronization errors ϵ.

We assume that our system of n servers lies behind some load balancer
with strategy ℓ. Each server is assumed to have k = 1 and follow the PS dis-
cipline with service rate µ. Furthermore, requests arrive to the load balancer
with rate λ. No specific distributions are assumed; however, for simplicity,
we require the service time distributions to be homogeneous and independent
across all n servers.

In speculative execution, instead of sending d clones at every arrival of
an original request rorig, we first dispatch rorig to the servers via ℓ. After
some specified amount of service time has passed for rorig, we dispatch a
speculative clone rsi to a unique server in the system via ℓ. Define δi as
the completed service time when rsi is dispatched to the server system and
Dd = {δ1, δ2, . . . , δd} as the ordered set of the service times of all speculative
clones with δi−1 ≤ δi ∀i ∈ 1 : d. We assume immediate arrivals and perfect
cancellations. Therefore, rsi arrives at a server at δi and when the original
request or any of the dispatched speculative clones is completed, the rest are
immediately cancelled.

New Service Time Distribution
Until the first speculative clone is dispatched at t = δ1, the original request
rorig will run without any clones in the system and thus its service time for
t ≤ δ1 simply becomes Φs(t).

When the first speculative clone rs1 is dispatched, the immediate arrivals
and PS discipline implies that rs1 enters service immediately at δ1. All specu-
lative clones will have the same service time distribution Φs(t) as the original
request, but conditioned on the fact that it enters service at t = δi for rsi .
Hence, if we assume synchronized service and given that the service has not
completed at t = δ1, the new service time for t > δ1 becomes the minimum
between the service time of rorig conditioned on t > δ1 and rs1 conditioned
on service start at δ1. Following Lemma 6.2, the corresponding CDF of the
minimum thus becomes

Φc1(t) = 1− [1− Φs (t | δ1 < t)] · [1− Φs (t− δ1)] δ1 < t. (6.22)

To create the service time distribution of the original request and its first
speculative clone, the probability that rorig completes service before t = δ1,
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i.e., Φs(δ1) needs to be taken into account. This can be done by weighting Φc1
at the breakpoint δ1 with the remaining probability 1− Φs(δ1) which yields
the following service time distribution

Φs1 =

{
Φs(t) t ≤ δ1,
Φs (δ1) + [1− Φs (δ1)] · Φc1(t) δ1 < t.

(6.23)

Furthermore, when the second speculative clone is dispatched, the original
request, together with its first speculative clone, has been running for t = δ2
and t = δ2 − δ1 time units, respectively. In the same manner as for rs1,
given that the service time has not completed before t = δ2, the new service
time for t > δ2 becomes the minimum between the service times of (i) rorig
conditioned on t > δ2, (ii) rs1 conditioned on both service start at δ1 and
t > δ2, and (iii) rs2 conditioned on service start at δ2. As we have an expression
for the minimum CDF of rorig and rs1, following Lemma 6.2 the new minimum
CDF becomes

Φc2(t) = 1− [1− Φs1 (t | δ2 < t)] · [1− Φs (t− δ2)] δ2 < t, (6.24)

and the service time CDF can be created by taking into account the prob-
ability that the original request and the first speculative clone completes
before t = δ2, i.e., Φs1(δ2). This leads to the following iterative formula for
determining the service time CDF Φsd for the speculation scenario Dd:

Φsd(t) =



Φs0(t) = Φs(t) t ≤ δ1,
...

Φsi−1(δi) +
(
1− Φsi−1(δi)

)
· Φci (t) δi−1 < t ≤ δi,

...
Φsd−1(δd) +

(
1− Φsd−1(δd)

)
· Φcd(t) δd < t,

(6.25)

with the intermediate CDF Φci (x) determined as

Φai (t) = Φsi−1 (t | δi < t) ,

Φbi (t) = Φs (t− δi) ,
Φci (t) = 1− [1− Φai (t)] ·

[
1− Φbi (t)

]
. (6.26)

The algorithm is visualized in Figure 6.8 for an example scenario D2.

Approximating System Load and Response Times
To obtain approximations on the response time, just as for the clone-to-
cluster strategy, an appropriate method is needed to approximate E [T ] for
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Figure 6.8 Speculative cloning for an example scenario D2 = {δ1, δ2}.
From Φs

0 at δ1, the three intermediate CDFs are formed using equations
(2)-(4). Then Φc

1 is added to Φs
0 at δ1 according to (6.25) to form Φs

1. The
procedure is then repeated at δ2 to form Φs

2.

the load balancing strategy ℓ over G/G/k queues. For example, the afore-
mentioned methods for random and JSQ load balancing [Gupta et al., 2007a]
considering M/G/1-PS queues require values on the arrival rate λ, the service
rate µ and the available servers n, which we will here derive for an arbitrary
speculative execution scenario Dd. As synchronized service is assumed to de-
rive the joint service time distribution, the accuracy of the approximation
depends on how near-synchronized the resulting system under ℓ becomes.

