
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Modelling complex stochastic systems
Approaches to management and stability
Patch, B.J.

Publication date
2019
Document Version
Final published version
License
Other

Link to publication

Citation for published version (APA):
Patch, B. J. (2019). Modelling complex stochastic systems: Approaches to management and
stability. [Thesis, fully internal, University of Queensland, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/modelling-complex-stochastic-systems(ca890e04-68da-4301-a8db-435282d52607).html

Modelling complex stochastic systems:
approaches to management and stability

Brendan Patch

This thesis was prepared within the partnership between the University of Amsterdam
and The University of Queensland with the purpose of obtaining a joint doctorate degree.
The thesis was prepared in the Faculty of Science at the University of Amsterdam and in
the School of Mathematics and Physics at The University of Queensland.

Dit proefschrift is tot stand gekomen binnen een samenwerkingsverband tussen de
Universiteit van Amsterdam en The University of Queensland met als doel het behalen
van een gezamenlijk doctoraat. Het proefschift is voorbereid in de Faculteit der Natu-
urwetenschappen, Wiskunde en Informatica van de Universiteit van Amsterdam en de
School of Mathematics and Physics van The University of Queensland.

Modelling complex stochastic systems:
approaches to management and stability

Brendan Patch
BEc, BFin, MSc

A thesis submitted for the degree of Doctor of Philosophy at
The University of Queensland

School of Mathematics and Physics
in collaboration with the
University of Amsterdam

Korteweg-de Vries Institute for Mathematics
in 2018

Modelling complex stochastic systems:
approaches to management and stability

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magni�cus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in

de UQ St Lucia Campus, Brisbane, Australië

op 11 februari 2019, te 17:00 uur

door

Brendan John Patch

geboren te Canberra

Promotiecommissie

Promotores:
prof. dr. M.R.H. Mandjes
Universiteit van Amsterdam

dr. T. Taimre
The University of Queensland

Copromotor:
dr. N.S. Walton
The University of Manchester

Overige leden:
prof. dr. R. Núñez-Queija
Universiteit van Amsterdam

prof. dr. P.K. Pollett
The University of Queensland

prof. dr. P.J.C. Spreij
Universiteit van Amsterdam

prof. dr. P. Taylor
The University of Melbourne

dr. A.V. den Boer
Universiteit van Amsterdam

dr. I.B. Ziedins
The University of Auckland

prof. dr. J.H. van Zanten
Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Abstract

This thesis is about coping with variability in outcomes for complex stochastic systems.
We focus on systems where jobs arrive randomly throughout time to utilise resources for
a random amount of time before departure. The systems we investigate are primarily
concerned with the communication and storage of data. The thesis is partitioned into two
parts. The �rst part studies systems where congestion leads to jobs waiting for service
(queueing systems) and the second part considers systems where congestion leads to losses
due to departures before provision of service (loss systems).

For queueing systems, we are mainly interested in the management objective of ensur-
ing that the expected time a job must wait before entering is �nite � a property known
as stability. Finite waiting times occur naturally for loss systems due to the balking be-
haviour of jobs in response to congestion and so our attention in this case turns to the
more ambitious goal of managing systems in such a way that the number of lost jobs is
minimised.

Each part consists of an introductory chapter providing background knowledge, which
is followed by three chapters containing original research. In both parts we progress
through these chapters by �rst applying traditional analytical approaches to novel models
and then developing novel simulation-based approaches for models which are out of reach
of traditional approaches.

We begin our research on queueing networks in Part 1 by considering a network of
in�nite-server queues with the special feature that, triggered by speci�c events, the net-
work population vector may undergo a linear transformation. We use moment generating
functions to obtain expressions for transient and stationary moments of the queue size
vector and characterise the set of parameters for which the system is stable. A variety of
systems �t in the framework developed, such as networks of retrial queues, networks in
which jobs can be rerouted when links fail, and storage systems.

In the next chapter of Part 1 we study the recently introduced Queue-Proportional
Rate Allocation scheduling algorithm for multihop radio networks. The main contribution
is a proof using �uid limit techniques to show that a natural generalisation of this policy to
allow weighting of packets at each link, to re�ect nonhomogeneous priorities, retains the
maximal stability property. We also state a conjecture that in heavy tra�c the di�usion-
scaled workload process of the network converges weakly to a re�ected Brownian motion
and that in this weak limit the vector of queue lengths is always proportional to the tra�c
arrival rate vector.

We conclude Part 1 by devising a simulation-based method for detecting whether a
non-negative Markov chain is unstable for a given set of parameter values. More precisely,
for a given subset of the parameter space, we develop an algorithm that can decide whether
the set has a subset of positive Lebesgue measure for which the Markov chain is unstable.
The approach is based on a variant of simulated annealing, and consequently only mild
assumptions are needed to obtain rigorous performance guarantees. Our framework leads
to a procedure that can perform statistically rigorous tests for instability, which has
been extensively tested using several examples of standard and non-standard queueing
networks.

We begin our investigation of loss systems in Part 2 by considering a �nite-capacity
Erlang B model that alternates between active and inactive states according to a two-
state modulating Markov process. Jobs arrives to the system as a Poisson process but are
blocked from entry when the system is at capacity or inactive. We use Laplace transforms

to derive expressions for the revenue lost during short term planning horizons. These
expressions can be used to assess alternative system designs.

In the next chapter of Part 2 we develop a sophisticated loss system type model
for cloud computing systems. User demand on the computational resources of cloud
computing platforms varies over time. These variations in the arrival process can be
predictable or unpredictable, resulting in time-varying and `bursty' demand �uctuations.
Furthermore, jobs can arrive in batches, and users whose demands are not met can be
impatient. We demonstrate how to compute the expected revenue loss over a �nite time
horizon in the presence of all these model characteristics using matrix analytic methods.
It is seen that taking these characteristics of �uctuating user demand into account can
result in a substantial reduction of losses.

We conclude Part 2 by developing an optimisation framework for a model applicable to
mobile cloud edge computing systems. Our model is a stochastic network with blocking:
jobs attempt to be processed sequentially at nodes in a network but are lost when they
attempt to access a node that is at capacity. The problem is mathematically intractable
in general and time consuming to solve using standard simulation methods. Our novel
method combines simulation with analytical approximations to quickly obtain high quality
solutions. We extensively test our approach using several complex models.

Abstract (Dutch)

Modellering van complexe stochastische systemen: aanpak voor management
en stabiliteit

Dit proefschrift gaat over het omgaan met variabiliteit in complexe stochastische sys-
temen. We richten ons op systemen waarbij taken op een willekeurig moment in de tijd
arriveren om voor een willekeurige tijdsduur gebruik te maken van diensten alvorens weer
te vertrekken. De systemen die we onderzoeken houden zich primair bezig met het doors-
turen en opslaan van gegevens. Het proefschrift is verdeeld in twee delen. In het eerste deel
worden systemen bestudeerd waarbij congestie ertoe leidt dat taken moeten wachten op
service (wachtrijsystemen) en het tweede deel gaat over systemen waarbij congestie leidt
tot het verliezen van taken voordat deze voorzien kunnen worden van service (zogenaamde
verliessystemen).

Voor wachtrijsystemen zijn we vooral geïnteresseerd in de managementdoelstelling er-
voor te zorgen dat de verwachte tijd die een taak moet wachten voordat hij in behandeling
wordt genomen eindig is � een eigenschap die stabiliteit wordt genoemd. Eindige wacht-
tijden komen van nature voor in verliessystemen doordat taken het systeem vroegtijdig
verlaten als reactie op congestie. Daarom richten we onze aandacht in dit geval op het
ambitieuzere doel om systemen zodanig te beheren dat het aantal verloren taken tot een
minimum wordt beperkt.

Beide delen van het proefschrift bestaan uit een inleidend hoofdstuk met achtergrond-
kennis, gevolgd door drie hoofdstukken met nieuw onderzoek. In beide delen gaan we
door deze hoofdstukken heen door eerst traditionele analytische methoden toe te passen
op nieuwe modellen, om vervolgens nieuwe simulatie-gebaseerde methoden te ontwikkelen
voor modellen buiten het bereik van de traditionele methoden liggen.

We beginnen ons onderzoek naar wachtrijsystemen in Deel 1 met het bekijken van een
netwerk van wachtrijsystemen met oneindig veel servers met de speciale eigenschap dat
door bepaalde gebeurtenissen de vector die de netwerk populatie beschrijft een lineaire
transformatie kan ondergaan. We gebruiken momentgenererende functies om uitdrukkin-
gen voor tijdsafhankelijke en stationaire momenten van de rijlengte vector te verkrijgen
en de verzameling parameters te karakteriseren waarvoor het systeem stabiel is. Een
verscheidenheid aan systemen valt onder het daarmee ontwikkelde framework, zoals op-
slagsystemen, netwerken van retrial wachtrijen en netwerken waarin taken kunnen worden
omgeleid als koppelingen falen.

In het volgende hoofdstuk van Deel 1 bestuderen we het recent geïntroduceerde wachtrij-
proportionele rate allocatie algoritme voor multihop radionetwerken. De belangrijkste bi-
jdrage is een bewijs dat gebruik maakt van �uïd limieten om aan te tonen dat bij een
natuurlijke generalisatie van dit beleid, namelijk om taken bij elke koppeling een weging
mee te geven om zo rekening te houden met inhomogene prioriteit, de maximale stabiliteit-
seigenschap behouden blijft. We presenteren ook het vermoeden dat in geval van heavy
tra�c het di�usie-geschaalde werkbelastingsproces van het netwerk zwak convergeert naar
een gere�ecteerde Brownse beweging en dat in deze zwakke limiet de rijlengte vector altijd
proportioneel is aan de aankomstintensiteit vector.

We sluiten Deel 1 af door een simulatie-gebaseerde methode te ontwikkelen voor het
vaststellen of voor een bepaalde verzameling parameters een niet-negatieve Markovketen
onstabiel is. Om precies te zijn, we ontwikkelen voor een bepaalde deelverzameling van
de parameterruimte een algoritme dat kan bepalen of deze een deelverzameling met posi-
tieve lebesgue-maat bevat waarvoor de Markovketen onstabiel is. De aanpak is gebaseerd

op een variant van simulated annealing, en daarom zijn slechts milde aannames nodig
voor rigoureuze prestatiegaranties. Ons raamwerk leidt tot een procedure die statistisch
rigoureuze tests voor instabiliteit kan uitvoeren, die uitgebreid is getest op verschillende
standaard en niet-standaard wachtrijnetwerken.

We beginnen ons onderzoek naar verliessystemen in Deel 2 door een Erlang B model
met eindige capaciteit te beschouwen die alterneert tussen actieve en non-actieve toestand
volgens een 2-state modulating Markov proces. Taken arriveren in het systeem volgens een
Poisson proces, maar worden geblokkeerd bij aankomst wanneer het systeem vol of inactief
is. We gebruiken laplacetransformaties om uitdrukkingen af te leiden voor het gemaakte
verlies tijdens een korte termijn planningshorizon. Deze uitdrukkingen kunnen worden
gebruikt om alternatieve systemen te beoordelen.

In het volgende hoofdstuk van Deel 2 ontwikkelen we een geavanceerd model van
het type verliessysteem voor cloud computing systemen. De vraag van gebruikers naar
de computationele bronnen van cloud computing platforms varieert over de tijd. Deze
variabiliteit in het aankomstproces kan voorspelbaar of onvoorspelbaar zijn, waarbij dat
laatste resulteert in tijdsafhankelijke en `bursty' patronen in de vraag. Bovendien kunnen
taken in batches aankomen en gebruikers aan wiens vraag niet (tijdig) wordt voldaan,
kunnen ongeduldig raken. We laten zien hoe het verwachte verlies over een eindige tijd-
shorizon kan worden berekend met behulp van matrixanalysemethoden, waarbij met al
deze modelkenmerken rekening wordt gehouden. We merken op dat dit kan resulteren in
een substantiële vermindering van verlies.

We sluiten Deel 2 af door een optimalisatie kader te ontwikkelen voor een model
dat van toepassing is op mobiele cloud edge computing systemen. Ons model is een
stochastisch netwerk met blokkering: taken proberen achtereenvolgens te worden verwerkt
op knooppunten in een netwerk, maar gaan verloren wanneer ze toegang proberen te
krijgen tot een vol knooppunt. Het probleem is in het algemeen niet wiskundig op te
lossen en het oplossen met behulp van standaard simulatie technieken is erg tijdrovend.
Onze nieuwe methode combineert simulatie met analytische methoden om snel oplossingen
van hoge kwaliteit te verkrijgen. We testen onze aanpak uitgebreid met behulp van
verschillende complexe modellen.

Declaration by author

This thesis is composed of my original work, and contains no material previously published
or written by another person except where due reference has been made in the text. I have
clearly stated the contribution by others to jointly-authored works that I have included
in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including
statistical assistance, survey design, data analysis, signi�cant technical procedures, pro-
fessional editorial advice, �nancial support and any other original research work used
or reported in my thesis. The content of my thesis is the result of work I have carried
out since the commencement of my higher degree by research candidature and does not
include a substantial part of work that has been submitted to qualify for the award of
any other degree or diploma in any university or other tertiary institution. I have clearly
stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University
Library and, subject to the policy and procedures of The University of Queensland, the
thesis be made available for research and study in accordance with the Copyright Act
1968 unless a period of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the
copyright holder(s) of that material. Where appropriate I have obtained copyright per-
mission from the copyright holder to reproduce material in this thesis and have sought
permission from co-authors for any jointly authored works included in the thesis.

Publications included in this thesis

Journal articles (peer-reviewed)

1. M. Mandjes, B. Patch, and N. S. Walton. Detecting Markov chain instability: A
Monte Carlo approach, Stochastic Systems, 7.2 (2017). pp. 48�62.

2. B. Patch and T. Taimre. Transient provisioning and performance evaluation for
cloud computing platforms: A capacity value approach, Performance Evaluation,
118 (2018). pp. 289�314.

3. D. Fiems, M. Mandjes, and B. Patch. Networks of in�nite-server queues with
multiplicative transitions, Performance Evaluation, 123�124 (2018). pp. 35�49.

Conference proceedings (peer-reviewed)

4. B. Patch, T. Taimre, and Y. Nazarathy, Performance of faulty loss systems with
persistent connections, ACM SIGMETRICS Performance Evaluation Review, 43.2
(2015). pp 16�18.

Submitted manuscripts included in this thesis

No manuscripts submitted for publication.

Other publications during candidature

Journal articles (peer-reviewed)

5. B. Patch, Y. Nazarathy, and T. Taimre, A correction term for the asymptotic
covariance of renewal-reward processes with multivariate rewards, Statistics and
Probability Letters, 102 (2015). pp. 1�7.

6. W. Merritt, B. Patch, V. R. Reddy, and G. J. Syme, Modelling livelihoods and
household resilience to droughts using Bayesian networks, Environment, Develop-
ment and Sustainability, 18.2 (2016). pp. 315�346.

Conference proceedings (peer-reviewed)

7. M. Borm, B. Patch, T. Taimre, and I. Adan, Evaluation of a self-organized tra�c
light policy, Proceedings of the 9th EAI International Conference on Performance
Evaluation Methodologies and Tools, (2016). pp 135�136.

8. Y. Nazarathy, T. Taimre, A. Asanjarani, J. Kuhn, B. Patch, and A. Vuorinen,
The challenge of stabilizing control for queueing systems with unobservable server
states. 5th Australian Control Conference (AUCC), Gold Coast, Australia, (2016).
pp. 342�347.

https://pubsonline.informs.org/doi/abs/10.1287/stsy.2017.0003
https://pubsonline.informs.org/doi/abs/10.1287/stsy.2017.0003
https://www.sciencedirect.com/science/article/pii/S016653161730175X
https://www.sciencedirect.com/science/article/pii/S016653161730175X
https://www.sciencedirect.com/science/article/pii/S0166531617303814
https://www.sciencedirect.com/science/article/pii/S0166531617303814
https://dl.acm.org/citation.cfm?id=2825242
https://dl.acm.org/citation.cfm?id=2825242
https://www.sciencedirect.com/science/article/pii/S0167715215000942
https://www.sciencedirect.com/science/article/pii/S0167715215000942
https://link.springer.com/article/10.1007/s10668-015-9650-1
https://link.springer.com/article/10.1007/s10668-015-9650-1
https://dl.acm.org/citation.cfm?id=2897437
https://dl.acm.org/citation.cfm?id=2897437
https://ieeexplore.ieee.org/abstract/document/7361960/
https://ieeexplore.ieee.org/abstract/document/7361960/

Contributions by others to the thesis

In addition to the contributions by others outlined immediately preceding Chapter 2,
Chapter 4, Chapter 6, and Chapter 7:

• Chapter 3 is based on ongoing work by the candidate and Neil Walton (University
of Manchester); each of these authors have contributed equally to this work.

• Chapter 8 is based on ongoing work by the candidate, Mark Squillante (Mathemati-
cal Sciences Department, IBM), and Peter van de Ven (Center for Mathematics and
Computer Science (CWI)); each of these authors have contributed equally to this
work.

Statement of parts of the thesis submitted to qualify for
the award of another degree

No works submitted towards another degree have been included in this thesis.

Research involving human or animal subjects

No animal or human subjects were involved in this research.

Acknowledgments

I would like to thank my supervisors Michel Mandjes (University of Amsterdam (UvA)),
Thomas Taimre (University of Queensland (UQ)) and Neil Walton (University of Manch-
ester) for their support throughout my candidature. Their expert guidance has been
invaluable throughout the last four years and I have learnt a lot from them. More im-
portantly, due to these three I have enjoyed my academic experience in such a way that
I have a strong desire to continue with research.

I would also like to thank the co-authors of the chapters of this thesis, for their indis-
pensable input, guidance and just for generally being a pleasure to work with. Thanks
Dieter Fiems (University of Ghent), Yoni Nazarathy (UQ), Mark Squillante (IBM Re-
search) and Peter van de Ven (CWI - Dutch Center for Mathematics and Computer
Science).

In addition, I also had many useful discussions about Chapter 4 and Chapter 7 with
Yoni Nazarathy, who inspired these directions of research. Peter Taylor (University of Mel-
bourne) provided useful remarks on Chapter 2, Chapter 6 and Chapter 7. Ross McVinish
(UQ) provided useful remarks on Chapter 2.

I thank my Doctorate Committee on behalf of University of Amsterdam, consisting of
Sindo Nunez Queija (UvA), Phil Pollett (UQ), Peter Spreij (UvA), Peter Taylor, Arnoud
den Boer (UvA), Ilze Ziedins (University of Auckland) and Harry van Zanten (UvA) for
feedback on earlier versions of this thesis and sacri�cing their time towards my examina-
tion.

Rosina Muir and Tor Lattimore gave excellent comments on earlier versions of this
thesis. Thanks!

All of the chapters which are published in journals have undergone careful reading
from anonymous referees, and the feedback from this process has substantially improved
the quality of this thesis. I am grateful to all of the referees and editors associated with
this process.

This thesis was written in Amsterdam, Brisbane, New York, Manchester, Basel, Zurich,
Lausanne and Melbourne, among other places. I would like to thank my hosts and their
families in these places. Particularly Neil's wife Aurora Cruz-Cabeza for helping Neil to
host me in Basel and Sophie Hautphenne for hosting me in Lausanne.

The logistics of organising a joint doctorate are immense and have been ongoing for
the entirety of this four year process. There are many little di�erences not only between
the PhD programs of UQ and UvA, but also in terms of administrative matters generally
in Australia and The Netherlands, details which I am now far too familiar with. A big
thank you to everyone involved in this process, I feel like we got most of it done right and
for the things that were done wrong � we are all only human.

Last but not least I wish to thank my family and friends for their love, encouragement,
and ability to distract me from mathematics over the years. You know who you are.

I am particularly grateful to Sarah Hunt in many ways.

Financial support

The research of the candidate was �nancially supported by an Australian Government
Research Training Program scholarship, an ARC Centre of Excellence for Mathematical
and Statistical Frontiers scholarship under grant number CE140100049, and the NWO
Gravitation Programme Networks under grant number 024.002.003.

The candidate received support for travel from University of Amsterdam, The Univer-
sity of Queensland, ARC Centre of Excellence for Mathematical and Statistical Frontiers,
and The Network Center.

Keywords

Markov chains, stability, Monte Carlo algorithm, queueing networks, loss system, stochas-
tic networks, multihop networks, �uid limit, di�usion limit, matrix analytic methods

Australian and New Zealand Standard Research Classi-
�cations (ANZSRC)

ANZSRC code: 010206, Operations Research, 40%
ANZSRC code: 010406, Stochastic Analysis and Modelling, 60%

Fields of Research (FoR) Classi�cation

FoR code: 0102, Applied Mathematics, 40%
FoR code: 0104, Statistics, 60%

Contents

Overview, background, and motivation 1

I Queueing models and stability 3

1 Introduction to queueing models and stability 5
1.1 Queueing networks . 5
1.2 Stability . 9
1.3 Foster�Lyapunov stability . 10
1.4 Fluid scaling limits and stability . 11
1.5 Outline of Part I . 14

2 Networks of in�nite-server queues with multiplicative transitions 17
2.1 Introduction . 17
2.2 Analysis . 19

2.2.1 Model . 19
2.2.2 System of partial di�erential equations 20
2.2.3 Moments . 22
2.2.4 Stability . 24
2.2.5 E�cient evaluation of performance metrics 25

2.3 Retrial queues, rerouting, storage systems 26
2.3.1 Retrial queues . 26
2.3.2 Rerouting . 28
2.3.3 Applications to storage networks 29

2.4 Numerical experiments . 31
2.4.1 Retrial queue . 31
2.4.2 A storage system . 33

2.5 Discussion and concluding remarks . 36

3 Stability of weighted queue-proportional rate allocation 39
3.1 Introduction . 39
3.2 System model . 41
3.3 System stability region . 43
3.4 Weighted queue-proportional rate allocation scheduler 44
3.5 Key assumptions . 44
3.6 Di�usion limit . 46
3.7 Additional system model detail and intuition behind main conjecture . . . 47

xvii

3.8 Some properties of �uid sample paths for the WQPRA scheduler 51
3.9 Sketch of di�usion limit proof . 55

3.9.1 Attraction property of �uid sample paths 56
3.9.2 Di�usion limit of workload process and state space collapse 60
3.9.3 Workload minimisation property 61

3.10 Other supporting lemmas . 61

4 Detecting Markov chain instability: a Monte Carlo approach 67
4.1 Introduction . 67
4.2 Framework . 71
4.3 Implementation and main results . 73

4.3.1 Algorithm . 73
4.3.2 Main results . 75
4.3.3 A test for instability . 76

4.4 Proofs . 79
4.4.1 Stable parameter set . 79
4.4.2 Proof of Theorem 7 for the global search algorithm 82
4.4.3 Proof of Theorem 7 for the local search algorithm 86

4.5 Examples . 88
4.5.1 Parallel queues with randomly varying connectivity 88
4.5.2 Tandem queues . 90
4.5.3 Rybko�Stolyar queueing network 93
4.5.4 A switch network . 94
4.5.5 A broken diamond random access network 95

4.6 Supporting lemmas . 98
4.7 Concluding remarks . 101

II Loss models and capacity management 103

5 Introduction to loss models and capacity management 105
5.1 Loss systems . 105
5.2 Capacity value function and Laplace�Stieltjes transforms 108
5.3 Markovian arrival processes . 109
5.4 Outline of Part II . 110

6 Management of faulty loss systems 113
6.1 Introduction . 113
6.2 Model . 114
6.3 Results . 115
6.4 Illustration . 121
6.5 Concluding remarks . 122

7 Loss system models for cloud computing platforms 125
7.1 Introduction . 125

7.1.1 Related work . 129
7.1.2 Organisation . 130

7.2 Model of cloud computing platforms . 130
7.3 Encompassing performance evaluation model 132

7.4 Transient performance evaluation . 136
7.4.1 Unpredictable arrival rate expected value 136
7.4.2 Incorporating predictable bursts 137

7.5 Illustrations . 138
7.5.1 Simple time homogeneous system 139
7.5.2 System with predictable bursts . 140
7.5.3 Unpredictable time-varying system 141
7.5.4 Batchiness . 143

7.6 Concluding remarks . 144

8 Stochastic networks with blocking 147
8.1 Introduction . 147
8.2 Outline of the functional form approach 149
8.3 Stochastic networks with blocking . 152

8.3.1 Model outline . 152
8.3.2 Speci�c examples . 154

8.4 Finding the right functional form . 156
8.4.1 Single-station case . 156
8.4.2 Speeding up the algorithm . 159
8.4.3 Extension to tandem systems . 161
8.4.4 Extension to two customer classes 165

8.5 Algorithms for network setting . 167
8.6 Numerical experiments . 170
8.7 Supporting material . 173

8.7.1 Matrix derivations . 173
8.7.2 Stochastic approximation implementation 174

8.8 Outlook . 175

A Mathematical miscellany 189
A.1 One-dimensional Skorohod problem . 189
A.2 Martingales and concentration . 189
A.3 Simulation scenarios . 191

Overview, background, and motivation

This thesis is about coping with variability in outcomes for complex random systems.
The focus is mainly upon systems where jobs arrive randomly throughout time to utilise
resources of some sort for a random amount of time before departure. The primary focus is
on models for communication and storage of data. We investigate, for example, models of
radio networks, cloud �le hosting services, and cloud computing platforms. These systems
are rich enough that results for speci�c models are interesting in their own right, while
also providing a fruitful environment for the development of novel approaches of interest
to other application areas where similar models may arise (e.g., ecology, transportation,
manufacturing, health care).

Models for communication and storage of data are often concerned with either queue-
ing or loss behaviour, with Part I and Part II of this thesis devoted to these aspects
respectively. Queueing occurs when a scarce resource is sought by more users than the
amount available and it is possible for users to wait before accessing the resource. In such
a case, management often entails determining an ideal trade-o� between users waiting
and investment in more resources. When there are multiple users or resource types the
question of how to allocate resources between users also arises. Loss behaviour results
when users are unable or unwilling to wait and so the e�ect of congestion is that users
depart without accessing the resource. In this case management faces a trade-o� between
investing in more resources or losing a higher quantity of users.

In the following we consider a very simple scenario to highlight queueing and loss
behaviour. Suppose time is broken into distinct consecutive periods, and at the beginning
of each time period with probability 1/2 an item arrives to be processed, then at the end
of each time period if there are any items present, one is chosen at random and with
probability p ∈ [0, 1] is successfully processed and removed from the system. The number
of items waiting in the system is clearly dependent on the value of p. Intuitively one
might expect that low values of p result in more items waiting compared to values of p
closer to 1. If there is an in�nite capacity in the system for items to wait for processing,
then management of the system may bene�t from knowledge of the random �uctuations
of this queue and how this relates to the time items must wait before being processed. On
the other hand, suppose there is a �nite capacity such that at most C items may wait for
processing at any given time. Furthermore, suppose that if an item arrives to a system
which is at capacity, then it departs without receiving service. In this case there is, in
some sense, a maximum waiting time for items which enter the system and so management
may be more concerned with ensuring that not too many items are lost without receiving
service at all. From an elementary point of view, Part I of this thesis is concerned with
parameters similar to p and Part II of this thesis is concerned with parameters similar to
C.

1

2 Overview, background, and motivation

There are many management questions of interest for the systems we investigate in
this thesis. It is imperative in many cases to address the stability of a system before ap-
proaching other management questions. In the trade-o� between investment in resources
and waiting times, stability can be thought of as determining simply whether a chosen
allocation of resources results in �nite waiting times. We call systems where workload
grows without bound, and consequently newly arriving work never gets processed, unsta-
ble. We spend the majority of Part I of this thesis determining conditions under which
speci�c systems of interest are stable and developing methods for detecting instability.
One motivation for this is that stability can be considered to be the most modest of long
term management objectives. For our simple system, stability is achieved if and only if
p > 1/2. If indeed an in�nite waiting capacity is possible, then management may wish
to carefully choose p to ensure that instability does not occur. In many cases, however,
such a simple closed form expression for stability is not possible and so more sophisticated
approaches are called for. Another motivation for studying stability is that the presence
of instability can be indicative that the description of the system on which the model is
based has �aws that need to be addressed. For our simple system, considering the �nite
quantity of items in the world it is unreasonable to assume that the probability of an
arrival in each time period does not depend on the number of items being processed. A
model assuming that the arrival rate decreases with the length of the queue may be more
suitable for addressing the question of the queue's limiting length than the potentially
in�nite length description employed.

For systems characterised by loss, stability is no longer an issue � these systems are
naturally bounded in size by the balking of jobs in response to congestion. For these
systems it is natural to assume that �nite waiting capacity is closely linked to scarcity
of the resources required to generate waiting capacity. Moreover, scarcity is often closely
related to price: we suppose that by paying more it is possible for management to increase
waiting capacity. Hence there is a trade-o� between provisioning capacity and losing jobs.
This trade-o� is the focus of Part II. For our simple system we may suppose that C units
of capacity costs θc C per time unit to provide and that each lost job results in lost revenue
of θl, and so C should be chosen to reduce the number of lost jobs, but not so high that
costs are excessive. Maintaining an optimal balance between capacity and losses results
in a more e�cient system. For example, in the cloud computing context this means that
it may be possible to reduce energy consumption by reducing redundancy, leading to a
healthier natural environment and lower energy bills. On a more personal level it may
just mean that an important text to a loved one is not lost en-route to its destination.

This thesis has two parts, Part I and Part II. As outlined in more detail in the intro-
ductory chapters, Chapter 1 and Chapter 5, these parts each begin by extending already
established approaches to novel models of systems with contemporary relevance. Each
part of the thesis concludes with a novel simulation-based approach that is applicable for
models where already established methods are intractable. The established approaches
we use are based on scaling limits, moment generating functions, Laplace�Stieltjes trans-
forms, and matrix analytic methods. Our new simulation-based methods are exciting
because they are e�cient enough to easily be applicable to current state-of-the-art mod-
els and have scope to substantially extend the type of models that can be considered by
applied probabilists. Furthermore, in some cases we provide rigorous guarantees on their
performance.

Part I

Queueing models and stability

CHAPTER 1

Introduction to queueing models and stability

Queueing networks are an established class of mathematical models with a rich literature.
Queueing results underpin and are conversely inspired by developments in areas such as
wireless communications, manufacturing, transportation, logistics, and health care. In
this chapter we provide a brief overview of selected topics from this literature. To this
end we �rst give an introduction to some classical models and results, which the work
in Chapter 2 directly builds upon. We then discuss the concept of stability and show
some standard approaches to this topic, which leads us to introduce the more recently
developed switch network model, as studied in Chapter 3. The chapter concludes with a
discussion of the remaining chapters in this part. Brie�y, these remaining chapters: (i)
substantially generalise a well known queueing network model to include multiplicative
transitions, (ii) provide interesting theoretical properties of a model for multihop radio
networks, and (iii) devise a novel simulation-based method for detecting Markov chain
instability.

1.1 Queueing networks

Many standard queueing models are characterised by a description of how jobs arrive to
the system, the response of jobs to congestion and waiting times, the time it takes for
a job to be served, a service discipline, the number of servers, and the ability of jobs to
wait.

Consider a system where jobs arrive according to a homogeneous Poisson process (see
[1]) with rate λ ∈ R+ (i.e., the times between arrivals are iid exponentially distributed
random variables). The system consists of k servers, each of which can serve a single job
at any time. Upon arrival, jobs wait inde�nitely for a server to become available. Once
a server becomes available a waiting job is selected for service uniformly at random, or
if no jobs are waiting, the server idles until a job arrives. Once a job and a server are
matched, an exponentially distributed amount of time with mean µ−1 passes and then
the job leaves the system. Let (X(t), t ∈ R) ≡ X be a random process evolving on the
state space S := {0, 1, . . . } that records the number of jobs in the system over time (which
we assume has been running from time −∞). Let Q = (q(i, j), i, j ∈ S) be a collection
with q(i, i) = 0 and q(i, j) ≥ 0 for i 6= j. Related to this collection are the quantities

5

6 Chapter 1. Introduction to queueing models and stability

(q(i), i ∈ S) where q(i) :=
∑
j∈S q(i, j), which we assume to be �nite. Informally, suppose

that upon entering a state i ∈ S the process remains in state i for an exponentially
distributed amount of time with mean q(i)−1 and then transitions to state j ∈ S with
probability p(i, j) := q(i, j)/q(i). Call q(i, j) the transition rate from state i to state
j. We have that X(t) transitions to X(t)+1 and X(t)−1 at rates λ and µmin{k,X(t)}
respectively.

A collection of non-negative numbers (πi, i ∈ S) summing to unity that satisfy the
equilibrium equations,

πi q(i) =
∑
j∈S

πjq(j, i), ∀ i ∈ S , (1.1)

is de�ned to be a stationary or equilibrium distribution of the system. If (X(t1), X(t2), . . . ,
X(tn)) has the same distribution as (X(t1 +τ), X(t2 +τ), . . . , X(tn+τ)) for all (t1, t2, . . . ,
tn, τ) ∈ Rn+1, then we call X stationary. Many reasonably behaving processes, such as
the one we are considering, are stationary when they have been running since time −∞
(as we assume). If we can �nd a collection of positive numbers satisfying (1.1) whose sum
is in�nite, then an equilibrium distribution does not exist for X (see [2, p. 2]).

Although the system just described operates in continuous time, it is sometimes con-
venient to consider a discrete-time approximation (X(J)(t), t ∈ N0) to systems such as
this one that records the state of the system only at time instances immediately after it
changes state. For these discrete-time models the equilibrium distribution is de�ned by a
collection of non-negative numbers (π

(J)
i , i ∈ S) summing to unity that satisfy

π
(J)
i =

∑
j∈S

π
(J)
j p(j, i), ∀ i ∈ S .

For Markov processes that almost surely have a �nite number of transitions in any �nite
interval (such as the queueing system described above), when an equilibrium distribution
exists for the discrete-time approximation it will also exist for the Markov process under
study and vice versa. We use this property in Chapter 2 when establishing the existence
of an equilibrium distribution of a continuous-time system, and the property can also
be used to extend the framework we develop in Chapter 4 for discrete-time systems to
continuous-time systems.

If (X(t1), X(t2), . . . , X(tn)) and (X(τ − t1), X(τ − t2), . . . , X(τ − tn)) have the same
distribution for all t1, t2, . . . , tn, τ ∈ R, then we call X reversible. It is well known that
stationary processes where q(i, j) = 0 unless |i− j| = 1 are reversible (see e.g., [2, p. 11]).
Therefore, since X satis�es this condition, according to Theorem 1.2 in [2] its equilibrium
distribution can be identi�ed by �nding a collection of non-negative numbers (πi, i ∈ S)
summing to unity that satisfy

πi q(i, j) = πj q(j, i), ∀i, j ∈ S .

These are known as the detailed balance equations [2]. For example, for our simple queue-
ing system these are

πiλ = πi+1(i+ 1)µ , 0 ≤ i < k , (1.2)

πiλ = πi+1kµ , i ≥ k . (1.3)

The parameter % = λ/µ, often referred to as the tra�c intensity, is intimately related
to the stationary distribution of the queue. For k = 1 it compares the average workload

1.1. Queueing networks 7

imposed on the system to the average processing capability of the system. In this case,
when % < 1 the detailed balance equations can be solved to �nd that πi = (1 − %) %i,
where the constant (1 − %) follows from the condition

∑∞
i=0 πi = 1. On the other hand,

if % is greater than 1, then more jobs are arriving on average than the system can serve
on average throughout time. A reasonable hypothesis in this case is that the size of the
queue will grow without bound over time � in which case we call the system unstable
(a topic we return to in detail in the next section). Indeed, for % ≥ 1 we have identi�ed
a collection of positive numbers that satisfy (1.1) whose sum is in�nite, indicating that
a stationary distribution for the queue length does not exist in this case, con�rming our
hypothesis. When % < 1 we say that the system is operating in a subcritical regime. For
k → ∞, for all possible values of %, the detailed balance equations can be solved to �nd
πi = e−% %i/i!. This indicates that a stationary distribution always exists for this system
when the number of servers becomes in�nitely large. In this case it can be seen that the
expected value of the size of the queue in equilibrium is given by %. The case k = 1 is
known as a single server queue, while the case k → ∞ is known as an in�nite server
queue. These are both special cases of the birth�death process introduced by Feller in [3].

Importantly, the stationary distribution of a stochastic system often underpins many
performance measures for the system. For queueing systems where an equilibrium distri-
bution exists, waiting is a key characteristic, and so it is common to use the long-term
average waiting time in the system of an arbitrary customer, denoted by W , as a per-
formance measure. In [4] it is shown that L = λW , where λ is the long-term average
e�ective arrival rate and L is the long-term average length of the queue. This result,
known as Little's Law, is highly general; in particular it can be applied to networks of
queues, and holds regardless of the arrival process distribution, the service distribution, or
service discipline [5]. This is extremely important since the vast majority of applications
rely on a model consisting of many queues joined together as a queueing network.

When the primitive random variables underlying a queueing network are all exponen-
tially distributed, the queueing network is a special case of a more broad class of models
called Markov population processes [6]. These are vector valued Markov processes where
each coordinate records the number of items given some classi�cation as a function of
time. In the queueing context each classi�cation usually refers to an individual queue.
Let the set of queues be N = {1, . . . , c}, where c is possibly in�nite. Also, let the queue
sizes at time t be given by a vector X(t) := (X1(t), . . . , Xc(t)) and the equilibrium queue
sizes be given by a vector X := (X1, . . . , Xc), both with state space S ⊂ Nc0 and elements
denoted by x = (x1, . . . , xc) where each xi ∈ N0. Now, the transition rates between states
of this continuous-time Markovian pure-jump process are taken as

q(x,x+ ei) = φi(x),

q(x,x− ei) = ψi(x),

q(x,x− ei + ek) = κi,k(x),

(1.4)

where ei denotes the ith coordinate vector and φi, ψi, κi,k are functions S → R+. We
require ψi(x) = κi,k(x) = 0 if xi = 0 for all i to ensure that Xi(t) remains non-negative.

Early studies pursuing a closed form expression for the stationary distribution of a
Markov population process include those by Jackson [7], Whittle [8], and Kingman [6].
For �nite S the equilibrium equations (1.1) for the model described by (1.4) have a
unique solution satisfying the properties of a probability distribution, while for in�nite S
they have at most one solution satisfying the properties of a probability distribution [6].

8 Chapter 1. Introduction to queueing models and stability

Although �nding an explicit general and tractable solution to the equilibrium equations
(1.1) that satis�es the properties of a probability distribution for the model described by
(1.4) is widely thought to be impossible, progress has been made in certain interesting
cases.

Jackson [7] considered the case when φi(x) = λi, ψi(x) = µi min{xi, si}, and κi,k(x) =
γi,k min{xi, si}, where λi, µi, γi,k ∈ R+, and si ∈ N. He showed that the stationary
distribution of the network factorizes as a product of the marginal stationary distributions
of each queue and provided an explicit form of this expression (up to a normalizing
constant) in terms of a set of constants that can be derived from a separate set of equations
(given below in (1.6)). Whittle [8] showed that Jackson's result still holds for the more
general case with φi(x) = λi, ψi(x) = µifi(xi), and κi,k(x) = γi,kfi(xi), where fi(0) = 0
and fi(x) > 0 for all x > 0. Upon taking si → ∞ for all i in Jackson's expression or
fi(xi) = xi for all i in Whittle's expression, the stationary distribution turns out to be

πx =

c∏
i=1

e−bi/µi(bi/µi)xi

xi!
, (1.5)

where the set {b1, . . . , bc} satis�es the system of tra�c equations

bi = λi +

c∑
k=1

bkθi,k, ∀ i ∈ N , (1.6)

with θi,k = γi,k/(µi +
∑
j γi,j) denoting the probability that an item is sent to queue k

upon completion of service at queue i. This indicates that in equilibrium the distribution
of the number of items at a given queue is independent of the number of items at other
queues and follows a Poisson distribution with mean determined by (1.6). Notice that this
limit in si or choice of fi results in a network of in�nite server queues model, indicating
that an equilibrium distribution always exists for such a system (our model in Chapter 2
modi�es the network of in�nite server queues model in such a way that an equilibrium
distribution may not exist). It is also interesting to note that the tra�c equations (1.6)
depend only on the external arrival rates and the transition probabilities between queues,
not on the service rates at the individual queues.

In addition to being able to evaluate performance measures based on the equilibrium
distribution, it can also be of tremendous use to system managers to be able to optimise
in terms of these measures. Early work by Kleinrock [9] focused on how to best assign
service capacity to optimise various performance measures for queueing networks. This
research was based on the assumption that service times were exponentially distributed
and input processes are Poisson. It was later realised that such an assumption may not
hold, yet without these assumptions exact analysis seems to be impossible, and so Pollett
[10] developed an approximating technique based on the residual-life approximation. Ad-
ditionally, there is a very large body of literature on insensitivity to the form of the service
distributions provided the mean is kept constant (see e.g., [104] for details). More recent
state-of-the-art research [11] focuses on combining exact analytical results that utilise the
exponential assumption with simulation to develop fast methods for determining optimal
solutions. Before optimisation can be addressed, however, it is often necessary to �rst
determine if and when a particular model will be stable or unstable.

1.2. Stability 9

1.2 Stability

A stable queueing network is guaranteed to have su�cient service to cope with the load
imposed upon it in the long-run. Intuitively this means that over very long planning
horizons the number of jobs in the network remains bounded so that individual jobs
expect to experience �nite waiting times. More formally it means that it is possible to
de�ne a valid probability distribution to describe the system as time goes to in�nity.
Recall the Markovian population process model above with φi(x) = λi, ψi(x) = µifi(xi),
and κi,k(x) = γi,kfi(xi), where fi(0) = 0 and fi(x) > 0 for all x > 0. For this class
of systems we saw that a particular choice of fi results in a model for a system which
always has an equilibrium distribution. In fact, by imposing the condition fi(x) > 0 for
all i along with some conditions on the set (µi, γi,k) that ensure from any state there is a
positive probability of eventually visiting any other state we obtain a property known as
irreducibility. In this thesis we deal exclusively with irreducible systems, and for this type
of system there is a strong equivalence, summarised in the following theorem, between
the existence of a stationary distribution for a process and the expected time it takes the
process to return to any state from the moment it departs the state.

Theorem 1 (Partial restatement of Theorem 3 in Section 6.4 of [12]). An irreducible
Markov process evolving on a countable state space has a stationary distribution if and
only if the expected return time is �nite for some state.

Before continuing we must make two remarks regarding Theorem 1. Firstly, inspection
of the reference for the theorem reveals that the theorem is in fact stated for discrete-time
Markov processes evolving on a discrete state space. Given a continuous-time model (e.g.
(X(t), t ∈ R+)) with bounded transition rates it is possible to de�ne a related skeleton
Markov process (e.g. (X(∆n), n ∈ Z+)) which has a stationary distribution if and only if
the continuous-time model does too. This is because the expected return times to each
state for the skeleton process will provide upper bounds for the expected return times
of the original process. Secondly, the notion of a state having a �nite return time is
so important it has the special name positive recurrence, a name which is adopted by a
Markov process when all of its states have this property. Due to Theorem 1, the applied
probability community use the terms stability and positive recurrence interchangeably
with the notion of the existence of a stationary distribution. An unstable queueing network
is one where a stationary distribution does not exist; for such systems there exists some
initial state such that, as time goes to in�nity, the number of jobs in the network will go
to in�nity (and then never come back down) with positive probability (see e.g., [84, p.
53]).

Returning to the Markov population process models introduced earlier, in the Whittle
case, de�ne the constants

gi =

∞∑
n=1

(bi/µi)
n∏n

r=1 fi(r)
, i ∈ N .

Inspection of (1.6) hints that the constants bi, and then also gi, are related to the total
load imposed on any particular queue in the network in equilibrium. In fact, in order for
a stationary distribution to exist gi <∞ is required for all i ∈ N . For example, consider
the case of a sequence of c single server queues in tandem, which occurs when φ1(x) = λ,
ψc(x) = µc1{xc > 0}, κi,i+1(x) = µi1{xi > 0} for 1 ≤ i < c, and all other transitions

10 Chapter 1. Introduction to queueing models and stability

are 0. In this case bi = λ and so gi is only �nite for λ/µi < 1. This stability condition
is highly intuitive, it essentially says that the total tra�c entering the network for each
queue must be less than the rate at which work can be processed. Another way to put this
is that the tra�c intensity λ/µi (as discussed earlier in this chapter) must be sub-critical
(i.e., less than 1) for all queues. For the most part this resolves the question of stability
for many queueing networks; however, in the next two sections we will explore two other
types of network where a stationary distribution has not been found and other methods
for determining stability are necessary.

1.3 Foster�Lyapunov stability

In this section we will demonstrate the utility of another method for determining stability
properties for a stochastic system. Speci�cally, we present a model where the service
allocation depends on the current state of the system. For this model a stationary distri-
bution has not yet been determined, motivating us to state the Foster�Lyapunov Theorem
which can be used, nonetheless, to approach the question of stability for such a system.
Multihop radio network models (see e.g., [13, 14, 15, 16]) are an important class of random
network that share many of the features of the continuous-time �rst-in-�rst-out (FIFO)
networks discussed at length in the previous section. These models are distinct, however,
in that they typically have a discrete time index and more sophisticated service disciplines
than the processes of Jackson and Whittle speci�ed in the previous section. We focus on
this type of model in Chapter 3. A continuous-time variant of a typical system from this
area of research could be speci�ed with appropriate φ, ψ, and κ; however, we will now
instead more directly de�ne the system in discrete time.

There are links contained in a �nite countable set L serving several routes of tra�c.
Each route r consists of Nr ordered links {l(r)1 , . . . , l

(r)
Nr
} ⊂ L. For each link there is an

associated queue that keeps track of the quantity of jobs at that link, and similarly for
each route at each link there is a queue. At time t ∈ {0, 1, . . . } we denote these queues
as follows: there are Ql(t) jobs at link l, and moreover there are Xl,r(t) jobs at link l

on route r. In each time slot Ar(t) route r jobs arrive exogenously to link l(r)1 , where
(Ar(t), t ≥ 0) are iid. We let λr := EAr(1) and store these quantities in a vector denoted
by λ. Let λΣ be a vector with l-th component

∑
r:l∈r λr. In each time period a scheduling

policy is determined such that µl,r(t) route r jobs are expected to be served at link l. Jobs
which are served move to the next link on their route before the next time period begins,
or leave the system if they are on the terminal link of the route (i.e., the link with index
Nr). We de�ne σl(t) =

∑
r:l∈r µl,r(t) and suppose that the set {σl(t)} must be chosen

from within a compact convex region Λ ⊂ R|L|+ . It was shown in [13] that λΣ must be an
element of the interior of Λ in order for there to exist a scheduling policy for which the
system is stable. Such a policy is called maximally stable or throughput optimal.

One such maximally stable policy is the celebrated Backpressure policy of Tassiulas and
Ephremides [13]. In each time period this policy chooses {µl,r(t)} to solve the optimisation
problem:

max
∑
(l,r)

[
X
l
(r)
− ,r

(t)−Xl(r),r(t)
]
µl,r(t) subject to σ(t) ∈ Λ , (1.7)

where l(r)− is the link before link l(r) on route r and X
l
(r)
−

(t) = 0 for all ingress links l(r)1 .

1.4. Fluid scaling limits and stability 11

Although it is has not been possible yet to explicitly �nd the stationary distribution of
this type of network under this policy, it is still possible to determine that it is stable for
λΣ strictly an element of the interior of Λ. A key result that is used to prove this result
is the Foster�Lyapunov theorem.

Suppose we are working with a discrete-time Markov process (X(t), t ∈ N) evolving
on a countable state space S (which may be vector valued). Then the following theorem,
based on ideas for ordinary di�erential equations, allows us to establish stability of the
process by considering how movements over a single time period for states inside and
outside of some �nite set are related to the overall expected return time for all states.

Theorem 2 (Foster-Lyapunov stability criterion). Suppose there exists a function V :
S → R+ such that for some constants ε > 0 and b, some �nite exception set K ⊂ S, and
all i ∈ S,

E[V
(
X(t+ 1)

)
− V

(
X(t)

) ∣∣X(t) = i] ≤
{
−ε, i 6∈ K,
b− ε, i ∈ K.

Then the expected return time to K is �nite, and X is a positive recurrent (stable) Markov
process.

This theorem can be used in conjunction with Theorem 1 to show that a stationary
distribution exists, even when that distribution cannot be explicitly found. In [13] the
function V (X(t)) =

∑
(l,r)Xl,r(t)

2 is used in Theorem 2 to prove the Backpressure policy
is maximally stable. Identifying an appropriate V is often the main challenge in applying
this theorem. In Chapter 2, however, we use Theorem 2 with V being the L1-norm (of
the queue size vector) to prove stability � in this case a major hurdle is identifying an
expression for the expected change of the process over time. In Chapter 3 we encounter
a model where Theorem 2 cannot be applied directly and a scaling limit approximation
must be used to approach the question of stability. In the next section we introduce this
scaling limit and show its relation to stability. We do this in the context of some famous
counterexamples showing that subcritical tra�c intensity is not su�cient for stability for
all Markovian population process type queueing networks.

1.4 Fluid scaling limits and stability

The Rybko�Stolyar [17] and Lu�Kumar [18] systems are examples of queueing networks
that �t into the dynamics described by (1.4) and can be unstable with subcritical tra�c
intensity. These examples were introduced independently in the early 1990's. Since these
systems exhibit similar dynamics, we will focus only on the Rybko-Stolyar network, which
was introduced in a paper that was among the �rst to use the �uid model technique for
determining stability that we introduce in this section. The network arises again in
Chapter 4 as an example for our novel simulation-based method for detecting instability.

The Rybko�Stolyar network consists of four queues, displayed in Figure 1.2, grouped
into two stations, where jobs enter the network at one of the stations and upon completion
of service move to the other station for service. At each station there is a queue for newly
arriving jobs and a queue for jobs that arrived from the other station, and at each station
only one queue may receive service at any particular point in time. Jobs which have
already been processed at their ingress station receive priority over jobs being processed for
the �rst time. The system has dynamics in terms of (1.4) as follows: φ1(x) = φ4(x) = λ,
κ1,2(x) = µ11{x1 > 0, x2 = 0}, κ4,3(x) = µ21{x4 > 0, x3 = 0}, ψ2(x) = µ21{x2 > 0},

12 Chapter 1. Introduction to queueing models and stability

ψ3(x) = µ11{x3 > 0}, and no other transitions. From [17] we have that the system is
unstable when λ = 1, µ2 > 0, and µ1 < 2.

λ

λ

µ2µ1

Figure 1.1: The Rybko�Stolyar network.

In Figure 1.2 we see a simulated sample path of this system with λ = 1, µ2 = 2, and
µ1 = 1.99. The �gure shows very interesting behaviour: the queues do appear to always
return to 0, but as time progresses the return time appears to increase. Indeed, with this
choice of parameters the system is unstable. Determining the stationary distribution for
this system in the stable case in the same way as for the Jackson and Whittle type systems
introduced earlier has not yet, to the author's knowledge, been done. Nonetheless, it is
still desirable to determine when a stationary distribution exists. The machinery used in
[19] and Chapter 3 are based on a particular type of scaling that we will now discuss.

Although the development of a universally applicable and implementable method for
determining stability and instability remains an open question, a method relying on �uid
scaling limits is a popular candidate for such a role. Loosely speaking, in a �uid scaled
process, jumps whose size are of order 1 occurring at rate λ are scaled to have a size of
order 1/n and made to occur at rate λn, and then n is taken to be very large. The initial
condition of the scaled stochastic process converges (often by assumption) in distribution
to a random vector (possibly of constants) as n→∞. More formally, given a continuous-
time Markov process (X(t), t ≥ 0), for each n consider the �uid scaled process

X̃(n) :=

(
X(n t)

n
, t ≥ 0

)
.

We call a �xed function x̃ ≡ (x̃(t), t ≥ 0) a �uid sample path if there exists an arbitrary
nondecreasing sequence of positive numbers tending to in�nity K and a sequence of sample
paths {x̃(n)} of the corresponding processes {X̃(n)}, such that as n→∞ along sequence
K,

x̃(n) → x̃ ,

uniformly on compact intervals.
As a standard example, consider the individual queue introduced at the beginning

of this chapter with k = 1. It is possible to show (see e.g., [20, Section 5.7]) that for
this single server Markovian queue, under the assumption that �uid scaled paths satisfy
X̃(n)(0)/n→ x̃(0) ∈ R+ almost surely (i.e., with probability 1), that almost all (i.e., with
probability 1) �uid sample paths are given by

x̃(t) = max{x̃(0) + (λ− µ) t, 0} , t ≥ 0 .

It is crucial to note that for λ < µ this function goes to 0 and for λ ≥ µ it remains bounded
away from 0. We saw earlier that in the former case a stationary distribution exists for
this system and in the latter case a stationary distribution does not exist. A rigorous
relationship between stability of a stochastic system and the almost sure convergence to 0
sample paths property of its corresponding �uid model has been established in the applied

1.4. Fluid scaling limits and stability 13

0 1,000 2,000 3,000 4,000 5,000 6,000
0

20

40

60

80

100

t

X
1
(t
)

0 1,000 2,000 3,000 4,000 5,000 6,000
0

10

20

30

40

t

X
2
(t
)

0 1,000 2,000 3,000 4,000 5,000 6,000
0

50

100

150

t

X
3
(t
)

0 1,000 2,000 3,000 4,000 5,000 6,000
0

10

20

30

t

X
4
(t
)

Figure 1.2: Sample path of Rybko-Stolyar system with unstable parameter choices.

probability literature.
The following theorem, rephrased from Dai [21], provides su�cient conditions that can

be used to establish stability of a relatively large family of queueing networks, including
the simple example just explored and the model studied in Chapter 3.

Theorem 3 (Restatement and rephrase of Theorem 4.2 in [21]). Given a continuous-
time Markov process X satisfying some technical conditions, if there exists a constant
T ∈ (0,∞) such that for almost all �uid sample paths x̃ it holds that |x̃(t)| = 0 for all
t ≥ T almost surely, then X is positive recurrent.

Showing that almost all �uid sample paths almost surely go to 0 can be a challenge.
A popular method is to �nd an appropriate Lyapunov function. Fortunately this is often
more straightforward than �nding a Lyapunov function that deals directly with the system

14 Chapter 1. Introduction to queueing models and stability

dynamics, which is the strength of Theorem 3 over Theorem 2. We wish to highlight that
this theorem is only su�cient for stability when almost all �uid sample paths go to 0
almost surely. If, in the single server example above, the arrival rate λ and service rate
µ were to be switched with probability 1/2 at the �rst instance that X(t) = 0, then a
�uid model with random sample paths would result. In this circumstance 1/2 of the �uid
sample paths would not go to 0 and so the conditions of Theorem 3 would not be met and
a conclusion of stability could not be made. The properties of models which possess more
than 1 potential �uid sample path are an active area of research (see e.g., [22, 23, 24]).
Concluding instability from �uid models is also a fundamental part of the �uid scaling
stability framework (see e.g., [25, 26]).

Utilising Theorem 3 in place of Theorem 2 often comes with the added bene�t of
�nding simpler conditions on sample paths at the cost of needing to �rst establish a
�uid model for the stochastic system of interest. Three traditional techniques of proving
convergence of Markov processes to their �uid limits are: (i) C-tightness criterion (as
used in e.g., [27, 28, 29]), (ii) the martingale representation (as used in e.g., [30]), and (iii)
convergence of generators (see e.g., [31] for details). Our proof of convergence to a �uid
model in Chapter 3 utilises a martingale, and this type of process (see Appendix A.2) is
also a fundamental ingredient of our results in Chapter 4.

The rest of Part I of this thesis presents original research results, which we will now
summarise.

1.5 Outline of Part I

Here we provide a summary of the subsequent chapters of Part I of this thesis. Each
chapter uses di�erent mathematical methods and has its own distinct focus, yet stability
is a prevailing theme throughout. Each remaining chapter in this part utilises di�erent
subsets of the ideas introduced in this chapter and is presented in an accessible and self-
contained fashion.

Chapter 2 � Networks of in�nite-server queues with multiplicative transi-
tions. This chapter considers a network of in�nite-server queues with the special feature
that, triggered by speci�c events, the network population vector may undergo a linear
transformation. Due to these transformations, the model does not �t into the class of
models described by (1.4). For this model we characterize the joint probability generating
function in terms of a system of partial di�erential equations; this system enables the
evaluation of (transient as well as equilibrium) moments. We show that several relevant
systems �t in the framework developed, such as networks of retrial queues, networks in
which jobs can be rerouted when links fail, and storage systems. Numerical examples
illustrate how our results can be used to support design problems.

Chapter 3 � Stability of weighted queue-proportional rate allocation. We
study a weighted version of the recently introduced Queue-Proportional Rate Allocation
scheduling algorithm for multi-hop radio networks. This policy does not require knowl-
edge of tra�c arrival rates to make scheduling decisions. We use �uid limit techniques to
show that a generalization of this policy to allow weighting of packets at each station, to
re�ect non-homogeneous priorities, retains the maximal stability property. We do this in
a setting where the processing capabilities of the network varies over time according to
a �nite-state, discrete-time Markov chain. We also apply di�usion scaling to the model

1.5. Outline of Part I 15

and investigate the properties of the model in heavy tra�c. We conjecture that the work-
load process of the network converges to a re�ected Brownian motion, that the vector of
queue lengths is always proportional to the tra�c arrival rate vector, and that the policy
asymptotically minimises workload.

Chapter 4 � Detecting Markov chain instability: a Monte Carlo approach.
We devise a Monte Carlo based method for detecting whether a non-negative Markov
chain is stable for a given set of parameter values. More precisely, for a given subset of
the parameter space, we develop an algorithm that is capable of deciding whether the
set has a subset of positive Lebesgue measure for which the Markov chain is unstable.
The approach is based on a variant of simulated annealing, and consequently only mild
assumptions are needed to obtain performance guarantees.