From (6.25), we can calculate the new service rate µ (Dd) for a scenario
using d speculative clones as

µ (Dd) =
(∫ ∞

0

[1− Φsd(t)] dt

)−1

. (6.27)
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We define the service factor fµ (Dd) as the normalized increase of µ (Dd)
compared to the original µ (D0) = µ:

fµ (Dd) =
µ (Dd)
µ

. (6.28)

To model changes in system load, we need to consider the amount of
speculative clones sent for each original request rorig and the time they spend
in the system. We define the speculation factor fpi for a speculative clone at
time δi as the probability fpi = 1−Φsi (δi) that the clone is sent. Furthermore,
we define the sojourn factor fsi for a speculative clone sent at time δi as its
time spent in the system compared to the original request rorig

fsi =

∫∞
δi

[1− Φsd (t | δi < t)] dt∫∞
0

[1− Φsd(t)] dt
. (6.29)

Now, for each speculative clone we have a probability of it being sent, and
the time it spends in the system compared to the original request. We can
thus define the arrival factor fλ (Dd) for the total contributions to system
load from all d speculative clones as

fλ (Dd) = 1 +

d∑
i=1

fpi · f
s
i . (6.30)

Finally, the load factor fρ (Dd) can then be defined as

fρ (Dd) =
fλ (Dd)
fµ (Dd)

. (6.31)

If fρ (Dd) > 1, speculative cloning in scenario Dd results in an increase
of the original system load ρ, whereas fρ (Dd) < 1 represents a decrease.
Furthermore, we can define the modeled utilization of scenario Dd as

ρ (Dd) = fρ (Dd) · ρ. (6.32)

Equation (6.32) is very useful as it allows us to reason about the stability
for the scenario Dd. Note that the arrival factor fλ (Dd) ≥ 1 does not imply
an increase in the arrival rate of original requests rorig. Instead, it represents
the contributions to the system load from all speculative clones. We model
this as a decrease in the number of available servers n as

n (Dd) =
n

fλ (Dd)
. (6.33)

As a result, n (Dd) is defined as a positive real number, and not an integer.
This might seem strange, as it has no direct connection to real systems.
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However, as long as the scheme to obtain E [T ] for load balancing strategy ℓ
does not specifically require integer values of n, it should not matter.

Thus, using our simplified synchronized service approximation, we are
able to approximately model utilization, stability and average response times
for an arbitrary speculation scenario Dd replicated over PS queues, as long
as the resulting method for extracting E [T ] under ℓ can be obtained with
arrival rate λ, service rate µ (Dd), and number of servers n (Dd). However,
a drawback of our approach is that it might be complicated to implement
triggering of speculative clones at the completed service times limits defined
by δi, as these can be cumbersome to keep track of in a real system.

As a final note, the speculative execution model can further be used to
model standard cloning for which all clones get sent at δi = 0. In these
cases, (6.25) simply becomes the minimum CDF over all clones as given in
Lemma 6.2, and as the probability of a clone being dispatched is 1 and has
the sojourn factor of 1, fλ (Dd) will assume an integer value. Furthermore, if
modeling the clone-to-cluster strategy, where the n servers are divided into
m clusters of d clones each, fλ (Dd) = d and n (Dd) = n/d = m. Hence,
the clone-to-cluster strategy can be seen as a special case of our speculative
execution model, where the model is exact, as clone-to-cluster guarantees
synchronized service.

Evaluation via Simulation Experiment
To evaluate our approximation method for speculative execution, we per-
formed a simulation experiment. A system with n = 10 servers with k = 1
following the PS discipline was assumed. Due to its near-synchronized prop-
erties as shown in Figure 6.7, it was further assumed that the servers lie
behind a JSQ load balancer. To obtain explicit response time measures, we
need to assume that our arrival rates λ to the system are Poisson. This al-
lows us to utilize the aforementioned mean response time approximation for
M/G/1-PS queues under JSQ from [Gupta et al., 2007a]. The system was
then subjected to one of the following three different speculation scenarios

D1 = {1.5}, D2 = {0.7, 1.0}, D3 = {0.3, 0.6, 0.9}. (6.34)

It is assumed that the service times on all servers follow a Pareto distribu-
tion with Φs(t) = 1 −

(
0.5
t

)2.1 if t ≥ 0.5 else Φs(t) = 0. The shape and
scale parameter were chosen such that the mean service time became 1 for
all servers. For each of these three speculation scenarios, we considered a uti-
lization interval ρ (Dd) from 0.3 to 0.9 by properly choosing the Poisson rates
λ via (6.32). Then, for each utilization and speculation scenario, we calcu-
lated ρ (Dd) and E [T (Dd)] from the approximation method, and compared
to ρ̂ (Dd) and T̂ (Dd) from 20 simulations with 106 requests each.
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The results can be seen in Figure 6.9. Here, three comparisons between
simulated and approximated utilization and mean response times are shown
for the scenarios D1 (blue), D2 (red dashed) and D3 (green dotted).