The theoretical underpinnings of our algorithm are based on a result stating that
the stability of a set of parameters can be phrased in terms of the stability of a single
Markov chain that searches the set for unstable parameters. Our framework leads to a
procedure that is capable of performing statistically rigorous tests for instability, which
has been extensively tested using several examples of standard and non-standard queueing
networks.

The following publication has been incorporated as Chapter 2.
[32] D. Fiems, M. Mandjes, and B. Patch. Networks of in�nite-server queues with
multiplicative transitions, Performance Evaluation, 123�124 (2018). pp. 35�49.

Contributor Statement of contribution %
Dieter Fiems writing of text 33

proof-reading 33
supervision, guidance 50
theoretical derivations 33
preparation of �gures 33
initial concept 33

Michel Mandjes writing of text 33
proof-reading 33
supervision, guidance 50
theoretical derivations 33
preparation of �gures 33
initial concept 33

Brendan Patch writing of text 33
proof-reading 33
theoretical derivations 33
preparation of �gures 33
initial concept 33

https://www.sciencedirect.com/science/article/pii/S0166531617303814
https://www.sciencedirect.com/science/article/pii/S0166531617303814

CHAPTER 2

Networks of in�nite-server queues with multiplicative
transitions

2.1 Introduction

The vast majority of queueing network models studied in the literature are of the form:
there is a set of nodes that are fed by streams of external arrivals, and a routing mechanism
that determines to which queue served clients are forwarded or whether the client leaves
the system altogether. The most common queueing disciplines are of single-server type
(entailing that clients may have to wait until they get into service) and of in�nite-server
type (in which all customers present at a node are served in parallel).

A key feature of the conventional class of models described above is that clients join
and leave queues one by one. In many applications, however, triggered by speci�c events,
the full population of individual queues may move around the network (or leave the system
altogether). Particularly in the reliability and availability context, there are many relevant
examples of such dynamics. We could for instance think of a data communication network
with unreliable nodes: at the moment that a node goes down, all tra�c residing at the node
may be instantly lost. Another example concerns rerouting: triggered, for instance, by a
link failure, clients are moved from one set of resources to an alternative set (the `backup
route'). Due to the fact that they correspond to transitions of the entire population
of speci�c queues, the dynamics of the above two examples do not align with those of
conventional queueing models.

Scope, object of study. Motivated by the above examples, the main objective of the
present chapter is to analyse queueing networks with multiplicative transitions. These
multiplicative transitions e�ectively entail that the network dynamics include transitions
by which the network's population vector, say m, is (pre-)multiplied by a matrix A with
integer-valued, non-negative entries, so that the network population after the transition
becomes Am. For instance, choosing A to be a diagonal matrix with [A]ii = 0 and
[A]kk = 1 for all k 6= i would correspond to the event of all clients at node i being lost.
Relocation of clients can be taken care of in a similar manner: the full population of queue
i moving to queue j corresponds to [A]ji = 1, [A]kk = 1 for all k 6= i, and all other entries
equal to 0.

17

18 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

In this chapter the queues considered are of in�nite-server type. This type of queue is
particularly relevant in contexts where the sojourn time at a node of each client is not (or
hardly) a�ected by other clients. As such, the model has a broad variety of applications,
ranging from the number of websurfers simultaneously present at a set of websites, to the
number of messenger RNA molecules simultaneously present in a collection of cells (see
e.g., [33]). A speci�c application that features in the present chapter concerns the optimal
design of storage networks. To make the model as widely applicable as possible, we assume
that all relevant transition rates (i.e., arrival rates and departure rates) are a�ected by an
external autonomously evolving Markovian environmental process; the resulting model is
therefore of a Markov modulated nature. As will become clear, in a reliability context
such an environmental process can be used to model the state of the nodes of the network
(i.e., `up' or `down').

Contributions. The chapter has two main contributions. (i) In the �rst place we set
up a general model of a network of in�nite-server queues with multiplicative transitions.
For this model we derive a system of partial di�erential equations that describe its time-
dependent behaviour (in terms of the probability generating function of the joint queue
length distribution), as well as a procedure to evaluate the corresponding moments. The
model turns out to have a non-trivial stability condition (under which the system's sta-
tionary behaviour is well-de�ned), which we establish using the expression we found for
the time-dependent mean. (ii) In the second place, we point out that various natural,
practically relevant models �t in our framework. Most notably, we concentrate on a net-
work of retrial queues, a network with rerouting, and a storage network. Our results
can be used to support various design decisions. In the storage system application, for
instance, interesting trade-o�s can be numerically assessed: �les are typically stored on
multiple locations so as to mitigate the risk of loss, but evidently one wants to do so
without using an unnecessarily large amount of storage space.

Literature. As mentioned above, in typical queueing network models the number of
clients per queue changes by one at a time; see e.g. the standard textbooks [2, 34]. Several
papers, such as [35, 36, 37, 38, 39, 40], consider queues with batch arrivals and batch
services and �nd product-form results, but these typically neither cover our multiplicative
update rule nor allow the transition rates to be a�ected by an environmental process. We
also refer to the related papers [41, 42, 43].

As mentioned above, a relevant special case of our model corresponds to the context of
reliability. In many situations, when a network resource (a node or a link) fails, all clients
using it will be lost. Such models are known as queueing models with catastrophes; for
a fairly complete account of such models, we refer to the recent literature review in [44,
Section 1]. The models studied are typically (but not always) one-dimensional; interesting
contributions include [45, 46].

Queueing models for which the underlying infrastructure alternates between being
`up' and `down' can be seen as examples of stochastic processes on dynamically evolving
graphs. Despite the sizeable literature on random graphs, the body of work on dynamic
random graphs is considerably smaller, and (evidently) the body of work covering stochas-
tic processes on dynamic random graphs is even smaller. In recent contributions, results
on dynamic random graphs have been reported; see e.g. [47, 48, 49, 50, 51]. This chapter
can be regarded as being among the �rst pieces of work to facilitate describing queueing
processes on a randomly evolving graph (but it is noticed that the model we propose is
substantially more general, as the multiplicative transitions are not restricted to node

2.2. Analysis 19

failures and repairs).
As mentioned, our model covers various practically relevant models as special cases.

In each of the corresponding application areas there is a large collection of papers and
textbooks available; in Section 2.3 we include a number of domain-speci�c references.

Organization. The rest of the chapter is organized as follows. Section 2.2 presents the
model in its generic form, and after some preliminaries, the results in terms of partial dif-
ferential equations characterizing the joint probability generating function and ordinary
linear di�erential equations characterizing the moments. In addition, the stability condi-
tion is provided, under which stationary moments exist, which can be found by solving
systems of linear equations. Section 2.3 gives an indication of the width of our framework:
we show that it covers a network of retrial queues, a network with rerouting, and a storage
network. Section 2.4 demonstrates a couple of design issues that can be resolved by using
our machinery. Finally, Section 2.5 provides a discussion and concluding remarks.

2.2 Analysis

This section studies our generic model: a network of in�nite-server queues with multiplica-
tive transitions. We �rst introduce the model, then study its time-dependent behaviour,
derive its stability condition, and conclude by commenting on numerical issues.

2.2.1 Model

In this subsection we describe our network of in�nite-server queues with multiplicative
transitions between the nodes. Let N := {1, . . . , N} (with N ∈ N) be the set of in�nite-
server queues. The object of study is (M(t))t>0 (with M(t) ∈ NN0), that is, the mul-
tivariate queue content process (also sometimes referred to as the network population
process). The process (X(t))t>0 (with X(t) ∈ I := {1, . . . , I}, where I ∈ N) is the
environment process (or: background process), which evolves autonomously of the queue
content process; in our set-up, (X(t))t>0 is assumed to be an irreducible continuous-time
Markov chain.

The following transition rates play a role:

◦ The rate λ(i)
n > 0 is the external arrival rate at queue n ∈ {1, . . . , N} when the

background process X(·) is in i ∈ I . Note that this entails that the arrival process
at each of the queues is a Markov-modulated Poisson process.

◦ Likewise, the rate µ(i)
nn′ > 0 is the departure rate for every customer present from

queue n to queue n′ when the background process X(·) is in i ∈ I . Here n ∈ N
and n′ ∈ N ∪{0}, where n′ = 0 corresponds to the client leaving the network. Note
that at the queues, the clients are served simultaneously, re�ecting the in�nite-server
nature of each of the queues.

◦ De�ne for each pair (i, j) with i, j ∈ I such that i 6= j the set Kij := {1, . . . ,Kij}
with Kij ∈ N given. Let, for each k ∈ Kij , A

(k)
ij be an (N ×N)-matrix with entries

in N0. The rate α(k)
ij > 0 is the rate at which the queue content, say m ∈ NN0 , is

converted into A(k)
ij m, and at the same time the environment process X(·) jumps

from state i to state j, for i, j ∈ I . For obvious reasons, we refer to these events as
multiplicative transitions.

20 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

Two issues are worth highlighting. (i) Note that the above description does not explic-
itly include notation for state transitions of the background process that do not involve
multiplication with an A-matrix. It is easily observed, however, that such transitions can
be introduced by letting the A-matrix correspond to an identity matrix. (ii) Transitions
from i to j with i = j (`self-transitions') are allowed. Our set-up in this respect di�ers
from how continuous-time Markov processes are typically de�ned; observe that X(·) is
nonetheless a continuous-time Markov chain.

Notice that it can be anticipated that this system has a non-trivial stability condition.
Observe that if some of the A-matrices have entries larger than 1, the parameters may
be such that the network population can grow quickly and eventually explode. When the
stability condition applies, however, this cannot happen. We derive the stability condi-
tion in Section 2.2.4. Evidently, the system's time-dependent behaviour can be studied
regardless of the validity of such a stability condition; this time-dependent behaviour is
the topic of Sections 2.2.2�2.2.3. In Section 2.2.5 we comment on the numerical evaluation
of the performance measures under study.

2.2.2 System of partial di�erential equations

The objective of this subsection is to characterize the distribution of (M(t), X(t)) ∈
NN0 × I . We take the classical approach of setting up a system of partial di�erential
equations for the corresponding transforms. To this end, we �rst de�ne, for i ∈ I , t > 0,
and ϑ ∈ RN ,

ϕi(ϑ, t) := E
(
e〈ϑ,M(t)〉Ii(t)

)
,

with Ii(t) := 1{X(t) = i}, the indicator function for the event that X(t) equals i; we
follow the convention that 〈a, b〉 denotes the inner product

∑N
n=1 anbn, where an (bn)

denotes the nth element of the vector a (b). From standard theory, the quantities ϕi(ϑ, t)
uniquely describe the system's probabilistic behaviour.

So as to set up the di�erential equations, the main idea is to relate the state of
the system at time t + ∆t to the state at time t, for ∆t small. We rely on the usual
`Markovian reasoning', meaning that when the environmental process is in state i at
time t the following three types of events have to be considered: (i) with a probability of
essentially λ(i)

n ∆t there is an external arrival at node n, (ii) with probability µ(i)
nn′Mn(t) ∆t

there is a departure from node n to n′ (with n′ possibly equalling 0, to model the clients
that leave the network), and (iii) with probability α(k)

ij ∆t the environmental process jumps
to j while simultaneously the network population vector M(t) is instantly replaced by
A

(k)
ij M(t). Working out these transitions in detail, elementary calculations reveal that,

as ∆t ↓ 0,
ϕi(ϑ, t+ ∆t) = ϕi(ϑ, t) + ξi(ϑ, t)∆t− ζi(ϑ, t)∆t+ o(∆t), (2.1)

where

ξi(ϑ, t) :=

N∑
n=1

eϑnE
(
e〈ϑ,M(t)〉Ii(t)

)
λ(i)
n +

N∑
n=1

N∑
n′=1

e−ϑn+ϑn′E
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
nn′

+
N∑
n=1

e−ϑnE
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
n0 +

I∑
j=1

Kji∑
k=1

E
(
e〈ϑ,A

(k)
ji M(t)〉Ij(t)

)
α

(k)
ji

2.2. Analysis 21

and

ζi(ϑ, t) :=

N∑
n=1

E
(
e〈ϑ,M(t)〉Ii(t)

)
λ(i)
n +

N∑
n=1

N∑
n′=1

E
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
nn′ +

N∑
n=1

E
(
e〈ϑ,M(t)〉Ii(t)Mn(t)

)
µ

(i)
n0 +

I∑
j=1

Kij∑
k=1

E
(
e〈ϑ,M(t)〉Ii(t)

)
α

(k)
ij .

To understand the structure of ξi(ϑ, t) and ζi(ϑ, t), note that their �rst terms re�ect the
external arrivals, the second terms the routing to other queues, the third terms clients
leaving the network, and the fourth terms the multiplicative transitions.

The next step is to rewrite the expressions for ξi(ϑ, t) and ζi(ϑ, t) in terms of partial
derivatives with respect to the arguments ϑn, n ∈ N . We thus obtain, with AT denoting
the transpose of the matrix A,

ξi(ϑ, t) =

N∑
n=1

eϑnϕi(ϑ, t)λ
(i)
n +

N∑
n=1

N∑
n′=1

e−ϑn+ϑn′
∂

∂ϑn
ϕi(ϑ, t)µ

(i)
nn′ +

N∑
n=1

e−ϑn
∂

∂ϑn
ϕi(ϑ, t)µ

(i)
n0 +

I∑
j=1

Kji∑
k=1

ϕj
(
(A

(k)
ji)Tϑ, t

)
α

(k)
ji

and

ζi(ϑ, t) =

N∑
n=1

ϕi(ϑ, t)λ
(i)
n +

N∑
n=1

N∑
n′=1

∂

∂ϑn
ϕi(ϑ, t)µ

(i)
nn′ +

N∑
n=1

∂

∂ϑn
ϕi(ϑ, t)µ

(i)
n0 +

I∑
j=1

Kij∑
k=1

ϕi(ϑ, t)α
(k)
ij .

We proceed in the common way: by subtracting ϕi(ϑ, t) from both sides in (2.1), dividing
by ∆t, and taking the limit as ∆t ↓ 0, we arrive at the following result.

Proposition 1. The transforms ϕi(ϑ, t), for i ∈ I , satisfy the system of partial di�er-
ential equations:

∂

∂t
ϕi(ϑ, t) = ϕi(ϑ, t)

N∑
n=1

(
eϑn − 1

)
λ(i)
n +

N∑
n=1

N∑
n′=1

(
e−ϑn+ϑn′ − 1

) ∂

∂ϑn
ϕi(ϑ, t)µ

(i)
nn′+

N∑
n=1

(
e−ϑn − 1

) ∂

∂ϑn
ϕi(ϑ, t)µ

(i)
n0 +

I∑
j=1

Kji∑
k=1

ϕj
(
(A

(k)
ji)Tϑ, t

)
α

(k)
ji − ϕi(ϑ, t)

I∑
j=1

Kij∑
k=1

α
(k)
ij .

(2.2)

From this relation moments can be evaluated by di�erentiation and setting ϑ = 0, as
we demonstrate in the next subsection.

22 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

2.2.3 Moments

We now �nd an explicit expression for the I mean queue content vectors (each of them in
RN0)

M i(t) =
[
E(Mn(t)Ii(t))

]N
n=1

,

i ∈ I . In addition to playing a central role in our performance evaluation framework,
these expressions also allow us to establish the stability condition for this type of queueing
network; see Section 2.2.4.

The �rst step is to identify the transient distribution of the environmental process
X(·). To this end, we let πi(t) := P(X(t) = i) for i ∈ I ; this means that π(t) = [πi(t)]

I
i=1

is the transient distribution vector of the background process. Setting ϑ = 0 in (2.2)
yields a (homogeneous) system of coupled linear di�erential equations:

π′i(t) =

I∑
j=1

Kji∑
k=1

πj(t)α
(k)
ji − πi(t)

I∑
j=1

Kij∑
k=1

α
(k)
ij , i ∈ I .

These are the Kolmogorov forward equations for the background process. They can be
compactly rewritten as

π′(t) = A
T
π(t)

with A = [αij]
I
i,j=1 the corresponding generator matrix with elements, for i, j ∈ I and

i 6= j,

αij =

Kij∑
k=1

α
(k)
ij , αii = −

∑
i′ 6=i

αii′ .

We thus �nd π(t) = exp(A
T
t)π(0) (which, of course, also follows directly from the fact

that X(t) is a continuous-time Markov chain with transition rate matrix A). Observe
that A is a transition rate matrix (i.e., a matrix with negative diagonal elements and row
sums equal to zero). This entails that, for any t > 0, π(t) is a probability distribution on
I .

Our next objective is to identify the �rst moments of the queue sizes. To obtain these
quantities we di�erentiate the full equation (2.2) with respect to each of the ϑn (n ∈ N).
Plugging in ϑ = 0 then leads, after some straightforward but tedious algebra, to the
(non-homogeneous) system of linear di�erential equations:

M
′
i(t) = Liπi(t) + MiM i(t) +

I∑
j=1

AjiM j(t) , i ∈ I ,

with the matrices Li, Mi, and Aij de�ned as follows.

◦ Firstly, Li :=
[
λ

(i)
n

]N
n=1

, i.e., a column vector with the arrival rates in the di�erent
queues when the background process is in state i ∈ I .

◦ Secondly,

Mi :=
[
µ

(i)
n′n + 1{n = n′}µ(i)

n

]N
n,n′=1

, with µ(i)
n = −

N∑
n′=0

µ
(i)
nn′ ,

2.2. Analysis 23

is the matrix with the departure rates between the di�erent queues when the back-
ground process is in state i ∈ I .

◦ In addition, we introduce some notation for the multiplicative update process:

Aij :=

Kij∑
k=1

α
(k)
ij A

(k)
ij , Aii :=

Kii∑
k=1

α
(k)
ii A

(k)
ii − αiIN ,

for i, j ∈ I , i 6= j, with IN denoting the (N ×N)-dimensional identity matrix, and
with

αi :=

I∑
j=1

Kij∑
k=1

α
(k)
ij .

Moreover, the above set of equations can be combined into a single equation. To
this end, we de�ne M(t) to be the vector [M i(t)]

I
i=1 of dimension J := IN . Also A :=

[Aji]
I
i,j=1 and M := diag([Mi]

I
i=1), which are (J×J)-dimensional matrices. Finally, L :=

diag([Li]
I
i=1) is a matrix of dimension J × I. We thus obtain the following representation

of the set of di�erential equations; we refer to [42] where a similar method is used for a
simpler (but related) model.

Proposition 2. For any t > 0,

M
′
(t) = Lπ(t) + (M + A)M(t) . (2.3)

Solving the di�erential equation for the transient moment vector (2.3) leads to the
explicit solution (in terms of integrals over matrix-exponentials):

M(t) = e(M+A)tM(0) +

∫ t

0

e(M+A)(t−s)Lπ(s)ds

= e(M+A)tM(0) +

∫ t

0

e(M+A)(t−s)L eA
T
sπ(0) ds. (2.4)

The stationary means follow from equating M
′
(t) to 0 and de�ning π as the solution to

A
T
π = 0, so that the stationary mean M is given by

M = −(M + A)−1Lπ. (2.5)

Note, however, that this reasoning tacitly assumes that the underlying queueing network
is stable, an issue we return to in Section 2.2.4.

Along the same lines higher moments of the queue sizes can be found as well. The
higher transient moments can be phrased in terms of a (non-homogeneous) system of
linear di�erential equations. The procedure to identify them is of a recursive nature,
as determining the n-th transient moment requires knowledge of the �rst n−1 transient
moments. Similarly, higher stationary moments follow as solutions to linear equations
(under the stability condition), where �nding the n-th stationary moment requires the
�rst n−1 stationary moments being available. For analogous procedures in a related
context, see [52].

24 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

2.2.4 Stability

As it turns out, Proposition 2 facilitates the provision of conditions for the ergodicity of
the Markov chain. Before proceeding to stating and proving our stability result, we �rst
de�ne ω to be spectral abscissa of M + A , that is

ω := max{Reλ : λ ∈ spec(M + A)}

where spec(M + A) is the set of eigenvalues of M + A .

Theorem 4. The Markov chain Z(·) ≡ (M(t), X(t))t≥0 is ergodic provided ω is negative.

Proof. To prove the claim, we study the ergodicity of the skeleton Markov chain
{Z(∆n);n ∈ N0} for some ∆ > 0. Obviously, if the skeleton Markov chain is ergodic for
some ∆ > 0, so is Z(·), as the mean recurrence time for any state of the skeleton chain is
an upper bound for the mean recurrence time of the original chain Z(·).

Appealing to [53, Proposition I.5.3], it su�ces to show that for some ε > 0, ∆ > 0,
and M > 0, the following mean drift condition holds:

E(m,i)

(
‖M(∆)‖1

)
− ‖m‖1 < −ε

for all m with ‖m‖1 >M and all i ∈ I ; the subscript (m, i) indicates that the expecta-
tion is conditional on Z(0) = (m, i).

De�ne L :=
∑I
i=1

∑N
n=1 λ

(i)
n . From the di�erential equation for the �rst moment (2.3),

we derive the following bound:

E(m,i)

(
‖M(∆)‖1

)
− ‖m‖1

=
∥∥M(∆)|M(0)=m,π(0)=ei

∥∥
1
− ‖m‖1

=

∥∥∥∥∥e(M+A)∆(ei ⊗m) +

∫ ∆

0

e(M+A)(∆−s)Lπ(s)ds

∥∥∥∥∥
1

− ‖m‖1

6 ‖e(M+A)∆‖1‖m‖1 +

∫ ∆

0

‖e(M+A)(∆−s)‖1 L ds− ‖m‖1

6 ‖m‖1γeω
?∆ + γ L

∫ ∆

0

eω
?(∆−s)ds− ‖m‖1

6 ‖m‖1γeω
?∆ − γ

ω?
L (1− eω

?∆)− ‖m‖1 =: g(∆) ,

for ω < ω? < 0 and where γ > 0 is a constant; see [54, Proposition 11.18.8] for the bound
on the norm of the matrix exponential. Clearly, with R := γL/ω? < 0,

lim
∆→∞

g(∆) = −R− ‖m‖1,

which is negative for ‖m‖1 > −R > 0. Hence, for any choice of M > −R, there exists a
∆ such that the drift condition of the skeleton chain holds for ‖m‖1 > M. The skeleton
chain {Z(∆n)}n∈N0

is therefore ergodic, which is inherited by the original Markov process.
�

Remark 3. At �rst sight it may look unnatural that the stability condition is in terms of
the matrices M and A only, and does not involve the external arrival rate matrix L . To

2.2. Analysis 25

get a feel for the underlying intuition, let us consider the simplest network possible: an
isolated in�nite-server queue, with external arrival rate λ > 0, exponential holding times
with mean µ−1 > 0, and a multiplicative transition from state m ∈ N0 to akm (with
ak ∈ N0) with rate αk > 0 (k = 1, . . . ,K). Then, using the results of Section 2.2.3, the
mean number of clients in the queue at time t, denoted by M(t), satis�es the di�erential
equation

M
′
(t) = λ+

K∑
k=1

αk(ak − 1)M(t)− µM(t);

observe that the process goes up by one with rate λ, jumps from m to akm (leading to a
net change of (ak − 1)m) with rate αk, and goes down by one with rate µm. To ensure
stability, the mean number in the system should not explode. This leads to a stability
condition that does not involve λ, viz. (in self-evident vector notation) 〈α,a− 1〉 < µ. ♦

2.2.5 E�cient evaluation of performance metrics

In many applications, the performance of the system during a �nite time interval [0, T] is
expressed in terms of quantities of the form

v(T) :=

I∑
i=1

N∑
n=1

%n,iMn,i(T), w(T) :=

∫ T

0

I∑
i=1

N∑
n=1

%n,iMn,i(t)dt,

for some vector % ∈ RJ and T > 0, with Mn,i(t) := E
(
Mn(t)Ii(t)

)
; we provide various

examples of such performance metrics in Section 2.3. In this section we point out how to
e�ciently compute the vectors M(T) and

∫ T
0
M(t)dt.

We �rst study M(T); note that v(T) then follows upon evaluation of 〈%,M(T)〉.
The �rst term of expression (2.4) is a matrix-exponential, for which standard evaluation
techniques have been developed; see e.g. [55]. The second term reads B(T) · π(0), with

B(T) :=

∫ T

0

e(M+A)(T−s)L eA
T
sds.

By [56, Thm. 1], B(T) equals the (J × I)-dimensional top right corner matrix of eCT ,
where

C :=

[
M + A L

OI,J A
T

]
(with OI,J de�ned as an all-zeros matrix of dimension I × J). We thus end up with the
following observation for any T > 0:

M(T) = e(M+A)TM(0) +
[
IJ ,OJ,I

]
· eCT ·

[
OJ,I
II

]
π(0). (2.6)

Now we explain how to evaluate
∫ T

0
M(t)dt, which facilitates the computation of

w(T) =

∫ T

0

〈%,M(t)〉dt =

〈
%,

∫ T

0

M(t)dt

〉
.

26 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

Due to (2.6),∫ T

0

M(t)dt =

∫ T

0

e(M+A)tdt ·M(0) +
[
IJ ,OJ,I

]
·
∫ T

0

eC tdt ·
[

OJ,J
II

]
π(0).

De�ne the matrices

C1 :=

[
OJ,J IJ
OJ,J M + A

]
, C2 :=

[
OJ+I,J+I IJ+I

OJ+I,J+I C

]
,

which are of dimensions 2J × 2J and 2(J + I) × 2(J + I), respectively. Again applying
[56, Thm. 1], we arrive at∫ T

0

M(t)dt =
[
IJ ,OJ,J

]
· eC1T ·

[
OJ,J
IJ

]
M(0) +

[
IJ ,OJ,I

]
·
[
IJ+I ,OJ+I,J+I

]
· eC2T ·

[
OJ+I,J+I

IJ+I

] [
OJ,J
II

]
π(0).

This can be rewritten in the following more compact form or any T > 0,

∫ T

0

M(t)dt =
[
IJ ,OJ,J

]
· eC1T ·

[
OJ,J
IJ

]
M(0) +

[
IJ ,OJ,J+2I

]
· eC2T ·

[
O2J+I,I

II

]
π(0) .

(2.7)

2.3 Retrial queues, rerouting, storage systems

In this section we show the power of the framework introduced in the previous section,
by pointing out how it facilitates the modelling of all sorts of relevant phenomena. We
speci�cally focus on: (i) systems in which nodes go down but in which lost customers
attempt re-entry, (ii) systems in which customers are rerouted when one of the links
along the route goes down, and (iii) storage systems.

2.3.1 Retrial queues

In this subsection we consider a network of faulty service stations. Each of the stations
alternates between being `up' and `down'. While a station is in the `up' state it processes
clients as a standard in�nite-server queue. Upon going down, all clients present at a service
station move instantly to an associated retrial location, from where they (independently
of each other) try to re-enter the service station or renege. For an in-depth account of
related retrial models, we refer to [57]. We note that, to the best of our knowledge, the
literature does not cover the model we study here.

We now point out how this retrial mechanism �ts in the framework that we set up in
the previous section. Let the components 1 up to N◦ of M(·) correspond to the service
stations in the network, and the components N◦ + 1 up to 2N◦ =: N to the associated
retrial locations. Here we assume that the up-time of station n ∈ {1, . . . , N◦} is exponen-
tially distributed with parameter γ(u)

n , and the corresponding down-time is exponentially
distributed with parameter γ(d)

n . We thus have constructed an environmental process of
dimension I = 2N

◦
, where each state of this process corresponds to the particular set of

2.3. Retrial queues, rerouting, storage systems 27

stations that are up (and consequently also the set of stations that are down). In the se-
quel we let S(i) denote the set of stations that are up when the environmental process is in
state i. (It is noted that the above model can be extended in a straightforward manner to
the situation in which the up-times and down-times stem from phase-type distributions.
Similarly, Markov-modulated arrivals can be dealt with.)

We let λn be the arrival rate at station n; note that clients arriving at station n when
it is down are immediately placed in the corresponding retrial pool (which is component
N◦+n ofM(·)). Also, let µnn′ denote the rate of being routed (after service completion)
from node n to node n′ (with n′ = 0 corresponding, as always, with the client leaving
the network). The rate κn is the retrial rate at the n-th retrial location (i.e., component
N◦ + n of M(·)), and νn the corresponding renege rate (re�ecting clients that leave the
network from a retrial location, i.e., before being served, e.g. due to impatience).

Let us now describe how the above parameters translate into the rates of the framework
of the previous section. Suppose the environmental process is in state i. Let us �rst
consider the external arrivals. De�ne 1n(i) := 1{n ∈ S(i)}. For n = 1, . . . , N◦, the
external arrival rates when the environmental process is in state i, are given by

λ(i)
n = λn 1n(i), λ

(i)
n+N◦ = λn (1− 1n(i)).

Regarding the service completions, we have for the service stations (with n, n′ = 1, . . . , N◦)

µ
(i)
nn′ = µnn′ 1n′(i), µ

(i)
n,n′+N◦ = µnn′ (1− 1n′(i)), µ

(i)
n0 = µn0,

and for the retrial locations (again with n = 1, . . . , N◦)

µ
(i)
n+N◦,n = κn 1n(i), µ

(i)
n+N◦,0 = νn.

We now consider the transitions related to the stations alternating between the active
and inactive mode. As it turns out, for all i, j ∈ I we have that Kij equals 0 or 1. We
distinguish the cases:

◦ Suppose that for a j 6= i and some n ∈ {1, . . . , N◦} we have S(i) = S(j)∪{n}; then
the background process jumps from i to j after an exponentially distributed time
with rate αij = γ

(u)
n . Note that this transition corresponds to station n failing, and

thus clients being moved to the corresponding retrial location. The vector M(t) is
pre-multiplied by a (N × N)-dimensional matrix Aij consisting of a 0 on position
(n, n), a 1 on position (n+N◦, n), all diagonal entries except the n-th being 1, and
all other entries being 0.

◦ Suppose on the other hand that for i 6= j and some n ∈ {1, . . . , N◦} we have S(j) =

S(i) ∪ {n}; then the background process jumps from i to j with rate αij = γ
(d)
n ,

without the network population vector changing. This transition corresponds to
station n having been repaired.

In the above cases Kij = 1; for all other i, j we have Kij = 0.

This framework has the potential to support various design issues. In the network
described, an objective may be to keep the fraction of lost clients (due to reneging) below
some tolerable level, say, ε. To this end, de�ne Za(t) as the total number of clients arrived

28 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

in [0, t] and Z`(t) as the number of clients lost. With λ de�ned in the evident way,

EZa(t) =

∫ t

0

I∑
i=1

N∑
n=1

πi(s)λ
(i)
n ds =

∫ t

0

〈λ,π(s)〉ds.

Likewise, with ν de�ned appropriately (i.e., a vector of which the �rst IN◦ entries equal
to 0 and the second IN◦ entries equal the appropriate νn),

EZ`(t) =

∫ t

0

I∑
i=1

N∑
n=N◦+1

E
(
Mn(s)Ii(s)

)
νn ds =

∫ t

0

〈ν,M(s)〉ds. (2.8)

The numerical evaluation of the above performance metrics is facilitated by (2.7).
Suppose that for a given time horizon T the service requirement is EZ`(T) 6 ε ·

EZa(T). If for given repair rates γ(d) ≡ (γ
(d)
1 , . . . , γ

(d)
N◦) this condition is not met, one

may wonder by how much the repairs have to be sped up to meet the service requirement.
A relevant optimization problem is then

min
γ(d)
〈γ(d),1〉, subject to EZ`(T) 6 ε · EZa(T).

2.3.2 Rerouting

Routing concerns the selection of a path along which tra�c is transmitted. To make the
service level more robust, one may adopt the policy that when a network element fails,
tra�c using that network element is routed along an alternative route. For a textbook
treatment of routing in communication networks, we refer to e.g. [58].

Our present framework can be used to track the number of clients that use the di�erent
direct and indirect routes. The clients along these routes correspond to the customers of
our framework and the queues (i.e., the components of M(·)) record the quantity of
clients utilizing each of the direct and indirect routes. More formally, the rerouting model
can be cast in our framework as follows. Let there be N◦ origin-destination pairs, each
connected by a direct route (consisting of one link) as well as an indirect route (consisting
of two links). Let the direct link used by the n-th origin-destination pair be labelled by
n, and let N (n) := {n1(n), n2(n)} (both elements being contained in {1, . . . , N◦} \ {n})
be the links of the corresponding indirect route. We thus have N = 2N◦ queues, the
�rst N◦ queues corresponding to the number of clients on the direct routes and the
second N◦ queues corresponding to the number of clients on the indirect routes. The
parameters γ(u)

n and γ
(d)
n correspond to the up-time and down-time of link n. Clients

for origin-destination pair n arrive according to a Poisson process with rate λn, and
stay in the system for an exponential time with parameter µn. We again stress that
various generalizations are possible, such as phase-type up- and down-times and Markov
modulated arrival processes; these extensions are conceptually very similar to the set-up
we describe here, but notationally burdensome.

Each of the N◦ links can be up or down, so that the background process has I = 2N
◦

states. Let S(i) be the set of links that are up when the background process is in state i.
Again, de�ne 1n(i) := 1{n ∈ S(i)}.

Suppose the background process is in state i. Then, for n = 1, . . . , N◦,

λ(i)
n = λn 1n(i), λ

(i)
n+N◦ = λn (1− 1n(i)) 1n1(n)(i) 1n2(n)(i).

2.3. Retrial queues, rerouting, storage systems 29

All µnn′ = 0 for n, n′ ∈ {1, . . . , N}, and µn0 = µn+N◦,0 = µn.
We now consider the transitions corresponding to links going down (and coming up

again). For all i, j ∈ I we have that Kij equals 0 or 1. We distinguish between the cases:

◦ Suppose that for a j 6= i and some n ∈ {1, . . . , N◦} we have S(i) = S(j)∪{n}; then
the background process jumps from i to j after an exponentially distributed time
with rate αij = γ

(u)
n . Note that this transition corresponds to link n failing, and

thus clients using this route as a direct route move to the indirect route (if available)
and clients using this link as part of their indirect route are lost. The queue content
vector is pre-multiplied by a (N×N)-dimensional matrix Aij consisting of (i) a 0 on
position (n, n), (ii) a 1 on position (n+N◦, n) but only if N (n) ⊆ S(i) (where it is
noted that if N (n) 6⊆ S(i), then �les are lost), (iii) a 0 on position (n′+N◦, n′+N◦)
if {n} ⊆ N (n′) (corresponding to �les that are lost), (iv) all other diagonal entries
being 1, and (v) all other entries being 0.

◦ Suppose on the other hand that for i 6= j and some n ∈ {1, . . . , N◦} we have S(j) =

S(i)∪{n}; then the background process jumps from i to j with rate αij = γ
(d)
n . This

transition corresponds to link n having been repaired. The queue content vector is
pre-multiplied by a (N×N)-dimensional matrix Aij consisting of (i) a 0 on position
(n + N◦, n + N◦), (ii) a 1 on position (n, n + N◦), (iii) all other diagonal entries
being 1, and (iv) all other entries being 0.

In the above cases Kij = 1; for all other i, j we have Kij = 0.
Again, our model can be used to study design questions. As indicated above, clients

are lost if both the direct route and the indirect route are unavailable. Compared to
using only direct routes, the option of indirect routes evidently reduces the number of lost
clients, but this comes at the price of the servers being more intensively used. Let Z`(t)
denote, as before, the number of clients lost in [0, t]; see Equation (2.8). In addition, let
Zs(t) be the amount of link resources used in [0, t]:

EZs(t) =

∫ t

0

I∑
i=1

N◦∑
n=1

E
(
Mn(s)Ii(s)

)
ds+ 2

∫ t

0

I∑
i=1

N∑
n=N◦+1

E
(
Mn(s)Ii(s)

)
ds;

again (2.7) can be used to numerically evaluate this quantity.
With a time horizon T , let %` be the cost of losing a client and %s the per time unit

network element utilisation cost, so that the total cost is

%` · EZ`(T) + %s · EZs(T). (2.9)

Its value can be compared to the value of the same objective function in the system
without rerouting. Typically, for small % := %`/%s the system without rerouting is to
be preferred, whereas for large % rerouting pays o�. To optimally design the system, it
would be useful to have knowledge of the critical value %? (i.e., the value for which both
mechanisms have the same cost).

2.3.3 Applications to storage networks

In storage networks information is typically stored at multiple locations (e.g. on multiple
data storage servers), so as to mitigate the danger of �les being lost. A relevant design issue
concerns developing a policy that controls the fraction of �les lost without unnecessarily

30 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

replicating them. For a general account of various aspects of storage networks, see e.g.
[59].

Consider a system with K storage locations, each of which can be either `up' or `down'.
Let the up-time of location k ∈ {1, . . . ,K} be exponentially distributed with parameter
γ

(u)
k , and let the corresponding down-time be exponentially distributed with parameter

γ
(d)
k . We thus have constructed an environmental process of dimension I = 2K , where
each state corresponds to the set of locations that are up (and consequently also the set of
locations that are down). We let, for any i ∈ {1, . . . , I}, the set U(i) denote the locations
that are up when the environmental process is in state i. We order the I states such that
the state 1 corresponds to all locations up, the states 2 up to K + 1 to all situations with
one location down, etc., so that state 2K corresponds to all locations being down.

Files can be stored on any subset of the locations; there are N = 2K − 1 of these. We
let S(n) denote the locations involved in the n-th subset, for n ∈ {1, . . . , N}. These are
ordered in the same way as above: queue 1 corresponds to �les stored at all locations, the
queues 2 up to K + 1 to �les stored at all-but-one locations, etc., so that queues 2K −K
up to 2K − 1 correspond to �les stored on just a single location (which are lost if this
location fails).

We now argue that this model is covered by the general multiplicative-transition frame-
work that we introduced in the previous section. Consider the situation that the environ-
mental process is in state i. Let λn be the (constant) arrival rate that is intended to be
stored at the set of locations S(n). However, if i is such that this is not possible (because
some of the locations are down), it is only stored at the subset of S(n) that is up. This
means that, with V (i, n) := {n′ : S(n′)∩U(i) = S(n)}, external arrivals to subset n occur
at rate

λ(i)
n =

∑
n′∈V (i,n)

λn′ .

During operations, �les may be copied to additional locations, may be deleted from lo-
cations or may be deleted completely. Therefore, �les hop from queue n to n′ with rate
µ

(i)
nn′ (with n

′ = 0 corresponding to �les leaving the network).

We now consider the multiplicative transitions. Two cases are to be distinguished.

◦ Suppose that for some j ∈ {1, . . . , I}, that is assumed to be di�erent from the current
environmental state i, it holds that U(i) = U(j)∪{k}; then the background process
jumps from i to j after an exponentially distributed time with rate γ(u)

k (note that
this transition corresponds to the event that location k �nishes its up-time, i.e., goes
down). Simultaneously the N -dimensional queue content vector is pre-multiplied by
a matrix Aij that is de�ned as follows. It has a zero on the diagonal positions that
correspond to subsets that contain location k (i.e., n such that {k} ⊆ S(n)). In the
same column, it has a one on the position n′ such that S(n′) = S(n) \ {k} (if any).

◦ Suppose that for i 6= j we have U(j) = U(i) ∪ {k}; then the background process
jumps from i to j with rate γ(d)

k (without any change in the network population
vector; this transition corresponds to the event that location k �nishes its down-
time, i.e., becomes functioning again).

Recalling that the entries 2K −K up to 2K − 1 ofM(·) correspond to �les stored at just

2.4. Numerical experiments 31

a single location, we can evaluate the mean number of lost �les in [0, t] as

EZ`(t) =

∫ t

0

I∑
i=1

2K−1∑
n=2K−K

E
(
Mn(s)Ii(s)

)
γ
(u)

n−2K+K+1
ds,

which can be numerically evaluated using (2.7).

Consider for example the case of K = 2 locations, so that I = 4 and N = 3. In
self-evident notation we code the 4 states of the background process as

{1, 2, 3, 4} ≡ {{1, 2}, {1}, {2}, ∅}

(with the left-hand side in the previous display being in terms of the elements i ∈ I , and
the right-hand side in terms of the corresponding U(i)). Then

A12 = A34 =

 0 0 0
1 1 0
0 0 0

 , A13 = A24 =

 0 0 0
0 0 0
1 0 1

 ,

whereas the other A-matrices equal I3 (note that A12 and A34 correspond to location 2
going down, and A13 and A24 to location 1 going down). For all i, j ∈ I we have that
Kij equals 0 or 1. The transition rates αij are given by

α12 = α34 = γ
(u)
2 , α13 = α24 = γ

(u)
1 , α21 = α43 = γ

(d)
2 , α31 = α42 = γ

(d)
1 ;

the corresponding values of Kij are equal to 1 (whereas Kij equals 0 for other i, j).

2.4 Numerical experiments

To illustrate the potential of our results, in this section we provide two numerical examples:
one on a retrial queue, and another one on storage networks.

2.4.1 Retrial queue

In this �rst example, we consider a single retrial system, i.e., a two-queue network con-
sisting of a service station and a retrial location. The service station alternates between
being `up' and `down', with the corresponding durations being exponentially distributed
with parameters γ(u) and γ(d), respectively. Clients arrive with rate λ and their service
times are exponentially distributed with mean µ−1. The rate at which customers in the
retrial queue attempt to reenter service is κ, where the corresponding renege rate is ν.

We now cast this system in the terminology of our overarching model. The background
process can be in two states (so that I = 2); we let state 1 correspond to the station being
functioning, and state 2 to the station being down. The dimension of M(·) is N = 2;
the �rst component corresponds to the queue at the service station, whereas the second
component corresponds to the retrial pool. The matrices A12 and A21 are given by

A12 =

(
0 0
1 1

)
, A21 =

(
1 0
0 1

)
.

32 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

The arrival rates are λ(i)
n = λ for (i, n) equalling (1, 1) or (2, 2), and otherwise 0. In

addition, µ(1)
21 = κ, µ(1)

20 = µ
(2)
20 = ν, µ(1)

10 = µ, whereas the other departure rates are 0.
Also, α12 = γ(u) and α21 = γ(d).

Let Mni(t) be the mean number in queue n when the background process is in state i
at time t; observe that we constructed our model such that M12(t) = 0 for all t > 0. The
time-dependent means follow from solving a system of linear di�erential equations:

M
′
11(t) = λπ1(t)− (µ+ γ(u))M11(t) + κM21(t),

M
′
21(t) = γ(d)M22(t)− (κ+ ν + γ(u))M21(t),

M
′
22(t) = λπ2(t) + γ(u)M11(t) + γ(u)M21(t)− (ν + γ(d))M22(t).

We now present the stationary means M11, M21, and M22. Let Γ := γ(u) + γ(d), π1 =
γ(d)/Γ = 1 − π2. Sending t → ∞, and letting the derivatives in the above di�erential
equations be equal to 0, we obtain

M21 =
λ γ(u)

Γη

(
µ+ γ(u) + γ(d)

µ+ γ(u)

)
, η := (κ+ ν + γ(u))

ν + γ(d)

γ(d)
− κ γ(u)

µ+ γ(u)
− γ(u),

and

M11 =
1

µ+ γ(u)

(
κM21 + λ

γ(d)

Γ

)
, M22 =

κ+ ν + γ(u)

γ(d)
M21.

We now consider the model's loss ratio `, de�ned as the long-run fraction of clients leaving
the network without being served (i.e., due to reneging). WithM21 andM22 as computed
above,

` =
ν

λ

(
M21 +M22

)
.

Experiment 1. To control the loss ratio, the service provider may opt for speeding up
the repair times. The above formulas allow us to determine the smallest γ(d) such that
the loss ratio ` is below some maximally allowed value `?; observe that ` is decreasing in
γ(d). It requires elementary calculus to verify that

lim
γ(d)→∞

M21 =
λγ(u)

κµ+ νµ+ νγ(u)
, lim

γ(d)→∞
M22 = 0,

so that

lim
γ(d)→∞

` =
νγ(u)

κµ+ νµ+ νγ(u)
;

this expression increases in γ(u) and ν and decreases in µ and κ, as expected.

Observe that it in general cannot be guaranteed that there is a γ(d) such that ` 6 `?:
the parameters can be such that ` > `? for all γ(d). This is because even very short
down-times lead to the event of clients simultaneously moving to the retrial queue, where
the e�ect of clients reneging starts to kick in.

In the numerical experiment we chose λ = 100, κ = 2, ν = 2, µ = 1 and γ(u) = 0.1.
First suppose that the loss ratio should remain below 10%. One needs to take γ(d) larger
than 2.1496, as illustrated by Fig. 2.1 (left panel). Suppose, on the contrary, that the
target is 1%, then this cannot be achieved by increasing γ(d); based on the above results,
we conclude that even by making the repairs very fast, the loss ratio will (for these values

2.4. Numerical experiments 33

of λ, κ, ν, µ and γ(u)) never get below 0.2/4.2 ≈ 4.76% (corresponding to the horizontal
dashed line in the graph).

Experiment 2. An alternative way to control ` is by making the up-times longer, i.e.,
by decreasing γ(u). It is readily veri�ed that

lim
γ(u)↓0

M21 = lim
γ(u)↓0

M22 = 0,

so that the loss rate ` will be below any critical value `? for γ(u) small enough.
In our numerical experiment we again chose λ = 100, κ = 2, ν = 2, µ = 1, but now we

�x γ(d) = 0.5. We wonder whether in this scenario a loss ratio below 1% can be achieved
by tuning γ(u). Fig. 2.1 (right panel) shows that this is indeed the case: as it turns out,
γ(u) should be below 0.0037.

In practice, one may want to �nd the most cost e�ective pair (γ(u), γ(d)) such that the
performance requirement is met. With %(u) the cost of making the mean up-times one
unit longer, and %(d) the cost of making the hazard rate corresponding to the down-times
one unit larger, a relevant optimization problem could be of the type

min
γ(u),γ(d)

%(u)

γ(u)
+ %(d)γ(d), subject to ` 6 `?.

2.4.2 A storage system

In this example we show how to analyse a speci�c storage system; it has some elements
in common with the class of models that was introduced in Section 2.3.3, but there are
a few notable di�erences. Files arrive according to a Poisson process with rate λ. With
probability 1 − p the �le will be o�ered `basic service', and with probability p `premium
service'. A basic �le is randomly allocated to one of the two locations (say A and B),
where it will stay until that location goes `down'. In our example copies of �les are never
deleted (except through a failure of the storage location). A premium �le is randomly
allocated to one of the locations, but is then copied at rate µ to the other location. When
a location goes `down' in the premium case, upon repair �les are again copied back (also
at rate µ, that is). The locations' up- and down-times are independent and statistically

0.001 0.01 0.1 1
0.001

0.01

0.1

1

γ(d)

`

Experiment 1

0.001 0.01 0.1 1
0.001

0.01

0.1

1

γ(u)

`

Experiment 2

0.0042.14

0.05

Figure 2.1: Retrial queue: loss ratio `, Experiments 1 and 2.

34 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

identical; up-times (down-times, respectively) are exponentially distributed with rate γ(u)

(γ(d)). In this system there are �ve queues to be kept track of: premium �les on location
A, premium �les on location B, premium �les on locations A and B, basic �les on location
A, and basic �les on location B.

Experiment 1. The parameters we picked are: λ = 10 000 (i.e., on average 10 000 �les
arrive per day), µ = 24 (i.e., it takes on average an hour before a stored �le is copied
to a second location), γ(u) = 0.01 (i.e., each of the storage locations are functional on
average for consecutive periods of 100 days), and γ(d) = 2 (i.e., it takes 12 hours to repair
a storage location). We let the system start empty at time 0, with both locations being
`up' (but other initial conditions are handled in the precise same way).

The �rst graphs, Figure 2.2, show, for T = 1 (i.e., one day), the expected number
of lost �les EZ`(T), and the expected integral of the number of stored �les, EZs(T),
as functions of the fraction of premium �les p. In the previous section we pointed out
how these metrics can be evaluated, but the computation of EZ`(T) can be done more
e�ciently, relying on the following idea; the performance measure EZs(T) can be dealt
with analogously.

The idea is to append one coordinate to the state space; the resulting extra component
MN+1(t) records the number of �les lost in [0, t] (which can be seen as a queue with zero
departure rate). The transform of the vector (M(t),MN+1(t)) ∈ NN+1

0 (jointly with the
state of the environmental process) can be characterized in the precise same way as that
of just M(t), i.e., by setting up a system of partial di�erential equations. This provides
us with an expression for EZ`(T) of the form (2.4). Observe that it entails that we can
evaluate the quantity EZ`(T), which can be evaluated using (2.6); in this way we avoid
evaluating integrals of the type of (2.8).

The graphs in Fig. 2.2 show, for T = 1, that EZs(T) increases in p (left panel), whereas
EZ`(T) decreases in p (right panel), as expected.

Experiment 2. We now consider a cost function that is a linear combination of EZ`(t)
and EZs(t), i.e., (7). In this case the optimal design amounts to minimizing the objective
function (7) with respect to the fraction p ∈ [0, 1]. We denote the optimal p by p?. Let
%` and %s again respectively correspond to the cost of a lost �le and the cost of a unit
of storage per unit time; let % := %`/%s. Clearly, p? = 0 for % ↓ 0 (as losing �les is not
penalized), whereas p? = 1 for % ↑ ∞ (as storing �les is not penalized). Bearing in mind
the shapes of EZ`(t) and EZs(t), as depicted in Fig. 2.2, the optimization of a linear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
·104

p

EZ
s
(1
)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
·10−2

p

EZ
`
(1
)

Figure 2.2: Storage system: EZs(1) and EZ`(1) as functions of p, Experiment 1.

2.4. Numerical experiments 35

combination of EZ`(t) and EZs(t) leads to p? equalling either 0 or 1. The left panel
of Fig. 2.3 shows the region in which the optimal p? is 0 or 1, for combinations of γ(d)

and %; here %s is �xed (equal to one), and also γ(u) = 1 (and all other parameters as in
Experiment 1). In the right panel of Fig. 2.3 we show a similar picture, but now with γ(u)

on the horizontal axis.

Experiment 3. We now vary the value of the repair rate γ(d) with the goal of achieving a
predetermined performance target. For any value of p we compute the minimally required
repair rate (de�ned as γ(d)) from γ(d) ∈ [0, 24], in an attempt to ensure that the loss
fraction EZ`(T)/(2λ) is below 0.05 (where we pick T = 2). Observe that the constraint
γ(d) 6 24 amounts to imposing the requirement that repairs must be expected to take at
least 1 hour to perform.

Inspection of Fig. 2.4 immediately reveals that for p smaller than 0.5 we are unable
to achieve our desired loss fraction using only the available changes in γ(d). Indeed it is
conceivable that for small p there does not exist a repair rate such that the loss fraction
goes below 0.05, a phenomenon similar to that which we earlier saw in Experiment 1 for
the retrial queue. As p is increased within [0, 0.5] we see an approximately linear decrease
in the loss fraction resulting from the increased proportion of �les being placed in the
premium category (where they are unlikely to become lost). For p ∈ [0.5, 0.8], we observe
that we are able to achieve our desired loss fraction; moreover the storage location can be
repaired increasingly slowly if more �les are multiply stored (i.e., when p increases). This
e�ect initially results in a very rapid decrease in the repair rate but has less of an impact
as p is increased closer to 0.8, at which point the repair rate can no longer be traded
o� against increased duplication. Notice that the mechanism by which γ(d) decreases
basic �le losses is by reducing the portion of [0, T] during which both storage locations are
inoperable; this variable has no e�ect on basic �les which are accepted into the system
only to be lost due to a failure later. Hence, focusing on basic �les, it can be seen that
eventually the e�ect of γ(d) on the portion of [0, T] for which both storage locations are
inoperable becomes negligible compared to the reductions in losses from increasing p.
The result of this is that for p > 0.8 the loss fraction continues to decrease approximately
linearly as more �les are placed in the very safe premium category, as we saw for p < 0.5.

p? = 1

p? = 0

p? = 1

p? = 0

Figure 2.3: Storage system: areas in which p? equals 0 and 1, for di�erent values of the
rates γ(d) and γ(u) on the horizontal axis and `cost ratio' % on the vertical axis, Experiment
2. The scale on the vertical axis is logarithmic.

36 Chapter 2. Networks of in�nite-server queues with multiplicative transitions

0 0.2 0.4 0.6 0.8 1
0

10

20

30

p

γ
(d

)

0 0.2 0.4 0.6 0.8 1
0.020

0.040

0.060

0.080

0.100

p

EZ
`
(2
)/
EZ

a
(2
)

Figure 2.4: Storage system: γ(d) and the corresponding proportion of �les lost for di�erent
values of the fraction p, Experiment 3.

2.5 Discussion and concluding remarks

In this chapter we studied a network of Markov-modulated in�nite-server queues with the
distinguishing feature that it also incorporates events by which the network population
vector makes multiplicative transitions (at which it changes from m to Am, for some
matrix A). As we argued, the resulting framework covers various relevant models as special
cases; for example, it enables the modelling of retrial queues, networks with rerouting,
and storage systems.

Our results for the system's transient behaviour are in terms of (i) a system of partial
di�erential equations describing the moment generating function of the network popula-
tion vector, and (ii) a procedure to compute moments. In these expressions time t may
approach ∞ so as to obtain the corresponding stationary behaviour, under the proviso
that the stability condition applies.

Future research. The model we have developed triggers various intriguing research
questions. In the �rst place, one may wonder whether under a speci�c scaling of the
parameters one could �nd a weak limit for its transient or stationary behaviour. Such
a procedure has been developed in [60, 52] for Markov-modulated in�nite-server queues
without multiplicative transitions. For that model the limiting process (after scaling the
arrival rates and the environmental process) is a multivariate Ornstein-Uhlenbeck pro-
cess. In this di�usion limit all limiting marginal distributions (and the model's stationary
distribution, too) are asymptotically Normal. For our model however, with multiplicative

2.5. Discussion and concluding remarks 37

transitions that is, it is anticipated that there is no limiting process of di�usion type, due
to the possibly large jumps caused by the multiplicative transitions; cf. [61]. In particular,
the marginal distributions are expected to be asymmetric.

Scaling the external arrival rates by a common factor, say K, it is seen from (2.5) that
the stationary mean also grows proportionally to K. Calling the stationary distribution
under this scaling M (K), one may want to asymptotically characterize large-deviation
probabilities of the type

pK := P

(
M (K)

K
∈ S

)
,

for K large and a set S that does not contain EM (K)/K = −(M + A)−1Lπ. It
is not clear how such asymptotics can be found; observe that due to the multiplicative
transitions the model does not �t in the Freidlin-Wentzell framework [62], so that standard
large-deviation techniques are likely to fail.

Other challenges lie in the application of our techniques to develop design principles
for various sorts of operational networks. For instance for storage networks, one may want
to develop an optimal replication policy, striking a proper balance between controlling the
risk of �les being lost and excessively using storage space.

CHAPTER 3

Stability of weighted queue-proportional rate allocation

3.1 Introduction

Multi-hop switched queueing networks are useful models for studying congestion and
delay for wireless ad hoc networks, internet routers, call centres, data centres, and other
complex communication systems. We consider a setting where jobs sequentially utilise
stations in a network along �xed routes. There are constraints on which stations can serve
jobs simultaneously, which evolve randomly throughout time. We consider a scheduling
policy that makes decisions using only information on the number of jobs at each station.

In practice, a highly desirable fundamental feature of any scheduling policy is that,
whenever possible, it results in bounded queue sizes over very long time horizons � a
property called maximal stability. When the average rate at which jobs arrive to each
station is known, implementing a random policy that allocates an average service rate
to each queue that dominates the corresponding arrival rate is a simple way to achieve
stability. More precisely the maximal property states that an equilibrium distribution will
exist under a policy whenever it is possible to obtain an equilibrium distribution using
the naive random policy just described that uses explicit knowledge of the arrival rate
vector. For many networks of interest arrival rates are not known in advance, a problem
which is often compounded by randomly varying rates.

The seminal work of Tassiulas and Ephremides [13] introduced the maximally stable
BackPressure algorithm that makes a decision without using arrival rate information. In
addition to stability, a key feature of this policy is that it utilises local information on
queue sizes to make a scheduling decision. That is, in order to decide the priority of each
route at each station it needs to know the number of jobs on that route at a neighbouring
station. Therefore, the policy must maintain a queue for each route at each station. This
may not be e�cient, or even feasible, in many practical situations where the number of
these queues can rapidly increase as the network grows. One bene�t, however, is that it
is possible to prioritise di�erent stations in the network by incorporating weights into this
set of information. This is useful, for example, when the penalties for longer queues are
not homogeneous across stations in the network.

More recently introduced maximally stable algorithms include the ProportionalSched-
uler [63, 64] and Queue-Proportional Rate Allocation (QPRA) [16] policies. The primary

39

40 Chapter 3. Stability of weighted queue-proportional rate allocation

advantage that these policies have over BackPressure is that they do not distinguish be-
tween the types of jobs at each station and consequently scale much better with network
size. However, these policies do not allow station priorities to be incorporated into the
scheduling decision. In this chapter we present a natural generalisation of QPRA to allow
station priorities.

Our policy, which we call Weighted QPRA (WQPRA), can be described roughly as
follows: for a set of �rst-in, �rst-out stations L, a vector of queue lengths (Ql, l ∈ L) ∈
N|L|0 , a vector of station priorities (γl, l ∈ L) where γl ≥ 1 for all l, and a convex set of
schedules Λ

?
, WQPRA chooses a mean per-station service vector σ from the boundary

of Λ
?
such that

σl = 0 , whenever Ql = 0 ,
σl
γlQl

=
σl′

γl′Ql′
, whenever Ql > 0 and Ql′ > 0 .

This corresponds to choosing σ proportional to γQ (where this is element-wise multi-
plication of vectors). The service allocated to a station is then distributed uniformly at
random between jobs (potentially of di�erent routes) waiting for service at the station.
Another generalisation is that we allow the set Λ

?
to vary randomly over time to re�ect,

for example, random channel quality variations in the ad hoc network setting.

We prove that maximal stability holds for this policy by employing a �uid model
analysis of the system. This generalises the work in [65]. The proof uses a Lyapunov
function to determine important properties of the �uid limit sample paths, and the results
of Dai [21].

For this type of network, heavily loaded settings are of high interest, since in these
cases congestion is pervasive and enabling priorities between stations is paramount. Exact
analysis of the network is unavailable and so it is natural to pursue a tractable approxi-
mation. To this end, we develop a di�usion limit approximation for the network following
the arguments of Stolyar in [66].

For a set of routes using the network R, let Xl,r(t) be the number of jobs at station l
of route r at time t. With arrival rate vector (λr, r ∈ R) we call

Z(t) =
∑
(l,r)

λr
γl
Xl,r(t)

the workload of the system. In this ongoing work we conjecture that in heavily loaded
settings the di�usion scaled workload process converges weakly to a re�ected Brownian
motion (RBM).

Another key feature of the limiting model is that the evolution of the queue lengths is
restricted to a speci�c invariant manifold, a property known as state space collapse. Inter-
estingly, the position of the queue length vector on the invariant manifold is determined
by a RBM that describes the limiting value of the workload. In order to identify the in-
variant manifold we study the �uid model with critical arrival rate settings, combining the
arguments of [16] and [66]. We are able to show weak convergence to Brownian motions
for the arrival processes and the process governing the available scheduling policies using
standard functional central limit theorem arguments. We then sketch our plans to use
the attraction property of the �uid sample paths to the invariant model to solve several
Skorohod problems and consequently obtain weak convergence of the workload process

3.2. System model 41

to a re�ected Brownian motion. Importantly, the location of the invariant manifold is a
function of the station priority vector γ, meaning that adjustments to priorities have a
clear and strong impact on the evolution of the system. Notably, we also aim to show
that the workload of the system under WQPRA stochastically dominates the workload
under any other scheduling policy, a property called workload minimisation.

The rest of this chapter is organised as follows. In the next section we formally de�ne
the model. In Section 3.3 a formal de�nition of stability is provided. We then explicitly
give the WQPRA algorithm in Section 3.4. Section 3.5 states the assumptions that our
work operates under. In Section 3.6 we state a di�usion limit conjecture. More detail is
added to the model and intuition behind the conjecture given in Section 3.7. In Section 3.8
we study the �uid sample paths of the model and prove the maximal stability property.
Section 3.9 sketches a proof of our di�usion limit conjecture and Section 3.10 proves some
technical supporting lemmas used in other parts of the chapter.

3.2 System model

We de�ne multi-hop switched queueing networks operating in a random environment.
The key feature of these discrete-time queueing networks is that they have restrictions
on which queues can be served simultaneously. In our random environment setting these
restrictions vary between time slots.

We assume that the network operates in slotted time. Each time slot is indexed by
a non-negative integer t ∈ N0. Our theoretical results often rely on a continuous time
version of the discrete time processes that we work with � in such cases we interpolate
the discrete time process linearly between btc and btc + 1, where btc denotes the largest
integer no greater than t.

We let a �nite countable set L index the set of stations forming a network. Assume
that there are L = |L| stations present in the network and that there are a positive integer
number R ∈ Z+ routes utilising the network. Each route consists of Nr ∈ Z+ consecutive
indexed stations r =

(
l
(r)
1 , . . . , l

(r)
Nr

)
. For k = 1, . . . , Nr − 1, a route r job served at station

l
(r)
k next goes to station l

(r)
k+1. Jobs served at the terminal station for their route l(r)Nr

depart the network. We denote by l(r)− the previous (upstream) station to station l(r) on

route r. We use nl,r to denote the index of station l on route r; that is, for station l(r)i

of route r, we have nl,r = i. In general nl,r ∈ {1, . . . , Nr}. We denote the length of the
longest route by Nmax = maxr{Nr}.

Jobs of each route at each station are recorded in a separate queue of in�nite bu�er
capacity. Let S index this set of queues and let S = |S|. We call (l, r) ∈ S such that
nl,r = 1 ingress queues, and (l, r) such that nl,r > 1 are internal queues. The process

(X(t), t ∈ N0)

evolving on NS0 keeps track of the lengths of the queues in the set S and the process
(Q(t), t ∈ N0) evolving on NL0 keeps track of the total number of jobs queueing at each
station. Speci�cally, at time t there are Xl,r(t) jobs at station l on route r, moreover
there are Ql(t) jobs at station l, thus

Ql(t) =
∑
r:l∈r

Xl,r(t) , ∀ t ≥ 0 .

42 Chapter 3. Stability of weighted queue-proportional rate allocation

Note that each queue indexed by an element of S corresponds to a pair (l, r). Later,
in order to state our main result, it will be convenient to consider the following partition
of this set of queues. We group queues (l, r) ∈ S into subsets Si,j which contain jobs
that: (i) are being processed for the i-th time, and (ii) which exit the network after being
processed by j stations. That is, we denote the set of all elements of S such that nl,r = i
and Nr = j by Si,j . Let Si,j = |Si,j |.

The processes

(Xi,j(t), t ∈ N0) , j = 1, . . . , Nmax , i = 1, . . . , j ,

evolving on NSi,j0 keep track of the lengths of the queues in the sets Si,j .
At the end of each time slot, a discrete random number Ar(t) of route r jobs arrive ex-

ogenously to station l(r)1 , where (Ar(t), t ≥ 0) are independent and identically distributed
(iid), and these processes are independent across routes. For each queue (l, r) ∈ S denote
λr = EAr(1), which is the expected number of jobs arriving to route r in each time slot.
We store these quantities in a vector of length S denoted λ. (Note that many elements of
this vector are identical.) It is convenient to partition these arrival rates according to the
sets S1,j . For j = 1, 2, . . . , Nmax, denote by λj the vector of length S1,j which contains
the arrival rates of routes which have length j.

The processing restrictions of the network are random and follow a countable, irre-
ducible, �nite state, discrete time background Markov chain (M(t), t ∈ N0) evolving on
M. In each time slot this Markov chain is in one of the states m ∈ M. The stationary
distribution of M is denoted (πm, m ∈M), where

πm > 0, ∀m ∈M and
∑
m∈M

πm = 1 .

Associated with each state of the background chain is a �nite countable set of feasible
station schedules K(m). Each feasible station schedule is a set of stations that can process
jobs simultaneously. Let Λ(m) denote the convex hull of K(m) (note that since sets of
feasible schedules are �nite, these convex sets are necessarily compact). We suppose
that for each time t it is possible to specify a station scheduling policy in the form of
a distribution on K(M(t)) conditional on M(t) = m. The resulting station scheduling
policy is then represented by a random vector with support on K(m), of length L, denoted

R(t,m) := (Rl(t,m) , l ∈ L) ,

where Rl(t,m) = 1 if station l is scheduled for processing in time slot t and Rl(t,m) = 0
otherwise.

For ease of exposition we assume that each station can process at most one job in each
time slot. For each queue (l, r), let the random variable Rl,r(t,m) indicate if a job is sched-
uled for processing from that queue at time t. Notice that

∑
r:l∈r Rl,r(t,m) = Rl(t,m),

and this is either 0 or 1. In the same way that a station scheduling policy is a random
distribution on K(m), we also suppose that it is possible to specify a queue scheduling
policy as a distribution for the random vector (Rl,r(t,m) , l ∈ S). For WQPRA this dis-
tribution is conditional on R(t,m), but this is not necessarily the case (e.g., BackPressure
[13] and static service split policies as described in the next section).

Let Dl,r(t) ≤ Xl,r(t) be the number of jobs departing from queue (l, r) in time slot t.
For all queues, if Rl,r(t,m) = 1 and Xl,r(t) ≥ 1, then Dl,r(t) = 1; otherwise Dl,r(t) = 0.

3.3. System stability region 43

At the end of each time slot, jobs which have been served either move to the next station
along their route or depart the system if they are at the terminal station for their route.
As a result, the queueing dynamics of this network can be described by the recurrence
relation

Xl,r(t+ 1) =

{
Xl,r(t) +Ar(t)−Dl,r(t) , nl,r = 1 ,
Xl,r(t) +D

l
(r)
− ,r

(t)−Dl,r(t) , nl,r > 1 ,

for any pair (l, r) and t ≥ 0.

3.3 System stability region

We call the system stable if the Markov chain X is positive recurrent. By this we mean
that there exists a non-empty set of states which is reached with probability 1 within
�nite expected time from any initial state. Stability implies the existence of a stationary
probability distribution.

Suppose φ := (φm, m ∈ M) is a collection with φm := (φm,(l,r), (l, r) ∈ S) being a
probability measure such that when the background chain is in state m, Rl,r(t,m) = 1
with probability φm,(l,r), and with probability 1−

∑
(l,r) φm,(l,r) does not serve any of the

queues. This is known as a static service split policy since it is independent of information
such as the size of the queue length vector. Let the expected service allocated to queue
(l, r) when the background chain is in state m under this policy be denoted by µl,r(t,m),
so that the long-term service rate allocated to queue (l, r) is

νl,r(φ) =
∑
m∈M

πm µl,r(t,m) .

Let ν(φ) = (νl,r(φ), (l, r) ∈ S).

Proposition 4. For existence of a scheduling policy Φ under which the system is stable,
condition

λ ≤ ν(φ) for at least one SSS rule φ (3.1)

is necessary, and condition

λ < ν(φ) for at least one SSS rule φ (3.2)

is su�cient.

The proof of this proposition is a simple extension to the multihop setting of the proof
given for Theorem 1 in [67]. For necessity, if the system is stable under some policy φ,
then under that policy φm,(l,r) is the average fraction of time slots when queue (l, r) is
allocated while the background state is m. These values form the set for which (3.1)
must hold, since otherwise at least one of the queues would diverge with probability 1.
Su�ciency follows simply from observing that (3.2) implies the long term average service
rate is greater than the long term average arrival rate for all queues.

Motivated by Proposition 4 we call the set of all arrival rate vectors λ such that
(3.2) holds the maximal stability region or maximum throughput region and denote it by
Λ0. We denote the closure of this set by Λ?, and call this the capacity region. At some
points in this chapter it is necessary to denote the maximal stability region in terms of
the per-station aggregate arrival rate vector

(∑
r:l∈r λr

)
l∈L. To this end, let Λ

0
be the

44 Chapter 3. Stability of weighted queue-proportional rate allocation

set of aggregate arrival vectors
(∑

r:l∈r λr
)
l∈L such that (3.2) holds for the corresponding

underlying arrival rate vector λ, and denote the closure of this set by Λ
?
.

3.4 Weighted queue-proportional rate allocation sched-
uler

In this section we present a natural generalisation of the throughput-optimal scheduling
algorithm of [16]. Our generalisation is to weight stations so that priorities between
stations can also be incorporated into the transmission decision. We denote the weight
of station l by γl ≥ 1 and store these weights in γ, a vector of length L. In [16] the case
γl = 1 for all l ∈ L is studied.

Given Q(t), M(t), and weights γ:

(i) First determine a station scheduling policy for time slot t by �nding the vector
σ(t,m) of length L such that

σl(t,M(t)) = 0 , whenever Ql(t) = 0 ,

σl(t,M(t))

γlQl(t)
=
σl′(t,M(t))

γl′Ql′(t)
, whenever Ql(t) > 0 and Ql′(t) > 0 ,

where σ(t,M(t)) lies on the boundary of Λ(M(t)). Let the distribution of R(t,m)
have expected value σ(t,m) and support on K(M(t)).

(ii) Serve jobs at each station according to the Serve-In-Random-Order (SIRO) queueing
discipline, i.e., serve jobs at each station l uniformly at random. This implies that
the average departure rate of each route at station l is proportional to the number
of jobs of its route, i.e.,

µl,r(t,m) = 0 , whenever Xl,r(t) = 0 ,

µl,r(t,m)

Xl,r(t)
=
µl,r′(t,m)

Xl,r′(t)
, whenever Xl,r(t) > 0 and Xl,r′(t) > 0 .

3.5 Key assumptions

Consider a sequence of systems, indexed by k ∈ K = {k1, k2, . . . }, where ki > 0 for all
i and ki ↑ ∞ as i → ∞. For the remainder of this chapter k → ∞, unless speci�ed
otherwise, means that k goes to in�nity by taking values from the sequence K, or some
subsequence of K. We denote quantities pertaining to the k-th system with a superscript
(k).

Our assumption of iid input processes also applies to every system in this sequence,
that is

A(k)
r (t) , t = 1, 2, . . . , are iid. (3.3)

We also make some additional assumptions on the input �ows that allow us to apply a
functional central limit theorem (FCLT) later. They are:

VarA(k)
r (1) → s2

r ≥ 0 , k →∞ , and (3.4)

E[A(k)
r (1)2 I{A(k)

r (1) > z}] ≤ η(z) , (3.5)

3.5. Key assumptions 45

where η is a �xed function such that η(z) → 0 as z → ∞, and I{B} is the indicator
function for the event B.

De�ne ζ to be a vector of length S with each component corresponding to a queue
(l, r) ∈ S and taking the value λr/γl. We de�ne ζi,j similarly for each Si,j . Then, to
conclude this section, for t ≥ 0, let

Z(t) := ζ ·X(t) =
∑

(l,r)∈S

λr
γl
Xl,r(t) and Zi,j(t) := ζi,j ·Xi,j(t) =

∑
(l,r)∈Si,j

λr
γl
Xl,r(t) .

The former is a process that keeps track of the workload of the system, and the latter
keeps track of the workload in each of the sets Si,j .

De�ne µi,j to be a vector of length Si,j containing the elements of µ corresponding to
the set of queues Si,j .

We are now able to introduce the following function of the background chain state:

µ?i,j(m) = max
µi,j∈Λ(m)

ζi,j · µi,j , (3.6)

where we abuse notation slightly by taking µi,j ∈ Λ(m) to mean a choice of µ ∈ Λ(m)
restricted to the queues contained in Si,j . This function gives the maximum possible
amount of workload that could potentially be served in one time slot by the sets of queues
Si,j when the background chain is in state m.

Using this function we can further let

µ?i,j =
∑
m∈M

πm µ
?
i,j(m) ,

be the maximum average possible service rates available to workload for these sets of
queues.

Now, our heavy tra�c assumptions are as follows: we suppose that, as k → ∞, the
arrival rate vector λ(k) converges to some �xed vector with strictly positive elements
λ ∈ RS+, lying on the boundary of the capacity region Λ?:

λ(k) → λ ∈ Λ? . (3.7)

In addition we suppose that the convergence (3.7) is such that

k (ζ1,j · λ
(k)
j − ζ1,j · λj − µ?1,j)→ aj , (3.8)

where aj ∈ R for j = 1, . . . , Nmax.

The processes X(k), Q(k), and Z(k) and their equivalents restricted to Si,j record
queue lengths and workload in the network when the arrival rate vector is λ(k).

Finally, we also make a no-excess-resources (NER) assumption:

µ?i,j − µ?i−1,j = 0 , j = 2, . . . , Nmax , i = 2, . . . , j . (3.9)

The NER assumption states that the maximum average workload that can be processed
by queues in Si,j and queues in Si−1,j is the same. This assumption ensures that the
near congestion behaviour created at ingress stations in heavy tra�c is conveyed to queues
which are deeper in the network, which is essential for our convergence results to hold.

46 Chapter 3. Stability of weighted queue-proportional rate allocation

3.6 Di�usion limit

We begin by applying di�usion scaling to the processes X(k), Q(k), and Z(k):

x̃(k)(t) := k−1X(k)(k2t) , q̃(k)(t) := k−1Q(k)(k2t) , z̃(k)(t) := k−1Z(k)(k2t) , t ≥ 0 .
(3.10)

We call the set of vectors (c ζ, c ≥ 0), which are proportional to ζ, the invariant manifold,
and call the elements of this set invariant points. Denote the invariant manifold by V.
We provide a more formal de�nition of the invariant manifold in Section 3.8. We assume
that the initial states of the scaled processes converge in probability to an invariant point

x̃(k)(0)
p→ x̃(0) := z̃(k)(0) ζ , (3.11)

where
p→ denotes convergence in probability.

We also apply di�usion scaling to X(k)
i,j and Z(k)

i,j , for j = 1, . . . , Nmax and i = 1, . . . , j:

x̃
(k)
i,j := k−1X

(k)
i,j (k2t) , z̃

(k)
i,j (t) := k−1Z

(k)
i,j (k2t) , t ≥ 0 .

For j = 1, . . . , Nmax de�ne the Brownian motions

w̃1,j =
(
z̃

(k)
1,j (0) + aj t+ %1,j B(t), t ≥ 0

)
, (3.12)

all driven by a standard (zero drift, di�usion coe�cient) Brownian motion B, where aj is
the parameter in (3.8), and

%2
1,j := ŝ2

1,j +
∑
S1,j

ζ2
l,r s

2
r ,

where s2
r is the parameter given in (3.4) and ŝ2

1,j depends on ζ and the stationary dis-
tribution of the (background) Markov chain M , and is speci�ed later in (3.27). These
processes correspond to workload entering the system at ingress stations.

For the Brownian motion processes w̃1,j de�ned in (3.12), de�ne the corresponding
re�ected Brownian motions (RBMs)

z̃1,j(t) := w̃1,j(t) + ỹ1,j(t) , t ≥ 0 , (3.13)

where

ỹ1,j(t) := −
[
0 ∧ inf

0≤u≤t
w̃1,j(u)

]
, t ≥ 0 , (3.14)

are regulation processes. These processes correspond to workload service `wasted' by
queues in the sets S1,j . In Section 3.9 we sketch what this means more precisely.

Proceeding, we introduce some analogous relationships for z̃i,j = w̃i,j + ỹi,j with
j = 2, . . . , Nmax and i = 2, . . . , j. De�ne

w̃i,j =
(
z̃i,j(0) + ỹi−1,j(t) + ŝ2

i,j B(t), t ≥ 0
)
, (3.15)

where B is the same Brownian motion used in (3.12), with corresponding regulation
processes

ỹi,j(t) := −
[
0 ∧ inf

0≤u≤t
w̃i,j(u)

]
, t ≥ 0 . (3.16)

3.7. Additional system model detail and intuition behind main conjecture 47

Here the processes w̃i,j correspond to workload which is output from queues in Si−1,j

as input to queues in Si,j , and ỹi,j remains to correspond to workload service `wasted'
by queues in Si,j . The parameter ŝ2

i,j also depends on the stationary distribution of the
(background) Markov chain M , and is speci�ed later in (3.34).

For 1 ≤ j ≤ Nmax and 1 ≤ i ≤ j we will sketch a proof in Section 3.9 that

z̃
(k)
i,j

w→ z̃i,j = w̃i,j + ỹi,j , (3.17)

where
w→ denotes convergence in distribution of stochastic processes, that is, weak con-

vergence of their distributions. Upon bringing all of these processes together as

z̃ :=

Nmax∑
j=1

j∑
i=1

z̃i,j , (3.18)

we obtain the driving process for our di�usion limit and state space collapse conjecture,
which we can now state.

Conjecture 5. Consider the sequence of systems indexed by k ∈ K as described above,
where the scheduling rule for the system is WQPRA. Assume that conditions (3.3)�(3.5),
(3.7)�(3.9), and (3.11) hold.

(a) Then, as k →∞,
z̃(k) w→ z̃ , (3.19)

as described in (3.13)�(3.18). Moreover, the following state space collapse holds:

x̃(k) w→ x̃ := z̃ ζ . (3.20)

(b) The WQPRA rule is asymptotically optimal in that it minimizes the workload pro-
cess. More precisely, the workload process z̃kΦ corresponding to an arbitrary schedul-
ing discipline Φ is such that, for any time t ≥ 0 and any u ≥ 0,

lim inf
k→∞

P(z̃kΦ(t) > u) ≥ P(z̃(t) > u) . (3.21)

3.7 Additional system model detail and intuition be-
hind main conjecture

In this section we de�ne several additional stochastic processes associated with the system
for each value of the scaling parameter k. These can be used to prove our main conjecture.
Combined with the previously de�ned model, the process

Z(k) := (X(k),Q(k), Z(k),W (k), Y (k),A
(k)
,D

(k)
,G(k))

and its counterparts corresponding to restrictions of station�route pairs in some Si,j ,
with many of its components summarised in Table 3.1 and all de�ned shortly, describe
the system evolution in more detail.

We de�ned the processesX(k), Q(k), and Z(k) previously. The process (A
(k)
r (t), t ≥ 0)

describes the arrivals in each time slot to route r. The cumulative version of this process

48 Chapter 3. Stability of weighted queue-proportional rate allocation

Table 3.1: Descriptions of some components of Z(k).

Component Brief description

X(k) (X
(k)
l,r , (l, r) ∈ S) Lengths of station�route queues.

Q(k) (Q
(k)
l , l ∈ L) Lengths of per-station queues.

Z
(k)
i,j Workload in system at queues in Si,j .

Z(k) Total workload in system.

Y
(k)
i,j Cumulative wasted workload service at queues in Si,j .
Y (k) Cumulative total wasted workload service.

A
(k)

r Cumulative arrivals to route r.

A
(k)

j (A
(k)
r , (l, r) ∈ S1,j)

D
(k)

(D
(k)

l,r , (l, r) ∈ S) Cumulative departures from station�route queues.

D
(k)

i,j (D
(k)
l,r , (l, r) ∈ Si,j).

H
(k)
i,j Cumulative potential workload service for queues in Si,j .

G(k) (G
(k)
m , m ∈M) Cumulative time background process in state m.

is

A
(k)

r :=

(
t∑

τ=0

A(k)
r (τ) , t ≥ 0

)
,

which records the total arrivals up to and including time slot t. We denote the di�usion
scaling of these processes by

ã(k)
r (t) := k−1A

(k)
(k2t) , t ≥ 0 .

We will �nd it convenient to group these according to the index of the terminal station
of the route (i.e., into the sets S1,j , j = 1, . . . , Nmax),

A
(k)

j := (A(k)
r , (l, r) ∈ S1,j) .

Similarly, D(k)
l,r (t) is the number of packets to be served from queue (l, r) in time slot t,

so that

D
(k)

l,r :=

(
t∑

τ=0

D
(k)
l,r (τ) , t ≥ 0

)
,

which we also group into D
(k)

i,j := (D
(k)
l,r , (l, r) ∈ Si,j).

The processes

G(k)
m :=

(
t∑

τ=0

1{M(τ) = m}, t ≥ 0

)
, m ∈M ,

record the total number of time slots the system spends in each of the di�erent processing
modes m ∈ M. We combine these with the maximum possible rates at which workload

3.7. Additional system model detail and intuition behind main conjecture 49

can be served for the set of queues Si,j , de�ned earlier in (3.6), and denoted by µ?i,j(m),
as follows:

H
(k)
i,j :=

(∑
m∈M

µ?i,j(m)G(k)
m (t), t ≥ 0

)
. (3.22)

We denote the di�usion scaling of these processes by

h̃
(k)
i,j (t) := k−1H

(k)
i,j (k2t) , t ≥ 0 .

For i = 1, and j = 1, . . . , Nmax these processes give the potential amount of workload that
could be served by time t by queues in S1,j . For j = 1 this corresponds to the workload of
single station routes and for j > 1 this corresponds to workload that progresses onwards
to receive more service.

Importantly, the processes

W
(k)
1,j (t) := Z

(k)
1,j (0) + ζ1,j ·A

(k)

j (t)−H(k)
1,j (t) , t ≥ 0 , (3.23)

do not depend on the scheduling discipline employed � they are a function of the initial
workload and model primitives only. We apply di�usion scaling to these processes:

w̃
(k)
1,j (t) := k−1W

(k)
1,j (k2t) , t ≥ 0 .

We will next see that, following from standard theory, the resulting processes converge
weakly to a Brownian motion as de�ned in (3.12), i.e.,

w̃
(k)
1,j

w→ w̃1,j . (3.24)

Due to assumptions (3.3)�(3.4) we can employ a standard FCLT for each input process
(i.e., per-route input into queues in S1,j for each j):(

ã(k)
r (t)− λ(k)

r kt, t ≥ 0
)

w→ (sr B(t), t ≥ 0) , (3.25)

where B is a standard (zero drift, di�usion coe�cient) Brownian motion. In a similar
fashion, from the FCLT for Markov chains, we have the weak convergence(

h̃
(k)
1,j (t)− µ?1,jkt, t ≥ 0

)
w→ (%1,j B(t), t ≥ 0) , (3.26)

where

%2
i,j := lim

n→∞
n−1E

(n∑
t=0

µ?i,j(M(t)) · ζi,j − µ?i,jt

)2
 . (3.27)

We can combine these two limit results with assumption (3.8) to obtain w̃(k)
1,j

w→ w̃1,j as
de�ned in (3.12).

This brings us to the �rst non-trivial part of our analysis. For each t ≥ 0 we are now
able to de�ne

Y
(k)
1,j (t) := H

(k)
1,j (t)− ζ1,j ·D

(k)

1,j (t) , (3.28)

which is the total amount of workload service that is wasted by queues in S1,j by time t.

50 Chapter 3. Stability of weighted queue-proportional rate allocation

We also apply di�usion scaling to this process:

ỹ
(k)
1,j (t) := k−1Y

(k)
1,j (k2t) , t ≥ 0 . (3.29)

Combining (3.23) and (3.28) with the de�nition of Z(k)
1,j (t) given earlier, observe the rela-

tionship
Z

(k)
1,j (t) = W

(k)
1,j (t) + Y

(k)
1,j (t) , t ≥ 0 , (3.30)

and futhermore z̃(k)
1,j = w̃

(k)
1,j + ỹ

(k)
1,j . Note we already found an expression for the limiting

values of w̃(k)
1,j ; now we need to do the same for ỹ(k)

1,j . In fact, we will show that ỹ(k)
1,j

converges weakly to the regulation process ỹ1,j de�ned in (3.14). We do this in Section 3.9
by solving a Skorohod problem (see Appendix A.1) that applies to every possible sample
path of the process. The intuition behind (3.12)�(3.14) should now be clear.

We now provide intuition for (3.15)�(3.17), this intuition is similar to that just provided
for (3.12)�(3.14).

For j = 2, . . . , Nmax and i = 2, . . . , j we have

W
(k)
i,j (t) := Z

(k)
i,j (0) +H

(k)
i−1,j(t)− Y

(k)

i−1,j(t)−H
(k)
i,j (t) , t ≥ 0 . (3.31)

These processes are analogous to (3.23) with the exogenous workload arrival processes

ζ1,j · A
(k)
j replaced by the workload output from Si−1,j processes H(k)

i−1,j − Y
(k)

i−1,j ≡
ζi−1,j ·D

(k)

i−1,j .
Again, observe the relationships

Z
(k)
i,j (t) = W

(k)
i,j (t) + Y

(k)
i,j (t) , t ≥ 0 . (3.32)

The di�usion scalings of (3.31) and (3.32) are denoted using w̃(k)
i,j and z̃(k)

i,j .
Using the FCLT we will �nd(

h̃
(k)
i−1,j(t)− h̃

(k)
i,j (t), t ≥ 0

)
w→ (%̂i,j B(t), t ≥ 0) , (3.33)

where

%̂2
i,j := %2

i−1,j + %2
i,j+

2 lim
n→∞

n−1E

[(
n∑
t=0

µ?i−1,j(M(t)) · ζi−1,j − µ?i−1,jt

)(
n∑
t=0

µ?i,j(M(t)) · ζi,j − µ?i,jt

)]
,

(3.34)

(with %2
i,j corresponding to the variance terms de�ned in (3.27)) follows from the stan-

dard formula for variances of sums of dependent random variables. From this we will
obtain w̃(k)

i,j
w→ w̃i,j as de�ned in (3.15). We prove formally in the next section that the

corresponding workload departures are given by (3.16).

The preceding discussion was about how to show z̃
(k)
i,j

w→ z̃i,j for j = 1, . . . , Nmax,

i = 1, . . . , j with an explicit method for �nding for z̃i,j so that z̃(k) w→ z̃ (as de�ned in
(3.18)) can be found, leading to (3.19), which is the �rst part of Conjecture 5. Some more
detail is needed to rigorously obtain the complete statement of Conjecture 5, (3.19) and
(3.20), we do this in Section 3.9. The sketch proof provided in Section 3.9 relies on the

3.8. Some properties of �uid sample paths for the WQPRA scheduler 51

�uid sample paths of our model, which we will now investigate in detail.

3.8 Some properties of �uid sample paths for theWQPRA
scheduler

In this section we study sequences of the process Z(k) under �uid scaling. That is, in this
section we consider a sequence of systems {z(k), k ∈ Kf} where Kf is a non-decreasing
sequence of positive numbers, where:

z(k)(t) := k−1Z(k)(kt) , t ≥ 0 .

Importantly, the sequences Kf and those used for the heavy-tra�c limit and di�usion
scaling K are not necessarily related.

In particular this scaling applies to all of the processes described in Table 3.1. We
denote the �uid scaled processes with lower case letters, for example, for X(k), Q(k), and
Z(k):

x(k)(t) := k−1X(k)(kt) , q(k)(t) := k−1Q(k)(kt), z(k)(t) := k−1Z(k)(kt) , t ≥ 0 .
(3.35)

The following lemma gives the system of equations that these processes follow for k
large enough.

Lemma 6. Under the WQPRA algorithm, with probability 1, there exists a positive se-
quence Kf such that as k →∞ along Kf the process z(k) and all of its constituent processes
converge uniformly over compact intervals, where the limiting functions are Lipschitz con-
tinuous in [0,∞), to a �uid sample path z.

Speci�cally, we have for j = 1, . . . , Nmax, i = 1, . . . , j, r ∈ R, and m ∈M:

x(k)(t)→ x(t) , q(k)(t)→ q(t) , a(k)
r (t)→ λr t , g(k)

m (t)→ πm t , t ≥ 0 , (3.36)

h
(k)
i,j (t)→ µ?i,j t , w(k)(t)→ z(0) + ζ · λ t − h(t) = z(0) = w(0), t ≥ 0 , (3.37)

w
(k)
i,j (t)→ zi,j(0) + ζi,j · λj t − hi,j(t) = zi,j(0) = wi,j(0) , t ≥ 0 , (3.38)

z(k)(t)→ z(0) + ζ · x(t) + y(t) = z(0) + y(t) , t ≥ 0 , (3.39)

z
(k)
i,j (t)→ zi,j(0) + ζi,j · xi,j(t) + yi,j(t) = zi,j(0) + yi,j(t) , t ≥ 0 . (3.40)

Lipschitz continuity of the limiting functions implies they are di�erentiable for almost
all t ≥ 0. Let T be the set of time instances where these functions are di�erentiable.
Additionally, the following equations hold for all t ∈ T :

ql(t) =
∑
r:l∈r

xl,r(t), ∀ l ∈ L ,

d
dt
xl,r(t) = λl,r + µ

l
(r)
− ,r

(t)− µl,r(t) , ∀ (l, r) ∈ S ,
(3.41)

52 Chapter 3. Stability of weighted queue-proportional rate allocation

where λl,r = λr for nl(r),r = 1 and 0 otherwise, µ(t) satis�es

µ
l
(r)
− ,r

(t) = 0, for nl(r),r = 1 ,

µl,r(t) =
xl,r(t)

ql(t)
σl(t) ,

(3.42)

and σ(t) lies on the boundary of the capacity region Λ
?
satisfying

σl(t) = 0 , whenever ql(t) = 0 ,

σl(t)

γlql(t)
=

σl′(t)

γl′ql′(t)
, whenever ql(t) > 0 and ql′(t) > 0 .

(3.43)

The proof of this lemma is standard and straightforward, yet somewhat technical; a
proof following techniques developed in [68, 21, 69] and used in [16] is given in Section 3.10.
We often omit the time index in the remainder of this chapter for brevity.

Notice from this we can more formally de�ne the invariant manifold. Observe that
the di�erential equations de�ned by (3.41)�(3.43) are stationary when µl,r = λr for all l,
and so we de�ne the invariant manifold V by x such that

xl,r = λr
ql

(λΣ)l
, ∀ (l, r) ∈ S , ∈ S

qlγl
(λΣ)l

=
ql′γl′

(λΣ)l′
, ∀ (l, r), (l′, r′) ∈ S .

The following lemma generalises Lemma 3 in [16] to the WQPRA setting.

Lemma 7. Assume θ
(∑

r:l∈r λr
)
l∈L ∈ Λ

?
for some θ > 0. If x 6= 0 and (l∗, r∗) ∈

arg max(l,r) γlxl,r/λr, then µl∗,r∗ ≥ θλr∗ .

Proof. Since x 6= 0, we have xl∗,r∗ > 0. Assume µl∗,r∗ < θλr∗ . Then, for any other
(l, r) ∈ S (r 6= r∗ or l 6= l∗), there are two cases:

(i) If xl,r = 0, then µl,r = 0.

(ii) If xl,r > 0, then

µl,r =
γlxl,r
γl∗xl∗,r∗

µl∗,r∗ =
γlxl,r/λr

γl∗xl∗,r∗/λr∗

λr
λr∗

µl∗,r∗ ≤
λr
λr∗

µl∗,r∗ < θλr .

Combining (i) and (ii) we have µl,r < θλr for any pair (l, r). Therefore, for each link l, if
ql > 0 then we have σl =

∑
r:l∈r µl,r < θ

∑
r:l∈r λr; if ql = 0, then σl = 0 < θ

∑
r:l∈r λr.

Hence we have σl < θ
∑
r:l∈r λr for each station l ∈ L. This contradicts the fact that the

allocated service rate vector (σl)l∈L lies on the boundary of the capacity region Λ
?
, since

θ
(∑

r:l∈r λr
)
l∈L ∈ Λ

?
. �

The next two lemmas are standard technical results from [16] needed to prove Theo-
rem 5.

Lemma 8 (Lemma 1 in [16]). If f(x) = maxi=1,...,K fi(x) and fi(x) for all i are locally

3.8. Some properties of �uid sample paths for the WQPRA scheduler 53

Lipschitz continuous, then we have

D+

dx+
f(x) ≤ max

i∈K

{
D+

dx+
fi(x)

}
,

where K := {i | fi(x) = f(x)} and D+

dx+ f(x) is de�ned as

D+

dx+
f(x) := lim sup

u↓0

f(x+ u)− f(x)

u
.

Lemma 9 (Lemma 2 in [16]). Let g : [0,∞) → [0,∞) be a locally Lipschitz continuous
function.

(i) Assume that g(0) = 0 and D
+g(t)
dt+ ≤ 0 whenever g(t) > 0. Then g(t) = 0 for all

t ≥ 0.

(ii) Assume that g(0) > 0 and D
+g(t)
dt+ ≤ −δ for some δ > 0 whenever g(t) > 0. Then

there exists a T ≥ 0 such that g(t) = 0 for all t ≥ T .

We now investigate the stability of the system through an analysis of the equations
given in Lemma 6.

Consider the Lyapunov function

V (x(t)) := max
(l,r)

αNr−nl,r

λr/γl
xl,r(t) , t ≥ 0 , (3.44)

where α is a parameter strictly greater than 1.
The proof of the following result provides a drift condition on the Lyapunov function

just de�ned. The drift condition is one of the primary ingredients needed to show that
WQPRA is maximally stable. Speci�cally, the proof shows that whenever the arrival rate
vector is an element of the interior of the capacity region, all �uid sample paths of the
system almost surely go to 0 and remain there. By Theorem 4.2 in [21] this is su�cient
for maximal stability.

Theorem 5. The WQPRA algorithm achieves maximal stability.

Proof of Theorem 5. During this proof the arrival rate vector is assumed to be in Λ0

(as de�ned in Section 3.3). We will show that for some δ > 0, whenever V (x(t)) > 0,
then

D+

dt+
V (x(t)) < −δ . (3.45)

This implies the result according Lemma 9 and Theorem 4.2 in [21]. Given any arrival
rate vector λ ∈ Λ0, by de�nition there always exists a real number ε > 0 such that

(1 + ε)

(∑
r:l∈r

λr

)
l∈L

∈ Λ
?
.

According to Lemma 8 we have

D+

dt+
V (x(t)) ≤ max

(l,r)∈S

αNr−nl,r

λr/γl

d
dt
xl,r(t) , (3.46)

54 Chapter 3. Stability of weighted queue-proportional rate allocation

where

S :=

{
(l, r) : V (x(t)) =

αNr−nl,r

λr/γl
xl,r(t)

}
.

Assume V (x) > 0, so that xl,r > 0. Let (l∗, r∗) ∈ arg max(l,r) γlxl,r/λr. Then

αNr−nl,r

λr/γl
xl,r ≥

αNr∗−nl∗,r∗

λr∗/γl∗
xl∗,r∗ ≥

xl∗,r∗

λr∗/γl∗
, (3.47)

where the �rst inequality follows by de�nition and the second uses the facts that α > 1
and 1 ≤ nl∗,r∗ ≤ Nr∗ .

Under WQPRA we have

µl,r =
γl xl,r
γl ql

σl =
γl xl,r
γl∗ ql∗

σl∗ =
γl xl,r
γl∗ xl∗,r∗

µl∗,r∗ =
γl xl,r/λr

γl∗ xl∗,r∗/λr∗

λr
λr∗

µl∗,r∗

≥ 1

αNr−nl,r
λr
λr∗

µl∗,r∗ ≥
1

αNr−nl,r
λr(1 + ε) , (3.48)

where the �rst three equalities follow from (3.42), (3.43), and (3.42) (again). The �rst
inequality follows from (3.47) and the second inequality uses Lemma 7. The proof of the
required drift condition (3.45) splits into two cases depending on whether l is an ingress
station for route r or not:

(i) If l is the ingress station for route r (i.e., nl,r = 1), then

αNr−1

λr/γl

d
dt
xl,r =

αNr−nl,r

λr/γl

(
λr − µl,r

)
≤ αNr−1

(
γl −

γl
αNr−1

(1 + ε)
)

= αNr−1γl − γl(1 + ε)

≤ γl
(
αN

max−1 − (1 + ε)
)
,

where the �rst inequality uses (3.48) and the second follows by de�nition.

(ii) If l is not the ingress station for route r (i.e., nl,r ≥ 2), then

αNr−nl,r

λr/γl

d
dt
xl,r =

αNr−nl,r

λr/γl

(
µl−,r − µl,r

)
=
αNr−nl,r

λr

(
γl− xl−,r

γl xl,r
− 1

)
µl,r

≤ αNr−nl,r

λr

(
1

α
− 1

)
µl,r

≤
(

1

α
− 1

)
(1 + ε) ,

where the second equality follows from (3.42) and (3.43) (as above), the �rst inequal-
ity uses the de�nition of (l, r), and the second inequality uses (3.48) and α > 1.

3.9. Sketch of di�usion limit proof 55

We can then select α > 1 small enough such that the result holds. �

3.9 Sketch of di�usion limit proof

This section sketches a proof of Conjecture 5. In this preliminary exposition we have
attempted to provide an outline of our approach and su�cient detail to convince the
reader that Conjecture 5 is true. Our sketch of the heavy tra�c SSC property, which relies
on the attraction property of �uid sample paths, follows the general approach developed
in [70] and [71]; which was later used in [66]. For purely technical reasons, for the purposes
of our analysis we interpolate the values of all our discrete time stochastic processes to
all real numbers t ≥ 0 by linear interpolation between btc and btc+ 1, where btc denotes
the largest integer no greater than t.

Part (a) of Conjecture 5 consists of properties (3.19) and (3.20). To prove properties
(3.19) and (3.20) it su�ces to show that for any subsequence K1 ⊆ K, there exists another
subsequence K2 ⊆ K1 such that these properties hold when k →∞ along K2. To do that
we must construct all processes (for all k ∈ K) on the same probability space and choose
a subsequence K2 in a way such that the desired properties hold with probability 1 as
k →∞ along K2.

According to the Skorohod representation theorem (see e.g., [72, p. 70]) for each route
r the sequence of input processes and a standard Brownian motion Br can be constructed
on a probability space such that, as k →∞ along K, the convergence to Brownian motions,
given by (3.25), holds uoc with probability 1:(

ã(k)
r (t)− λ(k)

r kt, t ≥ 0
)

uoc→ (sr Br(t), t ≥ 0) , (3.49)

where
uoc→ denotes uniform on compact sets convergence of elements of D([0,∞),∞) the

standard Skorohod space of cadlag functions de�ned on [0,∞) taking real numbers. The
sequences of processes {H(k)

i,j , G
(k)}, with distributions governed by the Markov chains

M (k), and standard Brown motions Bi,j can be constructed on probability spaces such
that the convergences (3.26) and (3.33) also hold uniformly on compact intervals (uoc)
with probability 1:(

h̃
(k)
1,j (t)− µ?1,jkt, t ≥ 0

)
uoc→ (%1,j B1,j(t), t ≥ 0) , j = 1, . . . , Nmax , (3.50)(

h̃
(k)
i−1,j(t)− h̃

(k)
i,j (t), t ≥ 0

)
uoc→ (%̂i,j Bi,j(t), t ≥ 0) , j = 2, . . . , Nmax, i = 2, . . . , j .

(3.51)

We assume that the underlying probability space (Ω,F ,P) is the direct product of the
probability spaces speci�ed above, and (without loss of generality) assume that this prob-
ability space is complete. We will denote elements of Ω by ω. For the remainder of this
section statements are made for j = 1, . . . , Nmax and i = 1, . . . , j.

Recall that
z̃

(k)
i,j (t) = w̃

(k)
i,j (t) + ỹ

(k)
i,j (t) , t ≥ 0 . (3.52)

We now have the probability 1 convergence version of w̃i,j (as de�ned in (3.12) and (3.15)
in Section 3.6): (

w̃
(k)
i,j (t), t ≥ 0

) uoc→
(
w̃i,j(t), t ≥ 0

)
. (3.53)

56 Chapter 3. Stability of weighted queue-proportional rate allocation

Note that by de�nition of a Brownian motion, the sample paths of w̃i,j are continuous.
For the rest of this section we de�ne Ω2 ⊂ Ω as the (measurable, probability 1)

collection ω ∈ Ω such that (3.49)�(3.53) hold along the subsequence K2.

For any k ∈ K a sample path of ỹ(k)
i,j , as de�ned in (3.29), is a non-negative and non-

decreasing cadlag function (since departing workload cannot exceed available workload
service and both of these functions are assumed 0 at t = 0). Therefore, for any �xed
ω ∈ Ω, from any subsequence K3(ω) ⊆ K2, possibly depending on ω, we can choose a
further subsequence K4(ω) ⊂ K3(ω) along which

ỹ
(k)
i,j ⇒ ỹ◦i,j , (3.54)

where ỹ◦i,j is some non-negative and non-decreasing function inD([0,∞),R). The notation
⇒ means convergence at every point of continuity of the limit function. For this function
let z̃◦i,j := w̃i,j + ỹ◦i,j .

Therefore, to prove the convergences (3.19) and (3.20) (Conjecture 5(a)) it will su�ce
to prove that as k →∞ along K2, for any ω ∈ Ω2 (and, therefore with probability 1), we
have (

ỹ
(k)
i,j (t), t ≥ 0

) uoc→
(
ỹ◦i,j(t), t ≥ 0

)
, (3.55)(

x̃
(k)
i,j (t), t ≥ 0

) uoc→
(
x̃◦i,j(t), t ≥ 0

)
, (3.56)

where the equivalance
ỹ◦i,j ≡ ỹi,j (3.57)

holds, as de�ned in (3.14) and (3.16), i.e.,

ỹi,j(t) := −
[
0 ∧ inf

0≤u≤t
w̃i,j(u)

]
, t ≥ 0 ,

and the equivalence
x̃◦i,j ≡ x̃i,j = z̃i,j ζi,j (3.58)

holds, as similarly de�ned in Section 3.7, and where these are then utilised in z̃ = w̃ + ỹ
as de�ned in (3.18).

3.9.1 Attraction property of �uid sample paths

To prove the equivalences (3.57) and (3.58), as just outlined, we will �rst show that the
queue size process is proportional to the vector ζ, ensuring that workload service is not
wasted. Our expressions for the di�usion limits of the queue size and workload process
then follow from veri�cation of the conditions of a Skorohod problem (see Appendix A.1).
The next two propositions provide the key information needed to show these conditions.

In addition to the Lyapunov function V (3.59) we now need the Lyapunov function

H(x(t)) :=
V (x(t))

V (x?(t))
− 1 , t ≥ 0 , (3.59)

where
x?(t) := arg min

y∈V
||y − x(t)||

3.9. Sketch of di�usion limit proof 57

is the element of the invariant manifold V closest to x. We use the conventions: (i) if
x(t) 6= 0 and x? = 0, then we put H(x(t)) = ∞, and (ii) if x(t) = 0, then we put
H(x(t)) = 0.

The next proposition (which we do not prove) shows the attraction property of �uid
sample paths to the invariant manifold. The drift conditions in the �rst part of the
proposition are used to ensure that the �uid sample paths eventually go to the invariant
manifold, and that once they are there they do not leave it (this is summarised more
formally in the �nal part of the proposition). The second part of the proposition provides
a guarantee that so long as the workload of the system has a positive initial condition, then
in heavy tra�c the �uid sample paths remain bounded away from zero. This guarantees
that when the queue length process enters the invariant manifold it does so at a point
that is not the origin � which is important for our di�usion result since it also ensures
workload service is not wasted.

Proposition 10. Assume λ ∈ Λ?.

(i) For some δ > 0, if x(t) 6∈ V, then

D+

dt+
V (x(t)) < −δ .

If x(t) ∈ V, then
D+

dt+
V (x(t)) = 0 .

(ii) If xl,r(0) > 0, then xl,r(t) > 0 for all t ≥ 0.

(iii) If x(0) ∈ V, then H(x(t)) ≡ 0. If x(0) 6∈ V, then there exists T > 0 such that
H(x(t)) ∈ V for all t ≥ T .

We currently know very little about the limiting function ỹ◦i,j from (3.54). The fol-
lowing proposition gives us the tools we will need to provide a proof of Conjecture 5.
Later, in order to meet the conditions of Proposition 41 (Skorohod problem) and prove
Conjecture 5 we need to ensure y◦i,j has some properties to show it converges to ỹi,j as
de�ned in (3.14) and (3.16). Namely, we would like to show that ỹ◦i,j does not increase
when z̃◦i,j = w̃i,j + ỹ◦i,j is positive. To do that we need to show ỹ◦i,j is continuous for all
t ≥ 0, and to do that we need to show it is �nite for all t ≥ 0. The purpose of the �rst part
of the next proposition is to give precisely the property of ỹ◦i,j we will need later: that it

does not increase for a small amount of time when z̃(k)
i,j (t) > 0. Later, to use the �rst part

on all points of continuity, we �rst use it on points of discontinuity combined with the
second part of the proposition to show that there are in fact no points of discontinuity.
We will then show workload service is not wasted when the queue length process is on
the invariant manifold, a property given to us by (c), (d), and (e), which enables us to
use (a).

The oscillation of function h over a subset A ⊆ R0 is de�ned as

Osc(h; A) := sup
ζ1,ζ2∈A

|h(ζ1)− h(ζ2)| .

Let λ+ := max(l,r) λr/a
Nr−nl .

58 Chapter 3. Stability of weighted queue-proportional rate allocation

Proposition 11. (i) Suppose the scheduling discipline is WQPRA. Suppose ω ∈ Ω2 and

a subsequence K4(ω) ⊂ K2 are �xed such that along this subsequence ỹ
(k)
i,j ⇒ ỹ◦i,j (3.54)

holds. Suppose a sequence {t̃(k), k ∈ K4(ω)} is �xed such that for 1 ≤ j ≤ Nmax and
1 ≤ i ≤ j, for 0 < Ci,j <∞,

t̃(k) → t′ ≥ 0 , (3.60)

z̃
(k)
i,j (t̃(k))→ Ci,j > 0 . (3.61)

Let δ be such that

ε = Osc(w̃i,j ; [t′ − 3δ, t′ + 3δ] ∩ R0) < Ci,j/2 .

Then,

(a) ỹ◦i,j does not increase in (t′, t′ + δ], that is, ỹ◦i,j(t
′ + δ)− ỹ◦i,j(t′) = 0,

(b) Ci,j − 2ε < z̃◦i,j(t) ≤ C1
i,j + 2ε, where C1

i,j := Ci,jλ
+S V (xk,0(0)) max{λr} for all

t ∈ [t′, t′ + δ], and

(c) for any 0 < δ′ < δ,
(
x̃

(k)
i,j (t)− z̃(k)

i,j (t)ζi,j , t ∈ [t′ + δ′, t′ + δ]
)

uoc→ 0.

(ii) Suppose the conditions of (i) hold and, in addition, t̃(k) = t′ for all k and x̃
(k)
i,j (t′)→

Ci,jζi,j. Then,

(d) z̃◦i,j(t
′) = Ci,j, and

(e)
(
x̃

(k)
i,j (t)− z̃(k)

i,j (t)ζi,j , t ∈ [t′, t′ + δ]
)

uoc→ 0.

In order to prove Proposition 11 we �rst need to build some more machinery. This
is provided by Lemma 12 below. Firstly, for any scalar function h = (h(t), t ∈ R0), we
de�ne the shift operator θτ , d ∈ R0, in the standard way:

(θτh)(t) = h(τ + t), t ∈ R0 ,

which is applied component-wise for vector-valued functions.
Now, recall Z(k) as de�ned at the beginning of Section 3.7 which contains detail on

most aspects of how the system we are studying evolves. Let Θ(τ)Z(k) be this process
restarted at an arbitrary time τ ≥ 0 . For the reader's convenience, in Table 3.2 we
illustrate how this shift transformation a�ects Z(k) for some of its components. The
key di�erence in e�ect for di�erent components is that for process components which are
cumulative the value of the process at the point of restart needs to be subtracted, and
otherwise it does not. Furthermore, the �uid scaled version Θ(τ)z(k) is de�ned analogously
to Θ(τ)Z(k).

Using these de�nitions, to establish the result for the di�usion scaled paths in the
interval [t̃(k), t̃(k) + δ], δ > 0, we study the �uid-scaled paths z(k) in the corresponding
interval [kt̃(k), kt̃(k) + kδ]. That is, we consider the following family of �uid-scaled paths
restarted at times which are a constant T > 0 apart from each other. For each k and each
integer κ ∈ [0, 2δk/T − 1] consider the path

zk,κ := Θ(kt̃k + Tκ)z(k) , (3.62)

3.9. Sketch of di�usion limit proof 59

Table 3.2: E�ect of shift transformation on Z(k).

Original process: X(k) Z(k) Y (k) A
(k)
r D

(k)
i

Transformed process: θτX
(k) θτZ(k) θτY (k)−Y (k)(τ) θτA

(k)
r −A(k)

r (τ) θτD
(k)
i −D

(k)
i (τ)

with similar notation for corresponding components of zk,κ, for example xk,κ, zk,κ, yk,κ,

a
k,κ
r , and d

k,κ

i .

Lemma 12. (i) Suppose the conditions of Proposition 11(i) hold.

Let C1
i,j = λ+S V (xk,0(0)) max{λr}. Then, for all su�ciently small ε2 > 0, there

exists T > 0 such that, for all su�ciently large k, properties (3.63) and (3.64) hold for
all integer κ in the interval [1, 2δk/T − 1] and the property (3.65) holds for all integer κ
in the interval [0, 2δk/T − 1] (including 0). For all u ∈ [0, T]:

H(xk,κ(u)) < ε2 , (3.63)

yk,κi,j (u) ≡ yk,κi,j (u)− yk,κi,j (0) = 0 , (3.64)

Ci,j − 2ε < zk,κi,j (u) < C1
i,j . (3.65)

(ii) Suppose the conditions of Proposition 11(ii) hold. Then, there exists T > 0 such that,
for all su�ciently large k properties (3.63)�(3.64) hold for all integer κ in the interval
[0, 2δk/T − 1] (including 0).

Proof. (i) We choose T > 0 according to Proposition 10(iii), the time that the �uid
sample paths must belong to the invariant manifold. This also gives us (3.63) for κ ≥ 1.

By Proposition 10(i) we have that V (x) is continuous non-increasing, so for κ = 0 we
have

lim sup
k→∞

sup
u∈[0,T]

||z̃i,j(u)|| < Ci,jλ
+S V (xk,0(0)) max{λr} ,

which gives the upper bound in (3.65) for κ = 0. The lower bound of 0 in (3.65) is
obtained similarly for κ = 0 by Proposition 10(ii).

We now consider (3.63) to (3.65) for κ ≥ 1. Suppose these properties do not hold.
This means that there exists a subsequence K5 ⊂ K4(ω) such that at least one of the
properties (3.63) to (3.65) does not hold for some κ′ ≥ 1 but do hold for 0 < κ ≤ κ′ − 1
when they should. This is possible since we already showed (3.65) holds for κ = 0 and
properties (3.63) and (3.64) need not hold for κ = 0, so κ′ = 1 is possible.

Proposition 10(iii) easily gives that (3.63) must hold for κ′ and the lower bound in
(3.65) follows from Proposition 10(ii). We then also obtain (3.64) for κ′ by observing that
xi,j is therefore proportional to ζi,j and bounded away from 0. Given that (3.63) and

60 Chapter 3. Stability of weighted queue-proportional rate allocation

(3.64) hold, we know

zk,κ
′

i,j (u) = zk,0i,j (T) +

κ′−1∑
κ=1

[
zk,κi,j (T)− zk,κi,j (0)

]
− zk,κ

′

i,j (u)zk,κ
′

i,j (0)

= zk,0i,j (T) +

κ′−1∑
κ=1

[
wk,κi,j (T)− wk,κi,j (0)

]
+ wk,κ

′

i,j (u)− wk,κ
′

i,j (0)

= zk,0i,j (T) + w̃ki,j
(
t̃(k) + κ′T/k + u/k

)
+ w̃ki,j

(
t̃(k) + T/k

)
,

(3.66)

where
|w̃ki,j

(
t̃(k) + κ′T/k + u/k

)
+ w̃ki,j

(
t̃(k) + T/k

)
| < 2ε

for all large k by our choice of ε and the uoc convergence w̃(k)
i,j → w̃i,j � which gives the

upper bound in (3.65).
(ii) This is a modi�ed version of the proof of (i), where the fact that xi,j is an element

of the invariant manifold at time t′ allows us to use the �rst part of Proposition 10(iii)
immediately on H, and consequently the fact that no workload service is wasted for κ = 0
holds immediately as well. �

Proof of Proposition 11. Choose a small ε2 > 0 and take T as in Lemma 12(i). If
we recall that time u ∈ [0, T] for zk,κ corresponds to the time t̃(k) + κT/k + u/k on the
di�usion time scale, we see that Lemma 12 implies that for all large k we have (3.67) for
t ∈ [t̃(k), t̃(k) + (3/2)δ] and (3.68) and (3.69) for t ∈ [t̃(k) + T/k, t̃(k) + (3/2)δ]:

Ci,j − 2ε < z̃
(k)
i,j (t) < C1

i,j , (3.67)

ỹ
(k)
i,j (t)− ỹ(k)

i,j (t̃(k) + T/k) = 0 , (3.68)

H(x̃
(k)
i,j (t)) < ε2 . (3.69)

Since ỹ(k)
i,j ⇒ ỹ◦i,j , z̃

(k)
i,j ⇒ z̃◦i,j , and both ỹi,j and z̃i,j are cadlag, properties (3.67) and

(3.68) imply statements (a) and (b), and (c) follows from (3.69). To obtain (d) and (e),
apply Lemma 12(ii) similarly. �

3.9.2 Di�usion limit of workload process and state space collapse

In this subsection we sketch the proof of the uoc convergence of ỹ(k)
i,j and x̃(k)

i,j in (Ω2,F ,P),
as stated in (3.55) and (3.56), which directly completes the sketch of proof of part (a) of
Conjecture 5. We consider arbitrary �xed ω ∈ Ω2. As explained earlier, for an arbitrary
subsequence K3(ω) ⊂ K2, there exists another subsequence K4(ω) ⊂ K3(ω) such that the
convergence (3.54), namely ỹ(k)

i,j ⇒ ỹ◦i,j , holds along K4(ω).
Based on Proposition 41 (Skorohod problem), given in Appendix A.1, the proof of

(3.55) and (3.56) will follow directly from the following proposition (which we do not
prove).

Proposition 13. For any ω ∈ Ω2 (de�ned immediately after (3.53)), with k →∞ along
K4(ω):

(i) The functions ỹ◦i,j are continuous everywhere they are �nite and ỹi,j(0) = 0;

3.10. Other supporting lemmas 61

(ii) The limit functions ỹ◦i,j are �nite everywhere in [0,∞);

(iii) If z̃◦i,j(t) > 0, then t is not a point of increase of ỹ◦i,j.

(iv)
(
ỹ

(k)
i,j (t), t ≥ 0

) uoc→
(
ỹi,j(t), t ≥ 0

)
.

(v)
(
x̃

(k)
i,j (t), t ≥ 0

) uoc→
(
z̃i,j(t)ζi,j , t ≥ 0

)
3.9.3 Workload minimisation property

In this subsection we sketch the proof of part (b) of Conjecture 5, which states that for
any scheduling discipline Φ with corresponding di�usion scaled workload process z̃(k)

Φ , in
heavy tra�c, along K we have

lim inf
k→∞

P(z̃kΦ(t) > u) ≥ P(z̃ > u) .