In Figure 6.9(a), the simulated system utilization ρ̂ (Dd) is normalized
against our modeled ρ (Dd). The results are very close to 1 for all scenarios
and loads. Furthermore, in Figure 6.9(b) the results of the simulated average
response times T̂ (Dd) normalized against our modeled E [T (Dd)] are shown.
As can be seen, the accuracy of our model is high for low to medium loads
for all three speculation scenarios. However, as the utilization increases, the
accuracy decreases, albeit still within a reasonable level for all three scenarios.
The decrease in accuracy is more prominent the more speculative clones
the scenario contains, which leads us to believe that a probable explanation
is that the system becomes overall less synchronized the more speculative
clones it has to deal with. In all, these two figures point towards the fact
that our model can be used to accurately predict utilization, stability, and
mean response time for systems under speculative execution as long as they
are near-synchronized.

The final Figure 6.9(c) shows the results of the simulated average response
times T̂ (Dd) for the speculation scenarios normalized against T̂ (D0), where
there is no (speculative) cloning. The aim of this figure is to examine the po-
tential benefits of employing speculative execution under different utilization
levels. A value below 1 indicates that a speculation scenario is beneficial and,
as can be seen, all three scenarios perform well at low loads. Scenario D1 dis-
tinguishes itself from the others by actually outperforming the no-speculation
case at all system loads. This is an interesting contrast to standard cloning
(all si = 0). According to the results presented in the clone-to-all and clone-
to-cluster experiments shown in Figure 6.3 and Figure 6.4, pure cloning under
this particular Pareto distribution is only beneficial for low loads. Specula-
tive execution thus has the potential to handle request redundancy at higher
loads, where standard cloning normally fails. This, however, requires us to
correctly identify a viable speculation scenario. In scenario D1, a speculative
clone is sent after 1.5 seconds, which for this particular experiment gives a
good trade-off between increasing load and combating the heavy tails of the
Pareto distributed service time. Looking at the other two scenarios, a suit-
able first candidate heuristic could then be to choose a scenario with a single
speculative clone where δ1 > E [ts].

6.5 Summary and Discussion

In this chapter, we have presented a theoretical analysis that extends and
generalizes known results regarding request cloning in server systems. This
was possible due to the introduction of the concept synchronized service,
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Figure 6.9 Comparison of utilizations and mean response time between
simulated values and values from the approximation method, for the three
speculation scenarios D1 (blue line), D2 (red dashed) and D3 (green dotted).
For each scenario and utilization, the simulated values were obtained using
20 repeated runs with 106 requests each. The confidence intervals are tight
and left out for readability. The legend applies to all figures.
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which allows us to model systems that fulfill the required assumptions with
an equivalent G/G/k queue. We showed that no assumptions on either in-
terarrival or service time distributions are required, and that the G/G/k
model holds for any deterministic queueing discipline. However, the assump-
tions for synchronized service are unrealistic and limiting. Focusing on the
PS discipline, we studied the relaxation of these limitations. In particular,
we

• Studied two systems where synchronized service is achieved, clone-to-
all and clone-to-cluster, and investigated optimal cloning factors and
load balancing codesigns under dependent service time distributions.

• Relaxed the necessary assumptions and studied how clone-to-all is af-
fected by delays, and how clone-to-cluster can be used to approximate
a system where the clones are freely assigned (denoted clone-to-any).

• Introduced an extension of the clone-to-cluster strategy to approxi-
mately model systems under speculative execution.

We further developed a discrete event simulator and tested the different con-
cepts in a series of simulation experiments.

The simulation campaign shows good compliance with our theoretical
findings. For both the clone-to-all plots in Figure 6.3, and the codesign plot
in Figure 6.4, the model predicts optimal cloning factors cof and the corre-
sponding mean response time E [T ] with very high accuracy. Furthermore,
Figure 6.6 shows that the introduced delays have only a minor influence on
E [T ] and, especially for arrival delays, the approximate upper bounds can
be used to predict the effect of practical imperfections. Moreover, in Fig-
ure 6.7 the interesting near-synchronized service property of the JSQ load
balancing policy is shown. It suggests that our model could accurately de-
scribe setups involving JSQ, where synchronized service is not guaranteed.
Finally, in Figure 6.9 it is shown that our extended model for speculative
execution is accurate under the JSQ load balancer. This is expected, as it
assumes synchronized service and should thus be accurate for any system
that experiences near-synchronization.