This follows in a similar manner to the proof presented in the previous subsection, now
utilising the second part of Proposition 41 (Skorohod problem). Consider the same prob-
ability space (Ω,F ,P) as constructed earlier for the proof of part (a) of Conjecture 5. For
arbitrary �xed ω ∈ Ω, look at paths of z̃(k)

Φ , ỹ(k)
Φ , and w̃Φ(k), which correspond to disci-

pline Φ. Since we are considering the same probability space, w̃(k)
Φ = w̃(k) and therefore

w̃
(k)
Φ

uoc→ w̃Φ, as in (3.53) where w̃(k) uoc→ w̃.
As in the previous subsections, for any subsequence K3(ω) ⊆ K2 we can choose a fur-

ther subsequence K4(ω) ⊆ K3 such that ỹ(k)
Φ → ỹΦ, where ỹΦ is some non-decreasing and

non-negative function in D([0,∞),R). Therefore, for any t > 0 where ỹΦ is continuous,
as k →∞ along K4(ω),

lim z̃
(k)
Φ (t) = w̃(t) + ỹΦ(t), t ≥ 0 ,

and w̃(t) + ỹΦ(t) ≥ 0 since z̃Φ(t) ≥ 0 by de�nition. Then, by right-continuity this also
holds at t = 0. Therefore, by Proposition 41, ỹΦ(t) ≥ ỹ(t) for all t ≥ 0. This and the
continuity of ỹ implies that for any t ≥ 0, lim infk→∞ x̃

(k)
Φ (t) ≥ z̃(t) holds along K4, and

therefore along K since the subsequence K3(ω) is arbitrary. This will complete the proof
of Conjecture 5(b).

3.10 Other supporting lemmas

We �rst prove Lemma 6. To do this we need to de�ne some additional stochastic processes.
Let Al,r(t) :=

∑t
τ=0Al,r(τ) be the total arrivals to queue (l, r) and Rl(t) :=

∑t−1
τ=0Rl(τ)

be the total amount of service available to station l from time slot 0 to t − 1. Let
Dl,r(t) :=

∑t−1
τ=0Dl,r(τ), Dl(t) :=

∑
l:l∈rDl,r(t), and Dl(t) :=

∑t−1
τ=0Dl(τ). Further, let

Al,r(0) = Rl(0) = Dl(0) = Dl,r(0) = 0. As noted before, we interpolate these newly
de�ned processes linearly between btc and btc + 1, where btc denotes the largest integer
no greater than t.

Then the evolution of the queue length can be rewritten as

Xl,r(t) = Xl,r(0) +Al,r(t) +D
l
(r)
− ,r

(t)−Dl,r(t) (3.70)

62 Chapter 3. Stability of weighted queue-proportional rate allocation

for all (l, r). Note that D
l
(r)
− ,r

(t) = 0 if nl = 1.

Recall that we usually denote �uid scaled processes and their limits with lower case

letters (or Greek characters), for example, for A
(k)

l,r , R
(k)

l , and D
(k)

l,r :

a
(k)
l,r (t) := k−1A

(k)

l,r (k2t) , r
(k)
l (t) := k−1R

(k)

l (k2t), d
(k)

l (t) := k−1D
(k)

l (k2t) , t ≥ 0 .
(3.71)

Lemma 14. Under the WQPRA algorithm, with probability 1, for any positive sequence
Kf1

such that k →∞ along Kf1
there exists a subsequence Kf ⊂ Kf1

such that as k →∞
along Kf the following convergence holds uniformly over compact intervals of time t:

a
(k)
l,r (t)→ λl,r t ∀ (l, r) ∈ S , t ≥ 0 , (3.72)

g(k)
m (t)→ πm t ∀ l ∈ L , t ≥ 0 , (3.73)

r
(k)
l (t)→ σl(t) ∀ l ∈ L , t ≥ 0 , (3.74)

d
(k)

l,r (t)→ µl,r(t) ∀ (l, r) ∈ S , t ≥ 0 , (3.75)

d
(k)

l (t)→ dl(t) ∀ l ∈ L , t ≥ 0 , (3.76)

x
(k)
l,r (t)→ xl,r(t) ∀ (l, r) ∈ S , t ≥ 0 , (3.77)

q
(k)
l (t)→ ql(t) ∀ (l, r) ∈ S , t ≥ 0 , (3.78)

where the limiting functions are Lipschitz continuous in [0,∞), which implies that these
limiting functions are di�erentiable for almost all t. Let T be the set of time instants
where these functions are di�erentiable. Additionally, the following equations hold for all
t ∈ T :

d
dt
σl(t) = σl(t) ∀ l ∈ L , (3.79)

d
dt
µl,r(t) = µl,r(t) ∀ (l, r) ∈ S , (3.80)

d
dt
dl(t) = σl(t) ∀ (l, r) ∈ S , whenever ql(t) > 0 , (3.81)

dl(t) =
∑
r:l∈r

µl,r(t) ∀ l ∈ L , (3.82)

ql(t) =
∑
r:l∈r

xl,r(t) (l, r) ∈ S , (3.83)

d
dt
xl,r(t) = λl,r + µ

l
(r)
− ,r

(t)− µl,r(t) ∀ (l, r) ∈ S , (3.84)

where µ
l
(r)
− ,r

= 0 if nl(r) = 1 and λl,r = 0 if nl(r) > 1. Here: (i) µ(t) satis�es (3.42), and

(ii) σ(t) lies on the boundary of the capacity region Λ
?
and satis�es (3.43).

Proof of Lemma 6. Equations (3.36) and (3.41)�(3.43) follow directly from Lemma 14.
Then, the remaining equations in Lemma 6 follow from elementary combinations of these.

�

Hence, to prove Lemma 6 we now prove Lemma 14.

3.10. Other supporting lemmas 63

Proof of Lemma 14. Equations (3.72) and (3.73) follow directly from the functional
strong law of large numbers.

Note that for any 0 ≤ t1 ≤ t2 we have

0 ≤ 1

k
Rl(kt2)− 1

k
Rl(kt1) ≤ t2 − t1 , (3.85)

where we use the fact that each station l can transfer at most a single packet in any time
slot. Thus the sequence of functions { 1

kRl(kt)} is uniformly equicontinuous, and since
Rl(0) = 0, the sequence is uniformly bounded. Similarly the sequence { 1

kDl,r(kt)} is
uniformly bounded and uniformly equicontinuous. Consequently, according to the Arzela�
Ascoli theorem (see e.g., [72, Theorem 7.2]), there must exist a subsequence Kf for which
(3.74) and (3.75) hold. Since (3.76)�(3.78) are elementary functions of (3.72)�(3.75) we
also trivially obtain these.

The Lipschitz continuity of the limits in (3.72)�(3.78), follows from the Lipschitz conti-
nuity of their pre-limit forms. Hence, these limiting functions are di�erentiable for almost
all t. In the rest of the proof we consider all t ∈ T (recall this is the set of time instances
where these functions are di�erentiable).

Next we prove (3.79). Note that σl(q(t)) is continuous with respect to q when ql > 0.
Therefore, for any ε > 0 there exists a u > 0 such that for all s ∈ [t, t+ u] we have

|σl(q(s))− σl(q(t))| ≤ ε . (3.86)

Since 1
kQ(bk sc) → q(s) uniformly over compact intervals of time, and σl(aQ) = σ(Q)

for any a > 0, we have σl(Q(bksc)) → σl(q(s)) with probability 1. Thus, there exists an
integer K > 0 such that for all k > K and s ∈ [t, t+ u],

σl(q(s))− ε ≤ σl(Q(bksc)) ≤ σl(q(s)) + ε . (3.87)

Combining with (3.86), we have

σl(q(t))− 2ε ≤ σl(Q(bksc) ≤ σl(q(t)) + 2ε . (3.88)

By the de�nition of the limit in (3.79), for any s ∈ [t, t+ u] we have

σl(s)− σl(t) = lim
k→∞

1

k

bksc∑
j=bktc

Rl(j) .

De�ne the �ltration Fj , j = 1, 2, . . . , where Fj is the σ-algebra generated by the
random variables Al,r(bktc+ j′), Rl(bktc+ j′), Dl,r(bktc+ j′), and Xl,r(bktc+ j′) for all
(l, r) ∈ S and for j′ = 0, 1, . . . , j − 1. Let

Ej := Rl(bktc+ j)− E
[
Rl(bktc+ j) |Q(bktc+ j)

]
.

Therefore
∑j−1
i=0 Ei, j = 1, 2, . . . is a martingale with respect to Fj , j = 1, 2, Further

E[E2
j] is bounded for all j. Hence, using a strong law of large numbers for martingales

[73] we have

lim
j→∞

1

j

j−1∑
i=0

Ei = 0 ,

64 Chapter 3. Stability of weighted queue-proportional rate allocation

with probability 1. Combining the above we have

σl(q(s))− ε = lim
k→∞

1

k

bksc∑
j=bktc

Rl(j)

= lim
k→∞

1

k

bksc∑
j=bktc

E[Rl(j) |Q(k)]

= lim
k→∞

1

k

bksc∑
j=bktc

σl(Q(k)) .

Using (3.88) we have

(s− t)(σl(q(t))− 2ε) ≤ σl(s)− σl(t) ≤ (s− t)(σl(q(t)) + 2ε)

for s ∈ [t, t+ u]. Since we assume that σl is di�erentiable at t, we have

σl(q(t))− 2ε ≤ d
dt
σl(t) ≤ σl(q(t)) + 2ε .

Since this is true for any ε > 0 we therefore have (3.79). The proof of (3.80) is similar
and so we omit it here for brevity.

Next we consider (3.81). If ql(t) > 0, then there exists a positive u such that for all
s ∈ [t, t + u], ql(s) > 0 also. This implies that for all su�ciently large k, the backlog
Ql(bksc) at station l is larger than 1 for all s ∈ [t, t+ u]. Therefore, the available service
for station l will be fully utilised between bktc and bkt+ uc. We thus have

Rl(bksc)−Rl(bktc) = Dl(bksc)−Dl(bktc)

for all t ≤ s ≤ t+ u. Dividing both sides by k and taking k →∞ we have

σl(s)− σl(t) = dl(s)− dl(t) ,

for all t ≤ s ≤ t + u, which implies d
dtdl(t) = d

dtσl(t). By combining with (3.79) we
therefore have (3.81).

Equations (3.82) and (3.83) follow from the equations Dl(t) =
∑
r:l∈rDl,r(t) and

Ql(t) =
∑
r:l∈rXl,r(t) by taking the limit k →∞ for each respectively.

Finally, by using the queue-evolution equation (3.70) and taking limits as k →∞ we
have

d
dt
xl,r(t) = λl,r +

d
dt
µ
l
(r)
− ,r

(t)− d
dt
µl,r(t) .

Using (3.80) we have (3.84). �

The following publication has been incorporated as Chapter 4.
1. [74] M. Mandjes, B. Patch, and N. S. Walton. Detecting Markov chain instability: A
Monte Carlo approach, Stochastic Systems, 7.2 (2017). pp. 48�62.

Contributor Statement of contribution %
Michel Mandjes writing of text 33

proof-reading 33
supervision, guidance 50
theoretical derivations 33
preparation of �gures 33
initial concept 33

Brendan Patch writing of text 33
proof-reading 33
theoretical derivations 33
preparation of �gures 33
initial concept 33

Neil Walton writing of text 33
proof-reading 33
supervision, guidance 50
theoretical derivations 33
preparation of �gures 33
initial concept 33

https://pubsonline.informs.org/doi/abs/10.1287/stsy.2017.0003
https://pubsonline.informs.org/doi/abs/10.1287/stsy.2017.0003

CHAPTER 4

Detecting Markov chain instability: a Monte Carlo
approach

4.1 Introduction

The stability of a Markov chain is arguably among its most important properties. For
example, in queueing applications it o�ers the guarantee that service has been su�ciently
provisioned to cope with the load imposed on the network in the long run. For this reason
the assessment of the stability of Markov chains has long been an area of intense research.
The objective is often to determine the set of parameter values for which the system's
state does not diverge, referred to as the stability region, of a Markov chain. For many
relatively standard Markov chains the stability region is easily expressed in terms of quan-
tities related to the transition probabilities. However, despite a substantial and growing
literature, for a large class of systems determining the stability region has appeared a
subtle and highly non-trivial task. Importantly, various (at �rst sight) counterintuitive
results have been found; in particular, for speci�c queueing models `naïvely conjectured'
conditions turn out to be insu�cient to ensure stability.

More speci�cally, initial results, for example those by Jackson [75], Baskett et al. [76],
and Kelly [77], suggested that the stability of queueing networks would be determined
by the network's subcritical region (i.e., the set of parameters for which the nominal load
at each queue is less than 1). This conjecture was later proven incorrect by a series
of counterexamples that showed instability can occur with subcritical parameters when
seemingly benign work conserving rules are applied. Early examples include those of Lu
and Kumar [18], Rybko and Stolyar [17], and Kumar and Seidman [78]. In these examples
the instability is typically essentially caused by the priority rules that apply between the
customer classes. Similar e�ects can, however, be constructed in �rst-in �rst-out queueing
networks with customer classes that have strongly di�ering mean service requirements,
see for example Bramson [79]. It was thus realized that, at �rst sight counterintuitively,
decreasing the mean service requirement of certain job classes can in fact induce instability.
As a consequence the stability region need not be monotone (nor convex) in its parameters.
For example, Bordenave et al. provide an instance of a non-convex stability region in [80].
There are various other examples of queueing networks with unusually shaped stability

67

68 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

regions. In [81] MacPhee et al. provide an example with a `thick null recurrent set', in
[82] Baccelli and Bonald show that for certain TCP models the stability region is of a
fractal nature, and in [83] Nazarathy et al. investigate a case where the stability region
is conjectured to consist of disjoint parts.

To avoid determining the stability regions of queueing networks on a case-by-case
basis, various general approaches have been proposed. Perhaps the most straightforward
among these amounts to determining the invariant measure of the number of customers;
when this allows a normalization, then a stationary distribution exists. This approach
works for a set of classical models, relying on concepts such as product form and (quasi-
)reversibility [2], but unfortunately not for many (sometimes just slightly more complex)
other systems.

An arguably more robust approach to determining stability is to construct an appro-
priate Lyapunov function, and then apply the Foster-Lyapunov theorem. Along these
lines Tassiulas and Ephremides, for example, use a quadratic Lyapunov function to �nd
a series of policies which are stable in a wide variety of settings [13]. Constructing an ap-
propriate Lyapunov function is often speci�c to the application at hand, but the approach
can be simpli�ed by studying the �uid model associated with the queueing network. Such
a �uid approach was �rst described by Rybko and Stolyar [17] and was developed in a
general form by Dai [21]; a textbook treatment is presented in Bramson [84]. Importantly,
for speci�c models this approach can help determine the conditions under which there is
stability, but it does not instantly provide a stability condition for a given network at
hand. Thus far, no general framework has been developed that is capable of deciding
whether a given Markov chain is stable or not.

The objective of this chapter is to develop a general simulation based approach to
determining when a given Markov chain should be classi�ed as unstable. A �rst paper
that considers this approach is [85]. Then, concurrently to our work, [86] proposes a
simulation based method for determining the stability region of a multiclass queueing
network with respect to its arrival rate, when it is possible to verify that the stability
region satis�es particular stochastic monotonicity properties. Given the variety of models
and counter-examples discussed above, we place importance on the generality of settings
to which our algorithm is suitable. To apply our algorithm we do not place structural
assumptions on the stability region, we do not restrict parameters of interest, and we do
not restrict the mechanism from which the simulations are derived. We focus on providing
theoretical guarantees on the performance of our method for a broad class of models where
simulations can exhibit either positive or negative drift.

In particular, rather than speci�c parameter choices, we are interested in the stability
classi�cation of parameter sets. The distinguishing features are: (i) that the methodology
can be easily used for a relatively broad class of systems, and (ii) that the technique is
based on Monte Carlo simulation. Clearly, it is straightforward to develop a simulation-
based method that can speculatively test stability for a single parameter setting. It is
nevertheless far from obvious how an algorithm should be set up that can identify whether
a system is unstable for any of the parameter values within a given set.

This chapter resolves this issue by proposing a simulated annealing [87] based algo-
rithm that systematically searches the parameter set, and determines whether it contains
a subset of positive measure consisting only of unstable parameter values. Instead of
having to perform a series of simulations to answer the stability identi�cation question,
our algorithm performs a single simulation run of a process that encompasses both the
queueing network and the parameter set, which is provably capable of �nding positive
measurable subsets of unstable parameters. That is, the output of our algorithm is a

4.1. Introduction 69

statistical statement that provides explicit asymptotic performance guarantees. We view
our work as a substantive pioneering study on the simulation based computation of the
stability region of Markov chains.

The framework we propose has the major advantages over existing ones of being
broadly applicable and relying only on mild modelling assumptions. Our method prov-
ably provides the correct outcome if the Markov chain has bounded increments. Another
signi�cant advantage of the approach is that the annealing algorithm can essentially be
performed separately from the simulation of the queueing network; as a consequence,
the program can be organized with an inner loop (simulating the queueing network with
given parameter values using a rather complex simulator) and an outer loop (simulating
the annealing step). It thus enables us to computationally determine the stability re-
gion for (i) relatively straightforward models with non standard features for which this
has not been identi�ed in closed form, but also for (ii) larger, realistic models capturing
application-speci�c details.

We now proceed by providing an informal description of the setting we consider as
well as our algorithm. The key object in this chapter is the collection of Markov chains(

(X
(λ)
k)k≥0 : λ ∈ L

)
,

each of them evolving on the state space X , where L ⊂ RI is a compact set of parameter
values. For instance, λ ∈ L could parametrize the arrival rates of a queueing network
consisting of I queues. Our algorithm detects if there is a subset L ⊂ L of positive
measure for which the Markov chains (X(λ) : λ ∈ L) are unstable. Importantly, for
reasons that will become clear, we use a de�nition of `stability' that di�ers slightly from
those in common use. We essentially de�ne stability of an individual chain through a
Lyapunov drift condition imposed on a function f . For example, f(x) could give the total
number of jobs in the queueing network when it is in state x. Informally speaking, if for
f the process f(X(λ)) has negative drift above some �nite threshold, then we call X(λ)

f -stable. Alternatively, if f(X(λ)) has positive drift above some �nite threshold, then we
call X(λ) f -unstable. If there exists a L ⊂ L of positive Lebesgue measure such that X(λ)

is f -unstable for all λ ∈ L, then we call L f -unstable, and otherwise we call L stable.

The main idea behind the algorithm is that it generates a discrete time process with
state space (X , L). Given an initial state (x, λ), a new parameter proposal γ is chosen
uniformly from L. The Markov chain X(γ) then evolves for τ(x) time units starting from
initial state x. In our implementation τ(x) is chosen to be proportional to f(x). Denoting
X

(γ)
τ(x) =: y, the next state of the bivariate process is subsequently chosen by comparing

the proposed state (y, γ) with the current state (x, λ) according to the Metropolis rule:

(x′, λ′) =

{
(y, γ) with probability exp(η [f(y)− f(x)]−),

(x, λ) otherwise.
(4.1)

Here [z]− := min{0, z} and η is a positive tuning parameter for the algorithm.

The above iteration is motivated by the simulated annealing algorithm initially pro-
posed by Kirkpatrick, Gelatt, and Vecchi [87]. The main advantage of this type of update
is the relative generality of optimization problems that it can provably handle, while still
being superior to exhaustive search methods. A key distinction between our method and
the typical implementation of simulated annealing is that our cooling schedule is achieved
using a combination of the �xed parameter η and the parameter τ(x), that varies with

70 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

the state of the Markov chain.
In addition to the global search algorithm just described, we will also study a local

search version. This version is di�erent in two respects. Firstly, the new parameter
proposal γ is sampled uniformly from the neighborhood of the current parameter, a set
we denote by Bλ. Secondly, we allow X(λ) and X(γ) to evolve for τ(x) time units starting
from initial state x, let X(λ)

τ(x) := y′ and then apply the above Metropolis rule with x

replaced by y′. Our key theorems apply to both versions of the algorithm and we explore
di�erences in performance of the two methods through examples.

After having pointed out how the algorithm works, we now provide results that sepa-
rate its sample paths into either the stable or unstable regimes. Let Sk = (Yk, Λk) be the
state of the bivariate process achieved after k iterations of the above rule (4.1) and let Tk
be the total amount of time that the algorithm has run for by the kth iteration. The �rst
main theoretical contribution of this chapter, later stated formally in Theorem 6, shows
under mild conditions on X, that if there does not exist a subset of unstable parameters
L ⊂ L with positive Lebesgue measure, then almost surely

lim
k→∞

f(Yk)

Tk
= 0 . (4.2)

Importantly, the second main theoretical contribution of this chapter, later stated formally
in Theorem 7, shows that there exists a true `dichotomy' since if there does exist an
unstable set of parameters L ⊂ L with positive Lebesgue measure, then the process
(Yk : k ∈ N0) diverges, in the sense that, almost surely

lim inf
k→∞

f(Yk)

Tk
> 0 . (4.3)

The bound (4.3) relies on a martingale argument in combination with an application
of the Azuma�Hoe�ding inequality. The bound (4.2) is proven by a coupling argument:
as it turns out, in the stable situation the process f(Y) can be majorized by a Markov
chain (Wk : k ∈ N0) that has an asymptotic drift of zero. An advantage of the coupling
approach used to prove (4.2) is that the Markov process W is easily simulated, and can
therefore be used to provide probabilistic bounds on the likelihood of instability. We use
this approach to perform rigorous statistical tests for instability of the underlying set
L. There are many potential approaches to the adaptation of our theoretical results to
a practical test for instability. The approach we suggest is to compare f(Yk) with the
quantiles of Wk. Speci�cally, we let the process f(Y) evolve according to the rule given
in (4.1) until the total number of steps in X taken between steps of Y exceeds some
predetermined level k∗, at which point we compare f(Yk) with the 1− α quantile of Wk,
with α being the desired con�dence level. If f(Yk) exceeds this quantile then we obtain a
strong rigorous statistical statement of instability, whereas otherwise we fail to reject the
`null hypothesis' of stability.

We provide �ve example applications of our algorithm. We apply it to a system
consisting of a set of parallel queues studied by Tassiulas and Ephremides in [88], a
tandem queueing system, the celebrated Rybko�Stolyar network [17], a network of input
queued switches studied by Andrews and Zhang in [89], and a broken diamond random
access network (RAN) recently studied by Ghaderi et al. in [90].

Since the stability region is well known for the parallel and tandem systems, these
are ideal examples on which to verify that the algorithm performs as desired. We use

4.2. Framework 71

the tandem system to show that although our results are in a discrete time setting, we
are still able to e�ectively study continuous time systems using a jump chain associated
with the process. Additionally, this network also highlights that we are able to test
multidimensional parameter sets for instability, and suggests that we are able to relax the
Markov assumption. The Rybko�Stolyar network is a popular example of a system with
oscillating queue sizes. Not only does our analysis con�rm existing theoretical results
that give su�cient conditions for stability of this system, it also provides a statistically
rigorous statement that these conditions are also necessary. The network of input queued
switches allows us to show that our algorithm provides interesting results for systems
with high dimensional state spaces and complex dynamics. In addition, we are able to
use our methodology to show that this is an example of a system where the longest
queue �rst policy is not maximally stable. Our �nal example, the RAN of Ghaderi et al.,
is currently a hot topic of research in the applied probability community. This system
exhibits oscillatory queue size sample path behavior reminiscent of the Rybko�Stolyar
network, but in a higher dimensional setting. We are able to expand on the theoretical
results of [90] by providing more speci�c (statistical) information about which parameter
sets are unstable. Throughout this section results are given in terms of both the global
and local versions of the algorithm. For some of the models (parallel, tandem, Rybko�
Stolyar), the local algorithm appears to perform better, while for others (switches, RAN)
the global algorithm appears to be superior.

The remainder of this chapter is structured as follows. In Section 4.2 we give a for-
mal description of our framework and the assumptions imposed. Section 4.3 presents the
algorithm and states our main results, i.e., Theorem 7 and Theorem 6. In Section 4.4
detailed proofs are given (of our main results, propositions, and lemmas). We then pro-
vide a range of case studies in Section 4.5 that demonstrate the algorithm's potential.
Section 4.7 presents concluding remarks as well as an outlook on future research.

4.2 Framework

In this section we present the set-up considered in the chapter. The object of study is the
irreducible Markov chain X(λ) that is parametrized by λ ∈ L; these parameters can, for
example, be thought of as the arrival or service rates in a queueing network. It is assumed
throughout that L is a compact subset of RI0, for some I ∈ N, with �nite positive Lebesgue
measure (which is denoted |L|). The Markov chain, which may represent the evolution of
the population of a queueing network, attains values in X := NJ0 := {0, 1, . . . }J , for some
J ∈ N.

As pointed out in the introduction, the main goal of this chapter is to devise a pro-
cedure that identi�es if a parameter set contains any unstable parameters. Put more
precisely, the algorithm veri�es whether or not there is a subset L of L such that for all
λ ∈ L the associated Markov chain is unstable.

Further, for each λ ∈ L, we let Bλ be a neighborhood of λ. As is commonly assumed
for local search algorithms, we assume that λ ∈ Bλ and for any λ1, λn ∈ L there is a
sequence of neighbourhoods with λk+1 ∈ Bk for k = 1, ..., n− 1.

We will work extensively with a Lyapunov function that maps the state of the Markov
chain to a non-negative real number, that is a continuous, positive de�nite function f :
X → [0,∞) such that f(x) > 0 for all x 6= 0, and has continuous �rst-order partial
derivates at every point of X . For queueing applications, f usually has strictly positive
�rst-order partial derivates. For example, f(x) could represent the sum of the queue sizes

72 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

within a network (that is, the total network population). We assume that f is unbounded
in the sense that

lim inf
||x||→∞

f(x) =∞ .

It is assumed throughout that for all λ the process f(X(λ)) has bounded increments,
implying there exists a constant φf > 0, independent of x, such that∣∣∣f(X

(λ)
k+1)− f(X

(λ)
k)

∣∣∣ ≤ φf . (4.4)

We now provide the formal de�nitions of stability and instability, as used in this
chapter.

De�nition 15. Given f , we say that the set of parameters L is f -stable if there exists
δ > 0, σ > 0, and κ > 0 such that

E
[
f(X

(λ)
k)− f(X

(λ)
0)

∣∣∣ X(λ)
0 = x

]
≤ −δ σ (4.5)

for all x such that |x| ≥ κ, for all λ ∈ L, and all k ≥ σ.
Similarly, the set of parameters L is f -unstable if there exists a set L ⊂ L of positive

measure, δ > 0, σ > 0, and κ > 0 such that

E
[
f(X

(λ)
k)− f(X

(λ)
0)

∣∣∣ X(λ)
0 = x

]
≥ δ σ (4.6)

for all x such that |x| ≥ κ, for all λ ∈ L, and all k ≥ σ.

For a given value of λ, the conditions (4.5) and (4.6) are Lyapunov conditions for which
one can obtain positive recurrence or transience of the Markov chain X(λ), respectively
(see for instance [91]). We remark that a countable state space Markov chain is positive
recurrent if and only if there exists a Lyapunov function f for which it is f -stable, see
Meyn and Tweedie [92, Theorem 11.0.1]. In our de�nition of f -stable we consider a set
of Markov chains for which the same choice of f positive recurrence holds. In this sense,
the de�nitions of `stable' and `unstable' then ask whether or not the Markov chains X(λ)

are positive recurrent for parameters λ in L. For our simulations we use the L1 norm, i.e.
the sum of queue sizes, though of course other functions might be considered.

We further remark that if a �uid limit, f(X
(λ)

), exists for each (rescaled) process,f(X
(λ)
bktc)

k
: t ≥ 0

 , λ ∈ L ,

then the above conditions (4.5) and (4.6) imply, respectively, that

df(X
(λ)

(t))

dt
≤ −δ and

df(X
(λ)

(t))

dt
≥ δ

for X
(λ)

(t) > 0. In other words, (4.5) and (4.6) respectively imply �uid stability and
�uid instability (see for instance [79]). In general, �uid stability and instability are not
equivalent to the positive recurrence and transience of an underlying Markov process.
Nevertheless, the Lyapunov analysis of �uid models remains one of the most widely de-

4.3. Implementation and main results 73

ployed and established devices used to determine the positive recurrence and transience
of Markov processes. Similarly, our work provides a broadly applicable technique that
may be used to determine the positive recurrence and transience of families of Markov
processes.

Now that we have introduced our framework, the next section describes our algorithm,
as well as the main results upon which the algorithm is based.

4.3 Implementation and main results

In this section we explicitly give our algorithm and provide a detailed discussion of the
choices underlying it. We then give in Theorem 6 and Theorem 7 our main theoretical
contribution. We follow this up with a suggested method of using our results to implement
actual tests for instability.

4.3.1 Algorithm

We now describe our algorithm for identifying whether a parameter set is unstable. Our
approach is based on the principle of searching the relevant parameter set for a parameter
choice that maximizes the drift of the Markov process under consideration. As such,
well known optimization algorithms provide an ideal source of inspiration for potential
methods. As previously mentioned, the approach taken in this chapter is based on the
well known simulated annealing optimization algorithm. While many other optimization
techniques have found acceptance through testing against well known `hard' problems,
the simulated annealing algorithm has shown itself to be amenable to rigorous results on
performance guarantees.

In this section we provide a detailed description of our algorithm, and through the use
of two theorems provide guarantees on its asymptotic performance. A key advantage of
this strong theoretical grounding is that the machinery used to provide these theoretical
guarantees also allows us to develop a hypothesis test that outputs a statistical statement
of whether or not a Markov chain is stable given a particular parameter set. In this section
we also include an illustration of the algorithm and its output in the context of a single
server discrete time queueing system. In later sections we demonstrate the algorithm's
potential through a series of experiments concerning more complex systems.

We assume that τ(x) = c f(x) + d, where c, d ∈ (0,∞) are chosen by the algorithm's
user. Note that this implies τ(x) → ∞ as |x| → ∞ and that τ has bounded increments.
Finally, let Tk give the time that our chain has been running for at the k-th step, that is,

Tk =

k−1∑
i=0

τ(Yi) .

We now have all of the machinery needed to give both versions of our algorithm.

Algorithm 16. Global search algorithm:
Initialize: Set k = 1, T0 = 0, choose Y0 from X, and Λ0 from L.

(i) For x = Yk−1 and τ = τ(Yk−1), set Tk = Tk−1+τ and sample γ ∼ Uniform(L).

(ii) Sample y = X
(γ)
τ conditional on X

(γ)
0 = x.

74 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

(iii) For λ = Λk−1, set

(Yk ,Λk) =

{
(y, γ) with probability eη [f(y)−f(x)]− ,

(x, λ) otherwise.
(4.7)

(iv) If stopping condition is met, then stop, else set k = k+1 and return

to (i).

As outlined in the introduction, each step of the global search algorithm compares
x, as sampled in the previous step, with a new value y, sampled using a uniformly at
random selected parameter γ from L with runtime τ(x) and initial state x. The state is
then updated according to the Metropolis rule (4.7).

Recalling from Section 4.2 that Bλ is a neighbourhood of λ in L, the local search
version operates as follows.

Algorithm 17. Local search algorithm:
Initialize: Set k = 1, T0 = 0, choose Y0 from X, and Λ0 from L.

(i) For x = Yk−1, λ = Λk−1 and τ = τ(Yk−1), set Tk = Tk−1 + τ and sample

γ ∼ Uniform(Bλ).

(ii) Sample x′ = X
(λ)
τ conditional on X

(λ)
0 = x.

(iii) Sample y = X
(γ)
τ conditional on X

(γ)
0 = x.

(iv) Set

(Yk ,Λk) =

{
(y, γ) with probability eη [f(y)−f(x′)]− ,

(x′, λ) otherwise.
(4.8)

(v) If stopping condition is met, then stop, else set k = k+1 and return

to (i).

The local search algorithm compares states (x′, λ) and (y, γ) where x′ is sampled by
running the current parameter λ for a further τ steps and (y, γ) is sampled by running
a neighbouring parameter γ ∈ Bλ for the same number of steps. These states are then
compared according to the Metropolis rule (4.8). We discuss choices for the stopping
condition further below.

As we will discuss in more detail, the relative performance of the global search and
local search di�ers depending on the model and setting to which they are applied. Under
general modelling assumptions both algorithms converge to a behaviour that only accepts
unstable parameters in L. The Global Search Algorithm proposes parameters uniformly
at random and thus asymptotically will only accept parameters uniformly at random
in the unstable set L. This is useful if one wants to identify the region of instability,
in addition to determining if instability occurs. The Local Search Algorithm proposes
two neighbouring parameters and compares them simultaneously. In this way the Local
Search Algorithm applies a hill-climbing heuristic. In this sense it is more aggressive in
approaching regions of instability, but will not identify the entire unstable region.

When analyzing Algorithm 16, we assume that L is a general measurable set and that
L is a set with positive Lebesgue measure, while for the local search Algorithm 17 we
place some restrictions. We assume

4.3. Implementation and main results 75

Assumption 18. When analyzing the local search algorithm we assume that L is a �nite
countable set where for each L′ ⊂ L either L′ is unstable or L′ is stable, according to
De�nition 15. Further, we assume that there exists a state x0 where

P(X
(λ)
1 = x0 |X(λ)

0 = x0) > 0 . (4.9)

In a queueing setting x0 may, for example, correspond to a state where all queues are
idle.

An important feature of our work is that we do not place structural conditions on L
such as convexity or monotonicity. Since examples of Markov processes violating these
conditions frequently occur in both theory and practice, by avoiding such conditions our
work is widely applicable. Another key feature is that we do not assume knowledge of
the process generating each sample path is available, we only require samples of the state
description in response to parameter choices. This further extends the set of models that
may be analysed using our method, since practical simulators (although Markovian) are
often not generated from a simple closed form Markovian descriptor (transition matrix
or in�nitesimal generator), but rather come in the form of a `black box' that provides
outputs in response to parameter inputs.

Note that we have not provided an explicit stopping condition for the algorithm yet.
Since our results are asymptotic in the number of steps k, it may be sensible to run the
algorithm until some large k, chosen based on CPU time limitations. An alternative may
be to dictate a particular total budget of time that the algorithm may evolve in X . To
do this, choose a k∗ and run the algorithm until Tk > k∗. In either case it may not be
obvious whether the sample path belongs to the stable or unstable regimes, an issue that
we address with a test for instability in Section 4.3.3.

We now brie�y address some of the choices we made in the design of the algorithm.
Firstly, note that the τ function we introduced has replaced the cooling schedule from the
traditional simulated annealing algorithm. The functional form of τ ensures that when Yk
is large the subsequent Λk+1 proposal is given an increased opportunity to demonstrate
that it has higher drift. Since a large Yk hints that an unstable parameter choice has been
recently chosen, this helps to ensure that CPU budget is expended comparing parameter
choices which appear to be unstable.

The conditioning in step (ii) of the algorithm on X(γ)
0 = x, rather than starting each

new sample from X
(γ)
0 equal to zero, is intentionally designed to allow the system to build

up to a size where instability properties become evident. That is, as per De�nition 4.6, the
drift properties we are seeking only become evident after |x| > κ has occurred. Forcing the
system to reach |x| > κ in a single X(γ)

τ(x) sample may result in the algorithm ine�ciently
repeating `burn in' time.

4.3.2 Main results

Our main theoretical contributions are Theorem 7 and Theorem 6 below. These demon-
strate that the stability of a set L can be summarised in terms of the asymptotic sample
path behaviour of the process f(Y)/T . In essence the stability of a parametrised family
of Markov processes can be summarized by the stability of a single Markov process, as
generated by Algorithm 16 or Algorithm 17.

The main results of this chapter are as follows:

76 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

Theorem 6. If the set L is stable then, almost surely,

lim
k→∞

f(Yk)

Tk
= 0 . (4.10)

Theorem 6 shows that when L is stable, the sample path of f(Y)/T converges to 0.

Theorem 7. If the set L is unstable then, almost surely,

lim inf
k→∞

f(Yk)

Tk
> 0 . (4.11)

Theorem 7 shows that when L is unstable, the sample path of f(Y)/T eventually
never returns to 0. In practical use it is f(Yk)/Tk, for some large k, that is observed,
rather than its limiting value. It is therefore not possible to directly apply the theorems.
Instead, when f(Y)/T appears to converge to 0, the contrapositive of Theorem 7 provides
evidence that the parameter set is not unstable. Conversely, when f(Y)/T appears to
diverge, converge to a positive constant, or �uctuate within a set that does not contain 0,
the contrapositive of Theorem 6 provides evidence that the parameter set is not stable.

We now include a short example to illustrate these theorems. Consider a simple
discrete time queueing system where an arrival occurs at the beginning of each time slot
with probability p ∈ [0, 1], and then subsequently, if the queue is non-empty, a service
occurs with probability 0.5. Clearly, so long as the queue is non-empty the expected
change in queue size between time periods is p − 0.5. Hence, for p < 0.5 the system
is L1-stable with κ = σ = 1 and δ = 0.5 − p. Figure 4.1 illustrates Theorem 7 and
Theorem 6 using the sample path behaviour of f(Y)/T for this simple system. We have
taken η = 1 and Bλ to be the intersection of a ball of radius 0.01 around λ with L. The
sample path corresponding to p sampled from L = [0, 0.4] appears to converge towards 0,
providing evidence that this set is not unstable. Similarly, the sample path corresponding
to p sampled from L = [0, 0.6] appears to remain constant at approximately 10−2 in the
global case and appears to diverge in the local case, providing evidence that this set is
not stable.

We remark that the behaviour of the unstable sample path substantially di�ers between
the global and local versions of the algorithm. In the global case the unstable sample
path quickly separates from the stable sample path and appears to tend towards some
constant value. For the local algorithm, however, the stable and unstable sample paths
appear highly similar until suddenly the unstable sample path rapidly increases. Since
the time that this divergence occurs is random and likely to depend strongly on the initial
condition, this suggests that if n is not large enough, the local algorithm may perform
very poorly, however for n large it may perform vastly better.

It is not necessarily clear in �nite time if a sample path of f(Y)/T belongs to the
regime of Theorem 6 or Theorem 7. In the next subsection we address this issue by
presenting a test for instability.

4.3.3 A test for instability

We now provide a method to test, statistically, whether or not a parameter set is unstable.
Here one could consider a null-hypothesis which states that the parameter set is stable
for some given δ, cf. (4.5). Given this and the simulated model, we can construct a closed
form family of random variables Z(w), w ≥ 0 (given by Lemma 21 in Section 4.4.1) such

4.3. Implementation and main results 77

0 1,000 2,000 3,000
10−4

10−3

10−2

10−1

n

f
(Y

n
)/
T
n

Global

0 1,000 2,000 3,000
10−4

10−3

10−2

10−1

n

f
(Y

n
)/
T
n

Local

L = [0, 0.6]

L
=

[0, 0.4]

L
=

[0
,
0
.6

]

L
=

[0, 0.4]

Figure 4.1: Comparison of f(Y)/T sample paths for stable (L = [0, 0.4]) and unstable
(L = [0, 0.6]) parameter sets when the global and local versions of the algorithm are
applied to a simple queue.

that Z(w) stochastically majorises the increments of f(Yk). With this choice of Z(w), we
can then de�ne a Markov chain (Wk : k ∈ N0) according to the recursion

Wk = Wk−1 + Z(Wk−1) . (4.12)

The following proposition will be proven to show that there is a coupling where the Markov
chain (Wk : k ∈ N0) stochastically dominates (f(Yk) : k ∈ N0).

Proposition 19. For stable L, when f(Y0) ≤ W0, there exists a coupling between (Yk :
k ∈ N0) and (Wk : k ∈ N0) such that

f(Yk) ≤Wk, for all k.

Since Theorem 7 says that f(Y) will diverge in the unstable case, we suggest comparing
f(Yk), as outputted by Algorithm 16, with the quantiles of Wk. In particular, let q(α)

k be

such that P(Wk < q
(α)
k) = 1 − α. Note that, given a problem instance chosen according

to De�nition 15 and (4.4) (that is, particular values of φf , δ, σ, and κ), the quantiles

of q(α)
k can be estimated quickly and easily through Monte Carlo simulations of the W

process. If f(Yk) > q
(α)
k then we suggest concluding that the parameter set is f -unstable

for that problem instance. Otherwise we suggest that there is not enough evidence to
make a conclusion either way.

To illustrate this approach we return to the simple example introduced in the previous
section. In Figure 4.2 estimated q(0.05) curves with δ = 0.05 and δ = 0.01, τ(x) = 0.5x+1,
and σ = κ = Y0 = 1 are compared with estimated mean curves for the f(Y) process with
L = [0, `] for ` = 0.6, 0.55, 0.5, 0.45, and 0.4. As expected the q(0.05) curves bound the
mean curves of f(Y) for ` < 0.5, while for ` > 0.5 the mean curves of f(Y) appear to
eventually exceed the q(0.05) curve. With reference to De�nition 15, δ is the downward
drift that a process must exhibit in order to be stable. As can be seen here, it is to be
expected that q(0.05) curves generated using a particular δ value bound those generated
using higher values of δ. Since we test for a stabilizing drift up to δ, it is desirable to use
a δ which is as low as possible. In Section 4.5 we investigate further the trade-o� between

78 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

simulation run-time and δ that users of our algorithm must keep in mind. Note that the
global and local q(0.05) curves are nearly indistinguishable from each other here.

0 1,000 2,000 3,000

10−1

101

103

105

n

E[
f
(Y

n
)]
,
q
(0

.0
5
)

n

Local

0 1,000 2,000 3,000

10−1

101

103

105

n

E[
f
(Y

n
)]
,
q
(0

.0
5
)

n

Global

L = [0, 0.4]

L = [0, 0.45]

L = [0, 0.5]L = [0, 0.55
]

L =
[0
,
0.
6]

δ = 0.01

δ = 0.05

L = [0, 0.4]

L = [0, 0.45]

L = [0, 0.5]

L
=

[0
,
0
.5

5
]

L
=

[0
,
0
.6

]

δ = 0.01

δ = 0.05

Figure 4.2: Estimated mean curves of f(Y) when L = [0, 0.4], [0, 0.45], [0, 0.5], [0, 0.55], or
[0, 0.6] for a simple queue compared to estimated q(0.05) curves with δ = 0.01 or δ = 0.05.

In some instances, obtaining long sample paths of f(Y) may be a computationally
intensive task. We now describe an approach to managing the user's simulation budget,
but various other approaches could be taken. In order to achieve a signi�cance level of at
least α, we propose choosing a simulation budget k∗, to take the �rst sample point f(Yk)

such that Tk+1 > k∗ and to then compare this f(Yk) with an estimate of q(α)
k . If f(Yk)

exceeds q(α)
k then we suggest rejecting the `null hypothesis' of stability, and otherwise we

suggest concluding that there is not enough evidence to make a conclusion. This is the
approach that we take in Section 4.5. Note that this does not involve comparing the `test
statistic' f(Yk) with its distribution, but rather we compare it with a distribution which
is stochastically dominant. Assuming that the 1−α quantile estimate for Wk is accurate,
asymptotically in k∗ the signi�cance level will in fact tend to 0 for all α > 0, and never
exceed α.

We summarize the above discussion in Algorithm 20, below. Note that this algorithm
is just one of many potential extensions of our basic Algorithm 16, for which we give
speci�c theoretical results, and an input to this algorithm is an appropriate (q(α) : k ∈ N0)
estimate.

Algorithm 20. Stability test algorithm:
Initialize: Set k = 1, T0 = 0, choose Y0 from X, and Λ0 from L.

(i) For x = Yk−1 and τ = τ(Yk−1), set Tk = Tk−1+τ and sample γ ∼ Uniform(L).

(ii) Sample y = X
(γ)
τ conditional on X

(γ)
0 = x.

(iii) For λ = Λk−1, set

(Yk ,Λk) =

{
(y, γ) with probability eη [f(y)−f(x)]− ,

(x, λ) otherwise.
(4.13)

(iv) If Tk + τ(Yk) > k∗, then proceed to (v), else set k = k + 1 and return

to (i).

4.4. Proofs 79

(v) If f(Yk) > q
(α)
k , then conclude L is f-unstable.

In Section 4.4 we prove the results presented above, and then in the Section 4.5 we
will demonstrate the algorithm's potential on some more complex systems.

4.4 Proofs

We �rst prove Theorem 6 in Section 4.4.1, which applies to the stable regime, in the
context of the global search algorithm and provide a remark on the minor modi�cations to
this proof that would be needed to show the local search case. We then prove Theorem 7,
which applies to the unstable case, for the global search and local search algorithms in
Section 4.4.2 and Section 4.4.3 respectively.

4.4.1 Stable parameter set

In this subsection we prove Theorem 6. In what follows, we �rst give a formal de�nition of
the random variables Z(w). Then, to prove Theorem 6, we require Proposition 19, given
in Section 4.3, and Proposition 22, given below. The �rst of these propositions shows the
existence of a process that majorises any Y process generated from a stable parameter set.
The second proposition then shows that this majorising process has an asymptotic drift
of zero, which leads to the result of the theorem. In order to obtain Proposition 19 we
require Lemma 21, given next, and Lemma 27, which is a simple technical lemma that can
be found in Section 4.6. Lemma 21 explicitly provides a level dependent random variable
that bounds the jumps of the f(Y) process and Lemma 27 gives a useful monotonicity
property for these jumps. Proposition 22 is proven by contradiction and depends on
Lemma 28 which states that the sequence of random variables de�ned in Lemma 21 are
square integrable and tend to an expectation of zero as the level diverges.

In this section all of the proofs are performed in the context of the global search al-
gorithm, however at the end of the section we remark on the minor modi�cation required
to adapt the proof to the local search algorithm context.

We develop a processW that stochastically majorises any f(Y) process generated from
a stable parameter set. Recall φf , δ and σ from De�nition 15. We de�ne the function
n such that n(w) is the smallest integer such that σ n(w) ≥ τ(x) when the underlying
process is in a state x = f−1(w). We bound the jumps of f(X(λ)), for a given stable λ.
The following lemma provides this bound.

Lemma 21. If λ is f -stable, then there exists random variables (Z(w) : w ≥ 0) and a
constant w∗ such that, for all x with f(x) ≥ w∗,

P
(
f(X

(λ)
τ(x))− f(x) ≥ z

∣∣∣X(λ)
0 = x

)
≤ P(Z(f(x)) ≥ z) ,

where, for σ, κ and δ as given in (4.5), Z(w) is a random variable with distribution

P(Z(w) ≥ z) =1 ∧
[

exp
(
− (z − α1(w))2

2α2(w)

)
+ n(w) exp

(
− (z − α3(w))2

2α4(w)

)]
, if z > 0,

1 , otherwise.

(4.14)

80 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

where

α1(w) = σφ− σn(w)δ , α2(w) = (φf + δ)2σ2n(w) ,

α3(w) = σφ− w + κ , α4(w) = φ2
f σ

2n(w) .

The proof of this lemma is straightforward, yet, somewhat technical; a proof is given
in Section 4.6. The form of the expression for P(Z(w) ≥ z) given above can be understood
as follows. By (4.5) the stable downward drift condition only applies when the chain has
run for at least σ steps, so we consider the process on steps of size σ and ensure that we
take enough of these steps, n(w), to exceed τ(x). The maximum is a result of the trivial
upper bound on probabilities, and the 1 + n(w) exponential terms correspond to a union
bound using an equivalent number of applications of the Azuma�Hoe�ding inequality.

The downward drift condition requires |x| > κ, and so we apply Azuma�Hoe�ding to
di�erent martingales depending on whether the sample path of interest enters the states
{x : |x| < κ} or not. The �rst exponential term corresponds to sample paths that never
enter |x| < κ, and so the martingale we use does not include κ and has steps which are
bounded by (φf +δ)σ. The remaining exponential terms correspond to sample paths that
hit the level κ. We associate with these sample paths a martingale which re�ects the fact
that for such sample paths there be must be an excursion from κ to z + f(x) that can be
stopped just before this excursion occurs. As such these remaining exponentials do not
rely on δ.

From Lemma 21 we can prove Proposition 19.

Proof of Proposition 19. The inequality in Lemma 21 bounds the upward movement of
the Markov process Xλ. For w0 = f(x0), we see that

P(f(Y1)− f(Y0) ≥ z
∣∣Y0 = x0) ≤ P(Z(w0) ≥ z), ∀z ≥ 0. (4.15)

Namely, if f(X
(λ)
τ(x0))−f(X

(λ)
0) > 0, then f(Y1)−f(Y0) = f(X

(λ)
τ(x0))−f(X

(λ)
0). Therefore

the bound (4.15) holds by Lemma 21 for z > 0. Further, for z ≤ 0, the right-hand side of
(4.15) is equal to 1, so the bound trivially holds.

Lemma 27, stated and proved in Section 4.6, assists with the coupling of W and Y by
providing a monotonicity property for the transitions of W . Speci�cally, for constants v,
w with w∗ ≤ v ≤ w, we have that

P(W1 ≥ z |W0 = v) ≤ P(W1 ≥ z |W0 = w) . (4.16)

Combining together (4.15) and (4.16), we have that

P(f(Y1) ≥ z |Y0 = x0) ≤ P(W1 ≥ z |W0 = w0) (4.17)

whenever f(x0) ≤ w0.
A direct consequence of this inequality is that there is a coupling of f(Yk) and Wk

where, provided f(Y0) ≤ W0, then f(Yk) ≤ Wk for all k. This short, but standard,
argument is presented in the next paragraph.

Let

FY,x0(z) = P(f(Y1) ≥ z |Y0 = x0) ,

FZ,w0(z) = P(W1 ≥ z |W0 = w0) ,

4.4. Proofs 81

and U be an independent uniform [0, 1] random variable. The distribution of F−1
Y,x0

(U)

and F−1
Z,w0

(U) are respectively versions of f(Y1) and W1 for initial values Y0 = x0 and

W0 = w0 (see e.g. [93, Section 3.12]). Thus we set f(Y1) = F−1
Y,x0

(U) and W1 = F−1
Z,w0

(U).
Notice that once f(Y1) is determined, we can extend the coupling to determine Y1. To

do this, we take an independent random variable with distribution

P(Y1 = y | f(Y1), Y0) .

Now, from inequality (4.17) it is clear that F−1
Y,x0

(u) ≤ F−1
Z,w0

(u) for all values of u. Thus
under this coupling

f(Y1) = F−1
Y,x0

(U) ≤ F−1
Z,w0

(U) = W1 .

Continuing inductively, we have f(Yk) ≤Wk for all k, as claimed.

We now analyze the chain Wk. As the following lemma states, we �nd that its asymp-
totic drift is zero, whenever the parameter set L is stable.

Proposition 22.

lim sup
k→∞

Wk

k
= 0 .

Proof. It is a straightforward calculation to show that Z(w) is L2 bounded in w and that
EZ(w) → 0 as w → ∞. This is shown in Lemma 28 in Section 4.6. We analyse the
martingale

Mk =

k∑
n=1

(
Z(Wn−1)− E

[
Z(Wn−1) |Wn−1

])
= Wk −W0 −

k∑
n=1

E
[
Z(Wn−1) |Wn−1

]
. (4.18)

Since Z(w) is L2 bounded, Mk is an L2 martingale (with unbounded variation). Further,
such L2 martingales obey the strong law of large numbers, that is

lim
k→∞

Mk

k
= 0 . (4.19)

For instance, see [93, Section 12.14] for a proof.
We therefore have

lim sup
k→∞

Wk

k
= lim sup

k→∞

(
W0 +Mk

k
+

1

k

k∑
n=1

E
[
Z(Wn−1) |Wn−1

])

≤ lim sup
k→∞

W0 +Mk

k
+ lim sup

k→∞

1

k

k∑
n=1

E
[
Z(Wn−1) |Wn−1

]
= lim sup

k→∞

1

k

k∑
n=1

E
[
Z(Wn−1) |Wn−1

]
, (4.20)

where the �rst equality holds due to (4.18) and the �nal equality holds due to (4.19).

82 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

We now note that the inequality (4.20) can only hold when limk→∞Wk/k = 0. To
see this, note that if lim supkWk/k were positive then Wk must diverge. However, as was
shown in Lemma 28, we also have that E

[
Z(Wn−1)

∣∣Wn−1

]
→ 0 as Wn−1 → ∞. Thus

the average of these terms must be zero, that is

0 = lim sup
k→∞

1

k

k∑
n=1

E
[
Z(Wn−1)

∣∣Wn−1

]
≥ lim sup

k→∞

Wk

k
> 0 ,

which is a contradiction. Thus, lim supk→∞Wk/k = 0, as required.

The proof of Theorem 6 is now an application of Proposition 19 and Proposition 22.

Proof of Theorem 6. For W0 = f(Y0) Proposition 19 provides

f(Yk) ≤Wk , for all k .

The time increment τ(x) is bounded below, so Tk ≥ γk for some positive constant γ.
Hence, Proposition 22 implies

lim sup
k→∞

f(Yk)

Tk
≤ lim sup

k→∞

Wk

γk
= 0 ,

as required.

We brie�y remark one way in which the above argument can be adapted to the local-
search case. Firstly, we note that local search (in the worse case) will choose the maximum
of two independent simulation runs. Given that both parameters γ and λ are stable and
given Lemma 21, we then have that the local search update can be bounded as follows

P(f(Y1) ≥ z | f(Y0) = x, λ, γ) ≤ P(
{
f(X(λ)

τ)− f(x) ≥ z
}
∪
{
f(X(λ)

τ)− f(x) ≥ z
}

)

≤ P(Z(f(x)) + Z ′(f(x)) ≥ 2z) .

In the second inequality above, we apply Lemma 21 to obtain two i.i.d. copies of Z(f(x)).
From this one can see that the result of the proof of Theorem 6 follows by replacing (4.12)
with

Wk = Wk−1 + Z(Wk−1) + Z ′(Wk−1)

for two iid versions of Z. This gives one straightforward way of adapting the proof of
Theorem 6. Other methods with tighter bounds are also possible.

4.4.2 Proof of Theorem 7 for the global search algorithm

In this subsection we prove Theorem 7 for the global search algorithm. The proof relies
on two lemmas, Lemma 23, and Lemma 24. In Lemma 23 we bound the drift of f(Y)
and show that f(Y) can be used to construct a submartingale. This follows from the fact
that unstable parameter choices signi�cantly increase the drift, while stable parameter
choices do not signi�cantly decrease it. In Lemma 24 we bound the moments of this
submartingale. Then, using standard martingale arguments we show that every time

4.4. Proofs 83

the submartingale exceeds some level, with positive probability it stays above this level
forever. Since f(Y) is an irreducible Markov chain our divergence result then follows.

In the following we use the notation [x]+ := max{x, 0} and ∆f(x, y) := f(y)− f(x).

Lemma 23. If L is unstable, then there exist constants κ ≥ 0 and a > 0 such that for all
x with |x| ≥ κ

E [f(Yk+1)− f(Yk) |Yk = x] ≥ a τ(Yk) > 0 . (4.21)

Proof. Aside from the simulation in X between Y samples, our algorithm consists of two
random steps: (i) the selection of Λk+1, and (ii) the random state update rule (4.7). Upon
conditioning on these two steps the expected change in f can be calculated as follows

E [∆(Yk, Yk+1) |Yk = x]

=
1

|L|

∫
L
E [∆f(Yk, Yk+1) |Yk = x,Λk+1 = µ] dµ

=
1

|L|

∫
L
E
[
∆f(X

(µ)
0 , X

(µ)
τ(x)) exp

(
−η
[
−∆f(X

(µ)
0 , X

(µ)
τ(x))

]
+

)]
dµ . (4.22)

Denote p := |L|/|L| ∈ (0, 1], where L is the set for which Xλ is unstable (cf. (4.6)).
Now split the above integral by distinguishing between: (i) µ ∈ L, and (ii) µ ∈ L \ L. It
is readily veri�ed that for all z ∈ R the function z 7→ z exp(−η [−z]+) satis�es

z exp(−η[−z]+) ≥ max
{
z,−(e η)−1

}
. (4.23)

The stated bound is trivial for z ≥ 0, and for z < 0 simply note that z exp(−η[−z]+) is
minimized at z = −η−1.

For µ ∈ L we use the lower bound of z in (4.23),

1

|L|

∫
L
E
[
∆f

(
X

(µ)
0 , X

(µ)
τ(x)

)
exp

(
−η
[
−∆f

(
X

(µ)
0 , X

(µ)
τ(x)

)]
+

)]
dµ

≥ 1

|L|

∫
L
E
[
∆f

(
X

(µ)
0 , X

(µ)
τ(x)

)]
dµ ≥ p δ τ(x) . (4.24)

In the second inequality above, we apply the assumption that our Markov chain is unstable
on L (cf. (4.6)).

For µ ∈ L \ L, we use the lower bound of −(eµ)−1 in (4.23). This yields

1

|L|

∫
L\L

E
[
∆f

(
X

(µ)
0 , X

(µ)
τ(x)

)
exp

(
−η
[
−∆f

(
X

(µ)
0 , X

(µ)
τ(x)

)]
+

)]
dµ

≥ − (1− p) (eµ)−1 . (4.25)

Combining Equation (4.22) with Inequalities (4.24) and (4.25) yields

E [∆f(Yk, Yk+1) |Yk = x] ≥ p δ τ(x)− (1− p) (eµ)−1 . (4.26)

Since τ(x) → ∞ as |x| → ∞. There exists κ > 0 such that p δ τ(x) − (1− p) (eµ)−1 ≥
p δτ(x)/2 for all |x| > κ. Letting a = p δ/2, we have the result.

Let kκ be the hitting time for f(Y) on the states {x : |x| ≤ κ}. An immediate

84 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

consequence of the above proof is that the process

Fk := f(Yk∧kκ)− a
(k∧kκ)−1∑

i=0

τ(Yi)

forms a submartingale. This in itself is not su�cient to prove f(Yk) diverges in the sense
of Theorem 7. However, this is possible when we bound the moments of Fk as follows. In
the following let Sk = (Yk, Λk).

Lemma 24. If L is unstable, then there exist an r > 0 such that for |Yk−1| ≥ κ

E
[

exp
(
(−r (Fk − Fk−1)

) ∣∣Sk−1

]
< 1 . (4.27)

Proof. The change in the process from Fk−1 to Fk is achieved by a process with bounded
increments. Upon applying the Azuma�Hoe�ding inequality, we have that

P
(
Fk − Fk−1 − E[Fk − Fk−1] ≤ −y

∣∣∣Sk−1

)
≤ exp

(
− 2 y2

τkφ2
f

)
. (4.28)

Now consider the sequence of inequalities:

E
[
exp

(
− r (Fk − Fk−1)

) ∣∣∣Sk−1

]
=

∫ ∞
0

P
(

exp(−r (Fk − Fk−1)) ≥ z
∣∣∣Sk−1

)
dz

=

∫ ∞
0

P
(
Fk − Fk−1 ≤ −

1

r
log z

∣∣∣Sk−1

)
dz

≤
∫ ∞

0

P
(
Fk − Fk−1 − E[Fk − Fk−1] ≤ −aτk −

1

r
log z

∣∣∣Sk−1

)
dz

≤
∫ ∞

exp(−raτk)

P
(
Fk − Fk−1 − E[Fk − Fk−1] ≤ −aτk −

1

r
log z

∣∣∣Sk−1

)
dz + e−raτk

≤
∫ ∞

exp(−r a τk)

exp
(
− 2

τk φ2
f

(a τk + r−1 log z)2
)
dz + exp(−r a τk) .

In the �rst inequality above, we apply the bound that E[Fk − Fk−1] ≥ a τk from Lemma
23. In the second inequality, for values of z such that −a τk − r−1 log z ≥ 0 we bound the
integrand from above by 1, which results in the exp(−r a τk) term appearing. In the �nal
inequality we apply (4.28).

We now show that the right hand side of the expression above is strictly less than 1
for a suitable choice of r, and τk suitably large:∫ ∞

exp(−r aτk)

e
− 2

τk φ
2
f

(a τk+r−1 log z)2

dz =
1

r

∫ ∞
0

e
− 2 y2

τk φ
2
f · er y · e−r a τkdy

=
1

r

∫ ∞
0

exp

(
− 2

τk φ2
f

(y − r τkφ2
f/4)2

)
· exp

(
r2 τk/4

)
· exp (−r a τk)dy

≤ r−1
√
τk φ2

f π/2 · exp(r2τk/4− r a τk) .

4.4. Proofs 85

The �nal inequality follows by integrating over R rather than R0 and by noting that the
integral of exp(−y2) over R is equal to

√
π.

Observe that there exists r > 0 such that r2/4− r a < 0. Thus for this choice of r, for
all τk suitably large, we have that, as desired,∫ ∞

exp(−r a τk)

exp
(
− 1

τk
(a τk + r−1 log z)2

)
dz + exp(−r a τk) < 1 .

We can now prove Theorem 7 using well known martingale arguments.

Proof of Theorem 7. We �rst apply standard stopping arguments to (4.27) to show that
if Y0 is such that |Y0| > κ, then there is positive probability that Fk will not go negative,
namely,

P
(

inf
k≥0

Fk ≥ 0
)
≥ 1− exp(−rK) > 0 , (4.29)

for some K > 0. We do so by investigating the probability of its complement.
Let T be the �rst time when Fk < 0 occurs for k ≥ 0, which is a stopping time. Using

Lemma 24, recalling that r > 0,

P
(

inf
k≥0

Fk < 0
)

= P(FT < 0)

= P
(
e−rFT > 1

)
≤ E exp(−rFT)

= E
[

lim inf
n→∞

exp(−rFT∧n)
]

≤ lim inf
n→∞

E
[

exp(−rFT∧n)
]

≤ lim inf
n→∞

E exp(−rF0) = E exp(−rF0) ≤ exp(−rK)

where K := miny:|y|>κ{f(y)} is a positive constant since f is positive and f(x) → ∞
as |x| → ∞. The �rst two equalities above apply our stopping time de�nition and an
exponential change of variable. The �rst inequality above applies Markov's inequality,
the second applies Fatou's lemma and the third is the optional stopping theorem (see e.g.
[93, Section 10.10]) applied to our supermartingale.

The next step is to show using the Strong Markov Property, that at every time ` when
|Y`| > κ holds, there is a positive probability that the process Fk remains positive for all
remaining time. Due to irreducibility |Yk| > κ occurs in�nitely often, and so eventually
it will be that Fk > 0 for all time. We now argue this point more formally. Let `0 be the
�rst time that |Yk| > κ holds. For n ≥ 1, let

F
(n)
k = f(Yk)− a

k−1∑
i=`n−1

τ(Yi) ,

which is the process F started from time `n−1. Let σn be the �rst time after `n−1 when
F

(n)
k < 0 holds, and let `n be the �rst time after σn that |Yk| > κ holds. Since our Markov

86 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

chain is irreducible it must be that if σn is �nite, then `n+1 is �nite. By this and (4.29)
we have

P(σn <∞|σn−1 <∞) = P(σn <∞| `n <∞) < e−rK .

Thus, upon noting that σn cannot possibly be �nite if σn−1 is not, we have

P(σn <∞) ≤ exp(−rK)P(σn−1 <∞) < . . . < exp(−nrK) .

Now, note that
∞∑
n=0

P(σn <∞) =

∞∑
n=0

exp(−nrK) <∞ ,

so by Borel�Cantelli (see e.g. [93, Section 2.7])

P(F
(n)
k < 0, in�nitely often) = 0 .

Thus, there exists a k′ such that for all k ≥ k′, we have that

f(Yk)− a
k−1∑
i=k′

τ(Yi) ≥ 0

which, after rearranging, implies

lim inf
k→∞

f(Yk)∑k−1
i=0 τ(Yi)

≥ lim inf
k→∞

f(Yk)∑k−1
i=k′ τ(Yi)

· lim inf
k→∞

∑k−1
i=k′ τ(Yi)∑k−1
i=0 τ(Yi)

≥ a ,

as required.

4.4.3 Proof of Theorem 7 for the local search algorithm

We now prove Theorem 7 under the premise that the local search algorithm, Algorithm
17, is applied. First, we consider the situation where the local search algorithm must
compare an unstable parameter λ with a stable parameter γ. The following lemma will
be used to show that the probability of the Metropolis rule, (4.8), selecting γ will be a
low probability event.

Lemma 25. For the events

A =
{
f
(
X

(λ)
τ(x)

)
− f

(
X

(λ)
0

)
≤ 3δ

4
f(X

(λ)
0)

}
and

B =
{
f
(
X

(γ)
τ(x)

)
− f

(
X

(γ)
0

)
≥ δ

2
f(X

(γ)
0)

}
,

with λ ∈ L and γ /∈ L there exists positive constants β1 and β2 such that

P(A |X(λ)
0 = x) ≤ β1e

−β2τ(x) , (4.30)

P(B |X(γ)
0 = x) ≤ β1e

−β2τ(x) . (4.31)

4.4. Proofs 87

Proof. The bound (4.30) is a consequence of the Azuma-Hoe�ding Inequality. In partic-
ular, {

f
(
X

(λ)
τ(x)

)
− f

(
X

(λ)
0

)
≤ 3δ

4
f(X

(λ)
0)

}
⊂
{
f
(
X

(λ)
τ∗
)
− f

(
X

(λ)
0

)
≤ 3δ

4
f(X

(λ)
0)

}
where τ∗ = min{t ≤ τ(x) : |X(λ)

t | ≤ κ} for suitably large values of |x|. Since λ is unstable,
f(X

(λ)
t∧τ∗) is a sub-martingale with bounded increments and drift δ. Thus we can directly

apply the Azuma-Hoe�ding Inequality to obtain (4.30).
The bound (4.31) is a direct consequence of Lemma 21. In particular, taking w = f(x)

and z = δ
2f(x), the terms in the exponential in statement (4.14) of Lemma 21 are such

that

(z − α1(w))2

2α2(w)
∼

[
(δ2c + 1)2

2(φ+ δ)2σ

]
τ(x) ,

(z − α3(w))2

2α4(w)
∼

[
(1 + δ

2)2

2c2φσ

]
τ(x) .

Further, n(f(x)) = O(τ(x)). This in turn implies that there are constants β1 and β2 such
that (4.31) holds.

We let (Y,Λ) = (x, λ) be the initial state of Algorithm 17, we let γ /∈ L be the
parameter selected in Step (i) of Algorithm 17, and we let (Y ′,Λ′) the state of Algorithm
17 after its �rst iteration. Given this notation, the following lemma, which is a consequence
of the above result, shows that with high probability Λ′ = λ and that over this step τ(x)
is increased by a positive fraction.

Lemma 26. There exists positive constants ε, β3, and β4 such that

P(τ(Y ′) ≥ τ(x)(1 + ε),Λ′ = λ) ≥ 1− β3e
−β4τ(x) .

Proof. Let A and B be the events speci�ed in Lemma 25, above. Given the event Ac, for
Λ′ = λ we have that f(Y ′) ≥ (1 + 3δ/4)f(x). Since f(x) = Θ(τ(x)), for an appropriate
choice of ε > 0 (dependent only on δ), we have that

τ(Y ′) ≥ (1 + ε) τ(x).

Now given this choice of ε the following equalities hold,

P(τ(Y ′) ≥ τ(x)(1 + ε), Λ′ = λ)

≥P(τ(Y ′) ≥ τ(x)(1 + ε), Λ′ = λ | Ac, Bc)P(Ac ∩Bc)

≥
(

1− e−
1
4 δf(x)

)(
1− 2β1e

−β2τ(x)
)

The second inequality follows from de�nition of the Metropolis rule, (4.8), and from
Lemma 25. From this it is clear there are appropriate constants β3 and β4, as required.

Proof of Theorem 7 for local-search algorithm. We see that under Assumption 18, the lo-
cal search algorithm is such that the process Λk will eventually visit a state in L. To see
this note that, from any state (Yk,Λk) = (x, λ) with λ /∈ Λ, by irreducibility and positive

88 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

recurrence of X(λ) and the fact λ ∈ Bλ, there is a positive probability of reaching state
(x0, λ). Further, by (4.9) there is a positive probability of reaching a state (x0, µ) for any
µ ∈ L. From that state, again by the irreducibility of X(µ), there is a positive probability
of reaching a state x′ with τ(x′) > τ for any speci�ed value of τ . Once such a state is
reached we now show that there is a positive probability of Λk remaining in Λ inde�nitely.

Let Ek be the event

Ek := {Λk ∈ L, τk ≥ τk−1 (1 + ε)} .

Then, by Lemma 26,

P
(⋂

k

Ek

)
≥ 1−

∑
k

P

(
Eck

∣∣∣ ⋂
k′<k

Ek′

)
≥ 1−

∑
k

2β1e
−β2τ0 (1+ε)k . (4.32)

Thus for suitably large initial values of τ0 we have that

P(Λk ∈ L, τk ≥ τk−1 (1 + ε) ∀ k) > 0 .

Hence, eventually it must occur that the algorithm evolves only according to unstable
parameter choices.

4.5 Examples

This section presents �ve example applications of the algorithm, where each example is
designed to highlight aspects of the algorithm's implementation and use. More speci�cally,
we subsequently consider a network of parallel queues, a tandem queueing system, the
Rybko�Stolyar network, a network of input queued switches, and a random access network
(RAN).

Before proceeding with the examples we brie�y provide some details on algorithm
parameter choices used in this section. The η parameter scales the e�ect of the di�erence
between outcomes sampled from consecutive draws from Λn samples. Taking η → ∞ is
akin to adopting a greedy hill climbing approach, while η → 0 is equivalent to moving at
random. Hence the choice of η allows for a trade o� between moving towards more unstable
parameter choices and becoming trapped in local (stable) optimizers. Throughout this
section we have chosen η = 1 as a balance between these two extremes. For the local
search algorithm, associated with each λ ∈ L is a neighbourhood Bλ from which the next
parameter candidate will be selected. Choosing these neighbourhoods to be large will
explore L more aggressively, while smaller neighbourhoods will increase the e�ect of local
gradient information. Throughout our illustrations we take Bλ to be a ball centred at λ
with radius ε = 0.01 that intersects with L. Finally, throughout the section we use U(A)
as an indicator variable for the algorithm declaring the set A unstable.

4.5.1 Parallel queues with randomly varying connectivity

For our �rst example we extend the illustrative example used in Section 4.3. Consider
a system where N parallel queues compete for the service of a single server. Time is
slotted, and in each time slot t ∈ N0 queue i ∈ {1, . . . , N} is connected to the server with
probability 0.8. Similarly, at the beginning of each time slot an arrival occurs at each
queue with probability p ∈ [0, 1], so that there are at most N arrivals to the system in any

4.5. Examples 89

particular time slot. After the arrivals have occurred and connectivity is determined, the
longest non-zero queue that is connected to the server is reduced by one with probability
0.8 � a policy called longest queue �rst (LQF). The system is therefore a discrete time
Markov chain X(p) taking values in NN0 . We illustrate this system in Figure 4.3.

p

p

p

0.8
0.8

0.8

0.8

Figure 4.3: A parallel queueing system with randomly varying connectivity.

The stability region for this irreducible Markov chain is known. In particular, from
Corollary 1 in [88] we have that for any p ≤ `∗, where

`∗ =
4

5

(
1− (1/5)N

N

)
,

the limiting distribution of X(p) exists, and otherwise does not.
Therefore any L ⊂ [0,∞) that shares an intersection with [`∗,∞) of positive measure,

is unstable under our De�nition 15. Taking N = 4 and L to be of the form [0, `),
we therefore have instability for approximately those instances when ` > 0.2, that is
`∗ ≈ 0.1997. Furthermore, Theorem 1 in [88] shows that the system is stable under
the LQF policy for the network's subcritical region � a property known as maximal
stability. This property is well known to hold for single-hop networks under LQF and its
generalization the Max Weight-α algorithm (see e.g. [94, 13]).

In Figure 4.4 we give the proportion of simulation runs out of 1000 where the parameter
set [0, 0.3] is declared unstable by the local and global algorithms as k∗ is increased. Recall
that k∗ is the total number of steps the algorithm is permitted to take in X before a value
of f(Yk) is compared to q(α)

k . Now, the greatest change in f occurs when there are no
services and all queues experience an arrival, so that φ = 4. We assume κ = 4 and σ = 1.
It can be seen that longer simulation runs are more likely to declare the system unstable,
with an apparent almost sure declaration of instability in the limit. In this case, the local
algorithm approaches this limit far more rapidly than the global algorithm.

0 0.2 0.4 0.6 0.8 1

·106

0

0.5

1

k∗

P̂(
U[

0
,0

.3
])

Local

Global

Figure 4.4: Parallel system L1-stability tests with α = 0.05 for p sampled from the set
L = [0, 0.3] for k∗ ∈ (0, 106] with τ(x) = 0.5|x| + 1, δ = 0.01, σ = 1, κ = 4, φ = 4 and
ε = 0.01.

90 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

Figure 4.5 explores the e�ect of the chosen δ on an unstable declaration for an unstable
parameter set. The �gure gives the proportion of simulation runs out of 100 where the
parameter set [0, 0.21] is declared unstable by the local and global algorithms. Recall that
the de�nition of stability we use compares the drift of the process under consideration
with a linear function that depends on δ. As discussed in Section 4.3, with reference to
Figure 4.2, if a parameter is unstable for a particular δ, then this implies instability for
all higher values of δ. This is because a W process parameterized by a particular δ will
stochastically dominate all W processes parametrised by higher choices of δ. Figure 4.5
demonstrates that this occurs for both the global and local search algorithms. Again we
see that the local algorithm appears to perform better � in this example it has detected
lower values of downward drift when k∗ = 105, 106.

0 0.1 0.2 0.3 0.4
0

0.5

1

δ

P̂(
U[

0
,0
.2
1
])

Global

0 0.1 0.2 0.3 0.4
0

0.5

1

δ

P̂(
U[

0
,0
.2
1
])

Local

Figure 4.5: Parallel system L1-stability tests for p sampled from the set L = [0, 0.21] for
δ ∈ [0.01, 0.4] with τ(x) = 0.5|x| + 1, σ = 1, κ = 4, ε = 0.01 and k∗ = 105 (dotted), 106

(dashed).

Figure 4.6 explores the e�ect of the chosen δ on an unstable declaration for a stable
parameter set. The �gure gives the proportion of simulation runs out of 100 where the
parameter set [0, 0.19] is declared unstable by the global algorithm. The algorithm rejects
the null hypothesis of stability once δ reaches approximately 0.28. This indicates that
f(Y105) exceeds the (estimated) 95-th percentile of W105 parametrised with δ = 0.3, but
is bounded by the 95-th percentile of a W105 parametrised by δ = 0.25. For L = [0, 0.19]
rejecting the null hypothesis of downward drift greater than 0.28 is not unexpected. Over
the range of δ considered the local algorithm did not make a declaration of instability;
hence the local algorithm nonetheless appears to perform better.

In Figure 4.7 we give the proportion of simulation runs out of 100 where the parameter
set [0, `] is declared unstable for a range of `. It can be seen that longer simulation runs
declare the system unstable for a larger proportion of the ` values that give an unstable
L. The �gure provides evidence that in the discrete time case the algorithm is performing
as it is intended to, in the next section we move to a continuous time example.

4.5.2 Tandem queues

Our next example is the tandem queueing system. We will contrast the results for a
Markov system consisting of two single server queues in tandem with a system that has
renewal arrivals and iid service times at both nodes (which is not Markov). In the former
system jobs arrive to a server according to a Poisson process with rate one, they are
then processed one at a time, �rst come �rst served (FCFS), with Exp(µ1) service times,

4.5. Examples 91

0 0.1 0.2 0.3 0.4
0

0.5

1

δ

P̂(
U[

0
,0
.1
9
])

Global

Figure 4.6: Parallel system L1-stability tests with α = 0.05 for p sampled from the set
L = [0, 0.19] for δ ∈ [0.01, 0.4] with τ(x) = 0.5|x| + 1, σ = 1, κ = 4, ε = 0.01 and
k∗ = 105.

0 0.2 0.4
0

0.5

1

`

P̂(
U[

0
,`
])

Local

0 0.2 0.4
0

0.5

1

`

P̂(
U[

0
,`
])

Global

Figure 4.7: Parallel system L1-stability tests with α = 0.05 for p sampled from sets of the
form L = [0, `] with τ(x) = 0.5|x| + 1, δ = 0.05, σ = 1, κ = 4, ε = 0.01 and k∗ = 105

(dotted), 106 (dashed), 107 (solid).

before being sent to a subsequent server where they are again processed one at a time,
FCFS, with service time Exp(µ2). It is well known that the output from the �rst server
to the second corresponds to a Poisson process with rate min{1, µ1}. Consequently, the
system is L1-stable for (µ−1

1 , µ−1
2) ∈ [0, 1]2, and L1-unstable otherwise. In the latter

system we assume the times between arrivals to the �rst server are Erlang distributed
with rate parameter 1/2 and shape parameter 2. Jobs are also served FCFS and must
pass through the �rst server before being sent to the second. In this case the service times
are Weibull distributed with shape parameter 2, so that they have distribution function
(1− exp(−(x/µ)k) for x ≥ 0, with k = 2 and scale parameters µ = µ−1

1 and µ = µ−1
2 for

the �rst and second server, respectively. Note that in both cases the mean time between
arrivals is 1, that the mean service times are µ−1

1 and µ−1
2 for the former case, and are

Γ(1.5)µ−1
1 ≈ 0.8862µ−1

1 and Γ(1.5)µ−1
2 ≈ 0.8862µ−1

2 in the latter case.
To apply our discrete time framework to these continuous time systems, we have used

the embedded process corresponding to the sequence of states recorded immediately after
each jump (which is Markovian for theM/M/1 system, and non Markovian for the system
with renewal arrivals and i.i.d. service times). In Figure 4.8 and Figure 4.9 we are testing
parameter sets of the form (µ−1

1 , µ−1
2) ∈ L = [0, `]2, and as such sets with ` > 1 are

L1-unstable in the Markov case and with approximately ` > 1.1284 = (0.8862)−1 in the

92 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

non Markov case. In both the global and local cases it is clear that the test converges to
an accurate declaration of instability over ` ∈ (0.5, 1.5) as k∗ → ∞. The �gures provide
evidence that it is possible to relax the discrete time and Markov assumptions we made
in the theoretical development of our algorithm.

0.6 0.8 1 1.2 1.4
0

0.5

1

`

P̂(
U[

0
,l
]2
)

Local

0.6 0.8 1 1.2 1.4
0

0.5

1

`

P̂(
U[

0
,l
]2
)

Global

Figure 4.8: Tandem Markovian system L1-stability tests with α = 0.05 for (µ−1
1 , µ−1

2)
sampled from sets of the form L = [0, `]2 with τ(x) = 0.5|x|+ 1, δ = 0.05, σ = 1, κ = 1,
ε = 0.01 and k∗ = 105 (dotted), 106 (dashed), 107 (solid).

0.6 0.8 1 1.2 1.4
0

0.5

1

`

P̂(
U[

0
,`
]2
)

Global

0.6 0.8 1 1.2 1.4
0

0.5

1

`

P̂(
U[

0
,`
]2
)

Local

Figure 4.9: Non-Markovian tandem system L1-stability tests with α = 0.05 for (µ−1
1 , µ−1

2)
sampled from sets of the form L = [0, `]2 with τ(x) = 0.5|x|+ 1, δ = 0.05, σ = 1, κ = 1,
ε = 0.01 and k∗ = 105 (dotted), 106 (dashed), 107 (solid).

Further, we are stretching the original modelling framework since there is no �xed σ
after which the systems exhibit unstable behaviour. The required number of steps before
an upward drift is expected to occur depends on the system state. Consequently, over
short time periods, unstable parameter choices may appear stable, e.g., in the Markov
system, when the second server has a very large queue but a parameter selection with
µ−1

1 > 1 and µ−1
2 < 2 − µ−1

1 is made. Nonetheless, asymptotically both systems are
expected to become in�nitely large due to the �rst queue being unstable, and through
the τ function our algorithm is able to maintain accurate prediction. Due to this, in
systems of this kind the choice of c in the τ function may have an important impact on
the algorithm's performance.

In Figure 4.10 we perform instability tests on [0, 1.2] for a range of c. For the global
algorithm the choice of c can have a substantial impact on performance, for k∗ = 106 a
high value of c is required to obtain a high level of accuracy. For the local algorithm,

4.5. Examples 93

however, the choice of c does not appear to have as much of an e�ect as the choice of k∗.
This suggests that if k∗ is limited by computational resources, then it is preferable to use
the global algorithm with a high c � particularly if the system is suspected of exhibiting
oscillatory behaviour.

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

c

P̂(
U[

0
,1

.2
]2
)

Global

0.2 0.4 0.6 0.8
0

0.5

1

c

P̂(
U[

0
,1

.2
]2
)

Local

Figure 4.10: Tandem Markovian system L1-stability tests with α = 0.05 for (µ−1
1 , µ−1

2)
sampled from L = [0, 1.2]2 with τ(x) = c|x| + 1, δ = 0.05, σ = 1, κ = 1, ε = 0.01,
k∗ = 105 (dotted), 106 (dashed), and c ∈ (0.1, 0.6).

4.5.3 Rybko�Stolyar queueing network

The Rybko�Stolyar queueing network, displayed in Figure 4.11, was introduced in [17]
as an example of a work-conserving queueing network that can be unstable for sub-
critical parameter choices. To the best of our knowledge, matching necessary and su�cient
conditions for instability are not known.

This queueing network consists of two stations, each with a single server, which we
call the left and right stations. All customers served at the left station require Exp(µl)
service time and all customers served at the right station require Exp(µr) service time.
There are two classes of customers. The �rst class enters the network according to a
Poisson process at rate λ where it is served at the left station before proceeding to the
right station to be served, and from here it departs the network. Jobs from the second
class also enter the network at rate λ, are served at the right station, proceed to be served
at the left station, and then depart from the network. Within each customer class the
customers are served on a FCFS basis. Between the customer classes, however, there is
priority: jobs being served at their second station (bold in Figure 4.11) have priority over
jobs being served at their �rst station.

In [17] it is shown that for λ equal to one and µr > 0, a su�cient condition for
instability is µl < 2. In Figure 4.12 we consider the situation where µl is sampled from
sets of the form (`, ` + 1) for ` ∈ (1, 3), with λ = 1 and µr = 4. Due to the result
from [17] we expect that ` ∈ (1, 2) will be returned as unstable by the algorithm. This
occurs for k∗ equal to 107. Interestingly, for ` > 2 we never reject the null hypothesis of
stability, suggesting that µl < 2 is also a necessary condition for instability with λ = 1
and µr > 0. In this case the local algorithm appears to outperform the global algorithm.
The estimates for the local algorithm do, however, exhibit a large amount of variance
(over the 100 sample paths used to generate the �gure).

94 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

λ

λ

µrµl

Figure 4.11: The Rybko�Stolyar network.

1 1.5 2 2.5 3
0

0.5

1

`

P̂(
U[

`,
`
+

1
])

Global

1 1.5 2 2.5 3
0

0.5

1

`
P̂(

U[
`,
`
+

1
])

Local

Figure 4.12: Rybko�Stolyar system L1-stability tests with α = 0.05 for µl sampled from
sets of the form L = [`, `+ 1] for k∗ = 105 (dotted), 106 (dashed), 107 (solid) with λ = 1,
µr = 4, τ(x) = 0.5|x|+ 1, δ = 0.05, φ = κ = σ = 1 and ε = 0.01.

4.5.4 A switch network

Our next example is a network of input-queued switches which was investigated by An-
drews and Zhang in [89]. This discrete time model provides an example where the LQF
policy is not maximally stable. In this simulation study, we are able to demonstrate
the use of our algorithm on a model which exhibits complex queueing dynamics on a 52
dimensional state space. Again, unlike the parallel queue or tandem models considered
earlier, the explicit form of the stability region of this model is unknown.

The model we are considering is illustrated in Figure 4.13. It has four main switches
with labels A, B, C, and D and four auxiliary switches with labels A′, B′, C ′, and D′.
Each of the main switches has ten external input queues to which a packet arrival occurs
instantaneously at the beginning of each time slot independently and with probability
r/30.

Packets are given a type according to the switch at which they �rst arrive, for example
packets starting at A are of type 1; packets are routed through the network according to
their type. After these arrivals the longest of the 12 queues at each main switch and of
the three queues at each auxiliary switch sends a single packet to the corresponding input
queue of another switch or are removed from the system (as designated by Figure 4.13).
Packets sent in a time slot arrive at their destination at the beginning of the next time
slot.

In Figure 4.14 we test for L1-instability in r on parameter sets of the form Ls = [0.5, `].
Due to the large size of the system we have chosen δ = 5. We set φ = 40, τ(x) = 0.5 |x|+1,
and κ = σ = 1. Although the stability region for this model is not yet known, this �gure
provides strong (statistical) evidence that the set [0, 0.95] is unstable. We have thus
demonstrated that our algorithm can be used to provide statistical evidence that the
LQF policy is not necessarily maximally stable in multi-hop settings. In this case the

4.5. Examples 95

C C ′

A′ A

D

D′

B′

B

1 2 4

21 4

3
4

2
1

11
3
4

2
1
3

3

1

2 4 3

342

2

4
3

Figure 4.13: A network of input queued switches.

global algorithm appears to perform much better, suggesting that k∗ = 107 is not great
enough for the local algorithm to start performing well.

0.6 0.8 1
0

0.5

1

`

P̂(
U[

0
.5
,`
])

Local

0.6 0.8 1
0

0.5

1

`

P̂(
U[

0
.5
,`
])

Global

Figure 4.14: Network of input queued switches L1-stability tests with α = 0.05 for r
sampled from sets of the form L = [0, `] or L = [0.5, `] for k∗ = 105 (dotted), 106

(dashed), 107 (solid), τ(x) = 0.5|x|+ 1, δ = 5, φ = 40, κ = σ = 1, and ε = 0.01.

It may be the case the ratio |L|/L has a substantial impact on performance in �nite
time. Figure 4.15 explores this relationship by testing for stability of [`, 0.95] over a
variety of (k∗, `) combinations. Intuitively, this ratio should have a greater impact on
performance of the local algorithm than the global algorithm. Instead, the �gure indicates
highly similar (poor) performance over the varying combinations of (k∗, `), with some
degradation of accuracy for very low k∗. While for the global algorithm �xing either k∗

or ` and then increasing the other leads to substantial increases in accuracy.

4.5.5 A broken diamond random access network

So far we have presented classical examples that facilitated the assessment of the algo-
rithm's performance. In our �nal example we address a contemporary area of research
initiated by [90], exploring the stability properties of a wireless network with a queue-based
random-access algorithm. We focus on a network consisting of nodes {1, 2, . . . , 6}, some
of which are connected by edges, as depicted in Figure 4.16 (where it is remarked that [90]

96 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

2 4

·106

0.2

0.4

0.6

k∗

`
Global

2 4

·106

0.2

0.4

0.6

k∗

`

Local

0.2

0.4

0.6

P̂(
U[

0
,0

.9
5
])

Figure 4.15: Network of input queued switches L1-stability tests for r sampled from sets
of the form L = [`, 0.95] for k∗ ∈ (0, 7 · 106], τ(x) = 0.5|x|+ 1, δ = 5, φ = 40, κ = σ = 1,
and ε = 0.01.

is set in a more general context). In our model we assume that nodes which are connected
by an edge interfere with each other, that is, they cannot transmit simultaneously.

1

2

3
4

5

6

Figure 4.16: A broken diamond random access network.

In this continuous time model, packets arrive to node i according to a Poisson process
with rate λi and take Exp(µi) time to transmit, so that the tra�c intensity at node i is
%i = λi/µi. Let U(t) ∈ {0, 1}6 be a vector of indicator variables representing which nodes
are active at time t and X(t) ∈ {0, 1, . . . }6 be a vector representing the number of packets
at each node at time t.

In order to fully describe the evolution of this process, we must specify how nodes
decide when to attempt transmission of packets. Whenever a node is not being interfered
with it will wait an Exp(νi) amount of back-o� period. At this point, it will then begin
transmitting with probability φi(Xi(t)), where φi(0) = 0, and otherwise it will begin
another back-o� period with the same distribution. After each successful transmission,
node i will release the medium and begin a back-o� period with probability ψi(Xi(t

−)),
with ψi(1) = 1 for all i, and otherwise begin another transmission.

It is easy to see that (X,U) is a Markov process evolving according to the rates given in
Table 4.1. Note that here ui = 0 indicates that none of the neighbours of i is transmitting.

Consider the network in Figure 4.16, and suppose that φi(x) ≡ 1, x > 0, and ψi(x) =

4.5. Examples 97

Table 4.1: Transition rates of the random access network network in Figure 4.16.

Transition Rate States

(x, u)→ (x+ ei, u) λi All
(x, u)→ (x, u+ ei) νi φi(xi) xi > 0, ui = 0, ui = 0
(x, u)→ (x− ei, u) µi (1− ψi(xi)) xi ≥ 1, ui = 1
(x, u)→ (x− ei, u− ei) µi ψi(xi) xi ≥ 1, ui = 1

o(x−γ), with γ > 1. Let

(%1, %2, %3, %4, %5, %6) = % (κ1, κ2, κ3, κ3 − α̃, κ6 − α̃, κ6),

with (κ1∨κ2)+κ3 +κ6 = 1, and 0 < α̃ < (κ3∧κ6). Then the main result of Ghaderi et al.
in [90] implies that there exists a constant %∗(κ, α̃) < 1, such that for all % ∈ (%∗(κ, α̃), 1]
the Markov process is transient under the given parameter conditions.

We now consider the example network from the simulation section of [90]. The relative
tra�c intensities are taken to satisfy κ1 = κ2 = κ3 = 0.4 and κ6 = 0.2 with α̃ = 0.
Further, φi(x) ≡ 1, x ≥ 1, and ψi(x) = (1 + x)−2. The authors note that it is `di�cult
to make any conclusive statements concerning stability/instability based on simulation
results alone'. They do, however, remark that for these parameter choices and % = 0.97,
their simulated sample paths appear to demonstrate strong signs of instability.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

`

P̂(
U[

0
,`
])

Global

0 0.2 0.4 0.6 0.8 1
0

0.5

1

`

P̂(
U[

0
,`
])

Local

Figure 4.17: Broken diamond random access network L1-stability tests with α = 0.05 for
sets of the form L = [0, `] for k∗ = 105 (dotted), 106 (dashed), 107 (solid), τ(x) = 0.5|x|+1,
δ = 0.05, φ = κ = σ = 1, and ε = 0.01.

In order to perform our stability test, we assume κ = φ = σ = 1. In Figure 4.17 we
test for L1 instability with δ = 0.05. Looking at Figure 4.17, which uses our simulation
based stability test, we are able to say, with a strong statistically �rm footing, that there
exists a constant %∗(κ, α̃) < 1, such that for all % ∈ (%∗(κ, α̃), `] the network is unstable
for a range of ` in approximately [0.6, 1]. This statement expands on the statement of the
theorem (for a particular choice of parameters) by allowing for more information to be
gained about what values are likely to be possible for %∗(κ, α̃). Of course, our statement
does not rule out perverse behaviour such as the network suddenly exploding after 107

jumps of the process. It can however be very quickly and easily applied to similar or even

98 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

vastly more complex networks. We note that the global algorithm is in this case enabling
us to make this strong statement, while the local algorithm algorithm only allows us to
make the statement for a substantially reduced set of `.

4.6 Supporting lemmas

In this section we prove some supporting results that were used earlier in the chapter to
prove our main results.

Lemma 27. There exists a positive constant w∗ such that

P(W1 ≥ z |W0 = v) ≤ P(W1 ≥ z |W0 = w) .

for v and w such that z ≤ w∗ ≤ v ≤ w.

Proof. Noting the equality

P(W1 ≥ z |W0 = w) = P(Z(w) ≥ z − w),

we claim it is su�cient to prove that the function

g(z, w) = exp

(
− (z − w + n(w))2

bw

)
(4.33)

is nondecreasing in w for values of z with z ≥ w. This is because the second term in (4.14)
evaluated at a point z −w, given our assumptions on the function τ , will tend to zero as
z → ∞, and the �rst term is of the form (4.33). Also note that for g nondecreasing the
function 1 ∧ g is also nondecreasing.

After taking logs and rearranging g(v, z) ≤ g(w, z), we see that it is su�cient to show
that

z + n(v)− v√
n(v)

≥ z + n(w)− w√
n(w)

(4.34)

for z ≤ w∗ ≤ v ≤ w. It is �nally noted that (4.34) holds as long as for w ≥ w∗ we have
n(w) ≤ w.

Lemma 28. The random variables Z(w) are L2 bounded and

EZ(w)→ 0 as w → 0 .

Proof. In particular, we bound the mean of Z(w) for large values of w as follows:

EZ(w) =

∫ ∞
0

P(Z(w) ≥ z)dz

≤
∫ ∞

0

[
exp

(
− (z + a1n(w))2

b1n(w)

)
+ n(w) exp

(
− (z + a2w)2

b2n(w)

)]
dz.

4.6. Supporting lemmas 99

We start by bounding the �rst of these terms:∫ ∞
0

exp

(
− (z + a1n(w))2

b1n(w)

)
dz

=

∫ ∞
0

− b1n(w)

2(z + a1n(w))
d

(
exp

(
− (z + a1n(w))2

b1n(w)

))
dz

=
b1

2 a1
exp

(
−a

2
1 n(w)

b1

)
−
∫ ∞

0

b1n(w)

2(z + a1n(w))2
exp

(
− (z + a1n(w))2

b1n(w)

)
dz

≤ b1
a1

exp

(
−a

2
1n(w)

b1

)
.

Upon applying a similar sequence of steps to the second term we �nd that

EZ(w) ≤ b1
a1

exp

(
−a

2
1n(w)

b1

)
+
b2n(w)

2a2w
exp

(
− a2

2w
2

b2n(w)

)
.

We conclude that EZ(w)→ 0 as w →∞, as required.
We now analyze the second moment of Z(w) to establish that these random variables

are L2 bounded. Observe that

E
[
Z(w)2

]
=

∫ ∞
0

2z P
(
Z(w) ≥ z

)
dz

=

∫ ∞
0

2z

[
exp

(
− (z + a1n(w))2

b1n(w)

)
+ n(w) exp

(
− (z + a2w)2

b2n(w)

)]
dz

We bound the �rst of these terms as follows:∫ ∞
0

2z exp
(
− (z + a1n(w))2

b1n(w)

)
dz

=

∫ ∞
0

b1n(w)
z

(z + a1n(w))
d

(
− exp

(
−(z + a1n(w))2

b1n(w)

))
≤
∫ ∞

0

b1n(w)d

(
− exp

(
−(z + a1n(w))2

b1n(w)

))
= b1n(w) exp

(
−a

2
1n(w)

b1

)
.

We then apply similar steps to the second term, which yields

E
[
Z(w)2

]
≤ b1n(w) exp

(
−a

2
1n(w)

b1

)
+ b2n(w)2 exp

(
−a

2
2n(w)2

b2w

)
.

The right-hand terms are uniformly bounded in w, as required.

Proof of Lemma 21. The set L is assumed to be stable. That is there exists δ > 0, σ > 0
and κ > 0 such that

E
[
f(X

(λ)
k)− f(X

(λ)
0) |X(λ)

0 = x
]
≤ −δσ (4.35)

for all k > σ, all x such that |x| > κ, and λ ∈ L.

100 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

Since (4.35) only occurs after σ time units have occurred, we consider our process on
steps of size σ. That is, we consider the process (X

(λ)
σn : n ∈ Z+). Assuming we start with

x0 > κ, let n(x0) be the smallest integer for which σn(x0) ≥ τ(x0) holds.

Since the increments of f(X(λ)) are bounded by φf we have that

Px0

(
f(X

(λ)
τ(x0))− f(x0) ≥ z

)
≤ Px0

(
f(X

(λ)
σn(x0))− f(x0) ≥ z − σφf

)
. (4.36)

Let nκ be the hitting time for (X
(λ)
nσ : n ∈ N0) on the states {x : |x| ≤ κ}.

By splitting the right-hand expression of (4.36) into terms depending on whether the
event nκ ≤ n(x0) occurs or not, we obtain two terms

Px0

(
f(X

(λ)
σn(x0))− f(x0) ≥ z − σφf

)
= Px0

(
f(X

(λ)
σn(x0))− f(x0) ≥ z − σφf , nκ > n(x0)

)
(4.37)

+ Px0

(
f(X

(λ)
σn(x0))− f(x0) ≥ z − σφf , nκ ≤ n(x0)

)
(4.38)

We deal with these two terms, (4.37) and (4.38), separately.

First, we bound the term (4.37). We consider the process

Mn = f(X
(λ)
σ(n∧nκ))− f(x0)− δσ(n ∧ nκ),

which, for X(λ)
0 > κ, is a supermartingale by the stability assumption (4.35). Due to our

bounded increments assumption we can apply the Azuma�Hoe�ding inequality to this
process to obtain

Px0

(
f(X

(λ)
σn(x0))− f(x0) ≥ z − σφf , nκ > n(x0)

)
≤ Px0

(
Mn(x0) ≥ z − σφf + δσn(x0)

)
≤ exp

(
− (z − σφf + δσn(x0))2

2(φf + δ)2σ2n(x0)

)
. (4.39)

This provides a bound on our �rst term (4.37).

We now bound the second term (4.38). For this term the process f(X
(λ)
σn) has hit

below level κ, so there must be an excursion from level κ to level z + f(x0). There are
at most n(x0) such excursions that can occur from below z + f(x0). We can apply the
Azuma�Hoe�ding inequality to each excursion. A simple union bound on these excursions
then gives an upper bound that is, for our purposes, su�ciently tight.

We let n0 be a time for which κ < f(X
(λ)
σn0) ≤ κ+σφf . We remark that this condition

is satis�ed immediately after the process leaves the set of states {x : |x| ≤ κ}. Again let
nκ be the �rst time after n0 for which {x : |x| ≤ κ} holds.

Now consider the process

M̂n = f(X
(λ)
σ(n∧nκ))− f(X(λ)

σn0
) , n ≥ 0,

which, again by (4.35), is a supermartingale.

The process M̂ follows an excursion of f(X
(λ)
σn) from when it hits above κ to when it

hits below again. Further, let M̂∗n be the maximum achieved by the process M̂ by time

4.7. Concluding remarks 101

n, that is
M̂∗n = max

k≤n
{M̂k} .

Notice that for the event in (4.38) to hold there must be an excursion of M̂∗ from just
above κ to above z − σφf + f(x0). We can bound this probability using the Azuma�
Hoe�ding inequality as follows:

Px0

(
M̂∗n(x0) ≥ z − σφf + f(x0)− κ

)
≤ exp

(
− (z − σφf + f(x0)− κ)2

2φ2
fσ

2n(x0)

)
.

Further, there are at most n(x0) possible excursions of this type. Thus we arrive at the
bound

Px0

(
f(X

(λ)
σn(x0))− f(x0) ≥ z − κ− σφf , nκ > n(x0)

)
≤ n(x0)Px0

(
M̂∗n(x0) ≥ z − σφf + f(x0)− κ

)
≤ n(x0) exp

(
− (z − σφf + f(x0)− κ)2

2φ2
fσ

2n(x0)

)
. (4.40)

Combining the bounds (4.39) and (4.40), we �nd the claimed inequality.

4.7 Concluding remarks

The main contribution of this chapter (published as [74]) concerned the development of
an automated procedure that determines if, for a speci�ed set of parameter values, a
given Markov chain is unstable. A distinctive feature of our work is that our method is
simulation based, and in addition broadly applicable and straightforward to implement.
It provides statistical statements on the stability of the parameter set, but, notably, we
have succeeded in providing explicit performance guarantees. Some of our experiments
show that our technique provides us with useful insights for models for which the stability
set has not been characterized so far.

This chapter can be considered as a pioneering study on this topic, and various exten-
sions and improvements are envisaged. An important �rst branch of research could relate
to relaxing the assumptions imposed, such as the fact that we restrict ourselves to the
class of Markov processes and the bounded step size assumption. Experiments that we
performed for non Markovian tandem queues indicated that the approach still provides
us with the correct result, if we perform our algorithm as if the underlying system is
Markovian. In order to remove the bounded step size assumption it would be necessary
to use a concentration inequality that is stronger than Azuma�Hoe�ding. Additionally,
our experiments contrasted global and local search versions of the algorithm. We obtained
mixed results on performance, and were unable to declare either version superior to the
other. Determining conditions that point towards which of these versions should be used
in di�erent circumstances remains to be a challenge.

The objective of a second branch of research could be to enhance our procedure
such that it can identify, in case instability is detected, which components of the multi-
dimensional Markov chain are unstable. A third branch is of an empirical nature, and
relates to models of which the stability region is not yet known. By performing systematic

102 Chapter 4. Detecting Markov chain instability: a Monte Carlo approach

simulation studies one could possibly state conjectures.

Part II

Loss models and capacity

management

CHAPTER 5

Introduction to loss models and capacity management

This part of the thesis is about systems where congestion or resource shortages result in
requests being rejected without service. Classically, models of this type have been used
for management of circuit switched telephony networks [95], and now they are �nding
applications in areas such as cloud computing (see e.g., [96]) and logistics (see e.g., [97,
98]). Interestingly, the analytical methods that are applicable to these systems are often
vastly di�erent to those which are appropriately modelled on an in�nite state space � in
particular, stability is no longer an issue. In this chapter we explore this and other key
issues that arise in this kind of model.

Much of the literature on loss systems focuses on equilibrium descriptions, performance
measures and controls and so a discussion along these lines is imperative for context. We
then discuss results and methods from the literature which apply to the transient setting.
It is this �nite time horizon machinery that Chapter 6 and Chapter 7 directly build upon.
In both chapters we focus on making short term capacity decisions for loss systems.
In the former chapter an existing method is extended to a more sophisticated model
that allows potential system failures to be incorporated into the capacity management
decision. In the latter chapter a new method is developed which is applicable to even
more sophisticated models which are of relevance to cloud computing platform capacity
management decisions.

The results of Chapter 6 utilise Laplace�Stieltjes transform and related Tauberian
theorem results along with methods for orthogonal polynomials to analyse a model of
a faulty loss system. These intricate methods are generally di�cult to expand to new
models, so in Chapter 7 we rely on matrix analytic methods to study a more sophisticated
model in the context of cloud computing. Finally, in Chapter 8 we consider a model
relevant to cloud edge computing that is out of reach of both of these approaches and
develop a novel elegant simulation-based method to optimise the model and consequently
guide management of the system.

5.1 Loss systems

While the �rst part of this thesis focused on a broad range of models exhibiting queueing
behaviour, in this part we are more speci�c � we focus on a particular well known

105

106 Chapter 5. Introduction to loss models and capacity management

loss model and develop some generalisations. In the simplest case, suppose jobs arrive
according to a Poisson process with rate λ and, if upon arrival there is capacity available,
begin service. Jobs which successfully enter the system require an exponential amount of
service time with mean µ−1, while jobs which do not enter the system are permanently
lost. Assume that the capacity of the system is a positive integer number C ∈ Z0 (i.e.
there can be at most C jobs being concurrently served at any given time).

Let (X(t), t ≥ 0) be a random process evolving on the state space S = {0, 1, . . . , C}
that records the number of jobs in the system over time. Since this is a Markov process,
as with the individual k server queue introduced in Chapter 1, a collection of non-negative
numbers (πi, i ∈ S) summing to unity that satisfy

πi
∑
j∈S

q(i, j) =
∑
j∈S

πjq(j, i), ∀ i ∈ S

is de�ned to be the stationary distribution of the system (which must exist for a �nite
state space system). Similarly to (1.2) and (1.3) we have equilibrium equations

πiλ = πi+1(i+ 1)µ , 0 ≤ i ≤ C . (5.1)

These equations di�er from those given by (1.2) and (1.3) due to the removal of transitions
which would allow the process to evolve to a state greater than C. Setting transition
rates to 0 in this way is called truncation. More formally, a Markov process evolving on
S with transition rates (q(i, j), i, j ∈ S) is truncated to form a new Markov process with
transition rates (q′(i, j), i, j ∈ S ′) where S ′ ⊆ S if we take

q′(i, j) =

{
q(i, j), i, j ∈ S ′,
0, otherwise,

and if the resulting Markov process is irreducible within S ′. Solving the truncation of
(1.2) and (1.3) to (5.1) (together with the condition

∑C
i=0 πi = 1) we �nd that πi =(∑C

k=0 %
k/k!

)−1

%i/i!, recalling % = λ/µ.

In particular the above solution to the equilibrium equations implies that the station-
ary probability that the system is at capacity is given by

πC =
%C/C!∑C
k=0 %

k/k!
. (5.2)

This is the famous Erlang B formula, initially developed to guide capacity decisions for
circuit switched telephony systems. Initial work by Erlang leading to this result is among
the earliest known on modelling for management of random systems [99, 100, 101]. Al-
though it is perhaps intuitively clear that there is a relationship between (5.2) and the
probability a job arriving at an arbitrary time in the distant future is blocked, the the-
ory behind this was not made rigorous until much later [102]. This property is known
as Poisson arrivals see time averages (PASTA). Put simply, the PASTA property means
that the probability of a state of the system as seen by an outside observer at a random
time is the same as the probabilty of the state seen by an arriving job. This property
holds for the Kelly and Whittle networks introduced in Chapter 1 and their truncations,
necessary and su�cient conditions for the property to hold are given in [103]. Another
notable feature of this formula (5.2) for the stationary distribution is that it also holds

5.1. Loss systems 107

for non-exponential service time distributions, so long as they also have �nite expected
value µ−1, which extends (5.2) to a non-Markovian setting (see [104] for details).

In the preceding discussion we considered a system consisting of only a single resource,
a more appropriate model in many cases consists of multiple resources. Let the set of
resources be indexed by the set J = {1, 2, . . . , J} and suppose that there exists a set R of
subsets of J with elements which we call routes (due to the classic telephone application
of this type of model). Now we suppose that jobs from route r arrive according to a
Poisson process of rate λr and upon arrival request service from all resources j ∈ r
simultaneously. Jobs utilise the resources for an exponential amount of time which, for
simplicity, we assume to have unit mean. Take (X(t), t ∈ R+) to be a stochastic process
with |R| coordinates which records the number of jobs present in the system for each
route, and de�ne the link-route incidence matrix A with entries

Ajr =

{
1, j ∈ r,
0, j 6∈ r.

If the total available quantity of resource j ∈ J is Cj , then a classic loss network is the

Markov process X with state space S = {x ∈ Z|R|+ : Ax ≤ C}.
We saw earlier in this section that the stationary distribution for a single resource

system was closely related to that of an in�nite server queue, as introduced in Chapter 1,

with normalising constant
(∑C

k=0 %
k/k!

)−1

needed to connect the in�nite state system

to the �nite state system. In fact, this is a speci�c example of a more general result for
reversible processes, which we will now give and then use to determine an expression for
the stationary distribution of the loss network just described.

Lemma 29 (Reproduced from [105] Lemma 3.4). If a reversible Markov process with
state space S and equilibrium distribution (πi, i ∈ S) is truncated to A ⊂ S, the resulting
Markov process is reversible and has equilibrium distribution

πi

(∑
k∈A

πk

)−1

, i ∈ A .

Letting Ci →∞ for all i ∈ J in the loss network model and associating each coordinate
ofX to an individual classi�cation, we obtain a system of the type studied by Jackson and
Whittle [7, 8, 75] which we explored in Chapter 1. Combining the stationary distribution
expression for this in�nite state system (1.5) with Lemma 29 we �nd that the stationary
distribution for the loss network model is given by

πx = G
∏
r∈R

λxrr
xr!

, x ∈ S,

where xr is the r-th coordinate of x and

G =

(∑
x∈S

∏
r∈R

λxrr
xr!

)−1

is a normalising constant. Computation of this stationary distribution is extremely di�-
cult [106]; so a famous approximation was developed [107, 108] to approach optimisation

108 Chapter 5. Introduction to loss models and capacity management

[109]. The model we study in Chapter 8 is of comparable complexity to the loss network
model just discussed, hence we use a simulation-based approach to optimisation.

Several schemes for decentralised control of loss networks have been developed. Dy-
namic alternative routing is one such method which is applicable for systems where jobs
of a particular route are able to be serviced by an alternative (usually larger) subset of J
when their designated resources r ⊂ J are not available upon arrival. Trunk reservation
[110, 111] is an example of a control mechanism that aims to ensure alternative routes do
not increase congestion and result in reduced network performance. Other studies have
also focused on optimising network performance in equilibrium using Markov decision
theory [112, 113]. Notable recent work combines simulation with analysis to e�ciently
tackle this di�cult class of optimisation problem [114] � this move towards a simulation
approach mirrors the modern approach to optimising queueing networks [11] that moti-
vates our simulation-based approach to stability in Chapter 4. In Chapter 8 we develop
a simulation-based approach to optimal stationary capacity allocation for a class of loss
models which is distinctly di�erent to the loss networks introduced in this section. In
Chapter 6 and Chapter 7, however, we develop a centralised (i.e. transient and state de-
pendent) approach to provisioning of capacity for generalisations of the single resource
loss network introduced in this section. We will now discuss the work which inspired our
centralised approach and the methods needed to obtain our results in these chapters.

5.2 Capacity value function and Laplace�Stieltjes trans-
forms

For many systems (e.g. circuit switched telephony networks) it may be di�cult or impos-
sible to make changes in the quantity of resource made available over short time horizons.
As we will see in more detail in Chapter 7, in modern cloud computing systems it may
in fact be bene�cial to remove idle capacity from service (e.g. by switching o� servers)
during periods of low demand. One way to do this is to periodically monitor the sys-
tem state and at the beginning of each period make a management decision with regards
to capacity. Due to PASTA there is a clear relationship between a system's stationary
distribution and performance, however the relationship between the distribution of the
number of jobs in the system at some �nite time t and system performance is not as clear.
In [115] and [116] a highly practical performance measure is introduced: the number of
jobs rejected (or accepted) during the time interval [0, t]. The expected value of this
performance measure, which the authors call the capacity value function, enables system
managers to determine an ideal capacity adjustment in each time period.

The analysis in [115] and [116] of a single resource loss system is based on the Laplace�
Stieltjes transform, which for some function r : R0 → R is de�ned by∫ ∞

0

r(t) e−s t dt , s ∈ C ,

when this quantity exists. In [115] the authors use results for orthogonal polynomials to
�nd the Laplace�Stieltjes transform of the capacity value function and invert the obtained
expression numerically to explore system behaviour. Properties of Laplace�Stieltjes trans-
forms relating to time shift and integration are key reasons the model becomes tractable to
orthogonal polynomial results after transformation. Then, in [116], a Tauberian theorem
commonly known as the �nal value theorem is utilised to �nd a second-order approxi-

5.3. Markovian arrival processes 109

mation to the capacity value function. This theorem, which is standard to the �eld of
modern control engineering is as follows.

Theorem 8 (Final value theorem, reproduced from [117]). Suppose r : R+ → R possesses
Laplace�Stieltjes transform r̃ and sr̃(s) exists and has no poles on or to the right of the
imaginary axis in the s-plane, then

lim
t→∞

r(t) = lim
s→0

sr̃(s) .

In Chapter 6 we generalise the results in [115] and [116] to the case of a single resource
system where the resource experiences random periods of inaccessibility. These results
are useful for incorporating faulty system behaviour into loss models.

This approach to determining the capacity value function requires delicate manipula-
tion of orthogonal polynomials to determine the Laplace�Stieltjes transform. It is usually
a cumbersome process to show that the conditions of the �nal value theorem hold. In
Chapter 7 we show how approaching determination of the capacity value function us-
ing matrix analytic methods, as introduced in the next section, can greatly simplify the
modelling process and allow for a much broader class of models to be studied.

5.3 Markovian arrival processes

A Markovian arrival process is a counting process with arrivals of di�erent classi�cations
governed by the transitions and holding times of another �nite state background Markov
chain (see e.g. [118] and [119]). Suppose that the set C provides indexes for the classi-
�cations and (Nh(t), t ≥ 0) for h ∈ C counts the arrivals of classi�cation h in the time
interval [0, t]. In Chapter 7 we utilise batch Markovian arrival processes (BMAP), where
work arrives as super-jobs consisting of a random quantity of jobs. We now provide a
formal construction for BMAPs.

De�nition 30 (Reproduced from [118] De�nition 2.4.1). Assume that square matrices
{D1, D2, . . . , DN} of order m have non-negative entries, D0 has non-negative o�-diagonal
elements and negative diagonal elements, m is a positive integer, N is a positive integer
(possibly in�nite), and D = D0 + D1 + · · · + DN is an in�nitesimal generator. Let
D0 = (d0,(i,j)), Dn = (dn,(i,j)), for n = 1, . . . , N . Then (D0, D1, . . . , DN) de�nes BMAP(
(N(t), I(t)), t ≥ 0

)
as follows.

1. Set N(0) = 0.

2. De�ne a continuous-time Markov chain (I(t), t ≥ 0) by D as follows.

3. For state i with dn,(i,i) > 0, for n = 1, . . . , N and i = 1, . . . ,m de�ne a Poisson
process with arrival rate dn,(i,i) when I(t) = i and otherwise 0.

4. For i = 1, . . . ,m, if I(t) = i and an arrival from the imposed Poisson process dn,(i,i)
occurs, N(t) increases by n, for 1 ≤ n ≤ N .

5. At the end of each stay in state i, with probability d0,(i,j)/(−d(i,i)) (note di,i =
d0,(i,i) +d1,(i,i) + · · ·+dN,(i,i)) I(t) transits from state i to state j and N(t) remains
the same; and, with probability dn,(i,j)/(−d(i,i)), I(t) transits from state i to state j
and N(t) increases by n, for 1 ≤ n ≤ N and i 6= j and i, j = 1, . . . ,m.

110 Chapter 5. Introduction to loss models and capacity management

In Chapter 7 we show that the process governing lost jobs in the single resource loss
system is a speci�c simple example of a BMAP. By considering multiple BMAPs together
we are able to incorporate baulking behaviour into the model. In this setting we also show
how to incorporate batch arrivals with bursty arrival processes. Finally, we also show that
it is possible to include a �nite bu�er where jobs wait before service � resulting in a model
that exhibits both loss and queueing behaviour. We are able to combine these BMAPs
together using the linearity property of expectation, and our computation of the individual
expectations is performed using the following theorem. Let 1 be a column vector with
unit entries, and I be the identity matrix.

Theorem 9 (Reproduction of Theorem 2.4.2 in [118]). Assume that the background pro-
cess (I(t), t ≥ 0) is irreducible. Given initial distribution π0 (row vector), we have

E[N(t)] = π

 N∑
j=1

jDj

1 + π0(exp(Dt)− I)(D − 1π)−1

 N∑
j=1

jDj1

 , t ≥ 0 ,

where (row vector) π is the stationary distribution of I (i.e. π ≥ 0, πD = 0, and
π1 = 1).

The expression in Theorem 9 is crucial to our results in Chapter 7. Further work in the
area of matrix analytic methods has succeeded in �nding second-order approximations to
this function [120]. The slope term in these second-order approximations, when applied
to the capacity value function, measures the asymptotic rate at which revenue is lost.
This can be used to conduct equilibrium performance evaluation when doing so is more
appropriate. In Chapter 8 we see that even these matrix analytic based methods have
limitations when it comes to analysing networks of loss systems, and so in that chapter
we develop a novel simulation-based method to guide management decisions.