Discussion. Although general regarding the involved distributions and
queueing discipline, the additional assumptions required make the concept
of synchronized service mostly a tool for theoretical analysis. However, con-
cerning systems of PS queues, two key takeaways from this chapter are (i)
delays on the arrival and cancellation of clones seem to have only minor
effect on the system, and (ii) systems under JSQ load balancing becomes
near-synchronized. Hence, since there exists an accurate model for JSQ over
M/G/1-PS queues, the equivalent G/G/k model can be used to accurately
approximate both cloning and speculative execution in these systems.
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We explicitly studied the delays in a clone-to-all system, as it can be
directly compared with the equivalent G/G/k model. However, as clone-to-
cluster is simply a combination of multiple such systems behind a load bal-
ancer, the same low impact of delays should apply. Subsequently, the effects
on a near-synchronized clone-to-any system should also be small. Further,
the introduction of delays slightly increases the mean response time, but as
clone-to-cluster probably forms an upper bound to clone-to-any, using clone-
to-cluster to approximate a clone-to-any systems with small delays could even
yield an improved accuracy.
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7
Thesis Summary

In this thesis, the subject of cloud application performance modeling has been
studied. Focus has been put on modeling using queueing theory, especially
considering the processor sharing discipline and the fluid model for evaluating
the mean queue length dynamics in queueing networks. In particular, the
thesis has presented the following contributions.

• In Chapter 3, the thesis improved the mean-field fluid model by ex-
tending it to mixed networks of PS and INF queues and introducing
a cheap refinement method and a closed-form approximation for the
response time CDF.

• In Chapter 4, these improvements were then used to create a simple but
general fluid model for microservice applications that can be completely
and distributively extracted at runtime from common tracing data.

• In Chapter 5, a method was devised to optimize the cost of a running
cloud application under arbitrary costs and performance constraints by
tuning the load balancing parameters using automatic differentiation
of the introduced microservice fluid model.

• In Chapter 6, it was shown that certain cloning systems can be ex-
pressed as a G/G/k queue. In addition, how cloning is affected by re-
laxing the necessary assumptions and how the method can be used to
approximate speculative execution was studied for M/G/1-PS queues.

7.1 Discussion

The most significant contribution of this thesis is, according to its author,
the smoothed mean-field fluid model introduced in Section 3.3. The simple
inverse p-norm smoothing of the processor share function yields a surprisingly
efficient refinement method for mixed networks of PS and INF queues. The
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method is shown to greatly reduce the mean-field approximation error for
queueing networks of small system size, i.e., small initial population, few
servers, and low arrival rates. Furthermore, the method obtains some nice
theoretical properties. From data of a stationary system, it is possible to
quickly obtain an optimal smoothing value, and the nominal mean-field fluid
model is recovered if the smoothing value goes to infinity.

This new fluid model allows important performance metrics to be accu-
rately approximated at low cost for cloud applications modeled as multi-class
networks of PS and INF queues with pseudo-general service times. From the
mean queue lengths the standard metrics throughput, utilization, and mean
response time can readily be obtained. The model also allows for the response
time CDF to be quickly approximated over almost any subset of classes. This
is important as response time percentiles are prevalent in SLAs but often dif-
ficult to model.

To put the smoothed mean-field fluid model to use, we applied it to
model cloud applications following the microservice architecture in multi-
cloud deployments. In the model, each service replica is represented as a
single PS queue and each replica-to-replica delay as a single INF queue.
Considering large and complex services, this choice of structure might fail to
capture important details, but it makes more sense for microservices, where
each service should be simple and handle very few tasks. It is worth noting
that single-queue models of services and delays are commonplace. The novelty
of the method instead lies in the general forms of delay afflicted service graphs
it can capture. Also, the resulting microservice fluid model can be created
at runtime from common tracing data in a distributed fashion considering
commonly used communication layers, such as service meshes utilizing local
proxies. This makes the fluid model simple to obtain and keep up-to-date on
the current state of a running application.

Although such simple application models can lack in accuracy, they might
be accurate enough when used to design methods for balancing costs and
performance. Furthermore, simple models are often quicker to extract and
evaluate, and it is paramount that the cost of extraction and running the
resulting algorithm is less than the cost it manages to save.

Thanks to modern software tools, it is easy to design such methods from
our microservice fluid model via automatic differentiation. This makes it pos-
sible to obtain the gradient of an arbitrary cost function over performance
metrics obtainable from the fluid model. In particular, this gradient can then
be used to create a cost optimizing algorithm that adhere to, e.g., response
time percentile constraints. In the thesis, this is exemplified by tuning load
balancing parameters, but the method can potentially be applied to all man-
ners of actions as long as they can be expressed in the fluid model.

Using our FedApp sandbox, the microservice fluid model and the cost
optimizing algorithm were evaluated on a small microservice application de-
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ployed over multiple Kubernetes clusters with emulated cluster-to-cluster
network characteristics. Although the sandbox greatly simplifies the effort
required to set up the necessary environment to perform such experiments,
its use cases naturally go beyond evaluating performance models in multi-
cloud environments.

Regarding the results on redundant requests; although an interesting con-
cept in itself, the use cases of synchronized service and the equivalent G/G/k
model will be limited due to the unrealistic assumptions required. However,
given a cloning system of PS queues, we showed that relaxing these assump-
tions by (i) introducing delays in the arrival and cancellation of clones and
(ii) allowing clones to be freely placed on a subset of the servers via the JSQ
load balancer only had a minor effect. The equivalent G/G/k queue can thus
be used to approximately model cloning for these cases.

Threats to validity and potential criticism. The thesis lacks in direct
comparison to other similar methods and evaluation over more advanced
systems. For example, the smoothed mean-field fluid model could have been
compared to approximate MVA methods for multi-server PS queues such
as [Kattepur and Nambiar, 2015; Casale et al., 2015]. However, this was not
prioritized as the fluid model obtained a good performance in the simulations.
How this holds up for more complicated networks is unclear, and thus larger
experimental evaluations are warranted.

With respect to the microservice fluid model and the cost optimizing
algorithm, a major missing piece is the lack of testing on more advanced
microservice applications. Furthermore, the fluid model should preferably
have been compared to other existing microservice application models, such
as the LQN model of the sockshop microsevice demo1 used in [Gias et al.,
2019]. We started down this path in an early iteration of our work, but
found that some services in the examined benchmarks were difficult to get
to function properly, lacked robustness at higher utilization, and were hard
to adapt to our FedApp testbed. Thus, it was deemed more time efficient to
create our own simple experimental example application from scratch.

Further considering the cost optimizing algorithm, the gradient can be ob-
tained quite fast for the simplified example application. However, the current
implementation scales poorly with increasing parameters and model size, as
seen for the full example application. In order for the approach to be applica-
ble in more advanced settings, it is important that this can be remedied by,
e.g., tuning the evaluation speed of the cost function or using other methods
for automatic differentiation than forward-mode.

Furthermore, all three chapters using the fluid model lack proper evalu-
ation on transient performance metrics, even though this is one of the key
features of the fluid model. In the thesis, this is motivated by the fact that

1 https://github.com/microservices-demo/microservices-demo
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it is cumbersome to make a good comparison to transient metrics from ex-
periments because the systems we consider are highly stochastic. Also, the
experiments performed in Chapter 3 seem to suggest that the transients of
the mean-field fluid model are well-behaved. This should however be investi-
gated more carefully.

Considering the results on request cloning, the thesis lacks evaluation
on a real system, especially with regard to the validity of synchronizing the
cloned requests and how it could be implemented. Furthermore, the notion of
cost is not taken into account. For example, to lower costs in public clouds,
it is often desired to maximize utilization by scaling down. In these high
utilization settings, cloning every request would, as shown, probably not be
beneficial regarding the mean response time. However, speculative execution
can still be beneficial. Moreover, pure cloning could potentially be used to
reduce response times if constraints are violated at a low utilization. Finally,
cloning every request at high utilization could still be beneficial with regards
to the response time percentiles, but this is not considered in the thesis.

7.2 Future Work

In this section, some possible directions for future work are given. The most
important path forward is to address the previous criticism, especially the
lack of experiments on more advanced microservice applications.

Apart from that, one important direction is to investigate the potential to
combine the results on the mean-field fluid model with the results on request
cloning. Fork-join systems are in general difficult to model via the mean-
field approximation, as joining destroys the necessary Markov property, but
cloning and speculative execution could potentially be included via single-
queue approximations. For example, if a PS queueing network contains one or
more cloning systems, these systems could potentially be replaced with their
corresponding equivalent G/G/k model. The service times in these G/G/k
models could then be approximated with a PH distribution, and in turn the
mean-field fluid model applied.

Each chapter further has several directions that are worth pursuing, which
are summarized below.

The smoothed mean-field fluid model. Regarding the results on the
mean-field fluid model from Chapter 3, it would be interesting to see these
results extended to other queueing disciplines previously used in mean-field
approximations. Such disciplines includes, e.g., single-class M/M/k-FCFS or
discriminatory PS with different class priorities as seen in [Zhu et al., 2020].

In addition, a larger study on how to adapt fork-join systems for the
mean-field fluid model would be of importance. As discussed, cloning could
potentially be included by utilizing a single-queue approximation. Perhaps
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something similar could be used for general (n, k) fork-join systems, by re-
placing the k’th minimum over n service times with a PH distribution in
some clever way.

Furthermore, additional work is needed on how the smoothing parameters
fitted at the current operating condition affect distant predictions and how
they can be corrected to increase accuracy. For example, Section 4.4 seems
to suggest that the current method of fitting the smoothing parameters will
yield a poor prediction for perturbations that increases the utilization.

Finally, it is valuable that the mean-field fluid model can be used to ap-
proximate response time percentiles, but disheartening that the accuracy gets
worse the larger the queue length variability becomes. This makes it difficult
to accurately predict percentiles in certain important scenarios, e.g., at high
utilization under Poisson arrivals. Thus, ways of improving the response time
percentile approximation are of importance to study.

The microservice fluid model. In addition to the directions for the
smoothed mean-field fluid model, there are some particular paths for future
work for the microservice fluid model introduced in Chapter 4.