5.4 Outline of Part II

Here we provide a summary of the subsequent chapters of Part II of this thesis. As we
progress through the chapters the models we study become more complex and new meth-
ods are developed to handle the increasing complexity. The overarching theme is guiding
system managers in choosing the capacity of a system that best addresses the trade-o�
between losing work and the cost of providing additional capacity. Each chapter is pre-
sented in an accessible and self contained fashion with notation optimised for presentation
on a per-chapter basis.

Chapter 6 � Management of faulty loss systems. We consider a �nite capacity
Erlang loss system that alternates between active and inactive states according to a two
state modulating Markov process. Work arrives to the system as a Poisson process but
is blocked from entry when the system is at capacity or inactive. Blocked jobs cost the
owner a �xed amount that depends on whether blockage was due to the system being at
capacity or due to the system being inactive. Jobs which are present in the system when
it becomes inactive pause processing until the system becomes active again.

A Laplace transform expression for the expected undiscounted revenue lost in [0, t]
due to blocking is found. Further, an expression for the total time discounted expected
lost revenue in [0,∞) is provided. We also derive a second order approximation to the

5.4. Outline of Part II 111

former that can be used when the computing power to invert the Laplace transform is
not available. These expressions can be used to ascribe a value to four alternatives for
improving system performance: (i) increasing capacity, (ii) increasing the service rate,
(iii) increasing the repair rate, or (iv) decreasing the failure rate.

Chapter 7 � Loss system models for cloud computing platforms. User
demand on the computational resources of cloud computing platforms varies over time.
These variations in demand can be predictable or unpredictable, resulting in time-varying
and `bursty' �uctuations in demand. Furthermore, demand can arrive in batches, and
users whose demands are not met can be impatient. We demonstrate how to compute
the expected revenue loss over a �nite time horizon in the presence of all these model
characteristics through the use of matrix analytic methods. We then illustrate how to
use this knowledge to make frequent short term provisioning decisions � transient pro-
visioning. It is seen that taking each of the characteristics of �uctuating user demand
(predictable, unpredictable, batchy) into account can result in a substantial reduction of
losses. Moreover, our transient provisioning framework allows for a wide variety of system
behaviours to be modelled and gives simple expressions for expected revenue loss which
are straightforward to evaluate numerically.

Chapter 8 � Functional form based optimisation for stochastic networks
with blocking. Many stochastic networks encountered in practice are a�ected by block-
ing, where network tra�c is lost due to congestion. A key decision when designing such
networks is how to allocate resources to limit losses, while maintaining low costs. Roughly
speaking, there are two categories of approaches for solving capacity management prob-
lems in stochastic networks: analytical and simulation-based optimisation. In this chapter
we describe a hybrid approach to optimising stochastic networks with blocking where sim-
ulation is augmented with a functional form to improve e�ciency. We apply this approach
to a realistic example, test the method using standard and non-standard networks, and
show that it can outperform the existing state-of-the-art.

The following publication has been incorporated as Chapter 6.
[121] B. Patch, T. Taimre, and Y. Nazarathy, Performance of faulty loss systems with
persistent connections, ACM SIGMETRICS Performance Evaluation Review, 43.2 (2015).
pp 16�18.

Contributor Statement of contribution %
Brendan Patch writing of text 33

proof-reading 33
theoretical derivations 33
preparation of �gures 33
initial concept 33

Thomas Taimre writing of text 33
proof-reading 33
supervision, guidance 50
theoretical derivations 33
preparation of �gures 33
initial concept 33

Yoni Nazarathy writing of text 33
proof-reading 33
supervision, guidance 50
theoretical derivations 33
preparation of �gures 33
initial concept 33

https://dl.acm.org/citation.cfm?id=2825242
https://dl.acm.org/citation.cfm?id=2825242

CHAPTER 6

Management of faulty loss systems

6.1 Introduction

As discussed in the previous chapter, loss systems are a model for processes in which jobs
arrive randomly throughout time and simultaneously utilise some quantity of a resource
for a time period of random length, before departure from the system. In the loss system
model, if a job arrives to the system and there are not enough resources available for it
to begin processing, then it is lost. Landline telephone connections between cities are a
classic example. Motivated by this, the resource is often called a link and the arriving
jobs calls. When there are multiple types of resource available and an arriving job may
only require some subset of the resources, the model is known as a loss network. A classic
review of loss networks is [95], and a more recent review is [122].

This chapter focuses on loss systems where links are prone to failure. Arrivals occur
according to a Poisson process of rate λ and, if possible, immediately begin service at rate
µ (i.e. the sojourn time of a job in the system is exponential with mean µ−1). Links which
are active become inactive at rate α and inactive links repair at rate β. Arrivals to a link
when it is inactive experience failure blocking, and arrivals when the link is active but
at full capacity experience capacity blocking. Blocked arrivals result in a loss of revenue
� the size of which depends on the reason for blockage. In this preliminary exposition
we focus on a system where existing connections on the link persist during link failure
� continuing their service upon link reactivation. Our model and analysis is useful for
managing communication systems which are subject to sabotage or adverse environmental
(e.g. weather) conditions.

Our work extends results in [115] and [116]. In [115] a Laplace transform expression
in terms of Charlier polynomials is given for the undiscounted value of an additional unit
of capacity during the planning horizon [0, t] on a link which never fails. This expression
acts as a performance measure for the system. The authors also demonstrate how the
expression can be used to ascribe a value to an extra unit of capacity on the link over
the planning horizon. In [116] a second order approximation to the inverted expression is
given. The key di�erence between these papers and other classic studies of loss systems
(see e.g., [109]) is that they focus on transient expected performance indicators rather
than approximations to equilibrium distributions of the system.

113

114 Chapter 6. Management of faulty loss systems

Our methodological contribution is two-fold. First, we extend the model and results
of [115] and [116] to allow for link failure. Second, we obtain an expression for in�nite
horizon total discounted lost revenue when interest is compounded continuously at rate r.
As opposed to the expression for �nite horizon undiscounted lost revenue, this expression
does not require numerical inversion.

The expressions that we obtain can be used to ascribe a value to four alternatives for
improving system performance: (i) increasing capacity, (ii) increasing the service rate,
(iii) increasing the repair rate, or (iv) decreasing the failure rate. The set of control

parameters, denoted by X def
= {C, µ, β, α}, is used to invoke these changes. We envisage

that a system manager can vary the control parameters through mechanisms such as
equipment purchases, training programs, and wages.

6.2 Model

Consider the Markov process {(N(t), J(t))}t∈R0
, where N(t) ∈ {0, 1, . . . , C} and repre-

sents the number of connections in use at time t, and J(t) takes the value 1 if the link is
active at time t and 0 otherwise. More precisely, this process has state space{

(n, j) : n ∈ {0, 1, . . . , C}, j ∈ {0, 1}
}

with evolution governed by the transition rates as given in Table 6.1. When the process
is in state (C, 1) or any state (n, 0), n ∈ {0, 1, . . . , C}, potential calls continue to arrive
according to a Poisson process of rate λ. These calls are blocked and losses are recorded.
Let θ > 0 denote the revenue lost if a call is blocked when the system is in state (C, 1)
(capacity blocking) and θ > 0 denote the revenue lost if a call is blocked when the system
is in a state (n, 0) (failure blocking). When the system is in state (C, 1) during a time

Table 6.1: Transition rates of our faulty loss system.

Transition Rate States

(n, 1)→ (n, 0) α 0 ≤ n ≤ C
(n, 0)→ (n, 1) β 0 ≤ n ≤ C
(n, 1)→ (n+ 1, 1) λ 0 ≤ n < C
(n, 1)→ (n− 1, 1) nµ 0 < n ≤ C

interval [a, b), an expected loss of λ θ (b − a) is incurred due to the Poisson call arrival
process of rate λ. Similarly, if the system is in a state (n, 0) during a time interval [a, b)
then a loss of λ θ (b−a) is expected. Therefore, the expected lost revenue during [0, t] for
a link with N(0) = n and J(0) = j, which we denote by r(j)

n,X (t), can be written as

E

[∫ t

0

λ
(
θ I{J(τ)=0} + θ I{N(τ)=C} I{J(τ)=1}

)
dτ

∣∣∣∣∣ (N(0), J(0)
)

= (n, j)

]
. (6.1)

The function de�ned in (6.1) is analogous to the capacity value function of [115]. The value

over the planning horizon of [0, t] of a parameter adjustment from X to X̃ def
= {C̃, µ̃, β̃, α̃}

6.3. Results 115

is

∆r
(j)
n,t(X , X̃)

def
= r

(j)
n,X (t)− r(j)

n,X̃ (t) . (6.2)

We call this the �nite horizon performance value function.

Furthermore, the expected rate at which revenue is lost from the system is λ θ when
it is in state (C, 1) and λ θ when it is in a state (n, 0). So the expected rate at which
revenue is lost at time t is

`
(j)
n,X (t)

def
= λE

[
θ I{J(t)=0} + θ I{N(t)=C} I{J(t)=1}

∣∣∣ (N(0), J(0)
)

= (n, j)
]
.

Assuming that interest is compounded continuously at rate r, the discounted value of
the lost revenue during [0, ∞) is

L
(j)
n,X (r)

def
=

∫ ∞
0

`
(j)
n,X (t) e−r tdt . (6.3)

Note that this functional is equivalently the Laplace transform.

Similar to (6.2),

∆L (j)
n,r (X , X̃)

def
= L

(j)
n,X (r)−L

(j)

n,X̃ (r) (6.4)

gives the di�erence in total time discounted value obtained from variations in the control
parameters. We call this the discounted performance value function.

It is straightforward to combine (6.2) or (6.4) with a budget constraint to obtain an
optimization problem that can be solved, and thus help direct the manager of the system
on how best to vary the control parameters.

6.3 Results

In this section we give explicit expressions for (6.1) and (6.3) that can be used to calculate
(6.2) and (6.4). Let r(j)

n,X (t |x) be r(j)
n,X (t) conditional on the fact that the �rst time that

the link departs from state (n, j) is x. Now,

r
(1)
n,X (t |x) =

0 , n < C, t < x ,
θλt , n = C, t < x ,
nµr

(1)
n−1,X (t−x)+λr

(1)
n+1,X (t−x)+αr

(0)
n,X (t−x)

nµ+λ+α , n < C, t ≥ x ,

θλx+
C µ r

(1)
C−1,X (t−x)+α r

(0)
C,X (t−x)

C µ+α , n = C, t ≥ x ,

(6.5)

and

r
(0)
n,X (t |x) =

{
θ λ t , t < x ,

θλx+ r
(1)
n,X (t− x) , t ≥ x .

(6.6)

116 Chapter 6. Management of faulty loss systems

For (N(0), J(0)) = (n, j), j ∈ {0, 1} let X(j)
n be the time until the �rst transition, with

distribution F (j)
n , and consider the Riemann�Stieltjes integral

r
(j)
n,X (t) =

∫ ∞
0

r
(j)
n,X (t |x) dF (j)

n (x) . (6.7)

Due to the Markovian nature of the model, F (1)
n is exponential with parameter λ+nµ+α

when n < C and C µ + α when the link is at capacity and F
(0)
n is exponential with

parameter β. Substituting (6.5), (6.6) into (6.7), and removing the X subscript for brevity,
we obtain

r
(1)
0 (t) =

∫ t

0

(
λr

(1)
1 (t− x) + αr

(0)
0 (t− x)

)
e−(λ+α)xdx ,

r(1)
n (t) =

∫ t

0

(
nµ r

(1)
n−1(t− x) + λr

(1)
n+1(t− x) + α r(0)

n (t− x)
)
e−(nµ+λ+α)xdx , 0 < n < C

r
(1)
C (t) =

∫ t

0

(
C µ r

(1)
C−1(t− x) + α r

(0)
C (t− x)

)
e−(C µ+α)dx+

θλ

C µ+ α

(
1− e−(C µ+α)t

)
,

r(0)
n (t) =

∫ t

0

β r(1)
n (t− x) e−β xdx+

θ λ

β

(
1− e−βt

)
.

Upon taking the Laplace�Stieltjes transform r̃
(j)
n (s) =

∫∞
0
r

(j)
n (t) e−s t dt this becomes

r̃
(1)
0 (s) =

λ

s+ λ+ α
r̃

(1)
1 (s) +

α

s+ λ+ α
r̃

(0)
0 (s) ,

r̃(1)
n (s) =

nµ r̃
(1)
n−1(s)

s+ nµ+ λ+ α
+

λ r̃
(1)
n+1(s)

s+ nµ+ λ+ α
+

α r̃
(0)
n (s)

s+ nµ+ λ+ α
, 0 < n < C

r̃
(1)
C (s) =

1

s+ C µ+ α

(
C µ r̃C−1,1(s) + α r̃C,0(s) +

θλ

s

)
,

r̃(0)
n (s) =

1

s+ β

(
β r̃n,1(s) +

θ λ

s

)
. (6.8)

Which implies

r̃
(1)
0 (s) =

1

s+ λ+ α

(
λ r̃

(1)
1 (s) +

α

s+ β

(
β r̃

(1)
0 (s) +

θ λ

s

))
,

r̃(1)
n (s) =

nµ r̃n−1,1(s) + λ r̃
(1)
n+1(s) + α

s+β

(
β r̃

(1)
n (s) + θ λ

s

)
s+ nµ+ λ+ α

, 0 < n < C ,

r̃
(1)
C (s) =

1

s+ C µ+ α

(
C µ r̃

(1)
C−1(s) +

α

s+ β

(
β r̃

(1)
C (s) +

θ λ

s

)
+
θλ

s

)
,

r̃(0)
n (s) =

1

s+ β

(
β r̃(1)

n (s) +
θ λ

s

)
. (6.9)

6.3. Results 117

Furthermore,

r̃
(1)
1 (s) =

s+ λ+ α− αβ (s+ β)−1

λ
r̃

(1)
0 (s)− α θ

s (s+ β)
,

(6.10)

r̃
(1)
n+1(s) =

s+ nµ+ λ+ α− αβ (s+ β)−1

λ
r̃(1)
n (s)− nµ

λ
r̃

(1)
n−1(s)− α θ

s (s+ β)
,

0 < n < C ,
(6.11)

r̃
(1)
C (s) =

1

s+ C µ+ α− αβ (s+ β)−1

(
C µ r̃

(1)
C−1(s) +

θ λ

s
+

α θ λ

s (s+ β)

)
. (6.12)

The solution of (6.9)�(6.12) gives the result. Now let

B(s)
def
= α θ λ/

(
s (s+ β)

(
s+ α− αβ (s+ β)−1

))
and set

Qn(s)
def
= r̃n,1(s)−B(s) .

We can recast (6.10) and (6.11) as

Q1(s) =
s− αβ (s+ β)−1 + λ+ α

λ
Q0(s) (6.13)

Qn+1(s) =
s− αβ (s+ β)−1 + nµ+ λ+ α

λ
Qn(s)− nµ

λ
Qn−1(s) , 0 < n < C . (6.14)

Or alternatively

Pn+1(ξ) =
(
ξ − (dn+ f)

)
Pn(ξ)− n (g n+ h)Pn−1(ξ)

where d = −µ/λ, f = −1, g = 0, h = µ/λ, and ξ = (s − αβ (s + β)−1 + α)/λ. This
recurrence relation describes the class of Meixner polynomials (see e.g. [123]). If, as is the
case here, the recurrence relation can further be written as

Pn+1(s) =
(
ξ − d (n+ h d−2)

)
Pn(ξ)− hnPn−1(ξ) , (6.15)

then the solution is known to be Pn(s) = dn C
(`)
n (ξ/d), where ` = h/d2 = λ/µ and

C(λ/µ)
n (ξ) =

n∑
k=0

(
n

k

)(
−λ ξ/µ
k

)
(−λ/µ)n−k k! , (6.16)

is a Charlier polynomial. These polynomials can be generally expressed in terms of La-
guerre polynomials via the relation C(`)

n (ξ) = n!L
(ξ−n)
n (`). Hence,

Pn(s) = dn n!L(ξ/d−n)
n (`).

It follows that the solution to (6.13) and (6.14) is Qn(s) = D(s)Pn (s), where D(s) is a
function of s and Pn(s) was given previously.

118 Chapter 6. Management of faulty loss systems

Therefore the solution to (6.10) and (6.11) is

r̃(1)
n (s) = Qn(s) +B(s) = D(s)Pn (s) +B(s).

Using (6.12) we obtain

D(s)PC(s) +B(s) =
C µ

(
D(s)PC−1(s) +B(s)

)
+ θ λ

s + α θ λ
s (s+β)

s+ C µ+ α− αβ (s+ β)−1
,

which gives us

D(s) = (θ λ/s)/
(
PC(s)

(
s+ C µ+ α− αβ (s+ β)−1

)
− C µPC−1(s)

)
.

Substituting this into the expression for r̃(1)
n (s) above and combining with the de�nition

of a Laguerre polynomial gives the following expression for the Laplace�Stieltjes transform
of the undiscounted value of lost revenue for our faulty loss system during the planning
horizon [0, t].

Proposition 31.

r̃
(j)
n,X (s) =

Pn(s) θ λ

s
(
s PC(s) + C µ

(
PC(s)− PC−1(s)

)) +B(s) (6.17)

and r̃
(0)
n,X (s) =

(
β r̃

(1)
n,X (s) + θ λ/s

)
/(s+ β), where

B(s) = α θ λ/
(
s (s+ β)

(
s+ α− αβ (s+ β)−1

))
, (6.18)

Ai(s) = s+ α− αβ (s+ β)−1 + i µ , and (6.19)

Pn(s) =

n∑
k=0

(
n

k

)
λ−k

k−1∏
i=0

Ai(s) . (6.20)

This generalizes the result in [115] for a loss system that never fails. Taking α = 0 (no
failures) or β →∞ (instantaneous repairs) recovers equation (15) of [115].

While this expression seems nice and compact, it does require a summation involving
binomial coe�cients, making inversion numerically cumbersome. In this case approxima-
tions to the inverted expression are a sensible alternative. We will now study approxi-
mations for a system with J(0) = 1, it is a simple extension to examine a system with
J(0) = 0.

A �rst order linear approximation is given by

r
(1)
n,X (t) = a t+ o(t) , (6.21)

where a = λ (θ π + θ π), o(t)/t→ 0 as t→∞,

π =

(
%C

C!

)(
(1 + ψ)

C∑
n=0

%n

n!

)−1

,

and π = ψ/(1 + ψ), with % = λ/µ, and ψ = α/β.
The values π and π represent the equilibrium probability that {(N(·), J(·))} is in state

6.3. Results 119

(C, 1) or, respectively, a state (n, 0). Combined with the Poisson call arrival process of
rate λ it is clear that a is the equilibrium rate of loss. Note the similarity of π to Erlang's
B formula, which is retrieved for α = 0 or β →∞.

The error introduced to (6.21) as it transitions to equilibrium can be corrected by the
following second order linear approximation.

Proposition 32.
rn,1(t) = ar t+ br,n + o(1) , (6.22)

with o(1)→ 0 as t→∞, ar = λ (θ π + θ̊ π)

π =

(
%C

C!

)(
(1 + ψ)

C∑
n=0

%n

n!

)−1

, π =
ψ

1 + ψ
,

% = λ/µ, ψ = α/β

br,n =
γ1,n + 2θλ+ γ2γ3 − 2arγ4

2βγ4(1 + ψ)
,

where

γ1,n = 2 (1 + ψ)β θ λ g1(n) ,

γ2 = α θ̊ λ− (1 + ψ)β ar ,

γ3 = −2ψ/β + 2 (1 + ψ) g1(C) + C µ
(
g2(C)− g2(C − 1)

)
,

γ4 = 1 + ψ + C µ
(
g1(C)− g1(C − 1)

)
,

g1(n) =
ψ + 1

µ

n∑
k=1

%−k
(
n

k

)
(k − 1)! , and (6.23)

g2(n) =
2 (α+ β)2

β2 µ2

n∑
k=2

%−k
(
n

k

)
(k − 1)!

k−1∑
m=1

1

m
− 2ψ

β µ

n∑
k=1

%−k
(
n

k

)
(k − 1)! . (6.24)

This result generalizes Theorem 4.1 in [116]. Again, their result can be retrieved by
taking α = 0 or β →∞.

Finally, observe that `(j)n,X (t) = ∂r
(j)
n,X (t)/∂t. Hence since r(j)

n,X (0) = 0, using the
properties of the Laplace transform,

L
(j)
n,X (r) = r−1 r̃

(j)
n,X (r) .

Proof of Proposition 32. Di�erentiation of (6.20) and evaluation at s = 0 yields the
expressions for g1(n) and g2(n). It is also easily seen that Pn(0) = 1. Note that

An(s)
def
= s r̃(1)

n (s)− θλE

s
=
sN(s)D2(s)− s α θ λD1(s)− θ λ πD1(s)D2(s) / s

D1(s)D2(s)
, (6.25)

120 Chapter 6. Management of faulty loss systems

where

N(s) = Pn(s)

(
−s α θ λ

(
s+ α− αβ

s+ β

) /
D2(s) + θ λ+

α θ λ

s+ β

)
D1(s) = s

(
PC(s)

(
s+ C µ+ α− αβ

s+ β

)
− C µPC−1(s)

)
, and

D2(s) = s (s+ β)

(
s+ α− αβ

s+ β

)
.

Now de�ne
GC(s)

def
= (s+ Cµ)PC(s)− CµPC−1(s)

so that the denominator of the �rst term on the right hand side of (6.17) is sGC(s). From
(6.16) we see that

C(λ/µ)
n (0) = (−λ/µ)n ,

so that GC has a zero at s = 0. Consequently we can write GC(s) = s FC(s) for some
polynomial FC . Recall that the zeros of Charlier polynomials are all real valued (see e.g.
[123]). For each zero of C(λ/µ)

n , say x, again by (6.16), we see that there are two zeros of
Pn at points satisfying

−α− β − xµ±
√
−4xβ µ+ (α+ β + xµ)2

2
.

Hence, given the properties of our parameters, the zeros of GC are all real. Furthermore,
upon substituting (6.20) into GC(s) we obtain

GC(s) =

s

C∑
k=0

(
C

k

)
λ−k

k−1∏
i=0

(s+ α− αβ(s+ β)−1 + i µ) + C µλ−C
C−1∏
i=0

(s+ α− αβ(s+ β)−1 + i µ)

+ C µ

C−1∑
k=0

((
C

k

)
−
(
C − 1

k

))
λ−k

k−1∏
i=0

(s+ α− αβ(s+ β)−1 + i µ) .

In this form it is clear that for s > 0 we have GC(s) > 0, implying that the remaining
zeros of GC are all non-positive. Thus the rational function s r̃

(1)
C (s) has one pole at

s = 0 with all the other poles real and negative. It then follows by a standard Tauberian
theorem (�nal value) that lims→0An(s) exists and is equal to br,n.

For the gradient term, note that the denominator in (6.25) and its �rst three derivatives
are all equal to zero as s→ 0, implying that the numerator and its �rst three derivatives
must also be equal to zero as s → 0. Using (6.23) we have that 1 + ψ + C µ

(
g1(C) −

6.4. Illustration 121

g1(C − 1)
)
is equal to

1 + C (1 + ψ)

(
C∑
k=1

(
C

k

)(µ
λ

)k
(k − 1)!−

C−1∑
k=1

(
C − 1

k

)(µ
λ

)k
(k − 1)!

)

= 1 + C (1 + ψ)

(
C−1∑
k=1

(
C − 1

k − 1

)(µ
λ

)k
(k − 1)!

)
+ (1 + ψ)C!

(µ
λ

)C
= 1 + C! (1 + ψ)

(
C−1∑
k=0

(
C − 1

k − 1

)(µ
λ

)C−k
/ k!

)

= (1 + ψ)
C!

%C

 C∑
j=0

%j

j!

 =
1 + ψ

(1 + ψ)π − ψ
.

This only holds for π as given in the theorem and is necessary for the third derivative
of the numerator in (6.25) to equal zero as s → 0, which proves that the given a is the
correct gradient in the approximation. �

6.4 Illustration

Consider a system where X = {6, 3, 0.5, ·}, λ = 3, θ = 1, θ = 2, and J(0) = 1. Figure 6.1
displays the expected lost revenue of this system over planning horizons t ∈ [0, 7]. We
see that the second order approximation (dashed) converges to the numerically-inverted
Laplace transform (solid). The left panel is a system where there is no failure (α = 0)
and in the right panel (α = 0.002) the system is expected to fail approximately as often
as 1500 calls arrive and then take six calls worth of time to repair. It can be seen from
comparing the left and right panels that without accounting for these faults a (potentially
substantial) error in the evaluation of expected losses can occur.

0 5

0

0.2

0.4

0 5

tt

n = 4

n = 6

n = 5

α = 0.002α = 0

0

0.2

0.4

r
(1)
n,X (t)r

(1)
n,X (t)

n
=

4

n
=

6

n
=

5

Figure 6.1: Expected lost revenue in [0, t] without failure (left) and with failure (right).

Now consider the same system but with α = 0.5. Figure 6.2 shows the discounted
(r = 0.1) performance function (i.e. increase in revenue) that occurs when either the
failure rate is decreased (left) or the repair rate is increased (right). We see that, for this
system, increasing β increases revenue at a decreasing rate, while decreasing α increases

122 Chapter 6. Management of faulty loss systems

revenue at an increasing rate. As β → ∞ the right graph will asymptote to the vertical
intercept of the left graph.

0 0.25 0.5

0

1000

2000

3000

0.5 1 2 3

0

1000

2000

3000

∆L
(1)
4, 0.1(0.5, β̃)∆L

(1)
4, 0.1(0.5, α̃)

β̃α̃

Figure 6.2: Discounted performance for decreases in failure rate (left) or increases in repair
rate (right).

6.5 Concluding remarks

The performance value functions introduced here could play a role in more complex net-
works, in which a routing decision plays a role. Relaxing the persistent connections
assumption to permit disconnection when the system is inactive would be both interest-
ing and practical. It would also be useful to generalize these results by replacing the
exponential distributions used with phase-type distributions. In the next chapter we will
see another method for approaching the type of model studied in this chapter that allows
for a broader class of generalisations to be approached.

The following publication has been incorporated as Chapter 7.
[124] B. Patch and T. Taimre. Transient provisioning and performance evaluation for
cloud computing platforms: A capacity value approach, Performance Evaluation, 118
(2018). pp. 289�314.

Contributor Statement of contribution %
Brendan Patch writing of text 50

proof-reading 50
theoretical derivations 50
preparation of �gures 50
initial concept 50

Thomas Taimre writing of text 50
proof-reading 50
supervision, guidance 100
theoretical derivations 50
preparation of �gures 50
initial concept 50

https://www.sciencedirect.com/science/article/pii/S016653161730175X
https://www.sciencedirect.com/science/article/pii/S016653161730175X

CHAPTER 7

Loss system models for cloud computing platforms

7.1 Introduction

Highly complex systems are becoming an integral contributor to the productivity of many
industries. The introduction of these systems is accompanied by an increase in the de-
mand for computational resources. Distributed cloud computing platforms have emerged
as the leading method for provision of these resources to end users. In addition to the
environments available online (e.g. Amazon EC2, Microsoft Azure, Google AppEngine,
GoGrid), many private organizations and universities now have computer clusters that
allow users to distribute computing tasks across many nodes. This substantially reduces
the need for each user to have expensive individually held computing resources that be-
come idle when not needed or which are impractical to store at the users' geographical
location.

Distributed computing constitutes a substantial portion of the energy consumption in
modern computer and communication networks [125]. As such, well designed provisioning
policies, which match the availability of resources with the demand for resources remains
an active area of research [125]. An obvious avenue to reducing the energy use of a
distributed cloud platform is to switch compute nodes o�, or place them into a power
saving mode, when they are not needed. For example, in [126] it is estimated that perfectly
provisioning capacity to match demand in a production compute cluster at Google would
result in a 17�22% reduction in energy use.

Resource allocation problems of this type naturally fall into the realm of queueing
theory. Speci�cally, the loss network model, as discussed in the previous two chapters, has
been extensively used to analyse circuit switched systems in which tasks arrive randomly
throughout time, require a random service time, and are lost if the resources required to
begin their service are not available at the time of their arrival (see for example [95, 122]).
In these models, the key quantity of system capacity is usually viewed as static, unable
to be altered in response to short term �uctuations in system demand. As such, work on
capacity selection is typically based on equilibrium properties of the system. Probably
the most famous result of this type is Erlang's [127] expression for the probability that
a task arriving to the system in steady state is blocked from entry, when tasks arrive
according to a Poisson process with rate λ, have a mean service time of µ−1, and there

125

126 Chapter 7. Loss system models for cloud computing platforms

are m servers:
(λ/µ)m/m!∑m
i=0(λ/µ)i/i!

. (7.1)

Much of the literature on the analysis of cloud computing platforms, which we review
in Section 7.1.1, develops performance measures (e.g. probability of a blocked task, waiting
times, response times) from an equilibrium perspective. In order to improve the matching
between provisioned capacity and demand throughout time, and to achieve the energy
savings which motivate our work, it is necessary to take a transient view of the system.
Due to the elasticity, or short term capacity �exibility, of distributed cloud computing
platforms this is especially relevant in our case [125].

Moving away from equilibrium analysis of these systems in favour of transient analysis
allows provisioning to be performed over short time intervals in a way that is dependent
on the current state of the system and knowledge of the arrival rate over the near future.
Since obtaining analytic results for the transient distribution of loss network type systems
is notoriously di�cult, one often resorts to numerical inversion of Laplace transforms
[128, 129] or approximations [130]. In [115], its companion [116], and more recently [131]
and also as discussed in the previous chapter, a useful alternative to the consideration
of the transient distribution for queueing type models is proposed. In these papers the
authors assume that tasks which fail to enter a loss system due to capacity constraints
result in the system's manager incurring a predetermined amount of lost revenue. By
comparing the amount of lost revenue during a �nite time interval [0, t] that results from
di�erent capacity choices, the authors are able to determine buying and selling prices for a
unit of capacity using only information on the value of lost tasks and the current number
of tasks in the system. They call the function underlying these rules the capacity value
function.

The results in [116] and [115] are, however, derived using delicate manipulations of or-
thogonal polynomials, and it is di�cult to use the same analytical techniques to generalize
these �ndings to models which are more applicable to the distributed cloud computing
setting. In this chapter we overcome this issue by making the pivotal observation that
the capacity value function can be expressed in terms of matrix inverses and exponentials
using matrix analytic methods (MAMs). Moreover, by adding a term to the capacity value
function that re�ects the operating costs of maintaining di�erent levels of capacity over
time we allow the trade-o� between energy use and service degradation, that is controlled
through the provisioning decision, to be explicitly modeled.

Based on these observations, in this chapter we show how to utilize the well established
MAM literature to e�ectively obtain a transient performance measure, similar to the
capacity value function, for a wide variety of potential cloud computing models. The
extension of the capacity value function methodology to more general settings is the main
contribution of this chapter. Although our framework is widely applicable, for clarity we
illustrate it using a model that incorporates the following features:

• Batch jobs.

• Bursty arrival process (predictable and unpredictable).

• A bu�er.

• Abandonments due to impatience.

In the outlook we provide a more detailed discussion on the types of settings we envisage
our framework is applicable to. In general we are concerned with any cloud system

7.1. Introduction 127

where tasks are sent to the system by users with the aim of undergoing processing before
eventual departure. We envisage that in order to be processed the tasks may require access
to a database or directory, speci�c software (e.g. a compiler), and/or speci�c hardware
(e.g. CPU cores or RAM). Throughout the chapter we have emphasized the use of our
framework on cloud platforms, there is nothing however in principle that stops it from
being applied to cloud infrastructure or applications.

In our model tasks arrive to the system according to a batch Markovian arrival process
(BMAP). We call an arrival a job and each server request that a job makes is a task.
Speci�cally, allowing batch arrivals means that jobs may request a random number of
units of server upon arrival. When the random variable governing the number of tasks
that may be requested by a job has higher expectation or takes on a greater range of
values we consider the arrival process to be more `batchy'. It is important to highlight that
allowing tasks to arrive in batches can be viewed as modeling jobs as Erlang distributed
with a random shape parameter, which is substantially more general than the exponential
distribution employed in [116] and [115]. Our notion of a batch is similar to the notion of
a `supertask' in [133].

In addition, this arrival process allows time varying behaviour to be modelled. We
incorporate `burstiness' (or unpredictability) into our model by using the property of
BMAPs that the arrival rate of tasks for these processes may change randomly throughout
time according to an underlying modulating Markov process. For simplicity we suppose
that this underlying process alternates between a baseline state and a state where the
arrival rate is increased. We view the di�erence between the baseline arrival rate and the
randomly increased arrival rate, as well the frequency with which the randomly increased
rate is expected to occur, as measures of the system's burstiness. For example, if the
system experiences large, frequent, unpredictable increases in the arrival rate then we
would say that the system is more bursty than a system experiencing infrequent minor
increases in the arrival rate. It will become clear to the reader how this simplifying
assumption can easily be relaxed to permit a modulating Markov process with any �nite
number of states, rather than just two (and we provide details on this in the concluding
section). In addition, our framework can be applied in the case that it is known when
a change in the arrival rate will occur during our planning horizon. We call instances of
known changes in the arrival rate predictable bursts.

The presence of a bu�er allows a cloud platform provider to store tasks which arrive
when all of the servers are in use, so that the tasks may be processed once a server becomes
available. In many cases it may be possible for a user to be aware that their task is waiting
in the bu�er, rather than actively undergoing service. In a competitive environment the
user may choose in such a circumstance to attempt service with an alternative cloud
platform provider (i.e. abandon the system). Accounting for user behaviour such as this
may be highly bene�cial to cloud providers, and a key advantage of our framework is that
such extensions are often easily incorporated.

Our key result is an explicit matrix expression for the expected lost revenue during
[0, t] whenm servers are active, tasks may wait in a bu�er of size r, there is a cost per unit
time per unit of server, and a potentially di�erent cost per unit time per unit of bu�er. In
addition to the revenue lost from a task failing to enter the system we also suppose that
when tasks which are waiting for service in the bu�er abandon the system a loss is also
incurred by the system manager. We suppose that tasks will wait an exponential amount
of time before abandoning.

In the context of the model just described we show how our transient performance
measure (expected lost revenue during [0, t]) can be used by system managers to make

128 Chapter 7. Loss system models for cloud computing platforms

short term provisioning decisions. Furthermore, analysing the performance of the system
in terms of revenue losses due to blockages and abandonments is particularly relevant
in this setting since it realistically re�ects the penalties imposed on service providers
associated with violations of service level agreements. Our framework provides a key
prerequisite for the development of a capacity provisioning module that could be combined
with other tools in a realistic cloud setting to provide improvements in performance. In
Figure 7.1 we illustrate how our framework would combine with existing cloud architecture
such as micro services, service composition, and load balancing (summarized as a scheduler
for simplicity) and a cloud computing platform (represented as a cluster). In this setting,
these other aspects of the cloud architecture will have implications for the arrival rate
of jobs to a particular cloud computing platform, upon taking this into account our
framework provides a service that is complementary to the existing architecture.

Any improvements in performance from using our framework to provision a cloud
computing platform will clearly depend on the parametrisation of the real world system
to which it is applied. Parametrisation of MAPs is an area of ongoing research (see e.g.,
[134, 135, 136, 137, 138]), and tools are becoming readily available for real world managers
to utilize. Finally, some cloud providers now allow users to set automatic decision rules
on when to scale up or down capacity (see e.g., [139]) � after parametrisation of an
appropriate application speci�c model our framework could be applied to guide these
decisions.

Jobs
Scheduler

Jobs

Capacity Provisioning

Module

SLA and

operating costs

Cluster

Provisioning

Decision

System

State

Cloud details

(e.g. arrival rate,

abandonment rate/value)

Figure 7.1: Interaction of our framework with a cluster and existing cloud platform ar-
chitecture.

The analytical expressions that we detail and the increment in performance that is
gained when using them in place of traditional equilibrium based performance measures
is illustrated through several examples. In these examples we see that when a system
is subject to regular predictable bursts our method can lead to a substantial reduction
in losses. More modest improvements in performance are also seen when �uctuations in
demand are unpredictable.

An important aspect of our framework is that the computations needed for its online
implementation do not necessarily need to be performed online (although in many cases an
online implementation would be possible); the manager only needs access to the decision
corresponding to each potential system state. For a system with m servers, r bu�ers, and
simple burst behaviour, obtaining these decision rules will require the inverse and matrix
exponential of matrices with dimension 2(m+r+1) to be found. Using the basic form
of Gauss�Jordan elimination, a n × n matrix inverse can be computed in O(n3) steps.

7.1. Introduction 129

Various algorithms, each with their individual strengths and weaknesses, are available to
compute the matrix exponential (c.f. [140]): for a discussion of these issues see [141]. For
large systems it may be more practical to store decisions (i.e. two 2(m+r+1)-dimensional
vectors which give the optimal server and bu�er choices for each system state) and access
them when needed.

7.1.1 Related work

One of the main triggers behind our work is the observation that much of the work on
performance evaluation of cloud platforms is based on a description of the system in
equilibrium. Our work is based on a transient description of the system, which is prudent
since: i) the system may never reach equilibrium between changes in demand, and ii) a
transient procedure allows the manager to take advantage of information on the present
state of the system when making a provisioning decision.

In [96] Khazaei et al. propose an m server, queueing system with a capacity r bu�er as
an approximation to the type of real world distributed cloud computing platform system
we are interested in. In their model compute tasks arrive to an m server system according
to a homogeneous Poisson process, have a generally distributed service time, and are
able to occupy r input bu�er places if the system is already processing m tasks upon
arrival, but are otherwise lost. Through an analysis based on the equilibrium state of the
system the authors are able to determine the relationship between the number of servers
and input bu�er size and equilibrium performance indicators such as mean queue size,
blocking probability, and the probability that a task will enter service immediately upon
arrival. More recently Atmaca et al. [142] have provided a generalization of this work
that uses Phase-type distributions to model service times and the time between arrivals.
There are also generalizations of the model so that bursty (see e.g. [143]) and batchy (see
e.g. [144, 145, 133]) behaviour can be investigated, again from an equilibrium perspective.

A related presentation is given in [146] where Tan and Xia model the distributed cloud
from a revenue management perspective as a multi-class loss network with jobs of di�erent
types arriving according to a general renewal process. In [147] Bruneo gives a model based
on stochastic reward nets that is scalable to very large system sizes and is �exible enough
to be adapted to di�erent scenarios � similar performance metrics are again analysed
from an equilibrium point of view.

In [148] Maccio and Down introduce a model that has a single server which switches
between on and o� states according to the length of the queue. Again using steady state
analysis, several similar performance metrics are connected to the system parameters and
some key observations on how the system behaves are made.

A notable exception to the dominant equilibrium analysis is a discrete time model
predictive control based approach given by Zhang et al. in [126]. The empirical approach
taken in their work is presented as a promising initial step towards provisioning cloud
computing platforms and represents an approach that is methodologically complementary
to the one we present. Also of note is the recent work of van Leeuwaarden et al. in
[149], where a cloud provisioning algorithm based on heavy tra�c approximations and
asymptotic analysis is introduced and veri�ed using simulation.

Although MAMs have previously been used to study cloud computing platforms (see
e.g. [150, Chapter 21]), they have not yet been used to evaluate e�ective transient perfor-
mance measures. A related modelling formalism that also shows promise for the e�ective
transient analysis of cloud computing platforms is stochastic Petri nets. A key piece of
work investigating this avenue is [151], where a similar notion of transient and equilibrium

130 Chapter 7. Loss system models for cloud computing platforms

losses from blockages is investigated. The authors of this work do not incorporate system
operating costs into their performance measure, and so the trade o� between alternative
capacity choices and blocking is not explicitly considered. Rather the focus is on deter-
mining the resiliency of the system to exogenous uncontrolled changes in capacity (for
example due to system failure).

In the next section we will detail our model of a cloud computing platform, and then
in the subsequent section we will develop an encompassing model that takes the system
model as an input to allow our performance measure to be computed. This is followed
by some examples that show how to use the performance measures to make short term
provisioning decisions.

7.1.2 Organisation

The remainder of this chapter is structured as follows. In Section 7.2 we give a formal
description of our illustrative model for a cloud computing platform. Section 7.3 develops a
framework around this model that allows us to present a method of performance evaluation
in Section 7.4. In Section 7.5 we illustrate our method. We provide an outlook to future
research in Section 7.6.

7.2 Model of cloud computing platforms

In this section we introduce a model of cloud computing platforms that re�ects the features
we discussed in the introduction and which we will later use in the development of our
novel encompassing performance evaluation model. We have been careful to be very
clear about the assumptions of the model which we use to illustrate the framework by
detailing the features that we do include, while simultaneously emphasizing the scope of
applicability by providing some detail on the features that we do not include.

We assume that each arrival to the system consists of at most ` tasks, each of which
requires its own server (e.g. a CPU core) to be processed or unit of bu�er to be held in.
Furthermore, we assume that the system exists in a random environment where tra�c
usually arrives according to some `normal' rate, but occasionally arrives at some other
`bursty' rate. Throughout this chapter we use the term rate in the following sense: when
an event occurs at rate λ at time t we take that to mean that the probability of the event
occurring during [t, t + h] is λh + o(h) where o(h)/h → 0 as h → 0, i.e. o(h) converges
to zero faster than a linear function of h. Let Y (t) ∈ {1, 2} equal 1 when arrivals are
occurring at the normal rate at time t and equal 2 when arrivals are occurring at a bursty
rate at time t. Moreover, when Y is in state 1 it transitions to state 2 at rate α, and
when Y is in state 2 it transitions to state 1 at rate β. Let the number of tasks that a
job brings to the system be governed by the random variable K, we assume that K has
�nite support. We denote the arrival rate of jobs consisting of k ∈ {1, . . . , `} tasks when
Y (τ) = y at time τ > 0 by λ(k)

y . Note that the transitions of Y govern the frequency and
duration of unpredictable bursty periods. It is a simple matter to extend our model to
have multiple burst types of di�erent frequency and duration.

Let X(t) ∈ {0, 1, . . . ,m,m+ 1, . . . ,m+ r} be the number of tasks being processed at
time t by a cloud platform with the preceding arrival process, m servers, and a bu�er of
size r. When X(t) ≤ m, then all of the tasks in the system are being served, however
when X(t) > m, then m tasks are being served and X(t) −m are waiting in the bu�er.
We assume that tasks require an exponentially distributed service time with mean µ−1

s .

7.2. Model of cloud computing platforms 131

Therefore, the set of parameters (λ
(k)
y , y ∈ {1, 2}, k ∈ {1, . . . , `}) and µ−1

s together allow
for the distribution of job processing times to be Erlang distributed with a random shape
parameter K and rate parameter µ−1

s .

If a job consisting of k tasks arrives to the system when there are fewer than k servers
or bu�er units available, (i.e. X(t) greater than m+ r − k), then the job is blocked from
entry and lost. Furthermore, we also incorporate impatience into our model. When a
task is in the bu�er, it will wait up to an exponentially distributed amount of time with
mean µ−1

a for service to commence, but will otherwise abandon the system without being
served. The states and transitions of this �nite state Markov process are illustrated in
Figure 7.2 for the case when each arrival to the system always consists of only a single
task. For clarity, we also compactly summarize the full set of transitions in Table 7.1.

At this point we reiterate that the performance evaluation framework we develop in
the next section can also be applied to many models other than the one we have detailed
in this section. For example, the servers in a cloud may not necessarily be homogeneous
(as we have assumed). So long as the simple task-based workload that we assume applies
to the system under consideration, the processing rates of each server can be modi�ed
through the entries in Table 7.1. To see this, consider the case that a system possesses a
�xed amount of processing power that is shared between the tasks being processed, then
xµs would be replaced by µs/x in the table.

0, 1

λ1

µs

1, 1

λ1

2µs

2, 1

λ1

3µs

λ1

mµs

m, 1

λ1

mµs+µa

m+1, 1

λ1

mµs+2µa

m+2, 1

λ1

mµs+3µa

λ1

mµs+rµa

m+r, 1

0, 2

λ2

µs

1, 2

λ2

2µs

2, 2

λ2

3µs

λ2

mµs

m, 2

λ2

mµs+µa

m+1, 2

λ2

mµs+2µa

m+2, 2

λ2

mµs+3µa

λ2

mµs+rµa

m+r, 2

α β α β α βα β α β α β α β α β

Figure 7.2: State transition diagram for a distributed computing platform with time
homogeneous unpredictable arrivals, m servers, r units of bu�er, and arrivals always
consisting of a single task (` = 1).

Table 7.1: Transition rates of our bursty batch cloud computing platform.

Transition Rate at time τ States

(x, 1)→ (x, 2) α 0 ≤ x ≤ m+ r
(x, 2)→ (x, 1) β 0 ≤ x ≤ m+ r

(x, 1)→ (x+ k, 1) λ
(k)
1 0 ≤ x ≤ m+ r − k, 1 ≤ k ≤ `

(x, 2)→ (x+ k, 2) λ
(k)
2 0 ≤ x ≤ m+ r − k, 1 ≤ k ≤ `

(x, y)→ (x− 1, y) xµs 0 < x ≤ m, y ∈ {1, 2}
(x, y)→ (x− 1, y) mµs + (x−m)µa m < x ≤ m+ r, y ∈ {1, 2}

132 Chapter 7. Loss system models for cloud computing platforms

7.3 Encompassing performance evaluation model

Now that we have a general model of how the system operates, we must de�ne some
additional stochastic processes that allow us to perform transient performance evaluation.
To see why it is necessary to utilize these additional processes, observe that X(t) does
not provide any information on blocked and abandoned tasks during [0, t] � we must
develop an encompassing model that also records these losses. As Chiera et al. do in
[115] and [116], we assume that each blocked task costs the manager of the system some
pre-determined amount θb > 0. Similarly, each task that abandons the system without
being served incurs a cost of θa. Furthermore, we suppose that each active server results
in a cost of θs per unit of time, and similarly each active unit of bu�er results in a cost of
θu per unit of time. Speci�cally, over any time interval [t1, t2] the system manager incurs
a deterministic cost of (mθs + rθu) (t2 − t1) to maintain m servers and r units of bu�er.
Similarly, when X is in a state x such that x > m + r − ` during a time interval [t1, t2]
and Y is in state y, a loss of

(t2 − t1) θb
∑̀

k=m+r−x+1

k λ(k)
y

is expected to be incurred from blocked tasks.
Table 7.2 summarizes the notation used for di�erent types of losses for the reader's

convenience.

Table 7.2: Cost parameters.

Parameter De�nition

θb Lost revenue from blocked task.
θa Lost revenue from abandoning task.
θs Server cost per unit time.
θu Bu�er cost per unit time.

Let Rm,rx,y (t) denote the revenue lost during [0, t] from blocked tasks (i.e. tasks that
attempt to enter the system when it is at capacity) when (X(0), Y (0)) = (x, y) and during
[0, t] there are m servers available with r units of bu�er. Similarly, let Am,rx,y (t) denote
the revenue lost during [0, t] from abandonments (i.e. tasks that leave the bu�er due to
impatience) and letMm,r

x,y (t) denote the cost of operating the system for t time units, each
with capacity consisting of m servers and r units of bu�er, and initial condition (x, y).
Therefore the expected revenue loss during [0, t], under the speci�ed initial condition
(x, y) and system size (m, r), can be written as

gm,rx,y (t) := E[Rm,rx,y (t)] + E[Am,rx,y (t)] + E[Mm,r
x,y (t)] . (7.2)

The function gm,rx,y is reminiscent of the capacity value function of [116] and [115], and
so we will also refer to it by that name. For a system with unit arrivals, no bursts in
the arrival process, no bu�er, no abandonments, and no capacity or bu�er costs gm,rx,y

reduces to the original capacity value function formulation. Our novel augmentation of
the original capacity value function with the additional operating cost term E[Mm,r

x,y (t)] is

7.3. Encompassing performance evaluation model 133

necessary for the method to be implemented as a provisioning framework. Despite this, the
key technical challenge in the evaluation of gm,rx,y (t) lies in the computation of E[Rm,rx,y (t)]
and E[Am,rx,y (t)]. The foremost reason that evaluation of E[Mm,r

x,y (t)] does not present a
technical challenge is that we assume system operating costs depend deterministically
on m and r. Within this assumption, a variety of cost formulations are possible. For
example, economies of scale may exist in the provisioning of servers. So that issues such as
these do not distract from our primary technical contribution (which is the determination
of E[Rm,rx,y (t)] + E[Am,rx,y (t)]) we assume that the expected system operating costs accrue
according to the simple linear function

E[Mm,r
x,y (t)] = (mθs + rθu) t ,

independently of X(0) and Y (0). In the case that operating costs were to vary determin-
istically with time, this function could be modi�ed accordingly.

It is instructive to write an integral expression for Rm,rx,y (t) so that some intuition for
our performance evaluation model can be obtained, with I{B} the indicator function for
event B, as follows:

∫ t

0

θb

 2∑
y=1

`−1∑
s=0

∑̀
j=s+1

λ(j)
y jI{X(τ) = m+ r − s}I{Y (τ) = y}

 dτ .

This random variable can be understood as the value of an accumulation of the arrivals
from underlying Poisson processes that are switched `on' and `o�' as needed by the pair
of binary valued random processes that indicate when X and Y are in states that result
in blockages. The term E[Rm,rx,y (t)] is the expected value of this integral conditioned on
X(0) = x and Y (0) = y. Soon we will see that MAMs provide a powerful and convenient
avenue to evaluation of this expression. Since abandonment losses result from transitions
of (X,Y) rather than holding times of (X,Y), it is not straightforward to write a similar
expression for E[Am,rx,y (t)]; nonetheless MAMs may still be used for its evaluation.

The value over the planning horizon of [0, t] of a change in m and r to m̃ and r̃ is

gm̃,r̃x,y (t)− gm,rx,y (t) . (7.3)

This expression is the basis of our transient provisioning framework. By choosing values of
m̃ and r̃ that maximize revenue during the chosen planning horizon, the system manager
is able to improve performance. Server and bu�er space will only be active if it is expected
to generate more revenue than the operating costs of having it active. Importantly, �nding
these optimal values is a simple numerical procedure that only needs to be performed once
for any given set of parameters. Although not necessarily required, for large systems it
may be sensible that the decision rules be stored in memory that is fast to access.

We will now outline a novel method (that generalizes results in [131], [116], and [115])
for obtaining explicit values of (7.2) (and therefore (7.3)). A key observation of this
chapter is that the process (X(t), Y (t) : t ≥ 0), or simply (X, Y), which gives the current
number of tasks held by the system and the current mode of arrivals, can be viewed as
the background process of a pair of batch Markovian arrival processes (BMAPs). The
�rst of the BMAPs records the number of tasks which are blocked from entry to the
system during [0, t] due to capacity constraints, while the second BMAP records the
number of abandonments during [0, t]. We will refer to these as the `blocking BMAP' and
`abandonment BMAP' respectively. The rest of this section aims to show how viewing

134 Chapter 7. Loss system models for cloud computing platforms

the system in this way allows MAMs to be exploited so that the explicit computation of
E[Rm,rx,y (t)] and E[Am,rx,y (t)] can be performed, which in turn allows (7.2) and (7.3) to be
computed.

A MAP is a counting process with arrivals of di�erent types governed by the transitions
and holding times of another �nite state Markov chain (see e.g. [118] and [119]). Generally
for MAPs each arrival is indexed by an element from a set C. For our blocking MAP we
will denote the elements of this index set by the numbers 1 to ` as follows Cb = {1, . . . , `}.
This notation follows from the fact that a type k arrival results in k lost tasks. For our
abandonment MAP the index set consists of a singleton representing an abandonment
type arrival, that is Ca = {a}. Letting Nm,r

k (t) be the number of type k arrivals during
[0, t] when there are m servers and r units of bu�er, it is clear from the linearity property
of expectation that

E[Rm,rx,y (t)] = θb
∑̀
k=1

kE[Nm,r
k (t) |X(0) = x, Y (0) = y] (7.4)

and, letting Nm,r
a (t) be the number of abandonments during [0, t] when there are m

servers and r units of bu�er, we similarly have

E[Am,rx,y (t)] = θa E[Nm,r
a (t) |X(0) = x, Y (0) = y] . (7.5)

Hence our focus is on determining these values.
Aside from the set C, MAPs, as described earlier in Chapter 5, are parametrised by a

sequence of matrices (D0, Dh, h ∈ C) with the properties:

(i) the matrices (Dh, h ∈ C) are non-negative;

(ii) the matrix D0 has negative diagonal elements and non-negative o� diagonal ele-
ments;

(iii) the matrix D0 is nonsingular; and

(iv) the matrix D = D0 +
∑
h∈C Dh is an irreducible in�nitesimal generator.

The matrix D governs the transition rates of a background Markov process, while the
matrices (Dh, h ∈ C) specify the arrivals that are associated with relevant holding times
and transitions of the background process. The matrix D0 speci�es the transitions which
do not have arrivals associated with them and can be calculated from property (iv). To
obtain our transient performance measures we must specify particular parametrisations
of these matrices.

In our case (X, Y) is the background process which governs the arrivals of blocked
and abandoned tasks for each of our MAPs. We encode the transitions of this background
process, as given by Table 7.1 and illustrated for the case where arrivals only ever bring a
single task in Figure 7.2, in the 2(m+ r + 1) dimensional matrix D with states arranged
as follows:

(0, 1), (1, 1), (2, 1), . . . , (m+ r, 1), (0, 2), (1, 2), . . . , (m+ r, 2) .

For our blocking MAP, when (X, Y) is in a state (x, y) with x ≥ m+r+2−h arrivals
of types k ∈ {1, . . . , h} occur according to Poisson processes with rates λ(k)

y . In order to
record these losses we de�ne for y ∈ {1, 2} the (m+ r + 1)× (m+ r + 1) square matrices

7.3. Encompassing performance evaluation model 135

Dy,k for k ∈ {1, . . . , `}, which for diagonal elements (i, i) with i ≥ m + r + 2 − k have

entries λ(k)
y and 0 otherwise. For example, if m = 2, r = 1, and ` = 2 then we require

Dy,1 =

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 λ
(1)
y

 , Dy,2 =

0 0 0 0
0 0 0 0

0 0 λ
(2)
y 0

0 0 0 λ
(2)
y

 ,

for y = 1, 2.

Combining the bursty and normal arrivals (blocking losses) together we have the ma-
trices

Dk =

(
D1,k 0

0 D2,k

)
, k = 1, . . . , ` . (7.6)

Recalling that D0 = D −
∑`
k=1Dk, based on this parametrisation we are able to

write down an in�nite dimensional block matrix that is an in�nitesimal generator of a
process which describes the state of the cloud computing platform model, introduced in
Section 7.2, augmented by a state that counts cumulative lost tasks (i.e.

∑`
k=1 kNk), as

follows:

Q =

D0 D1 D2 · · · D`

D0 D1 · · · D`

D0 · · · D`

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 .

In this block matrix each row of matrices corresponds to a di�erent total number of blocked
tasks during [0, t], or the `level' of the overall blocking MAP. The �rst row corresponds
to no blockages, while the second row corresponds to a single blockage, and so on for the
further rows. Within each row the block D0 corresponds to movements of the background
or `phase' process (X, Y), which are the transitions that are not associated with any
blockages (i.e. of the system model). In our case this is services, arrivals (when not at
capacity), and changes between bursty and normal arrival behaviour.

Similarly, for our abandonment MAP a transition of (X, Y) from a state (x, y) to
(x−1, y) with x ≥ m+1 results in an arrival of type a (abandonment loss) with probability

(x−m)µa
[
mµs + (x−m)µa

]−1
, (7.7)

and otherwise a service has occurred. To see that this is the case, observe that when the
process is in state (x, y) with x ≥ m+1, this implies that there must bem tasks undergoing
processing and x−m tasks waiting in the bu�er. Each of the tasks undergoing processing
has an independent exponentially distributed amount of time with mean µ−1

s until it
completes, and each of the tasks waiting in the bu�er has an independent exponentially
distributed amount of time with mean µ−1

a until it abandons. Equation (7.7) then follows
from the properties of the exponential distribution.

To obtain an in�nite dimensional block matrix that is an in�nitesimal generator for
Na we place the departures that correspond to an abandonment in the matrix Da. This
2(m+r+1) dimensional matrix has entries i µa for i = m,m+1, . . . ,m+r, 2(m+1), 2(m+

136 Chapter 7. Loss system models for cloud computing platforms

2), . . . , 2(m+ r) at coordinates (i+ 1, i+ 2). Now, using D′0 = D −Da, we have that

Qa =

D′0 Da

D′0 Da

. . .
. . .
. . .

 .

Similar to the case for Qk, in the matrix Qa each row of matrices corresponds to a di�erent
total number of abandonments during [0, t], or the level of the overall abandonment MAP.
Since only a single abandonment can occur at a time, each row can be parametrised using
only D′0 and Da.

We have now completely de�ned our model of a distributed cloud computing platform
and the encompassing machinery that we will use to perform a transient performance
evaluation.

7.4 Transient performance evaluation

The simplest application of MAMs is to �nd the equilibrium distribution of a �nite state
Markov process. Given that the process has in�nitesimal generator Q, if we denote the
equilibrium distribution by (row vector) π and a vector of ones with the same dimension
as π by 1 then this simply amounts to solving the equation πQ = 0 subject to π1 = 1
where each component of π must be non-negative. This computation is straightforward on
modern computers for most �nite state space Markov processes of interest. For example,
this simple computation provides an alternative method for obtaining the probability given
by (7.1). The classical application of MAMs is to �nd the matrix-geometric stationary
distribution of a GI/M/1-type Markov chain, which is an in�nite-state process.

Generally speaking, the �eld of MAMs, and more broadly algorithmic probability, is
concerned with augmenting computational methods, such as the one just discussed, with
analytical results. Through this it is often possible to answer questions that are com-
putationally di�cult in the absence of analysis and analytically infeasible in the absence
of computational resources. The development of the framework that we are presenting
in this chapter falls exactly into this category of methodology. By utilizing the special
structure of MAPs, usual Markov process theory, and our formulation of the problem, we
are able to arrive at expressions that can be evaluated numerically to answer the challeng-
ing questions faced by managers of distributed cloud platforms. In the next subsection
we will derive the expected value of lost revenue during [0, t] conditional on particular
values of (X(0), Y (0)) for the unpredictable case, where the rates of the process are time
homogeneous, before incorporating predictable behaviour in the subsequent subsection.

7.4.1 Unpredictable arrival rate expected value

Using (Dk : 1 ≤ k ≤ `) and Da we have shown how to construct a pair of two dimensional
Markov processes, Rm,rx,y and Am,rx,y where the second dimension gives the value of lost tasks
from blockages and abandonments respectively. Using standard MAMs we show how to
�nd the expected value of these processes at a �nite time t in the form of an analytical
expression that can be evaluated numerically. Our novel formulation of the encompassing
performance evaluation model allows for systems of the type detailed in Section 7.2 to be

7.4. Transient performance evaluation 137

evaluated using Theorem 2.3.2 in [118].
Proposition 33 (given below) summarizes the application of [118, Theorem 2.3.2] to

our illustrative model. The proposition gives the expected lost revenue for �nite time
horizons as a function of di�erent choices of m and r, the current number of tasks in the
system x, and the current state of the unpredictable process y. Through straightforward
optimization of this function in terms of m and r at a chosen planning interval T a cloud
platform manager can dimension their system at the time points 0, T, 2T, . . . to obtain
performance improvements. We again highlight that this optimization need not necessarily
be performed online, the manager only needs access to the mapping (x, y) → (m, r) for
each (x, y) of interest up to some maximal capacity value.

Proposition 33. For constant (Dk : 1 ≤ k ≤ `), Da, and D the capacity value function
can be evaluated as

gm,rx,y (t) = (mθs + rθu + πD∗1) t− π0

(
exp(D t)− I

)
D−D∗1 , (7.8)

where

D∗ = θaDa + θb
∑̀
j=1

j Dj , D− = (1π −D)−1 ,

1 is a 2(m+ r+ 1) column vector of ones, π is the equilibrium distribution of the Markov
process (X, Y), π0 is a vector indicating that the process (X, Y) starts in state (x, y),
and I is an identity matrix of appropriate dimension.

The matrix D− is sometimes called the fundamental or deviation matrix and, to the
author's knowledge, was �rst introduced in [152]. This matrix is closely related to another
matrix via the relationship∫ ∞

0

(π0 exp(D t)− 1π)dt = D−1π

where the matrix on the left hand side also commonly goes by the name deviation matrix
(see e.g., [153]). A well developed theory has been developed surrounding these matrices,
as detailed in the references just given.

7.4.2 Incorporating predictable bursts

If the rate at which tasks arrive to a system is constant over any particular planning
horizon but varies between planning intervals, then a manager can use the framework
developed in the previous subsection tailored to each interval. The purpose of this sub-
section is to show how our framework can be adjusted when the rate at which tasks arrive
to the system is known (or believed) to change at predictable time instances within a
particular planning horizon [0, t]. Speci�cally, we adapt the framework we presented in
the previous subsection to the case of a predictably time-varying arrival rate when arrival
rate changes occur only at a countable number of distinct time points within a particular
planning horizon.

Suppose we have h distinct time periods, de�ned by their end points 0 < t1 < t2 <
· · · < th := t, which form a partition of [0, t], each having its own arrival rate. Denote
by D(i), D∗(i), and D

−
(i) the corresponding parametrisation in time period i. Then, using

the standard expression for the transient distribution of a time-homogeneous �nite state

138 Chapter 7. Loss system models for cloud computing platforms

Markov process for each interval (for details see e.g. [12, p. 259]), we may compute the
capacity value function as

gm,rx,y (t) = (mθs + rθu) t+

h∑
i=1

πti−1D
∗
(i−1)1(ti − ti−1)

−
h∑
i=1

π0,ti−1

(
exp

(
D(i−1) (ti − ti−1)

)
− I
)
D−(i−1)D

∗
(i−1)1 , (7.9)

where t0 = 0,

π0,ti := π0

i∏
j=1

exp
(
D(j−1)(tj − tj−1)

)
,

and πti is the equilibrium distribution of the Markov process with in�nitesimal generator
D(i).

This expression may be used in the same way as Proposition 33. In this case the
mapping (x, y) → (m, r) will also be dependent on the predictable bursts within the
planning horizon.

7.5 Illustrations

This section presents four illustrative applications of our method to models of distributed
cloud computing platforms. Each subsection illustrates a di�erent aspect of the method.
We will �rst apply the method to the simplest possible setting, that of a system with
only predictable and time homogeneous arrivals. We illustrate the connection between
our transient performance measure and transient decision making, as well as demonstrate
that this may provide modest improvements compared to decisions based on equilibrium
methods. Subsequently, we allow arrivals to vary with time in a predictable manner and
show that in this case the improvement over equilibrium methods may be quite substantial.
We then investigate unpredictable arrivals, where we again see that transient decision
making can outperform equilibrium decision making, even when the decision maker is
unaware of the unpredictable nature of the arrival process. Finally, we investigate the
e�ect of batch arrivals on system performance, and again see our policy may provide
improvements.

In our case the tra�c intensity varies according to the value of m that is selected by
our provisioning framework. Hence in this section we will �x the arrival process and study
the resulting changes inm and r. Similarly, the mean service time µs will be absorbed into
the choice of m and r in the same fashion. In the �nal example, however, the coe�cient
of variation is varied through the distribution of batch size, when arrivals of this type are
considered. We will evaluate the performance of our framework subject to an increasing
coe�cient of variation.

We note that for a cloud computing platform to be sustainable the values of the cost
parameters θb and θs (see Table 7.2) must be such that the expected cost of keeping a
server active for the duration of a job is lower than the revenue that would be lost from
a blocked job, and similarly for θa and θu.

Later in this section we will give an example analysis of batchy and bursty behavior
through speci�c parameter choices. These examples will suggest that, with our parameter
choices, accounting for batchiness of the arrival process may be more important than

7.5. Illustrations 139

accounting for burstiness.

7.5.1 Simple time homogeneous system

In this subsection we will explore the simplest case of our model using Figure 7.3 and
Figure 7.4. Assume that tasks of unit size arrive to a cloud computing platform according
to a Poisson process with rate 80 (that is, we expect 80 tasks to arrive per time unit),
tasks take an exponential amount of time with mean 1/2 to be processed, and will wait in
a bu�er for up to an exponential time with mean 1 to begin processing before abandoning
the system. Blockages and abandonments incur losses to the manager of sizes 0.5 and 0.55
respectively. Units of server cost 0.5 and units of bu�er cost 0.1 to operate per unit of
time. Since there are no unpredictable changes in the arrival rate we may set λ(1)

1 = λ
(1)
2

and arbitrarily take α = β = 1.
The �rst term in (7.8) gives the equilibrium rate of loss from this system given a choice

of m and r. Minimizing over this term in (m, r) is equivalent (or superior) to many of the
equilibrium performance measures considered by the papers discussed in the introduction.
In Figure 7.3 we show this function for di�erent bu�er and server choices. It is evident
that low (< 30) or high (> 50) values of m result in a greater rate of loss (lighter shading)
for a wide range of values of r. For m = 40 there is a low rate of loss (dark shading)
for a wide range of values of r; as r increases the loss rate experience a mild decrease.
In fact, if we were to only consider the equilibrium of the system in our decision making
process, then we would choose to have 40 servers and 8 units of bu�er; although m and
r combinations near to this point experience a similar rate of loss.

In the �rst panel of Figure 7.4 we display the function (7.8) of our system with r = 15,
lower initial tasks in the system x = 10 (black lines), higher initial tasks in the system
x = 50 (grey lines), lower number of servers m = 35 (solid lines), and higher number of
servers m = 45 (dashed lines). For the lower initial tasks in the system it can be seen
that choosing the lower number of servers is expected to reduce the loss incurred by the
system's manager. On the other hand, the higher number of initial tasks has reduced
losses when there are more servers utilized. This illustrates the relationship between
expected losses, server and bu�er choice, and the current number of tasks in the system.

Using the relationship illustrated in the �rst panel of Figure 7.4 we are able to choose

0 50 100 150

50

100

150

Buffer (r)

S
er

v
er

s
(m

)

(a)

40

60

80

R
a
te

o
f

L
o
ss

0 50 100 150

50

100

150

Buffer (r)

S
er

v
er

s
(m

)

(b)

Figure 7.3: (a) Equilibrium rate of loss for di�erentm and r combinations for equilibrium
policy and (b) contour plot of equilibrium rate of loss for di�erent m and r combinations
for equilibrium policy.

140 Chapter 7. Loss system models for cloud computing platforms

0 0.5 1 1.5
0

20

40

Planning horizon (T)

L
o
st

re
v
en

u
e

(a)

m = 35

m = 45

0 20 40 60 80 100
0

20

40

60

x

O
p
ti
m
a
l
ch

o
ic
e
(T

=
1
.5
)

(b)

0 50 100

1

t

G
a
in

fr
o
m

p
o
li
cy

(%
)

(c)

Ser
ve

rs

Buffer

x
=

50

x
=

10

Figure 7.4: (a) expected losses during [0, T] when r = 15 for di�erent choices of m
and initial condition x, (b) optimal bu�er (m) and server (r) choices for di�erent initial
conditions x, and (c) estimated expected gain from adjusting according to the optimal
choice in (b) every 1.5 time units in place of using the optimum given by (a).

m and r optimally for a planning horizon of 1.5 for each x, which we display in the third
panel of the same �gure. It can be seen that as there are more tasks in the system a
higher number of servers is optimal. Interestingly, the optimal bu�er size is convex in the
number of tasks, with a minimum value at the equilibrium choice.

In the third panel of Figure 7.4, we are �nally able to illustrate that the transient
performance measure based framework developed in this chapter provides an improvement
over equilibrium based frameworks. We compare 106 sample paths of the system operating
using the equilibrium server and bu�er choice with 106 sample paths where the server and
bu�er choice is adjusted each 1.5 time units according to the optimal choices displayed
in the third panel. In this case our policy results in an improvement of approximately
1% compared to �xed server and bu�er sizes chosen according to equilibrium system
behaviour.

7.5.2 System with predictable bursts

This short subsection has the simple goal of highlighting that our framework may perform
extremely well when a system is subject to predictable bursts in the arrival rate. Suppose
that the system is the same as in the previous subsection, except that now tasks arrive
at rate 60 during

⋃
i∈{0,2,4}[10i, 10(i + 1)) and at rate 80 otherwise, as illustrated in the

lower panel of Figure 7.5. If the system manager was to make an equilibrium based server
and bu�er choice, then there are three obvious alternatives: i) provision according to
λ = 80 to avoid SLA violations during bursts, ii) provision according to λ = 60 to avoid
unnecessary operating costs during non burst periods, or iii) provision according to some
mix of the previous two alternatives.

The solid curve in the upper panel of Figure 7.5 compares the lost revenue of a manager
who uses the �rst of these alternatives (over-provision with λ = 80) with the lost revenue
of a manager who uses our framework. This illustration suggests that the manager that
adjusts server and bu�er choices every 1.5 time units according to our transient provision-
ing framework reduces their losses by approximately 7.5% after 60 time units, compared to
the manager who provisions statically according to an equilibrium performance measure.

The use of equilibrium performance measures does not, however, preclude the use of

7.5. Illustrations 141

0 10 20 30 40 50 60
50

60

70

80

90

t

λ
(t
)

0 10 20 30 40 50 60
0

20

40

t
G
a
in

(%
)

Figure 7.5: Lower panel: predictable bursts in the arrival rate. Upper panel: gain from
using our transient policy in place of a static equilibrium policy (solid) and from using
our policy in place of a dynamic equilibrium policy (dashed).

dynamic provisioning. The dashed curve in the upper panel of Figure 7.5 compares the
lost revenue of a manager who provisions at any given time according to the equilibrium
policy computed for the arrival rate of tasks at that time. In this case we still see a
substantial gain from dynamically using a transient policy in place of dynamically using
equilibrium policies. The strength of the transient policy likely primarily arises from its
incorporation of present state information at each decision epoch (which is impossible
using equilibrium methods).

7.5.3 Unpredictable time-varying system

In this subsection we demonstrate that our framework can improve system performance
in the presence of unpredictable time varying behaviour. Furthermore, we investigate

10 20 30

2

4

6

λ(b)

α

E1 Losses in [0,576]

1.36

1.38

1.4

1.42

1.44

·104

10 20 30

2

4

6

λ(b)

α

% Gain from E2

0

0.2

0.4

0.6

0.8

1

10 20 30

2

4

6

λ(b)

α

% Gain from T1

0

0.2

0.4

0.6

0.8

1

10 20 30

2

4

6

λ(b)

α

% Gain from T2

0

0.2

0.4

0.6

0.8

1

Figure 7.6: Comparison of losses in [0, 576] for an equilibrium policy that does not account
for bursty behaviour (E1), an equilibrium policy that does account for bursty behaviour
(E2) with our transient policy when bursty behaviour is not (T1) and is (T2) accounted
for.

142 Chapter 7. Loss system models for cloud computing platforms

and compare the e�ects of the burst frequency and the burst magnitude on the expected
lost revenue. The key message of the subsection, as illustrated by Figure 7.6, is that
using our transient policy may provide an improvement on system performance, even if
it is applied without knowledge that bursty behaviour is occurring. We will compare
the policies E1, E2, T1, and T2, where E and T correspond to equilibrium and transient
decision making respectively, and 1 and 2 correspond to bursty unaware and aware decision
making respectively.

To measure burst frequency and magnitude we allow arrivals of unit size to occur
according to a Markovian arrival process with two underlying states: the states correspond
to a `normal' demand regime and an `increased' demand regime. In Figure 7.7 we depict
these two states, their arrival rates, and the transition rates between them. When the
system is in the increased demand regime it moves to the normal regime at rate 5. In
this case each time the arrival rate increases due to a burst, the increase is expected to
persist for 0.2 time units. On the other hand, when the system is in the normal regime
it moves to the increased regime at rate α. A higher value of α therefore corresponds to
more frequent bursts. We assume that a burst results in the arrival rate increasing by
λ(b). Since we wish to analyse the e�ect of burst frequency and magnitude, in order to
keep the overall time average arrival rate equal to 80 (as for the time homogeneous case
already considered), we counterbalance the increased demand regime arrival rate with
a decrease in the normal arrival rate of λ(b)α/(α + 5). This follows from the fact that
the ergodic distribution of the background process that alternates between normal and
increased demand is

(
5/(5 + α), α/(5 + α)

)
.

Increases in λ(b) result in a higher arrival rate during burst periods and a decreased
arrival rate during the normal regime. Increases in α result in a smaller di�erence between
normal and increased demand, but increase the frequency with which bursts occur.

Now that it is clear how we are measuring and evaluating burstiness, we return to
Figure 7.6. In the �rst panel of this �gure we consider a manager who uses the equilibrium
policy from the homogeneous arrival subsection � that is, they do not account for the
bursty behaviour at all. It can be seen that individual increases in α or λ(b) have a minor
e�ect on losses, but that when both of these parameters increase together larger losses
are incurred.

In the second panel of Figure 7.6 the manager is aware of the values of α and λ(b). Since
individual increases in the burstiness parameters do not seem to a�ect losses substantially,
we do not expect that a change in policy will be very bene�cial. This is con�rmed by the
second panel of Figure 7.6. When the bursty parameters are high together however, we
see that accounting for the presence of burstiness is bene�cial, even from an equilibrium

80− λ(b)α

α+5
80 + λ(b)

α

5

Figure 7.7: Two state background process. The left state represents the normal arrival
rate while the right state represents bursty periods. The parameters α and λ(b) determine
burst size and duration, however the average rate of arrivals is �xed at 80.

7.5. Illustrations 143

perspective.
The third panel shows that a gain of approximately 0.8�1% is generated through the

usage of our transient policy, even when the burstiness of the system is not accounted for.
Indeed, the fourth panel of the �gure is highly similar to the third panel, indicating that
in this example the policy performs equally well when the manager does not account for
burstiness. Notably, our transient policy performs better than the equilibrium policy, even
when the equilibrium policy is bursty aware and the transient policy is bursty unaware.

7.5.4 Batchiness

After having seen that our transient policy reduces losses in a bursty system, even when
the manager is unaware of the bursty behaviour, we will now investigate if that is also
true for a batchy system. In this case we will de�ne a system to be more batchy when
holding the expected number of arrivals in any time interval [0, t] to be the same, the
arrivals are able to come in batches of larger size.

To model this we �x a maximum batch size ` and let the arrival rate of batches of size
k be λ/(k `). From the basic properties of Poisson processes, we see that

∑̀
k=1

E[Nk(t)] =
∑̀
k=1

k
λt

k `
= λ t ,

so that an overall expected number of arrivals λt during [0, t] is maintained. A higher
value of ` is, however, clearly more batchy. Speci�cally, recalling that K is a random
variable which governs the size of an arbitrary batch we have that

P(K = k) =
1

kH`
, k ∈ {1, 2, . . . , `} ,

where H` =
∑`
k=1 k

−1 is a harmonic number. Since it can be shown that the coe�cient
of variation of a job will be √

E[K] + Var(K)

E[K]
,

from this we can see that the coe�cient of variation for an arbitrary job is√
Hl (`+ 2)

2
− 1 .

This function is increasing in ` (as illustrated in the top panel of Figure 7.8), meaning
that increased batchiness (i.e. higher `) results in a higher coe�cient of variation. In this
example the coe�cient of variation lies in the range of approximately 0.7071 to 7.9322.

For our ongoing illustrative parameters, an increase in batchiness (or variation) results
in higher losses. Figure 7.8 focuses on the percentage reduction in losses that can be
achieved compared with provisioning according to the equilibrium policy of the earlier
homogeneous section (i.e. m = 40, r = 8) during the arbitrarily chosen time period
[0, 54]. The �gure shows that in this case the gains from accounting for batchiness may
be substantially greater than the gains from accounting for burstiness. For lower levels of
batchiness, ` ∈ {1, . . . , 10} using an equilibrium batchy aware policy appears to provide
similar gains to the transient batchy aware policy, and performs better than the transient
batchy unaware policy. This contrasts with the bursty scenario where the transient policy

144 Chapter 7. Loss system models for cloud computing platforms

0 5 10 15 20 25 30
0

5

10

Maximum Batch Size (`)

G
a
in

(%
)

(b)

Transient Batchy Unaware

Equilibrium Batchy Aware

Transient Batchy Aware

0 5 10 15 20 25 30
0

2

4

6

8

Maximum Batch Size (`)

C
o
effi

ci
en

t
o
f

v
a
ri

a
ti

o
n

(a)

Figure 7.8: (a) Coe�cient of variation of job size, (b) % reduction in lost revenue over
[0, 54] from incorporating batch information into the equilibrium policy (dots), updating
server and bu�er sizes periodically (solid), or both incorporating batch information and
using our transient policy (dashed) compared to a batchy unaware equilibrium policy over
the period.

was superior even when bursty behaviour was not accounted for by the decision maker.
For higher levels of batchiness the transient policies are each superior, yielding gains of
approximately 10%, even if they are not aware that the system is batchy (with the batchy
aware transient policy performing approximately 1% better than the batchy unaware
transient policy).

7.6 Concluding remarks

The main contribution of this chapter is the observation that the capacity value function
can be found using matrix analytic methods. Based on this observation, and upon in-
corporating operating costs for servers, we have presented a framework that may be used
for transient provisioning and performance evaluation of cloud computing platforms. The
purpose of the present chapter is to introduce a framework for the analysis of models
which are applicable to the domain of transient provisioning of cloud computing plat-
forms. As such we presented our framework in the context of a model that is compa-
rable to those which are currently state of the art in the literature of this area (e.g.
[142, 147, 144, 96, 145, 133, 148, 143]). The complexity of the illustrative model was
chosen as a balance between presentation and relevance. We envisage that many possi-
ble extensions to the underlying model could be implemented within our encompassing
performance evaluation framework with varying degrees of complexity.

Generalizing the system model to have more than two states in the underlying burst
modulating process Y follows from simply augmenting the matrix Dk in (7.6) with an
additional matrix Dy,k for each additional state in Y . Such modi�cations result in a linear
increase in complexity, the dimension of the matrices for which it is necessary to compute

7.6. Concluding remarks 145

exponentials and inverses of is the number of states of Y multiplied by (m+ r+1). In the
same way, to model a system failure that does not result in removal of tasks but simply a
pause in service, the matrix Dk could be augmented with a matrix representing a set of
states with a reduced (or 0) service rate; which is again a linear increase in complexity.
It would also be possible to model the case that such a failure removes all (or a random
number) of tasks from the system through some careful adjustment of the rates in D; in
this case the formulation is changed but the complexity is not a�ected. Furthermore, it
would also be possible to apply our framework in the case of multiple resource types by
taking the process X to be multidimensional (which is simply a notational increment in
methodology).

The above additional applications of our framework rely on modi�cations of the struc-
ture of gm,rx,y (t). Recall, however, that underlying our framework is the function

gm̃,r̃x,y (t)− gm,rx,y (t) ,

which could also be modi�ed. For example, by adding a term that depends on the di�er-
ence m− m̃, costs related to the provisioning of new resources could be included.

Despite the �exibility of our approach, there do exist limitations to our method that
remain a challenge. For example, we have assumed that abandonments occur on a task-
wise basis, when in reality all of the tasks from a particular batch arrival may abandon
together. Another limitation is that the model is inherently Markovian, so that we have
not been able to incorporate generally distributed service times for tasks (e.g. to model
heavy tailed behaviour). It is not obvious how to extend our framework to incorporate
these features.

Another avenue of future research could be aimed at obtaining higher order moments
of

Rm,rx,y (t) +Am,rx,y (t) +Mm,r
x,y (t) .

Doing so would enable risk taking preferences to be incorporated into the decision making
process that we have developed and allow more sophisticated performance evaluation.

CHAPTER 8

Functional form based optimisation for stochastic
networks with blocking

8.1 Introduction

Many stochastic networks encountered in practice are a�ected by blocking, where network
tra�c is lost due to congestion. For instance, packets in a communication network may
be dropped as a result of excessive delays, computing jobs lost because of insu�cient
capacity, and logistical processes disrupted due to low stock levels. A key decision when
designing such networks is how to allocate resources to limit losses, while maintaining low
costs.

For instance, consider a supply chain network designed for maintaining capital goods
such as aircraft or MRI machines. Downtime of these goods is expensive and disruptive,
and should be minimized to the extent possible. So when a capital good breaks down, the
necessary spare parts are quickly dispatched from the nearest stock point to its location.
When unavailable at the nearest stock point, the parts must be sent from a more distant
location, increasing the downtime. Blocking in this case occurs when a spare part is
unavailable at the closest stock point, and stochasticity arises from the uncertain lifetime
of capital goods. In 2003 sales and services related to spare parts accounted for 8% of the
gross domestic product in the United States [154], and consequently signi�cant research
attention has been devoted to the question of how to design the spare parts network
in order to balance swift resp onse to breakdowns with the costs of maintaining a large
supply of spare parts, see, e.g., [155, 156, 97]. A similar problem appears in the context
of emergency services, where ambulances and �re trucks should be carefully located in
order to ensure a fast response to emergencies [157, 158, 98].

A second example of stochastic networks with blocking is found in cellular wireless
networks, where calls have to be handed over between cell towers as the user moves around,
but may be dropped if the receiving tower has insu�cient capacity available. Naturally,
call dropping is to be avoided, and capacity management in cellular networks has been
widely studied [159, 160, 161]. A similar issue plays a role in the recent development of
mobile cloud computing, where computational jobs are served at small `cloudlets' close
to the user, rather than at a remote cloud computing facility [162]. While this reduces

147

148 Chapter 8. Stochastic networks with blocking

delay compared to traditional cloud computing, each cloudlet only has limited capacity,
and migrating jobs between cloudlets due to user mobility may lead to performance issues
and blocking.

In the context of the examples just given the problem under consideration is often
summarised as an optimisation problem,

min
c∈C

f(c) , (8.1)

where f(c) := EF (c) is a function C → R from a set of parameters to be optimised over
to the real numbers, that represents a performance metric of interest. Here F (c) is a
random variable that follows a di�erent law depending on the parameter c. Let c? denote
a solution to this optimisation problem. In many circumstances of practical interest
this problem is intractable for the real-world system under consideration, yet it is still
hoped to �nd a parameter choice ĉ? which ensures f(ĉ?) is as close to f(c?) as possible.
Roughly speaking, there are two categories of approaches for solving capacity management
problems in stochastic networks: analytical and simulation-based optimisation.

Analytical approaches typically take the complex, intractable stochastic network and
optimisation problem of interest (8.1), and approximate it with a simpler network for
which a related tractable optimisation problem,

min
c∈C

f̃(c) , (8.2)

can be formulated. For instance by approximating it with a product-form network [163,
95, 164], by assuming that the components of the network behave independently [165, 166],
by looking at a �uid scaling [167], or by looking at large-scale systems [168, 169]. This
closed-form approximation can then be used for solving the capacity management problem,
either analytically [9, 170], numerically, or using a combination of both [114].

The second class of solution methods is simulation-based optimisation, where the
capacity allocation is evaluated and updated using simulation of the stochastic network
of interest. In such a set-up it is assumed that it is possible to obtain samples f̂(c) of
the random variables F (c) evaluated at speci�c parameters c, which are equal to f(c)
in expectation. These algorithms assume that it is possible to generate a sequence of
samples

(
f̂(c(n)), n ∈ {1, 2, . . . , N}). Based on these samples, algorithms are developed

which aim to solve the optimisation problem (8.1). In general the goals of this area of
research are to provide rigorous performance guarantees that c(n) → c? as n→∞ and to
ensure this convergence occurs as fast as possible (i.e., c(n) as close to c? as possible for
N as small as possible).

The canonical simulation-based approach is stochastic approximation [171, 172], where
the sequence of approximate optimisers is generated according to

c(n+1) = c(n) − α(n)H(n)∇f̂(c(n)) ,

where α(n) is a step-size or learning rate, H(n) is a linear map, and ∇f̂(c(n)) is an estimate
of the Jacobian ∇f(c(n)). When H(n) is an identity matrix and α(n) = β/n where
β ∈ R+ is some positive real number, we recover the classical Robbins�Monro algorithm
[173]. When H(n) is an identity matrix and ∇f̂(c(n)) is estimated using �nite di�erences,
we recover the classical Kiefer-Wolfowitz algorithm [174]. In this case

∑∞
n=1 α

(n) = ∞
and some other conditions on the sequence of �nite di�erence estimates must hold for
convergence to be guaranteed. These algorithms are adaptations of gradient descent to

8.2. Outline of the functional form approach 149

the stochastic setting. Adapting Newton and quasi-Newton type methods, where H(n) is
taken to be the inverse of the Hessian matrix, to the stochastic setting, is currently a hot
research topic [175].

Both analytical-approximation and simulation-based approaches have weaknesses that
prevent straightforward application to complex stochastic networks. In the case of an-
alytical approximations, it is often impossible to �nd an approximation for the network
of interest that is su�ciently accurate and captures all the relevant features. As a re-
sult, any resource management decision made based on the approximate model may not
work well in the original model. Simulation-based optimisation typically displays bet-
ter accuracy, but su�ers from large computational costs, which makes its application to
high-dimensional stochastic networks infeasible.

Recently, the authors of [11] introduced a hybrid approach, that exploits theoretical
knowledge of the stochastic network to signi�cantly reduce computational time of the
simulation-based approach. The authors suppose that the performance metric f is un-
known in closed form but can, as in the simulation-based approaches discussed above, be
evaluated subject to noise at particular capacity choices according to a random variable
f̂(c) with Ef̂(c) = f(c). As in the analytic-approximation approach, they propose to ap-
proximate the performance metric f with some functional form f̃ based on analytical ap-
proximations for the network and to then optimise f̃ . This analytic approximation is then
augmented with simulation: the optimisation is performed ensuring that f̂(c(0)) = f̃(c(0))
for some c(0) ∈ C. These two steps are then iterated, creating a sequence

(
c(n), n ∈ N0),

and it is shown that for a speci�c model, with a well chosen f̃ form, c(n) → ĉ where
ĉ is close to c?. The hybrid approach was shown in [11] to work exceptionally well in
stochastic networks without blocking. Notably this approach does not require estimates
of the Jacobian or Hessian matrices.

Their approach, however, does not easily carry over to our setting. The addition of
blocking fundamentally changes the dynamics of the stochastic network, and the relevant
objective function changes as well, from a functional of the queue length to one of the
blocking probabilities. Moreover, we introduce additional complexity by looking at the
discrete problem of optimizing over the number of servers at each station in the network
rather than the service rate as in [11]. In this chapter we describe how to modify the
approach from [11] to stochastic networks with blocking, by proposing and evaluating the
practical performance of several functional forms. We apply this approach to a realistic
example, test the method using standard and non-standard networks, and show that it
can outperform stochastic approximation.

The remainder of this chapter is organised as follows. In the next section an overview
of the functional-form optimisation approach introduced in [11] is given. In Section 8.3 the
model we are interested in and the relevant objective function are given. Following this,
in Section 8.4 we detail our search for a good functional form. Then, in Section 8.5 we
summarise our �ndings in the form of two algorithms that can be used to �nd approximate
optimisers for our objective function. In Section 8.6 we demonstrate that these algorithms
work well on a realistic network under a variety of scenarios. We conclude in Section 8.8.

8.2 Outline of the functional form approach

In this section we provide an overview of the functional-form optimisation approach de-
veloped in [11], which we will later apply to our stochastic network setting with blocking.
As introduced in the previous section, the object of study is an objective function which

150 Chapter 8. Stochastic networks with blocking

takes values in the real numbers
f : C → R ,

that represents a performance metric of interest, where C is a set of network parameters
that we aim to optimise over. For instance, c ∈ C could parametrize the service rates
or number of servers at each station of a queueing network. The f could incorporate
the transient or steady-state behaviour of the network. For instance, in [11] the authors
looked at the weighted expected number of jobs in the system in equilibrium, and in this
chapter we consider the rate in steady-state at which jobs depart from the system without
entering service (fraction of blocked jobs).

Determining a value
c? ∈ arg max

c∈C
f(c) , (8.3)

is often crucial to ensure that the system of interest operates in an acceptable manner. As
discussed in Section 8.1, owing to the complexity of our stochastic network, the function
f is typically unknown and can only be evaluated according to a random variable F̂ such
that EF̂ (c) = f(c). Using time-consuming simulation it is possible to obtain samples of
F̂ , which we denote f̂ . It is desired to use the information contained in these samples
to �nd an approximation of c?. The objective of this chapter is to develop a method for
closely approximating c? using as few evaluations of F̂ as possible, for a speci�c model
that is detailed in the next section.

The functional-form optimisation approach utilises pre-determined or assumed knowl-
edge of f to augment the information obtained from simulation, to speed up the process
of approximating c?. This structural information is expressed in a closed-form expres-
sion f̃(c, τ), which is both a function of the network parameters c and some (potentially
vector-valued) τ , that is used to tune f̃ so that it �ts f well locally. Depending on the
complexity of f̃ we then solve either analytically or numerically for

c′ ∈ arg max
c∈C

f̃(c, τ) , (8.4)

to approximate c?. Here the f̃ is selected to ensure that (8.4) can be solved in closed
form, or using a fast numerical procedure, in contrast to (8.3).

We assume that τ is chosen from some set. The quality of the approximation (8.4) to
(8.3) depends on: (i) whether the set of functions

{
f̃(·, τ)

}
τ
has elements which approx-

imate f well, and (ii) whether we can reliably identify these high performance elements
(in terms of τ). As we will see, a successful application of this approach relies on choosing
a good f̃ , which requires knowledge of the fundamental behaviour of the network. For
the remainder of this section we assume that a good form is known and give an iterative
procedure for choosing τ . The sequence of samples (f̂ (n), n = 1, . . . , N) are used to guide
our selection of τ .

Given an initial value of c = c(0), which can be chosen randomly or using expert
opinion, we �rst evaluate f̂(c(0)) using simulation. We then set f̂(c(0)) = f̃(c(0), τ (1)) and
solve for τ (1). We thus arrive at our �rst approximation function f̃ (1)(·) := f̃(·, τ (1)), see
Figure 8.1a1. Then, as in (8.4), we �nd c(1) ∈ arg maxc f̃

(1)(c) as our �rst approximation
for c?.

1Note that while in Figure 8.1a the domain of f is one-dimensional for ease of presentation, in gen-
eral we are interested in high-dimensional stochastic networks, which is one of the main causes for the
complexity of the problem under consideration.

8.2. Outline of the functional form approach 151

(a) step 1 (b) step 2

Figure 8.1: Two iteration steps of a functional-form optimisation algorithm.

Having found our �rst approximation for c? in c(1), we then re�ne our approxima-
tion for f around c(1). This is done by evaluating f̂(c(1)) using simulation, and solving
f̂(c(1)) = f̃(c(1), τ (2)) for τ (2). This results in a new approximation f̃ (2) = f̃(·, τ (2))
that intersects f at c = c(1) in expectation, see Figure 8.1b. So while the selection of
the functional form f̃ requires fundamental insights into the behaviour of queueing net-
works, in contrast to purely analytic approximations this approach does not rely solely
on inaccurate queueing formulas, since the simulation is used to evaluate the stochastic
network.

Generalising this procedure we arrive at the sequence of approximating functions:

f̃ (n)(·) := f̃(·, τ (n)), n = 1, 2, . . . , (8.5)

with corresponding maximisers

c(n) := arg max
c∈C

f̃ (n)(c), n = 1, 2, (8.6)

In each iteration the tuning parameter τ (n) is obtained by solving

f̂(c(n−1)) := f̃(c(n−1), τ (n)), n = 1, 2, (8.7)

Unless it appears that the procedure will not converge, we continue with this until
the di�erence ||c(n) − c(n−1)|| is su�ciently small. This approach relies on the fact that
f̃(·, τ (n)) provides a good approximation for f around c = c(n−1) and consequently the
algorithm is likely to move in the correct direction in each iteration step. This is also where
the gains in computational costs are made compared to methods which exclusively use
simulation-based optimisation. Instead of, for instance, having to run many simulations
in order to estimate the Jacobian (or Hessian) as is done in stochastic approximation,
the functional-form approach essentially uses f̃ (which is a function C → R) to provide
∇f̃(c) as an approximation for the gradients ∇f(c), and requires only a single evaluation
f̂ per iteration. In addition to these computational savings, we also believe that this
approach is less sensitive to the variance of F̂ than approaches that rely on estimates of
gradients (since it uses only point estimates which are likely to be less noisy than gradient
estimates).

In case this approximation needs to be re�ned further, one can use the �nal c(n)

152 Chapter 8. Stochastic networks with blocking

as a starting point for a simulation-based optimisation approach with guaranteed conver-
gence properties, such as stochastic approximation. This second stage may have improved
accuracy over the functional-form approach described above, but can be computation-
ally costly. However, by �rst obtaining a near-optimal solution using the fast hybrid
functional-form approach, the more expensive purely simulation-based approach requires
fewer iterations to �nd the optimiser, thus signi�cantly reducing the overall computational
costs compared to using simulation-based optimisation exclusively.

8.3 Stochastic networks with blocking

We next describe the model and the objective function considered in the remainder of
the chapter in Section 8.3.1, and provide some examples in Section 8.3.2. It is worth
remarking upon that the applicability of our approach and even of our eventual choice
of functional form is by no means limited to the class of models described below. As
discussed in Section 8.2, the full model is only evaluated using simulation (in order to
estimate the f(c(n−1))), and one may add many details and extensions to the simulation
model that are not present in the model outline below. However, it is important to retain
the basic components of this model (e.g., blocking, no waiting room) in order to obtain
the best possible results.

8.3.1 Model outline

We consider a network consisting of a set of stations L := {1, . . . , L}. Each station
could, for example, represent a base station in a cellular network, or a stock point in a
spare parts network. Customers arrive into the network according to extraneous arrival
processes, move between stations to receive service, and then depart from the network.
Each station l has cl servers that can each serve a job. We refer to cl as the capacity
of station l, and denote c = (c1, . . . , cL). If a job arrives at a station to �nd no servers
available it will depart from the network immediately, and we say it has been blocked. If
a job is accepted for service, then it will remain at the station for a generally distributed
amount of time with �nite expectation � there are no other restrictions imposed on the
service distributions.

There are R job classes R = {1, . . . , R}. Each class r is associated with Nr stations
collected in the vector ψr = (l

(r)
1 , l

(r)
2 , . . . , l

(r)
Nr

), l(r)i ∈ L. We assume that any station

appears at most once in any set ψr, i.e., l
(r)
i 6= l

(r)
j for all i 6= j and all �xed r ∈ R. A

class-r job arriving to the system is �rst served at station l(r)1 ∈ L. For i = 1, . . . , Nr − 1,

upon completion of service at station l(r)i the job next attempts service at station l(r)i+1.

Upon completion of service at station l(r)Nr
the job leaves the network.

There is a network operator who must expend resources to maintain the servers, and is
incentivised to do this by revenue collections when jobs complete service at each station.
Each server at station l costs θl > 0 per unit time to provision, and we denote θ =

(θ1, . . . , θL). A service completion of a class- r job at station l
(r)
i generates θr,i > 0

revenue for the network operator, quantities which we store in θ. If a job is blocked
at a station l

(r)
i with i > 1, then the operator retains the revenue generated by the

successful service completions at the preceding stations l(r)1 , . . . , l
(r)
i−1. Addressing the

trade-o� between keeping the capacity costs low and having high revenue collection (by
ensuring few blockages) is the purpose of our model.

8.3. Stochastic networks with blocking 153

We assume that we are able to observe arrivals and blockages at each station over
a long time horizon (through simulation), and that we can distinguish the class of each
arrival and blocked job. The number of class-r arrivals to station l(r)i in the time interval
[0, t] is given by Ar,i(t). For i > 1 the quantity Ar,i(t) clearly depends on the blocking

experienced by that job class at stations l(r)1 , . . . , l
(r)
i−1 and the exogenous arrivals to the

network of class-r jobs. The quantity Ar,1(t) is the number of exogenous class r arrivals

to the network (and station l(r)1) in the time interval [0, t]. Based on our observations we
are able to determine the long-run average arrival rate of class-r, which we assume exists
and converges with probability 1 to a deterministic constant λr ∈ R+ as time t goes to
in�nity:

1

t

∫ t

0

Ar,1(s)ds → λr , as t→∞ . (8.8)

We make no further assumptions on the arrival processes. They could for example be
Markovian, renewal type with independent and identically distributed inter-arrival times
(see e.g., [176, 132]), or could have inter-arrival times that are not identically distributed
by being within the class of Markovian arrival processes (see e.g., [118, 120]).

The number of class-r blockages at station l(r)i in [0, t] is given by Br,i(t), which we are
also able to observe over very long time-periods. Combining this with our observations
of the arrivals we are able to determine the long-run proportion of class-r jobs arriving
at station l(r)i which are subsequently blocked at that station. We suppose this quantity,
which depends on the capacity of the stations (potentially all of them), converges with
probability 1 to a deterministic constant pr,i(c) ∈ (0, 1]:

Br,i(t)

Ar,i(t)
→ pr,i(c) as t→∞ . (8.9)

We aim to optimise the performance of this system, as just described, operating in
equilibrium. Let us denote by 〈·, ·〉 the usual inner product operator, then the expected
net rate of revenue generation by the system in equilibrium can be written as

f(c) = −〈c,θ〉+
∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1− pr,j(c)

)
, (8.10)

which is our objective function. This objective function is inspired by the capacity value
function investigated in [115, 116] in the context of Erlang-B loss systems and later gen-
eralised in the previous chapter in the context of provisioning cloud computing platforms.
We aim to �nd

c? ∈ arg max
c∈NL

f(c) . (8.11)

Later, in order to apply our optimization approach we need to work with continuous
functions of c, although the capacity presented in this section is discrete. In order to relax
this feature we make the following assumption.

Assumption 34. When a job arrives to a station with (non-integer capacity) c, if the
current number of jobs at the station is equal to bcc+ 1, then the job is blocked. If upon
arrival there are bcc jobs already present, then the newly arriving job is accepted with
probability c − bcc. If there are less than or equal to bcc − 1 jobs present at an arrival
epoch, then the arrival is accepted.

154 Chapter 8. Stochastic networks with blocking

This results in a continuous relaxation of the objective function that matches (8.10)
at integer points. In case our (approximate) optimal solution is non-integer, we round to
the closest integer.

We also make a natural non-degeneracy assumption that the optimal capacity allo-
cation is strictly positive. The implication of this assumption is that we are essentially
working with systems that are known from naive capacity choices to be pro�table, but
that it is aimed to improve the pro�tability.

Assumption 35. The optimal capacity is greater than or equal to one for all stations,
that is c?l ≥ 1 for l = 1, . . . , L.

8.3.2 Speci�c examples

In this subsection we give four examples of systems which can be embedded into the class
of models we described in the previous subsection. The �rst is based on extremely classical
work in the �eld of telephony communications and consists of a single station with only
one class of jobs, see Figure 8.2a. In order to show the large increase in the complexity of
(8.10) that results from small changes to this simple model, in our next example we add
one more station and keep the network single class. We then return to the single station
case but add another class to see that this adds a comparable level of complexity. Our
�nal example is more complex and is intended to give a �avour of the type of system our
approach is intended for.

(a) single station (b) tandem network

Figure 8.2: Two small network instances.

Example 1. Consider a system where there is only a single station (L = 1) and c1
units of capacity are allocated. Customers arrive to this station according to a Poisson
process with rate λ1 and have generally distributed service times with expected value µ−1.
Here L = {1} and ψ1 = (1) with l(1)

1 = 1. This system can be recognized as a M/G/c/c
queue, and the long-run proportion of blocked jobs is given by the well-known Erlang-B
loss formula (see e.g. [95])

p1,1(c1) =
(λ1/µ)c1/c1!∑c1
i=0

(
λ1/µ

)i
/i!

. (8.12)

Capacity costs θ1 per time unit to provision, and a successful service completion results
in the operator collecting θ1,1 revenue, so the objective function (8.10) can be explicitly
evaluated using (8.12) as

f(c1) = −c1 θ1 + λ1 θ1,1

(
1− p1,1(c1)

)
, (8.13)

8.3. Stochastic networks with blocking 155

which must be maximised over C = N. Notice that this function is not directly amenable
to calculus-based methods of optimization, due to the discrete nature of the denominator
of the blocking probability (8.12). It is, however, quite straightforward to evaluate on
modern computers and so even for large values of c1 the optimal capacity can be found
using brute force. �

Example 2. Consider a system with two stations of capacity c1 and c2 respectively,
see Figure 8.2b. In this example there is still only a single class of jobs, which arrive to
the �rst station according to a Poisson process with rate λ1. Each job will �rst attempt
service at the �rst station and then, upon a successful service completion, attempt service
at the second station. Here L = {1, 2}, R = {1}, ψ1 = (1, 2) with l(1)

1 = 1 and l(1)
2 = 2.

A key observation to make is that although p1,1(c1) is independent of the capacity of the
second station, p1,2(c) depends on both c1 and c2. This is because greater capacity at the
�rst station results in a greater number of successfully processed jobs continuing to the
second station.

Since the operator collects θ1,1 and θ1,2 revenue for completions at the �rst and second
stations respectively, our objective function (8.10) for this system is

f(c) = −θ1 c1 − θ2 c2 + λ1 θ1,1

(
1− p1,1(c1)

)
+ λ1 θ1,2

(
1− p1,1(c1)

)(
1− p1,2(c)

)
, (8.14)

which must be maximised over C = N2. In Section 8.7.1 we provide an explicit expression
for f(c), that we then use to evaluate the performance of our algorithm in Section 8.4.3.
It is seen that the complex interactions between blocking proportions at each station and
capacity allocations at other stations are the primary reasons our model is inherently
more di�cult to handle than the models considered in [11]. �

Example 3. Consider a system with one station of capacity c1. In this example we add
a second class of jobs to Example 1, so L = {1} and R = {1, 2}. Jobs of class r arrive
to the station according to a Poisson process with rate λr. Each job attempts service
at the station and then, upon a successful service completion departs the system. Here
ψ1 = ψ2 = (1) with l(1)

1 = 1 and l(2)
1 = 1.

Since the operator collects θ1,1 and θ2,1 revenue for completions of the �rst and second
classes respectively, our objective function (8.10) for this system is

f(c) = −θ1 c1 + λ1 θ1,1

(
1− p1,1(c1)

)
+ λ2 θ2,1

(
1− p2,1(c1)

)
(8.15)

which must be maximised over C = N2. �

Example 4. Consider a system of six stations L = {1, . . . , 6} with �nite capacities c =
(c1, . . . , c6) and 12 customer classes R = {1, . . . , 12}. Suppose these classes visit stations
in the following orders ψ1 = (1), ψ2 = (1, 3), ψ3 = (1, 3, 5), ψ4 = (1, 4), ψ5 = (1, 4, 5),
ψ6 = (1, 4, 6), ψ7 = (2), ψ8 = (2, 4), ψ9 = (2, 4, 6), ψ10 = (2, 3), ψ11 = (2, 3, 6), and
ψ12 = (2, 3, 5). Jobs arrive to the �rst station of each class according to a renewal process
and each station has a di�erent service time that is the same for all classes. Capacity at
each station costs θl to provision per time unit, so |θ| = 6, and completion of a class-r
job at station l generates θr,l revenue, implying |θ| = 28. We apply our algorithm to this
system in Section 8.6. �

156 Chapter 8. Stochastic networks with blocking

8.4 Finding the right functional form

We are now in a position to use the functional-form approach outlined in Section 8.2
to �nd a good approximation for the optimal resource allocation (8.11). Recall that we
cannot solve (8.11) directly because the objective function (8.10) is typically not known
in closed-form, and we must rely on simulation. We believe that a tailormade functional
form approach to a speci�c model that we are interested in has signi�cant bene�ts over
existing frameworks, such as gradient ascent, which assume a generic objective function.

In order to apply our approach we need to �nd a good functional-form f̃ . We do so
in this section in four stages:

(i) In Section 8.4.1 we consider several classes of functional forms for a single-station
network;

(ii) In Section 8.4.2 we modify the functional forms to remove the need for a numerical
solver, and speed up the procedure;

(iii) In Section 8.4.3 we consider functional forms for networks with multiple stations;
and

(iv) In Section 8.4.4 we consider functional forms for multiple customer classes.

In Section 8.5 we consider the general case, using the insights obtained in Sections 8.4.1�
8.4.4. The reason for taking this gradual approach is to allow us to illustrate our method-
ology using small network instances �rst, and to �nd the right class of functional-form
approximations by eliminating those that do not work well even for small instances. So
while the algorithm for the general case in Section 8.5 is self-contained, the present section
provides the necessary intuition and justi�cation for the general algorithm.

8.4.1 Single-station case

We now focus on the single-station single-class network outlined in Example 1 of Sec-
tion 8.3.2 and depicted in Figure 8.2a. Recall from (8.13) that in this case the objective
function is given by

f(c1) = −c1 θ1 + λ1 θ1,1

(
1− p1,1(c1)

)
,

and we aim to �nd the maximizing server allocation c1 ∈ N. Here the costs θ1 and rewards
θ1,1 are known constants, and the arrival rate λ1 is independent of the capacity and is
assumed known (alternatively it can be found from simulation). The blocking probability
p1,1(c1), however, depends on the long-term behaviour of the underlying stochastic pro-
cess, and is in general not known explicitly. The exception of course is the case of Poisson
arrivals, where the p1,1 is given by (8.12).

Thus, in order to �nd a good functional-form approximation f̃ , we need to �nd a good
function p̃1,1(·, τ1,1) to approximate p1,1:

f̃(c1, τ1,1) = −c1 θ1 + λ1 θ1,1

(
1− p̃1,1(c1, τ1,1)

)
. (8.16)

This is because p1,1 contains all of the complex aspects in f , the remainder of f only
serves to connect the intricate revenue-reducing blocking behaviour in the system with
the simple cost structure we have assumed. Let ε > 0 be a desired level of accuracy and
N ∈ N be the maximum number of steps allowed. Given the right functional-form choice

8.4. Finding the right functional form 157

for p̃1,1, we can implement the outline of the iterative algorithm described in (8.5)�(8.7)
as follows.

Algorithm 36. Single-Station Optimisation

Initialize: Set n = 1 and choose c
(0)
1 > 0, ε > 0, N ∈ N.

(i) Evaluate p̂1,1(c
(n−1)
1) using simulation.

(ii) Compute τ
(n)
1,1 by solving

p̂1,1(c
(n−1)
1) = p̃1,1(c

(n−1)
1 , τ

(n)
1,1) . (8.17)

(iii) Approximate the optimal capacity by finding

c
(n)
1 ∈ arg max

c1>0
− c1 θ1 + λ θ1,1

(
1− p̃1,1(c1, τ

(n)
1,1)

)
.

(iv) If ||c(n−1)
1 − c(n)

1 || < ε or n > N: output c
(n)
1 .

Else: set n = n+ 1 and return to (i).

In order to �nd a good p̃1,1, we �rst list some key properties we would like it to have.
It should behave similar to the blocking probability in a loss system, as a function of
c1. First, p̃1,1 should be decreasing and convex in c1, so that as the capacity increases,
blocking probability decreases. Moreover, we require p1,1(0, ·) = 1 (if there is no capacity,
always block) and limc→∞ p1,1(c, ·) = 0 (as the capacity grows large, blocking probability
goes to 0). Finally, we would like there to be a unique τ1,1-solution to (8.17), and ideally
p̃1,1 should be analytically di�erentiable in c1 with a solution that we can identify so
that numerical solutions of Step (iii) are not necessary. Summarising, we search for p̃1,1

satisfying the properties:

(i) p̃1,1 is convex and decreasing in c1;

(ii) p̃1,1(0, ·) = 1;

(iii) limc→∞ p̃1,1(c, ·) = 0;

(iv) for all c1 ≥ 0 there is a unique τ1,1-solution to (8.17); and

(v) p̃1,1 is di�erentiable in c1 ≥ 0.

Although there exists a substantial literature analysing the Erlang-B blocking for-
mula (8.12) (see, e.g., [177, 178, 179, 180]), functional forms inspired by these works
did not meet the requirements (iv) and (v), and lead to poor approximations. Instead,
after extensive numerical exploration of a variety of forms, we selected two far simpler
expressions that showed promise: the ratio form

p̃1,1(c1, τ1,1) =
(
1 + (τ1,1 c1)k

)−1
, (8.18)

and the Weibull form
p̃1,1(c1, τ1,1) = exp

(
−(τ1,1 c1)k

)
. (8.19)

Note that both expressions contain an additional variable k ≥ 0 that we can tweak, thus
each inducing a family of functional forms. Our primary source of inspiration for these

158 Chapter 8. Stochastic networks with blocking

functional forms was complements of cumulative probability distribution functions for
random variables with non-negative support. Some of these forms were immediately ruled
out due to their complexity, for example the gamma and log-normal distribution functions
were eliminated due to the presence of factorials and error functions. We performed
the computations presented later in this section for a variety of di�erent forms (i.e.,
Pareto, trapezoidal, reciprocal), and (8.18) and (8.19) showed the most potential. We
also investigated switching the role of k and τ1,1 in (8.19), but the results from doing so
were not encouraging.

For both the ratio form and the Weibull form, Step (ii) of Algorithm 36 can be
computed in closed form. After some straightforward manipulations, it turns out that for
the ratio form, the solution of (8.17) can be written as

τ
(n)
1,1 =

1

c
(n−1)
1

(
1− p̂1,1(c

(n−1)
1)

p̂1,1(c
(n−1)
1)

)1/k

, (8.20)

and for the Weibull form we have that

τ
(n)
1,1 =

1

c
(n−1)
1

(
− log(p̂1,1(c

(n−1)
1))

)1/k

. (8.21)

In both cases, Step (iii) of Algorithm 36 is solved numerically.

In order to illustrate the quality of these functional forms, we plot in Figure 8.3 the
objective function f and several typical approximations f̃ based on both the ratio and
Weibull forms for di�erent values of k. We consider the case with λ1 = 16, θ1 = 0.2, and
θ1,1 = 1; although the following discussion holds more generally to the other parameter

choices we experimented with. In Figure 8.3a we plot f(c1) and f̃(c1, τ
(1)
1,1) from (8.16)

with p̃1,1 the ratio form (8.18) for k = 0.5, 1, 1.5, 2. Here τ (1)
1,1 is obtained from (8.20),

starting from c
(0)
1 = 2. In Figure 8.3b we do the same for the Weibull form (8.19) and the

corresponding value of τ (1)
1,1 is obtained from (8.21).

Inspection of these �gures shows that the ratio form with k = 1.5 or k = 1 appears
to result in a value of c(1)

1 close to optimal. This is despite these functions being quite
di�erent in terms of how closely they track the actual value of the objective function,
which highlights the importance of the approximating function having similar curvature
(derivative values) to the actual objective function near the true optimiser. For both
families of functions, k = 0.5 performs poorly.

The results in Figure 8.3 can be viewed as a single iteration step of Algorithm 36. In
Figure 8.4 we show how the c(n)

1 evolve for both forms, with k = 1, 1.5, 2. It can be seen
that the Weibull form with k = 2 returns the best approximate optimiser; this is perhaps
surprising given that after 1 iteration this form appears to perform quite poorly compared
to the others, as seen in Figure 8.4. To further investigate this, we plot in Figure 8.5 both
f(c1) and f̃ (n)(c1, τ) from (8.16) with p̃1,1(c1, τ

(n)
1,1) the Weibull form (8.19) with k = 2,

n = 1, 2, 3, 4. That is, we compare the true objective function to the approximate objective
functions obtained from the �rst four iterations of Algorithm 36. It is clear that by the
fourth iteration this form performs very well locally around the true optimiser.

8.4. Finding the right functional form 159

k = 0.5

k = 1.5

k = 1

k =
2

c1

f f̃ (1)

(a) ratio

k = 0.5

k
=
1.
5

k = 1

k
=
2

c1

(b) Weibull

Figure 8.3: Approximations with k = 0.5, 1, 1.5, 2.

0 2 4 6 8 10
0

10

20

n

c(
n
)

1

(a) k = 1

0 2 4 6 8 10
0

10

20

n

c(
n
)

1

c?1 ratio Weibull

(b) k = 1.5

0 2 4 6 8 10
0

10

20

n

c(
n
)

1

(c) k = 2

Figure 8.4: Evolution of Algorithm 36.

8.4.2 Speeding up the algorithm

In Section 8.4.1 we presented two classes of functional form, and demonstrated that for
the single-station case under consideration these perform very well with the right param-
eters. The Weibull form with k = 2 was especially promising in all of the experiments
we conducted. We also observed, however, that our functional forms are generally not
amenable to standard calculus-based analytical (i.e, non-numerical) methods for solving
Step (iii) of Algorithm 36. Resorting to numerical methods to solve this step does not
generally introduce speed or implementation issues for small to moderate sized systems,
but for large networks a closed-form solution is preferred. The goal of this section is
to modify the functional forms from Section 8.4.1 to allow for an analytical solution of
Step (iii) of Algorithm 36, while retaining their good performance.

160 Chapter 8. Stochastic networks with blocking

c
(0)
1 c

(1)
1 c

(1)
1 c

(2)
1 c

(2)
1 ≈ c

(3)
1 c

(3)
1 ≈ c

(4)
1

f

f̃ (1)

f

f̃ (2)

f

f̃ (3)

f

f̃ (4)

Figure 8.5: First four iterations for Weibull form with k = 2.

Recall that Step (iii) of Algorithm 36 requires us to �nd c(n) that maximizes

f̃(c
(n)
1 , τ

(n)
1,1) = −c(n)

1 θ1 + λ1 θ1,1 (1− p̃1,1(c
(n)
1 , τ

(n)
1,1)) .

Noting concavity and di�erentiability, doing so analytically requires solving

df̃(c
(n)
1 , τ

(n)
1)/dc(n)

1 = 0 .

For the ratio form (8.18) this means solving for c(n)
1

kc
(n)
1

k−1
τ

(n)
1,1

k (
1 + (τ

(n)
1,1 c

(n)
1)k

)−2

= − θ1

λ1θ1,1

, (8.22)

and for the Weibull form (8.19),

kc
(n)
1

k−1
τ

(n)
1,1

k
exp

(
−(τ

(n)
1,1 c

(n)
1)k

)
= − θ1

λ1θ1,1

. (8.23)

To illustrate why solving (8.22) and (8.23) is analytically intractable in general, consider
the Weibull functional form with k = 2, in which case (8.23) reduces to

c
(n)
1 exp

(
− (τ

(n)
1,1 c

(n)
1)2

)
= − θ1

2τ
(n)
1,1

2
λ1θ1,1

. (8.24)

Solving this relies on evaluation of the LambertW function, which is well-known to require
numerical approximation to be evaluated.