First and foremost, to increase the generality of the model, it is of great
importance that it can handle situations where the services process requests
in a manner that is highly different from the PS discipline. This is closely
related to testing the fluid model on more advanced microservice applications.
In doing so, it is possible to discover when the model holds and when it breaks
and how it might be extended to accommodate these situations.

Furthermore, it is important to handle situations where the service time
distributions are affected by scaling. This would enable predictions over ver-
tical scaling, and horizontal scaling or migration to new locations with dif-
ferent service rates. One potential strategy to investigate is how scaling of
the existing PH distributions could be applied in these situations.

Scaling of the PH distributions could potentially also be used to gener-
ate a more efficient model tracking, instead of extracting a completely new
model at each sampling time. As obtaining the service times is quite efficient,
one could, for example, extract the distributions once and then track their
first moments using a moving average filter. These moments could then be
used to scale the initial distributions. It might even be possible to track the
PH distributions without having to measure every arrival and departure by
utilizing a Kalman filter together with measurements on response time mean
and percentiles to update the distribution parameters.

Finally, it is limiting that our fluid model needs to assume a random load
balancer, and thus it is important to investigate how other strategies could
be incorporated. For example, considering round robin, it might be enough
to directly approximate the strategy with the random strategy. Furthermore,
considering JSQ the accurate approximation for PS queues in [Gupta et al.,
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2007b] could potentially be used, as it reduces such load balancing systems
to a single M/M/1-PS queue with a state dependent arrival rate.

The cost optimizing algorithm. The choice to focus on optimizing the
load balancing weights using simple gradient stepping in Chapter 5 was made
to exemplify the procedure. We wanted a problem whose fluid model repre-
sentation was simple, had a comprehensible control variable update, and was
relatively easy to validate experimentally. However, the generality of auto-
matic differentiation allows us to consider a whole range of other ways to
optimize a running application, e.g., scaling and migration. As long as such
an action can be represented in the microservice fluid model. Also, more ad-
vanced optimization methods could be used to update the control variables.
Multiple prediction steps in some form of nonlinear MPC approach or basing
the next step on the optimum of the current fitted model are two examples
that could be considered. Furthermore, automatic differentiation allows us
to consider methods that use higher-order derivatives.

It would be interesting to consider systems where the transients play a
larger part. In our example application, these quickly diminish, and the sys-
tem enters stationarity in a short time frame. To consider transients, the
adaptation speed of the model extraction needs to be increased. The current
method of gathering data from the application over some sample time is sim-
ply not fast enough. In fact, the dynamics seen in, e.g., Figure 5.6 is entirely
based on our mistrust of the model and incremental parameter updates. In-
stead, the extraction could be replaced by some quicker model tracking as
discussed, and the parameters could be updated in smaller steps in a time
frame that is more in line with the transients.

Redundant requests. The assumptions introduced to obtain synchronized
service in Chapter 6 are limiting, but the resulting equivalent G/G/k model
can be used as an adequate approximation when relaxing the assumptions
for certain cloning systems of PS queues. How these relaxations hold up to
other queueing disciplines would be interesting to consider.

We theorize that for the INF discipline, as all requests are served ac-
cording to Φs directly, a system should always be synchronized under both
cloning and speculative execution. Cancellation delays should not have any
effect, but arrival delays should still affect the mean response time. The FCFS
discipline, on the other hand, as it has no processing of requests until the
queue in front is cleared, should experience a more severe effect from both
delays and clone-to-any.

The concept of synchronization error could further be expanded, as it
is only briefly discussed with respect to relaxing the clone-to-all assump-
tion. Instead, the concept could be studied in more general settings to create
intuition on which situations synchronized service could yield an adequate
approximation. For example, the synchronization error obtained for arrival
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and cancellation delays could be examined.
The chapter only considers mean response times and no percentiles, al-

though cloning or speculative execution is often motivated by reducing tail
latency. In certain cases, e.g., considering PS queues under Poisson arrivals
and k = 1, closed-form expressions of the response time distribution exist.
Otherwise, if one is able to combine the fluid model with request cloning, as
discussed, then this can yield another way of analyzing the percentiles.
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A
Proofs from Chapter 3

This appendix contains proofs that were too long to smoothly include in the
main text.

Proof of Theorem 3.1
First, notice that the drift for (i, r, a) ∈ (Q, Ci,Si,r) in (3.11) only depends
on Ψi,r in the first subexpression. Denote the remaining subexpressions as
vi,r,a(X). Ordering the phases subsequently as described in Assumption 3.2,
we can then express the drift over any i ∈ Q, r ∈ Ci as

Fi,r,·(X) =
(
Ψi,r

)T
θi,r,·(X) + vi,r,·(X). (A.1)

We can then introduce the block-diagonal matrix

Ψ
(
∈ R|S|×|S|) = diag

(
Ψ1,1,Ψ1,2,Ψ1,3, . . .

)
, (A.2)

and get that

F (X) = ΨT θ(X) + v(X). (A.3)

For vi,r,a, we start by moving constants out from the sums,

vi,r,a(X) = ζi,ra
∑
j∈Q

∑
s∈Cj

P s,rj,i
∑
b∈Sj,s

ψj,sb θj,s,b (X) + ζi,ra λi,r. (A.4)

The final sum can be expressed as
∑
b∈Sj,s

ψj,sb θj,s,b (X) =
(
ψj,s

)T
θj,s,· (X).

If we then introduce the block-diagonal matrix

B
(
∈ R|S|×|C|) = diag

(
ψ1,1, ψ1,2, ψ1,3, . . .

)
, (A.5)

we get that (
ψj,s

)T
θm⃗j,s

(X) =
(
BT θ(X)

)
nj,s

. (A.6)

199



Appendix A. Proofs from Chapter 3

From Assumption 3.2, the entire routing probability matrix can be written
as

P =

 P ·,·
1,1 P

·,·
1,2 ···

P ·,·
2,2 P

·,·
2,2 ···

...
...

. . .

 , (A.7)

which gives that

vi,r,a(X) = ζi,ra

Q∑
j=1

Cj∑
s=1

P s,rj,i
(
BT θ(X)

)
nj,s

+ ζi,ra λi,r

= ζi,ra
(
P TBT θ(X)

)
nj,s

+ ζi,ra λi,r. (A.8)

By introducing a third block-diagonal matrix,

A
(
∈ R|S|×|C|) = diag

(
ζ1,1, ζ1,2, ζ1,3, . . .

)
, (A.9)

we end up with

v(X) = AP TBT θ(X) +Aλ. (A.10)

Finally, by combining (A.3) and (A.10), the drift of the entire population
process is given by

F (X) = W T θ(X) +Aλ,

where W = Ψ+BPAT . (A.11)

Proof of Theorem 3.2
We will focus on the 1-norm, for which Lipschitz continuity of F (x) in R|S|×1

+

implies that

||F (x)− F (y)||1 =
∣∣∣∣W T θ(x)−W T θ(y)

∣∣∣∣
1
≤ L ||x− y||1 , (A.12)

for all x,y ∈ R|S|×1
+ and some constant L. As the induced 1-norm of a matrix

is subordinant, breaking out W yields that

||F (x)− F (y)||1 ≤
∣∣∣∣W T

∣∣∣∣
1
· ||θ(x)− θ(y)||1 . (A.13)

As W is a constant matrix with finite elements, each element can be bounded
with ω = maxi,j |Wi,j |. Since the induced 1-norm of a matrix is defined as
the maximum absolute column sum, i.e., maxj∈1..|S|

∑
i |Wi,j |, we get that

||F (x)− F (y)||1 ≤ |S|ω · ||θ(x)− θ(y)||1 . (A.14)
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Because of the minimums present in θ(x), we will consider each of the four
cases separately. Let i ∈ Q and xi correspond to the population vector of
all phase states in queue i. Note that since each state belongs to exactly one
queue, we can write ||θ(x)− θ(y)||1 =

∑
i∈Q ||θi(x)− θi(y)||1 where

||θi(x)− θi(y)||1 =
∑
j

∣∣∣∣∣∣xi,j
min

(
ki,
∑
j xi,j

)
∑
j xi,j

− yi,j
min

(
ki,
∑
j yi,j

)
∑
j yi,j

∣∣∣∣∣∣ .
(A.15)

From the four possible cases, three needs to be proven Lipschitz as two of
the cases are identical due to symmetry. The three cases are

(i)
∑
j xi,j ≤ ki,

∑
j yi,j ≤ ki which yields

∑
j

|xi,j − yi,j | = ||xi − yi||1. (A.16)

(ii)
∑
j xi,j ≥ ki,

∑
j yi,j ≤ ki which yields

∑
j

∣∣∣∣∣xi,j ki∑
j xi,j

− yi,j

∣∣∣∣∣
=
∑
j

∣∣∣∣∣ ki∑
j xi,j

(xi,j − yi,j) + yi,j

(
ki∑
j xi,j

− 1

)∣∣∣∣∣ . (A.17)

The triangle inequality together with
∑
j xi,j ≥ ki gives that

(A.17) ≤ ki∑
j xi,j

∑
j

|xi,j − yi,j |+
∑
j yi,j∑
j xi,j

∑
j

xi,j − ki

 . (A.18)

Since
∑
j yi,j ≤ ki and x,y ∈ R+ we get via the reverse triangle in-

equality that

(A.18) ≤ ki∑
j xi,j

∑
j

|xi,j − yi,j |+
∑
j yi,j∑
j xi,j

∑
j

|xi,j − yi,j |

≤ 2||xi − yi||1. (A.19)
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(iii)
∑
j xi,j ≥ ki,

∑
j yi,j ≥ ki which yields

∑
j

∣∣∣∣∣xi,j ki∑
j xi,j

− yi,j
ki∑
j yi,j

∣∣∣∣∣ = ki
∑
j

∣∣∣∣∣ 1∑
j xi,j

(xi,j − yi,j)

+ yi,j

(
1∑
j xi,j

− 1∑
j yi,j

)∣∣∣∣∣. (A.20)

Using the triangle inequality

(A.20) ≤ ki∑
j xi,j

∑
j

|xi,j − yi,j |+ ki
∑
j

yi,j

∣∣∣∣∣ 1∑
j xi,j

− 1∑
j yi,j

∣∣∣∣∣ .
(A.21)

Breaking out the denominators gives

(A.21) =
ki∑
j xi,j

∑
j

|xi,j − yi,j |+
ki∑
j xi,j

∣∣∣∣∣∣
∑
j

yi,j −
∑
j

xi,j

∣∣∣∣∣∣ .
(A.22)

Then the reverse triangle inequality together with
∑
j xi,j ≥ ki yields

that

(A.22) ≤ 2||xi − yi||1. (A.23)

Hence,

||θ(x)− θ(y)||1 =
∑
i∈Q
||θi(x)− θi(y)||1 ≤ 2||x− y||1, (A.24)

and ||F (x)− F (y)||1 ≤ 2|S|ω ||x− y||1.
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B
Running Example from
Chapter 3

This appendix gives a detailed explanation on how to adapt some of the
methods in Chapter 3 for the second running example.

Compact Matrix-Form for Example 2
For our closed cyclic network, the routing probability matrix becomes

P =

0 1 0
0 0 1
1 0 0

 , (B.1)

and since we have no external arrivals due to the network being closed, λ = 0.
Stacking the PH matrices in block diagonals yields

Ψ =


−µ1 0 0 0 0
0 −4.0 4.0 0 0
0 0 −4.0 0 0
0 0 0 −2.0 0.1
0 0 0 0 −0.1

 ,

B =


µ1 0 0
0 0 0
0 4.0 0
0 0 1.9
0 0 0.1

 , A =


1 0 0
0 1 0
0 0 0
0 0 1
0 0 0

 , (B.2)
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which gives that

W = Ψ+BPAT =


−µ1 µ1 0 0 0
0 −4.0 4.0 0 0
0 0 −4.0 4.0 0
1.9 0 0 −2.0 0.1
0.1 0 0 0 −0.1

 ,

θ(x) =


x1

x2 ·min(4, x2 + x3)/(x2 + x3)
x3 ·min(4, x2 + x3)/(x2 + x3)
x4 ·min(8, x4 + x5)/(x4 + x5)
x5 ·min(8, x4 + x5)/(x4 + x5)

 , (B.3)

from which the mean-field fluid model is obtained.

Response Time CDF Approximation for Example 2
In order to employ the approximation (3.48), we must first find values on
WR, ĝ (η) and β̂ (η).

First, only considering the transitions between classes in CR yields that

PR =

0 0 0
0 0 1
0 0 0

 , (B.4)

which in turn gives that

WR = Ψ+BPRA
T =


−µ1 0 0 0 0
0 −4.0 4.0 0 0
0 0 −4.0 4.0 0
0 0 0 −2.0 0.1
0 0 0 0 −0.1

 . (B.5)

At µ1 = 0.2 and ŝv2 ≈ 2.24, η̂3 ≈ 3.5, the smoothed mean-field fluid
model gives the fixed point

x∗ (η̂) ≈
[
34.6 3.2 3.2 4.5 4.5

]T
, (B.6)

and thus the processor share approximation becomes

ĝ (η̂) ≈
[
1 0.57 0.57 0.77 0.77

]T
. (B.7)

The final piece is to calculate the probability that a request arrives to a
specific class in CR at stationarity. First, the inflow connections from outside
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CR becomes Pλ(Cc
R)

=
[
1 0

]
. Further, the approximation to the average

outflow across all classes in C becomes

µ̂d (η̂) = BTDĝ(η̂∗)x∗ (η̂∗)

=

0.2 0 0 0 0
0 0 4.0 0 0
0 0 0 1.9 0.1



1.0 0 0 0 0
0 0.57 0 0 0
0 0 0.57 0 0
0 0 0 0.77 0
0 0 0 0 0.77



·


34.6
3.2
3.2
4.5
4.5

 =

6.927.3
6.92

 . (B.8)

Hence

β̂vCR
(η̂∗) = P T

λ(Cc
R)

[µ̂d (η̂
∗)]Cc

R
=

[
6.92
0

]
. (B.9)

and thus we get the probability of request arrival as β̂ =
[
0 1 0

]T , resulting
in the following response time CDF approximation over CR at stationarity
with µ1 = 0.2:

ΘCR
(t | η̂∗) = 1−

[
0 1.0 0 0 0

]
(B.10)

· exp



−0.2 0 0 0 0
0 −2.28 2.28 0 0
0 0 −2.28 0 0
0 0 0 −1.54 0.077
0 0 0 0 −0.077

 · t
1. (B.11)

This however only holds for the current system, when some perturbation is
introduced by, e.g., changing µ1, the values for x∗ (η), ĝ (η) and β̂ (η) need
to be re-calculated.
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