The key di�culty in solving (8.22) and (8.23) in terms of c(n)
1 is that c(n)

1 appears
twice in each equation, once in an exponential term and once in a polynomial term. We
propose to replace one of the c(n)

1 appearances with c(n−1)
1 and to the solve for the former

in terms of the latter. It turns out that this straightforward solution turns out to be very
e�ective. In all cases we found that it works well if we replace the c(n)

1 which appears as
a polynomial term. So for the ratio function, (8.22) reduces to

kc
(n−1)
1

k−1
τ

(n)
1,1

k (
1 + (τ

(n)
1,1 c

(n)
1)k

)−2

=
θ1

λ1θ1,1

, (8.25)

8.4. Finding the right functional form 161

and for the Weibull function we obtain

kc
(n−1)
1

k−1
τ

(n)
1,1

k
exp

(
−(τ

(n)
1,1 c

(n)
1)k

)
=

θ1

λ1θ1,1

. (8.26)

By integrating the left-hand side of (8.25) and (8.26) with respect to c(n)
1 we obtain the

modi�ed ratio functional form and the modi�ed Weibull functional form, respectively.
These results are summarized in Table 8.1, together with the functional forms from Sec-
tion 8.4.1. Note that τ (n)

1,1 in Table 8.1 is the same for (c) and (d) as for (a) and (b);

this is because τ (n)
1,1 is computed using c(n−1)

1 before we replace one of the c(n)
1 to simplify

Step (iii) of Algorithm 36. Also observe that for these new forms we do not have property
(ii), p̃(0) = 1 does not necessarily hold. As we saw in Figure 8.3, however, this may not
be an issue so long as the curvature of f̃ matches that of f around c?.

Table 8.1: Alternative functional forms and associated tuning parameters.

Name p̃1,1(c
(n)
1 , τ

(n)
1,1) τ

(n)
1,1

(
p̂1,1(c

(n−1)
1)

)

(a) Ratio
(
1 + (τ

(n)
1,1 c

(n)
1)k

)−1
1

c
(n−1)
1

(
1−p̂1,1(c

(n−1)
1)

p̂1,1(c
(n−1)
1)

)1/k

(b) Weibull exp
(
−(τ

(n)
1,1 c

(n)
1)k

)
1

c
(n−1)
1

(
− log(p̂1,1(c

(n−1)
1))

)1/k

(c) Modi�ed ratio −
∫ c(n)

1
0 kc

(n−1)
1

k−1
τ
(n)
1,1

k (
1 + (τ

(n)
1,1 x)

k
)−2

dx 1

c
(n−1)
1

(
1−p̂1,1(c

(n−1)
1)

p̂1,1(c
(n−1)
1)

)1/k

(d) Modi�ed Weibull −
∫ c(n)

1
0 kc

(n−1)
1

k−1
τ
(n)
1,1

k
exp

(
−(τ

(n)
1,1 x)

k
)
dx 1

c
(n−1)
1

(
− log(p̂1,1(c

(n−1)
1))

)1/k

Based on (8.25) and (8.26) we can explicitly replace numerical optimisation with

c
(n)
1 =

1

τ
(n)
1,1

−1 +

√√√√kc
(n−1)
1

k−1
τ

(n)
1,1

k
λ1θ1,1

θ1

1/k

∨ c ,

and

c
(n)
1 =

1

τ
(n)
1,1

log

kc(n−1)
1

k−1
τ

(n)
1,1

k
λ1θ1,1

θ1

1/k

∨ c ,

in Step (iii) of Algorithm 36 for the ratio and Weibull modi�ed forms respectively. Here c
is a boundary condition chosen su�ciently small to satisfy Assumption 35. In Figure 8.6
the progression of the algorithm using the modi�ed forms (c) and (d) is compared to the
case when (a) and (b) are used. In this case we have used an initial condition c(0)

1 = 30. It
can be seen that the forms (c) and (d) perform very similarly to (a) and (b), respectively.

8.4.3 Extension to tandem systems

In this subsection we expand our exploration to include the tandem-station single-class
network outlined in Example 2 of Section 8.3.2 and depicted in Figure 8.2b. Recall from

162 Chapter 8. Stochastic networks with blocking

0 2 4 6 8 10
0

10

20

30

n

c(
n
)

1

c?1 (a) (c)

(a) ratio, k = 1.5

0 2 4 6 8 10
0

10

20

30

n

c(
n
)

1

(b) ratio, k = 2

0 2 4 6 8 10
0

10

20

30

n

c(
n
)

1

c?1 (b) (d)

(c) Weibull, k = 1.5

0 2 4 6 8 10
0

10

20

30

n

c(
n
)

1

(d) Weibull, k = 2

Figure 8.6: Comparison of evolution of Algorithm 36 with di�erent forms.

(8.14) that for this model the objective function is given by

f(c) = −θ1 c1 − θ2 c2 + λ1 θ1,1

(
1− p1,1(c1)

)
+ λ1 θ1,2

(
1− p1,1(c1)

)(
1− p1,2(c)

)
, (8.27)

and we now aim to �nd the maximizing capacity allocation (c1, c2). Again, the costs and
rewards θ1, θ2, θ1,2, and θ1,1 are known constants, and the arrival rate λ1 is assumed
known or can be found from simulation.

As in the single-station single-class case, Example 1, we need to approximate the
blocking proportions p1,1 and p1,2 with functions p̃1,1 and p̃1,2 to �nd a good functional
form

f̃(c, τ) = −θ1 c1−θ2 c2+λ1 θ1,1

(
1−p̃1,1(c1, τ1,1)

)
+λ1 θ1,2

(
1−p̃1,1(c1, τ1)

)(
1−p̃1,2(c2, τ1,2)

)
.

(8.28)
In this case we implement steps in (8.5)� (8.7) as follows.

Algorithm 37. Tandem-Station Optimisation
Initialize: Set n = 1 and choose c(0) ∈ (0,∞)2, ε > 0, N ∈ N.

(i) Evaluate p̂1,1(c
(n−1)
1) and p̂1,2(c(n−1)) using simulation.

8.4. Finding the right functional form 163

(ii) For i = 1, 2 compute τ
(n)
1,i by solving

p̂1,i(c
(n−1)) = p̃1,i(c

(n−1), τ
(n)
1,i) . (8.29)

(iii) Approximate the optimal capacity by finding

c(n) ∈ arg max
c∈(0,∞)2

f̃(c, τ (n)) ,

where f̃ is defined in (8.28).

(iv) If ||c(n−1) − c(n)|| < ε or n > N: output c(n).

Else: set n = n+ 1 and return to (i).

This algorithm could be implemented using any of the functional forms in Table 8.1
and solving Step (iii) numerically, as in Section 8.4.1. For example, using the Weibull
form results in

p̃1,2(c2, τ
(n)
1,2) = exp

(
− (τ

(n)
1,2 c2)k

)
.

Seeking a closed form solution to Step (iii) of the above algorithm, we evaluate (8.28)
at (c

(n)
1 , c

(n)
2) and di�erentiate. This results in the set of equations

∂

∂c
(n)
1

f̃(c(n), τ (n)) = −θ1 −
dp̃1,1(c

(n)
1 , τ

(n)
1,1)

dc(n)
1

(
λ1 θ1,1 + λ1 θ1,2 (1− p̃1,2(c

(n)
2 , τ

(n)
1,2)

)
,

(8.30)

∂

∂c
(n)
2

f̃(c(n), τ (n)) = −θ2 −
dp̃1,2(c

(n)
2 , τ

(n)
1,2)

dc(n)
2

(
λ1 θ1,2 (1− p̃1,1(c

(n)
1 , τ

(n)
1,1))

)
. (8.31)

Setting (8.30) and (8.31) equal to 0 results in a system of equations that we would like to
solve in order to obtain a next approximation for the optimal capacity allocation.

In the previous subsection we saw that when c(n)
1 appears multiple times in an equation

that needs to be solved to �nd an optimal value (e.g., (8.24)), replacing all but one of
the c(n)

1 appearances with c(n−1)
1 results in a highly simpli�ed equation for which a closed

form solution can be found. However, after doing this for (8.30) and (8.31), it turns out
that each of these equations contain both c(n)

1 and c(n)
2 � so unfortunately solving these

equations still relies on highly intricate manipulations. Instead, we propose to decouple
solving for the c(n)

1 and c
(n)
2 : in (8.30) replace all appearances of c(n)

2 with c
(n−1)
2 , and

in (8.31) replace all appearances of c(n)
1 with c(n−1)

1 . To clearly indicate that we do this,
when f̃ is being used to optimise capacity at station l we denote it by f̃l. Consequently,
we work with the set of functions {f̃1, f̃2} in place of f̃ . We thus implicitly de�ne f̃1 and
f̃2 as

∂

∂c
(n)
1

f̃1(c
(n)
1 , τ

(n)
1) = −θ1 −

dp̃1,1(c
(n)
1 , τ

(n)
1)

dc(n)
1

(
λ1 θ1,1 + λ1 θ2,1 (1− p̂1,2(c(n−1)))

)
,

(8.32)

∂

∂c
(n)
2

f̃2(c
(n)
2 , τ

(n)
2) = −θ2 −

dp̃1,2(c
(n)
2 , τ

(n)
2)

dc(n)
2

(
λ1 θ2,1 (1− p̂1,1(c(n−1)))

)
. (8.33)

164 Chapter 8. Stochastic networks with blocking

This implies, for example, with a modi�ed Weibull form with k = 2 (introduced in (8.26))
we have

∂

∂c
(n)
1

f̃1(c
(n)
1 , τ

(n)
1) = −θ1 + 2c

(n−1)
1 τ

(n)
1

2
exp

(
−(τ

(n)
1 c

(n)
1)2

)(
λ1 θ1 + λ1 θ2 (1− p̂1,2(c(n−1)))

)
,

∂

∂c
(n)
2

f̃2(c
(n)
2 , τ

(n)
2) = −θ2 + 2c

(n−1)
2 τ

(n)
2

2
exp

(
−(τ

(n)
2 c

(n)
2)2

)(
λ1 θ2 (1− p̂1,1(c(n−1)))

)
.

Since this is one of the modi�ed forms, setting these to 0 and solving allows us to give
the explicit expressions for c(n)

1 and c(n)
2 :

c
(n)
1 =

1

τ
(n)
1

√√√√√√log

2λ1c
(n−1)
1 τ

(n)
1

2[
θ1 + θ2(1− p̂1,2(c(n−1)))

]
θ1

 ∨ c , (8.34)

c
(n)
2 =

1

τ
(n)
2

√√√√√log

2λ2c
(n−1)
2 τ

(n)
2

2
θ2(1− p̂1,1(c(n−1)))

θ2

 ∨ c , (8.35)

where c > 0 is a small constant to account for Assumption 35.

We now have four functional-form options, given in Table 8.1, each which can be
varied according to a parameter k. The functional forms (a) and (b) in Table 8.1 are
used in Algorithm 37 in combination with a numerical solver. The functional form (d)
may be used to obtain (8.34) and (8.35) for use in Step (iii) of Algorithm 37 in place of
a numerical solver, and similarly for the form (c). We state these results more generally
in Section 8.5.

For the simple tandem system we consider here it is possible to explicitly evaluate the
objective function (8.27) using matrix analytic methods. We perform these computations
in Section 8.7.1 to enable an exact evaluation of the various functional forms. These
methods do not extend to more complex settings. In Table 8.2 we present the solution
attained by the algorithm for each functional form with di�erent choices of k. The arrival
rate is λ1 = 16, the cost of capacity is θ1 = 0.2 and θ2 = 0.3, revenue is θ1,1 = θ1,2 = 1.
Using the matrix-analytic approach in Section 8.7.1, we can compute the real maximum
over the objective function (8.27) to be f(c?) = 4.37. We start the algorithm from each
element of c(0) ∈ Z2∩ [1, 60]2 and record for each functional form and value of k the mean
and variance of the objective function evaluated at the capacity allocation suggested by
the algorithm over these 60 instances, as well as the mean number of iterations before the
stopping condition |c(n)

1 − c(n−1)
1 |+ |c(n)

2 − c(n−1)
2 | < ε = 1 or n = N := 50 is reached.

For this example, it can be seen that form (c) performs poorly compared to the others,
as our modi�cations to obtain a closed-form solution for Step (iii) of Algorithm 37 have
substantially reduced accuracy. Form (b) with k = 2 and form (d) with k = 3 are the
best of the remaining options. For the Weibull form, our modi�cations have not resulted
in a reduction in accuracy, they may in fact be more accurate. Form (a) with k = 4, 4.5, 5
also performs well in terms of the objective, however it requires approximately 3 times as
many simulations as form (b), and regardless it does not perform as well as form (d) with
k = 3. Form (b) with k = 2 appears to be less accurate, but has faster convergence when
compared to form (d) with k = 3.

8.4. Finding the right functional form 165

Table 8.2: Objective function evaluated at output of Algorithm 37 as applied to Exam-
ple 2 from Section 8.3.2. Each entry in the table summarises a mean or variance of the
evaluation of the objective function at the capacity given by the �nal iteration from 3600
sample paths of the algorithm, each generated with a unique c(0) ∈ Z2 ∩ [1, 60]2. The
actual optimal value is 4.37.

k Mean obj. val. Var obj. val.
Mean

no. of iter.
Mean obj. val. Var obj. val.

Mean
no. of iter.

Algorithm 37 Algorithm 37 using (8.32) and (8.33)

(a) Ratio (c) Modi�ed ratio

1 -2.24 5.6 50 -0.3 0 3
1.5 -1.40 4.56 50 -0.04 0.04 6
2 -0.73 4.4 50 0.8 0.24 12
2.5 1.76 1.79 50 1.7 0.06 12
3 3.91 0.19 36 2.03 0.03 12
3.5 4.17 0.02 37 2.44 0.03 11
4 4.24 ≈ 0 11 2.61 0.06 10
4.5 4.25 ≈ 0 11 2.78 0.06 9
5 4.24 ≈ 0 9 2.9 0.1 9

(b) Weibull (d) Modi�ed Weibull

1 3.81 0.01 22 -0.03 ≈ 0 9
1.5 4.15 0.01 7 -0.58 0.02 31
2 4.18 ≈ 0 4 4 ≈ 0 12
2.5 4.11 ≈ 0 5 4.2 ≈ 0 8
3 4.04 ≈ 0 5 4.27 ≈ 0 7
3.5 3.96 ≈ 0 6 4.26 ≈ 0 7
4 3.84 ≈ 0 6 4.26 ≈ 0 7

8.4.4 Extension to two customer classes

This subsection considers Example 3 from Section 8.3.2; we return to the single station
case but add an additional class of jobs. As seen previously in (8.15), the objective
function in this case is

f(c) = −θ1 c1 + λ1 θ1,1

(
1− p1,1(c1)

)
+ λ2 θ2,1

(
1− p2,1(c1)

)
. (8.36)

As before, this may be approximated by replacing the blocking proportions p1,r with any
functional form p̃1,r like those listed in Table 8.1:

f̃(c, τ) = −θ1 c1 + λ1 θ1,1

(
1− p̃1,1(c1, τ1,1)

)
+ λ2 θ2,1

(
1− p̃2,1(c1, τ2,1)

)
. (8.37)

Adapting the statement of Algorithm 37 to this model is straightforward: in Steps (i)
and (ii) replace p1,2 and p̃1,2 with p2,1 and p̃2,1 respectively, and in Step (iii) use (8.37)
instead of (8.28).

Seeking a closed-form solution to Step (iii) of this algorithm, we di�erentiate f̃ from

166 Chapter 8. Stochastic networks with blocking

(8.37) with respect to c(n)
1 , and set this equal to 0. This results in the equation

∂

∂c
(n)
1

f̃(c(n), τ (n)) = −θ1 −
dp̃1,1(c

(n)
1 , τ

(n)
1,1)

dc(n)
1

λ1 θ1,1 −
dp̃2,1(c

(n)
1 , τ

(n)
2,1)

dc(n)
1

λ2 θ2,1 . (8.38)

We �nd ourselves with an equation that cannot be solved in closed form and has multiple
instances of c(n)

1 in it, for all functional forms (a)�(d). In Section 8.4.3 we overcame this

di�culty by replacing all but one of the c(n)
1 appearances with c(n−1)

1 . Because c(n)
1 plays

a fundamentally di�erent role in the second and third terms of (8.38), it is not clear which
appearance to replace with c(n−1)

1 .

Our approach is to combine p̃1,1(c
(n)
1 , τ

(n)
1,1) and p̃2,1(c

(n)
1 , τ

(n)
2,1) into a single function

p̃1(c
(n)
1 , τ

(n)
1). We then replace p̃1,1(c

(n)
1 , τ

(n)
1,1) and p̃2,1(c

(n)
1 , τ

(n)
2,1) with w1,1 p̃1(c

(n)
1 , τ1) and

w2,1 p̃1(c
(n)
1 , τ1), where w1,1 and w2,1 are appropriately chosen weights (as explained soon).

This results in a functional form

f(c, τ
(n)
1) = −θ1c1 +

[
λ1θ1,1(1− w1,1p̃1(c1, τ

(n)
1)) + λ2θ2,1(1− w2,1p̃1(c1, τ

(n)
1))

]
. (8.39)

This equation is only fully speci�ed given a procedure for �nding the weights and a choice
of p̃1. We now cover these two issues.

First, recall that we de�ned Ar,i(t) as the total number of class r jobs to arrive in the
interval [0, t] at the i-th station utilised by the class, and Br,i(t) as the number of class r
jobs to be blocked from entry to this station in [0, t]. As previously explained, observing
sample paths of these processes allows us to estimate pr,i(c). Let nl,r denote the index of

station l(r)i (i.e., nl,r = i for station l(r)i). We now de�ne

Al(t) :=
∑
r:l∈r

Ar,nl,r (t) ,

as the total number of jobs arriving at station l in the interval [0, t], and similarly

Bl(t) :=
∑
r:l∈r

Br,nl,r (t) ,

as the total number of jobs blocked at station l in the interval [0, t]. As in (8.9), where we
de�ned the quantity pr,i(c) to be used in our objective function (8.10), for each l ∈ L we
now de�ne pl(c) as the almost sure limit of the proportion of jobs blocked at station l:

Bl(t)

Al(t)
→ pl(c) , as t→∞ , (8.40)

which is the long run proportion of jobs blocked at station l (we assume existence). We
note that estimates p̂l(c) for pl(c) can be generated at the same time as p̂r,i(c) with almost
no additional computational burden. The weight given to p̃r,i when it is replaced with
p̃
l
(r)
i
, which is denoted wr,i, is given in terms of p̂

l
(r)
i

as follows

wr,i :=
p̂r,i(c)

p̂
l
(r)
i

(c)
.

8.5. Algorithms for network setting 167

Note that if the arrival processes to each class are independent Poisson processes, then
this procedure is exact.

Now, we want to let p̃1 utilise any of the forms given in Table 8.1. For example, in
the Weibull case with k = 2,

p̃1(c1, τ
(n)
1) = exp

(
− (c1τ

(n)
1)2

)
,

where τl is found by solving
p̂l(c) = p̃l(c1, τ

(n)
l) .

We can now evaluate (8.39) at c(n)
1 and di�erentiate to obtain

∂

∂c
(n)
1

f̃(c
(n)
1 , τ

(n)
1) = −θ1 −

dp̃1(c
(n)
1 , τ

(n)
1)

dc(n)
1

[λ1θ1,1w1,1 + λ2θ2,1w2,1] .

For our modi�ed functional forms (c) and (d) this can be explicitly evaluated. Upon
letting γ1 = λ1θ1,1w1,1 + λ2θ2,1w2,1, for the modi�ed Ratio form this is

c
(n)
1 =

1

τ
(n)
1

−1 +

√
γ1kc

(n−1)
1

k−1
τ

(n)
1

k

θ1

1/k

∨ c ,

and for the modi�ed Weibull form this is

c
(n)
1 =

1

τ
(n)
1

log

γ1kc
(n−1)
1

k−1
τ

(n)
1

k

θ1

1/k

∨ c .

The constant c > 0 is again a boundary condition to satisfy Assumption 35.

8.5 Algorithms for network setting

In this section the intuition developed in the previous section in the simple one and two
station cases is synthesised into pseudocode for two algorithms that can be used to �nd
approximate solutions to the maximisation problem

c? ∈ arg max
c∈NL

f(c) , (8.41)

in the network setting where

f(c) = −〈c,θ〉+
∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1− pr,j(c)

)
,

given earlier in (8.11) and (8.10). Recall that in this function:

• c is a vector of length L that contains the capacity allocated to each station;

• θl is the cost per unit time for maintaining capacity at station l;

168 Chapter 8. Stochastic networks with blocking

• θr,i is the revenue received for processing a class-r job at the i-th station it potentially
visits (l(r)i); and

• λr is the long-run arrival rate of class-r jobs (de�ned in (8.8));

• Nr is the maximum number of stations potentially visited by class-r jobs; and

• pr,i(c) is the long-run proportion of class-r jobs blocked from entry at the i-th station

they potentially visit (l(r)i) as a function of c (de�ned in (8.9)).

As outlined in Section 8.2, we aim to replace f with a functional form f̃ that allows
(8.41) to be solved using an iterative procedure combining simulation runs and optimi-
sation steps. In Section 8.4.1 this was achieved by replacing each pr,i with a function
p̃r,i, which are summarised in Table 8.3 below. Given these forms, a method to �nd an
approximate solution to (8.41) is given by Algorithm 38. Recall that ε > 0 is a target
accuracy and N ∈ N is a computational budget.

Algorithm 38. Basic functional-form optimisation
Initialize: Set n = 1 and choose c(0) ∈ (0,∞)L, ε > 0, N ∈ N.

(i) For r ∈ R for i = 1, . . . , Nr obtain p̂r,i(c
(n−1)) .

(ii) For r ∈ R for i = 1, . . . , Nr compute τ
(n)
r,i by solving

p̂r,i(c
(n−1)) = p̃r,i

(
c
(n−1)

l
(r)
i

, τr,i

)
.

(iii) Solve to find the next guess for the optimal capacity:

c(n) ∈ arg max
c∈(0,∞)L

− 〈c,θ〉+
∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1− p̃r,j

(
c
l
(r)
j
, τ

(n)
r,j

))
, (8.42)

(iv) If ||c(n−1) − c(n)|| < ε or n > N: output c(n).

Else: set n = n+ 1 and return to (i).

Table 8.3: Functional forms and associated tuning parameters for Algorithm 38.

Name p̃r,i(cl, τ
(n)
r,i) τ

(n)
r,i (p̂r,i(c

(n−1)))

(a) Ratio
(
1 + (τ

(n)
r,i c

(n)
l)k

)−1
1

c
(n−1)
l

(
1−p̂r,i(c(n−1))

p̂r,i(c
(n−1))

)1/k

(b) Weibull exp
(
−(τ

(n)
r,i c

(n)
l)k

)
1

c
(n−1)
l

(
− log(p̂r,i(c

(n−1)))
)1/k

Algorithm 38 requires access to a numerical solver in all but the simplest settings.
Sections 8.4.2�8.4.4 developed further machinery and introduced new functional forms,
for �nding an approximate solution to (8.41) that enables closed-form solutions. To do
this, the per-station total blocking proportion pl was introduced in (8.40). The intuition
of Section 8.4.3 points us towards using a set of functional-form approximations

{
f̃l
}
l∈L

8.5. Algorithms for network setting 169

where in iteration n of the algorithm for each l ∈ L we have a (f̃
(n)
l (c

(n)
l), c

(n)
l > 0) where

all c(n)
l′ with l′ ∈ L\{l} are replaced by c(n−1)

l′ . Note that since we are working with forms

(c) or (d) we have already replaced many instances of c(n)
l with c(n−1)

l relative to using (a)

or (b). Then, using the intuition of Section 8.4.4, replace each remaining p̃r,i(c
(n)
l , τ

(n)
r,i)

in f̃l with wr,ip̃l(c
(n)
l , τ

(n)
l) where

wr,i =
p̂r,i(c)

p̂
l
(r)
i

(c)
,

and p̃l utilises a form from Table 8.4. Let 1l[·] : L → {0, 1} be an indicator function which
takes a station l(r)i and returns 1 if l(r)i = l and 0 otherwise. Similarly, let 1l[·] : L → {0, 1}
be an indicator function which takes a station l(r)i and returns 1 if l(r)i 6= l and 0 otherwise.
This results in a collection of functional forms

{
f̃l
}
l∈L where

f̃l(c
(n), τ

(n)
l) = −〈c,θ〉+

∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1−Il[l(r)j]wr,j p̃l

(
c
(n)
l , τ

(n)
l

)
−Il[l(r)j]p̂r,j

(
c(n−1)

))
,

meaning

∂f̃l

∂c
(n)
l

(c(n), τl) = −θl−
dp̃l(c

(n)
l , τ

(n)
l)

dc(n)
l

∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1l[l

(r)
j]wr,j+1l[l

(r)
j]
(

1−p̂r,j
(
c(n−1)

)))
.

Setting this to 0 gives an alternative to numerical optimisation that can be used in
Step (iii) of our algorithm. This `per-station' approach is summarised in Algorithm 39.

Algorithm 39. Per-station functional-form optimisation
Initialize: Set n = 1 and choose c(0) ∈ (0,∞)L, ε > 0, N ∈ N.

(i) For r ∈ R for i = 1, . . . , Nr obtain p̂r,i(c
(n−1)) for i = 1, . . . , Nr. For l ∈

L obtain p̂l(c
(n−1)).

(ii) For l ∈ L compute τ
(n)
l by solving

p̂l(c
(n−1)) = p̃l(c

(n−1), τl) .

(iii) For l ∈ L solve for c
(n)
l :

dp̃l(c
(n)
l , τ

(n)
l)

dcl
+θl

∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1l[l

(r)
j]wr,j + 1l[l

(r)
j]
(

1− p̂r,j
(
c(n−1)

)))−1

= 0 .

(8.43)
If resulting c

(n)
l < cl for any l, then set c

(n)
l = cl.

(iv) If ||c(n−1) − c(n)|| < ε or n > N: output c(n).

Else: set n = n+ 1 and return to (i).

Note that the second term in (8.43) is just a constant, and so as we did for the tandem
network using the modi�ed Weibull form with k = 2 in (8.34) and (8.35), it is possible to

170 Chapter 8. Stochastic networks with blocking

Table 8.4: Functional forms and associated tuning parameters for Algorithm 39.

Name p̃l(c
(n)
l , τ

(n)
l) τ

(n)
l

(
p̂l(c

(n−1))
)

(c) Modi�ed ratio
∫ 0

c
(n)
l

kc
(n−1)
l

k−1
τ
(n)
l

k
(
1 + (τ

(n)
l x)k

)−2

dx 1

c
(n−1)
l

(
1−p̂l(c(n−1))

p̂l(c
(n−1))

)1/k
(d) Modi�ed Weibull

∫ 0

c
(n)
l

kc
(n−1)
l

k−1
τ
(n)
l

k
exp

(
−(τ

(n)
l x)k

)
dx 1

c
(n−1)
l

(
− log(p̂l(c

(n−1)))
)1/k

solve (8.43) explicitly for the functional forms (c) and (d) as given in Table 8.4. For the
modi�ed ratio form this is

c
(n)
l =

1

τ
(n)
l

−1 +

√
γlkc

(n−1)
l

k−1
τ

(n)
l

k

θl

1/k

∨ cl ,

and for the modi�ed Weibull form this is

c
(n)
l =

1

τ
(n)
l

log

γlkc(n−1)
l

k−1
τ

(n)
l

k

θl

1/k

∨ cl ,

where in both cases

γl :=
∑
r∈R

λr

Nr∑
i=1

θr,i

i∏
j=1

(
1l[l

(r)
j]wr,j + 1l[l

(r)
j]
(

1− p̂r,j
(
c(n−1)

)))
.

8.6 Numerical experiments

In this section we evaluate the performance of Algorithm 38 and Algorithm 39 on Ex-
ample 4 model given in Section 8.3.2. In all of the experiments the inter-arrival times
and service times are generated from two-stage Coxian distributions with parameters set
and scaled to match a collection of coe�cients of variation (CoVs). We consider 100
randomly chosen (unique) scenarios where the inter-arrival times have a CoV randomly
sampled from {0.75, 2, 3.25}, service times at stations 1 and 2 are randomly sampled from
{2, 3.75, 5.5}, service times at stations 3 and 4 are randomly sampled from {1.5, 3, 4.5},
and service times at stations 5 and 6 are always equal to 1.5. The scenarios generated by
this process are given in Table A.1 and Table A.2 in Section A.3 (in the appendix).

The inter-arrival times for jobs of class i are sampled as 1
2λi

(
E1 + 1

qE2B
)
, where E1

and E2 are independent unit-mean exponentially distributed random variables, q ∈ (0, 1)
is a real number, and B is a Bernoulli random variable with parameter q. The parameter
q = 1

2v
−2 is set such that CoV of the inter-arrival times matches the desired value v,

speci�ed in Table A.1 and Table A.2 for the scenario being studied. For classes i = 1, . . . , 6
we take λi = 5 and v equal to A1 as speci�ed in the �rst column of Table A.1 and
Table A.2. For classes i = 1, . . . , 6 we take λi = 2.5 and v equal to A2 as speci�ed in the
second column of Table A.1 and Table A.2. Service times are speci�ed on a per-station
basis. The service times of all jobs at station i are sampled as 3

8

(
E1 + 1

qE2B
)
, where E1,

8.6. Numerical experiments 171

E2, B, and q are as before. For station i the CoV is set to match the value given in the
(2 + i)-th column of Table A.1 and Table A.2. Capacity costs θi are assumed unitary for
all stations. The amount of revenue generated by a successful service θr,i is equal for all
classes of job at any particular station. We consider three di�erent revenue settings, as
displayed in Table 8.5.

Table 8.5: Three combinations of revenues assigned to stations.

Revenue setting Station 1 Station 2 Station 3 Station 4 Station 5 Station 6

Equal 1.25 1.25 1.25 1.25 1.25 1.25
Increasing 0.8 0.8 1.1 1.1 1.5 1.5
Unordered 1.25 1.1 0.8 1.5 3 1.1

Our �rst goal is to understand how well the algorithms �nd an approximation to
the optimal solution de�ned in (8.11). In order to �nd a benchmark we implemented a
stochastic approximation algorithm (Algorithm 40 in Section 8.7.2) for each scenario and
revenue setting. In Figure 8.7 we display the mean optimality gap from 10 sample paths
of our Algorithm 38 and Algorithm 39 for the di�erent scenarios and revenue settings. It
can be seen that both algorithms are capable of reliably achieving an optimality gap of
less than 10% in most scenario and revenue settings. In the equal revenue setting both
algorithms achieve an optimality gap of approximately 1%. In the increasing revenue
setting the performance is not quite as good and tends to be across the range 1�10% for
both algorithms. In either of these revenue settings it is positive to see that our algorithm
which does not require access to a numerical optimisation package (Algorithm 39) does
not lose accuracy compared to the algorithm which does have access to a numerical opti-
misation package (Algorithm 38). In fact, for the unordered weight setting Algorithm 39
has distinctly superior performance to Algorithm 38 in terms of accuracy.

20 40 60 80 100

0.1

1

10

scenario

m
ea

n
o
p
t.

g
a
p
(%

)

(a) equal revenues

20 40 60 80 100

0.1

1

10

scenario

m
ea

n
o
p
t.

g
a
p
(%

)

Alg. 40 Alg. 41

(b) increasing revenues

20 40 60 80 100

0.1

1

10

scenario

m
ea

n
o
p
t.

g
a
p
(%

)

(c) unordered revenues

Figure 8.7: Accuracy of Algorithm 38 using form (b) with k = 2 and Algorithm 39 using
form (d) with k = 2 for Example 4 model given in Section 8.3.2 with the scenarios in
Table A.1 and Table A.2.

Our second goal is to understand how e�cient our algorithms are. Speci�cally, we
would like to know how many iterations the algorithms require to reach a high level of

172 Chapter 8. Stochastic networks with blocking

accuracy. The average optimality gap at our randomly chosen initial conditions over
the 3000 experiments we conducted was at least 55% (this is the average optimality gap
considering only those experiments where the initial objective function value was positive)
and in many cases exceeded 100%. In Figure 8.8 it can be seen that for all scenarios
and revenue settings where the optimality gap was reduced below 10%, this was always
achieved in less than 5 iterations using Algorithm 39 and usually less than 5 iterations
using Algorithm 38. To reduce the optimality gap below 1% the algorithms required
approximately 10 iterations. Notably, since our method is derivative free it only requires
a single sample of f̂ per iteration. In contrast, stochastic approximation with central
�nite-di�erence estimates (as in Algorithm 40) requires 12 samples of f̂ per iteration.
The implication is that for many of the scenarios we considered in order to outperform
our algorithm stochastic approximation would need to achieve an optimality gap of less
than 1% in a single iteration.

20 40 60 80 100

5

10

15

scenario

m
ea

n
n
u
m
.
it
er
s.

10% opt. gap

20 40 60 80 100

5

10

15

scenario

m
ea

n
n
u
m
.
it
er
s.

1% opt. gap

(a) equal revenues

20 40 60 80 100

5

10

15

scenario

m
ea

n
n
u
m
.
it
er
s.

10% opt. gap

20 40 60 80 100

5

10

15

scenario

m
ea

n
n
u
m
.
it
er
s.

1% opt. gap

Alg. 40 Alg. 41

(b) increasing revenues

20 40 60 80 100

5

10

15

scenario

m
ea

n
n
u
m
.
it
er
s.

10% opt. gap

20 40 60 80 100

5

10

15

scenario

m
ea

n
n
u
m
.
it
er
s.

1% opt. gap

(c) unordered revenues

Figure 8.8: E�ciency of Algorithm 38 using form (b) with k = 2 and Algorithm 39 using
form (d) with k = 2 for Example 4 model given in Section 8.3.2 with the scenarios in
Table A.1 and Table A.2.

8.7. Supporting material 173

8.7 Supporting material

This section contains supporting material for the rest of the chapter which would be
cumbersome to include elsewhere.

8.7.1 Matrix derivations

Although evaluation of the objective function in Example 1 of Section 8.3.2 has been
possible for quite some time using known methods, the power of the approach described
in the previous chapter, based on matrix analytic methods (MAMs), is that far more
general systems can be considered. Example 2 given in Section 8.3.2 is such a system.
This section uses these methods to explicitly compute our objective for this example, so
that it can be used to exactly test our simulation method.

MAMs for Example 2. Here we explain how to obtain explicit expressions for each of
the revenue terms in (8.14), i.e., for

κ1 := λ1 θ1,1 (1− p1,1(c1)) ,

κ2 := λ1 θ1,2 (1− p1,1(c1))(1− p1,2(c)) ,

using matrix analytic methods.
Let X1,1(t) and X1,2(t) be the number of jobs being processed by the system at

the �rst and second stations respectively. Following the previous chapter, we observe
that this description leads to a marked MAP (see e.g. [118, Section 2.5] for details),(
N1(t), N2(t), t ∈ R0

)
, that counts the number of jobs successfully entering the �rst and

second stations as follows. Upon an arrival to the �rst station, as long as X1,1 < c1, then
X1,1 jumps up by 1 and so does N1. Upon a successful service completion at the �rst
station, if X1,2 < c2 then X1,2 jumps up by 1 and so too does N2. It can be seen that the
process (X1,2, X1,2) is a background process for an encompassing MAP that experiences
arrivals when jobs enter stations. In order to �nd κ1 and κ2 explicitly we need to carefully
construct the structure of the Markov chain (X1,1, X1,2), specify its relationship to N1

and N2, and then apply Theorem 1 from [120].
In order to obtain expressions for κ1 and κ2 we need to de�ne several matrices. Let:

• 1k to be a k-tuple containing all unit entries.

• Ik be a k × k identity matrix.

• Ik be a k × k matrix with upper diagonal containing unit entries and otherwise 0.

• Ik be a k × k matrix with lower diagonal containing unit entries and otherwise 0.

• Q1 be a (c1 + 1)× (c1 + 1) matrix with non-zero entries

(Q1)i,i+1 = λ1 , for i = 1, . . . , c1 ,

(Q1)i+1,i = (i+ 1)µ1 , for i = 1, . . . , c1 ,

(Q1)i,i = −
(
λ1 + (i− 1)µ1

)
, for i = 1, . . . , c1 ,

(Q1)c1+1,c1+1 = −c1µ1 .

174 Chapter 8. Stochastic networks with blocking

• Q2 be a (c2 + 1)× (c2 + 1) matrix with non-zero entries

(Q2)i,i+1 = λ2 , for i = 1, . . . , c2 ,

(Q2)i+1,i = (i+ 1)µ2 , for i = 1, . . . , c2 ,

(Q2)i,i = −
(
λ2 + (i− 1)µ2

)
, for i = 1, . . . , c2 ,

(Q2)c2+1,c2+1 = −c2µ2 .

• Q1 be a (c1 + 1)× (c1 + 1) matrix with non-zero entries

(Q1)i,i = −(i− 1)µ1 , for i = 1, . . . , c1 .

• Q2 be a (c2 + 1)× (c2 + 1) matrix with non-zero entries

(Q2)i,i = −(i− 1)µ2 , for i = 1, . . . , c2 .

Then, use these to de�ne

D = (Ic2+1 ⊗Q1) + (Q2 ⊗ Ic1+1) ,

D1,1 = Ic2+1 ⊗Q1 ,

D1,2 = Q2 ⊗ Ic1+1 .

Take π to be the stationary distribution of the Markov chain generated by in�nitesimal
generator D, i.e. πD = 0 and π1(c1+1)(c2+1) = 1. We then obtain an expression for the
expected number of successfully processed jobs at each station using [120, Theorem 1]:

EN1(t) = πD1,11(c1+1)(c2+1) t+ o(t) ,

EN2(t) = πD1,21(c1+1)(c2+1) t+ o(t) ,

where o(t)→ 0 is a function h(t) such that h(t)/t→ 0 as t→∞. The quantities of interest
κ1 and κ2 follow immediately from di�erentiation of this expression and multiplication by
the appropriate θ term. Based on this we can explicitly compute (8.14) for our tandem
network of loss systems.

8.7.2 Stochastic approximation implementation

For C ⊂ Rd let ΠC be a function Rd → C which for x ∈ Rd returns c ∈ C which minimises
||c − x||. Let el be a vector with all components 0 except for component l, which is
unitary. Let {δ(n)}n∈N and {α(n)}n∈N be sequences satisfying

∞∑
n=1

α(n) =∞ ,

∞∑
n=1

α(n)δ(n) <∞ ,

∞∑
n=1

α(n)2
δ(n)−2

<∞ . (8.44)

Then if f̂ are uniformly bounded random variables, the following is a convergent (in
probability) stochastic approximation algorithm [174].

Algorithm 40. Stochastic approximation
Initialize: Set n = 1 and choose c(0) ∈ (0,∞)L.

8.8. Outlook 175

(i) For l = 1, . . . , L determine an estimate of the l-th component of the

Jacobian:

(
∇cf̂(c(n−1))

)
l

=
f̂(c(n−1) + δ(n)el)− f̂(c(n−1) − δ(n)el)

2δ(n)
.

(iii) Choose a step size α(n).

(iv) Set

c(n) = ΠC
(
c(n−1) + α(n)∇cf̂(c(n−1))

)
.

(v) If ||f̂(c(n−1))− f̂(c(n))|| < ε or n ≥ N: output c(n).

Else: set n = n+ 1 and return to (i).

In each iteration of this algorithm the step size α(n) can be determined using the
following backtracking line-search method. First choose β > 0, %1 ∈ (0, 1), %2 ∈ (0, 1), set
α(n) = β(n) and d = 1, and then:

(i) Determine F = f̂
(

ΠC
(
c(n−1) + α(n)∇cf̂(c(n−1)

))
.

(ii) If F ≥ f̂(c(n−1)) + %2α
(n)∇cf̂(c(n−1) or d ≥ D: output α(n).

Else: set α(n) = %1α
(n) and d = d+ 1, and return to (i).

Choosing β(n) = β/n where β ∈ R+ is a positive real number and δ(n) = n−1/3 en-
sures that (8.44) holds and the algorithm therefore converges to the true optimiser with
probability 1.

8.8 Outlook

The methodology used in this chapter could be used in a variety of other settings. Due
to its low computational burden it could, for example, be extended to answer transient
capacity allocation decisions as studied in the previous two chapters. It would be inter-
esting to see if the functional forms that we found work well in an equilibrium setting
carry over to transient settings.

Proving that our algorithm converges to a capacity allocation with a small optimal-
ity gap remains a challenge. Although it is not obvious to us how this could be done,
development of an algorithm that uses a functional form (to be fast) and can provably
converge to the actual optimiser (rather than an approximation) would be ideal.

Bibliography

[1] J. F. C. Kingman. Poisson processes, volume 3. Clarendon Press, 1992.

[2] F. Kelly. Reversibility and stochastic networks. Wiley, 1979.

[3] W. Feller. Die grundlagen der volterraschen theorie des kampfes ums dasein in
wahrscheinlichkeitstheoretischer behandlung. Acta Biotheoretica, 5(1):11�40, 1939.

[4] J. D. C. Little. A proof for the queuing formula: L = λW . Operations Research,
9(3):383�387, 1961.

[5] J. D. C. Little. Little's law as viewed on its 50th anniversary. Operations Research,
59(3):536�549, 2011.

[6] J. Kingman. Markov population processes. Journal of Applied Probability, 6(01):1�
18, 1969.

[7] J. R. Jackson. Networks of waiting lines. Operations Research, 5(4):518�521, 1957.

[8] P. Whittle. Equilibrium distributions for an open migration process. Journal of
Applied Probability, 5(03):567�571, 1968.

[9] L. Kleinrock. Communication nets: stochastic message �ow and delay. Dover Pub-
lications, 1964.

[10] P. K. Pollett. Optimal capacity assignment in general queueing networks. In Opti-
mization: Structure and Applications, 261�272. Springer, 2009.

[11] A. Dieker, S. Ghosh, and M. S. Squillante. Optimal resource capacity management
for stochastic networks. Operations Research, 65(1):221�241, 2016.

[12] G. Grimmett and D. Stirzaker. Probability and random processes. Oxford University
Press, 2001.

[13] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing sys-
tems and scheduling policies for maximum throughput in multihop radio networks.
IEEE Transactions on Automatic Control, 37(12):1936�1948, 1992.

[14] R. Srikant and L. Ying. Communication networks: an optimization, control, and
stochastic networks perspective. Cambridge University Press, 2013.

[15] A. L. Stolyar. Maximizing queueing network utility subject to stability: Greedy
primal-dual algorithm. Queueing Systems, 50(4):401�457, 2005.

176

Bibliography 177

[16] B. Li and R. Srikant. Queue-proportional rate allocation with per-link information
in multihop wireless networks. Queueing Systems, 83(3-4):329�359, 2016.

[17] A. Rybko and A. L. Stolyar. Ergodicity of stochastic processes describing the op-
eration of open queueing networks. Problemy Peredachi Informatsii, 28(3):3�26,
1993.

[18] S. H. Lu and P. R. Kumar. Distributed scheduling based on due dates and bu�er
priorities. Automatic Control, IEEE Transactions on, 36(12):1406�1416, 1991.

[19] J. G. Dai and G. Weiss. Stability and instability of �uid models for reentrant lines.
Mathematics of Operations Research, 21(1):115�134, 1996.

[20] P. Robert. Stochastic networks and queues. Springer Science & Business Media,
2003.

[21] J. Dai. On positive Harris recurrence of multiclass queueing networks: A uni�ed
approach via �uid limit models. The Annals of Applied Probability, 5(1):49�77,
1995.

[22] A. P. Kovalevskii, V. A. Topchii, and S. G. Foss. On the stability of a queueing
system with uncountably branching �uid limits. Problems of Information Trans-
mission, 41(3):254�279, 2005.

[23] M. Remerova. Fluid limit approximations of stochastic networks. PhD thesis, Vrije
Universiteit Amsterdam, 2014.

[24] A. D. Barbour, P. Chigansky, and F. C. Klebaner. On the emergence of random
initial conditions in �uid limits. Journal of Applied Probability, 53(4):1193�1205,
2016.

[25] J. G. Dai. A �uid limit model criterion for instability of multiclass queueing net-
works. The Annals of Applied Probability, 6(3):751�757, 1996.

[26] S. P. Meyn. Transience of multiclass queueing networks via �uid limit models. The
Annals of Applied Probability, 5(4):946�957, 1995.

[27] H. C. Gromoll, P. Robert, and B. Zwart. Fluid limits for processor-sharing queues
with impatience. Mathematics of Operations Research, 33(2):375�402, 2008.

[28] M. Remerova, J. Reed, and B. Zwart. Fluid limits for bandwidth-sharing networks
with rate constraints. Mathematics of Operations Research, 39(3):746�774, 2014.

[29] J. Zhang, J. G. Dai, and B. Zwart. Law of large number limits of limited processor-
sharing queues. Mathematics of Operations Research, 34(4):937�970, 2009.

[30] M. Frolkova, S. Foss, and B. Zwart. Fluid limits for an aloha-type model with
impatient customers. Queueing Systems, 72(1-2):69�101, 2012.

[31] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence.
John Wiley & Sons, 2009.

[32] D. Fiems, M. Mandjes, and B. Patch. Networks of in�nite-server queues with mul-
tiplicative transitions. Performance Evaluation, 2018.

178 Bibliography

[33] M. Dobrzy«ski and F. Bruggeman. Elongation dynamics shape bursty transcription
and translation. Proceedings of the National Academy of Sciences, 106(8):2583�2588,
2009.

[34] R. Serfozo. Introduction to stochastic networks, volume 44. Springer Science &
Business Media, 2012.

[35] R. J. Boucherie and N. M. Van Dijk. Product forms for queueing networks
with state-dependent multiple job transitions. Advances in Applied Probability,
23(1):152�187, 1991.

[36] A. Coyle, W. Henderson, C. E. Pearce, and P. G. Taylor. Mean-value analysis
for a class of petri nets and batch-movement queueing networks with product-form
equilibrium distributions. Mathematical and Computer Modelling, 22(10-12):27�34,
1995.

[37] W. Henderson, C. E. M. Pearce, P. G. Taylor, and N. M. van Dijk. Closed queueing
networks with batch services. Queueing Systems, 6(1):59�70, 1990.

[38] W. Henderson and P. G. Taylor. Product form in networks of queues with batch
arrivals and batch services. Queueing Systems, 6(1):71�87, 1990.

[39] Y. I. Mitrofanov, E. S. Rogachko, and E. P. Stankevich. Analysis of queueing
networks with batch movements of customers and control of �ows among clusters.
Automatic Control and Computer Sciences, 49(4):221�230, 2015.

[40] H. Yamashita and M. Miyazawa. Geometric product form queueing networks with
concurrent batch movements. Advances in Applied Probability, 30(4):1111�1129,
1998.

[41] A. Economou. Generalized product-form stationary distributions for Markov chains
in random environments with queueing applications. Advances in Applied Probabil-
ity, 37(1):185�211, 2005.

[42] G. Falin. The M/M/∞ queue in a random environment. Queueing Systems,
58(1):65�76, 2008.

[43] R. Krenzler, H. Daduna, and S. Otten. Jackson networks in nonautonomous random
environments. Advances in Applied Probability, 48(2):315�331, 2016.

[44] S. Kapodistria, T. Phung-Duc, and J. Resing. Linear birth/immigration-death pro-
cess with binomial catastrophes. Probability in the Engineering and Informational
Sciences, 30(1):79�111, 2016.

[45] A. Economou and D. Fakinos. Alternative approaches for the transient analysis
of Markov chains with catastrophes. Journal of Statistical Theory and Practice,
2(2):183�197, 2008.

[46] R. J. Swift. Transient probabilities for a simple birth-death-immigration process
under the in�uence of total catastrophes. International Journal of Mathematics
and Mathematical Sciences, 25(10):689�692, 2001.

[47] P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97�125,
2012.

Bibliography 179

[48] P. Holme. Modern temporal network theory: a colloquium. The European Physical
Journal B, 88(9):234, 2015.

[49] M. Mandjes, N. Starreveld, and R. Bekker. Queues on a dynamically evolving graph.
Journal of Statistical Physics, 1�25, 2017.

[50] M. Mandjes, N. J. Starreveld, R. Bekker, and P. Spreij. Dynamic Erd®s�Rényi
graphs. Lecture Notes in Computer Science, 10000, 2018.

[51] X. Zhang, C. Moore, and M. E. Newman. Random graph models for dynamic
networks. The European Physical Journal B, 90(10):200, 2017.

[52] M. Mandjes and K. De Turck. Markov-modulated in�nite-server queues driven by
a common background process. Stochastic Models, 32(2):206�232, 2016.

[53] S. Asmussen. Applied probability and queues. Springer�Verlag, 2nd edition, 2003.

[54] D. Bernstein. Matrix mathematics. Princeton University Press, 2009.

[55] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of
a matrix, twenty-�ve years later. SIAM Review, 45(1):3�49, 2003.

[56] C. Van Loan. Computing integrals involving the matrix exponential. IEEE trans-
actions on automatic control, 23(3):395�404, 1978.

[57] J. R. Artalejo and A. Gómez-Corral. Retrial queueing systems: a computational
Approach. Springer, 1999.

[58] J. Kurose and K. Ross. Computer networking. Benjamin/Cummings, 3rd edition,
2004.

[59] J. Kurose and K. Ross. Distributed storage: concepts, algorithms, and implementa-
tions. CreateSpace Independent, 2013.

[60] J. Blom, K. De Turck, and M. Mandjes. Functional central limit theorems for
Markov-modulated in�nite-server systems. Mathematical Methods of Operations
Research, 83(3):351�372, 2016.

[61] U. Franz, V. Liebscher, and S. Zeiser. Piecewise-deterministic Markov processes as
limits of Markov jump processes. Advances in Applied Probability, 44(3):729�748,
2012.

[62] A. Shwartz and A. Weiss. Large deviations for performance analysis: queues, com-
munication and computing, volume 5. CRC Press, 1995.

[63] N. Walton. Concave switching in single-hop and multihop networks. Queueing
Systems, 81(2-3):265�299, 2015.

[64] M. Bramson, B. D'Auria, and N. S. Walton. Proportional switching in �rst-in,
�rst-out networks. Operations Research, 65(2):496�513, 2016.

[65] B. Li and R. Srikant. Correction to �queue-proportional rate allocation with per-link
information in multihop wireless networks�. Queueing Systems, 85(3-4):383�385,
2017.

180 Bibliography

[66] A. L. Stolyar et al. Maxweight scheduling in a generalized switch: state space col-
lapse and workload minimization in heavy tra�c. The Annals of Applied Probability,
14(1):1�53, 2004.

[67] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whit-
ing. Scheduling in a queuing system with asynchronously varying service rates.
Probability in the Engineering and Informational Sciences, 18(2):191�217, 2004.

[68] J. Dai and B. Prabhakar. The throughput of data switches with and without
speedup. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 2, 556�564.
IEEE, 2000.

[69] X. Lin and S. B. Rasool. Constant-time distributed scheduling policies for ad hoc
wireless networks. IEEE Transactions on Automatic Control, 54(2):231�242, 2009.

[70] M. Bramson. State space collapse with application to heavy tra�c limits for mul-
ticlass queueing networks. Queueing Systems, 30(1-2):89�140, 1998.

[71] R. J. Williams. Di�usion approximations for open multiclass queueing networks:
su�cient conditions involving state space collapse. Queueing systems, 30(1-2):27�
88, 1998.

[72] P. Billingsley. Convergence of probability measures. John Wiley & Sons, 2 edition,
1999.

[73] Y. S. Chow. On a strong law of large numbers for martingales. Ann. Math. Statist.,
38(2):610, 1967.

[74] M. Mandjes, B. Patch, and N. Walton. Detecting Markov chain instability: a monte
carlo approach. Stochastic Systems, 7(2):289�314, 2017.

[75] J. R. Jackson. Jobshoplike- queueing systems. Management Science, 10(1):131�142,
1963.

[76] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and
mixed networks of queues with di�erent classes of customers. Journal of the ACM,
22(2):248�260, 1975.

[77] F. P. Kelly. Networks of queues with customers of di�erent types. Journal of Applied
Probability, 12(3):542�554, 1975.

[78] P. R. Kumar and T. I. Seidman. Dynamic instabilities and stabilization methods
in distributed real-time scheduling of manufacturing systems. Automatic Control,
IEEE Transactions on, 35(3):289�298, 1990.

[79] M. Bramson. Instability of FIFO queueing networks. The Annals of Applied Prob-
ability, 4(2):414�431, 1994.

[80] C. Bordenave, D. McDonald, and A. Proutière. Asymptotic stability region of slot-
ted ALOHA. Information Theory, IEEE Transactions on, 58(9):5841�5855, 2012.

[81] I. MacPhee, M. Menshikov, D. Petritis, and S. Popov. A Markov chain model of
a polling system with parameter regeneration. The Annals of Applied Probability,
17(5/6):1447�1473, 2007.

Bibliography 181

[82] F. Baccelli and T. Bonald. Window �ow control in FIFO networks with cross tra�c.
Queueing Systems, 32(1):195�231, 1999.

[83] Y. Nazarathy, T. Taimre, A. Asanjarani, J. Kuhn, B. Patch, and A. Vuorinen. The
challenge of stabilizing control for queueing systems with unobservable server states.
In Control Conference (AUCC), 2015 5th Australian, 342�347, Gold Coast, 2015.
Engineers Australia.

[84] M. Bramson. Stability of queueing networks. Springer Berlin Heidelberg, New York,
2008.

[85] J. R. Wieland, R. Pasupathy, and B. W. Schmeiser. Queueing network simulation
analysis: queueing-network stability: simulation-based checking. In Proceedings
of the 35th conference on Winter simulation: driving innovation, 520�527. Winter
Simulation Conference, 2003.

[86] H. Leahu and M. Mandjes. A numerical approach to stability of multiclass queueing
networks. (preprint), 2016.

[87] S. Kirkpatrick and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671�680, 1983.

[88] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel queues
with randomly varying connectivity. Information Theory, IEEE Transactions on,
39(2):466�478, 1993.

[89] M. Andrews and L. Zhang. Achieving stability in networks of input-queued switches.
Networking, IEEE/ACM Transactions on, 11(5):848�857, 2003.

[90] J. Ghaderi, S. Borst, and P. Whiting. Queue-based random-access algorithms: �uid
limits and stability issues. Stochastic Systems, 4(1):81�156, 2014.

[91] M. Hairer. Convergence of Markov processes. Lecture notes, 2010. Available at
http://www.hairer.org/notes/Convergence.pdf.

[92] S. Meyn and R. Tweedie. Markov chains and stochastic stability. Communications
and Control Engineering. Springer London, 2012.

[93] D. Williams. Probability with martingales. Cambridge University Press, Cambridge,
1991.

[94] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input-queued switch. Communications, IEEE Transactions on,
47(8):1260�1267, 1999.

[95] F. P. Kelly. Loss networks. The Annals of Applied Probability, 1(3):319�378, 1991.

[96] H. Khazaei, J. Mi²i¢, and V. B. Mi²i¢. Performance analysis of cloud computing
centers using M/G/m/m+r queuing systems. IEEE Transactions on Parallel and
Distributed Systems, 23(5):936�943, 2012.

[97] S. Rahimi-Ghahroodi, A. Al Hanbali, W. Zijm, J. van Ommeren, and
A. Sleptchenko. Integrated planning of spare parts and service engineers with partial
backlogging. OR Spectrum, 1�38, 2017.

182 Bibliography

[98] P. L. van den Berg, G. A. Legemaate, and R. D. van der Mei. Increasing the respon-
siveness of �re�ghter services by relocating base stations in Amsterdam. Interfaces,
2017.

[99] E. Brockmeyer, H. L. Halstrom, and A. Jensen. The life and works of A. K. Erlang.
1948.

[100] A. K. Erlang. Sandsynlighedsregning og telefonsamtaler. Nyt tidsskrift for Matem-
atik, 20:33�39, 1909.

[101] A. K. Erlang. Løsning af nogle problemer fra sandsynlighedsregningen af betydning
for de automatiske telefoncentraler. Elektroteknikeren, 13, 1917.

[102] R. W. Wol�. Poisson arrivals see time averages. Operations Research, 30(2):223�231,
1982.

[103] N. M. van Dijk. On the arrival theorem for communication networks. Computer
Networks and ISDN Systems, 25(10):1135�1142, 1993.

[104] P. G. Taylor. Insensitivity in stochastic models. In Queueing Networks, 121�140.
Springer, 2011.

[105] F. Kelly and E. Yudovina. Stochastic networks. Cambridge University Press, 2014.

[106] G. Louth, M. Mitzenmacher, and F. Kelly. Computational complexity of loss net-
works. Theoretical Computer Science, 125(1):45�59, 1994.

[107] F. P. Kelly. Blocking probabilities in large circuit-switched networks. Advances in
Applied Probability, 18(2):473�505, 1986.

[108] F. P. Kelly. Fixed point models of loss networks. The ANZIAM Journal, 31(2):204�
218, 1989.

[109] F. P. Kelly. Routing in circuit-switched networks: optimization, shadow prices and
decentralization. Advances in Applied Probability, 20(1):112�144, 1988.

[110] F. P. Kelly. Routing and capacity allocation in networks with trunk reservation.
Mathematics of Operations Research, 15(4):771�793, 1990.

[111] P. B. Key. Optimal control and trunk reservation in loss networks. Probability in
the Engineering and Informational Sciences, 4(2):203�242, 1990.

[112] J. Fu, B. Moran, and P. G. Taylor. Restless bandits in action: resource allocation,
competition and reservation. arXiv preprint arXiv:1804.02100, 2018.

[113] S. Zachary. Control of stochastic loss networks, with applications. Journal of the
Royal Statistical Society. Series B (Methodological), 61�73, 1988.

[114] J. Sanders, S. C. Borst, and J. S. van Leeuwaarden. Online network optimization
using product-form Markov processes. IEEE Transactions on Automatic Control,
61(7):1838�1853, 2016.

[115] B. A. Chiera and P. G. Taylor. What is a unit of capacity worth? Probability in
the Engineering and Informational Sciences, 16(4):513�522, 2002.

Bibliography 183

[116] B. A. Chiera, A. E. Krzesinski, and P. G. Taylor. Some properties of the capacity
value function. SIAM Journal on Applied Mathematics, 65(4):1407�1419, 2005.

[117] B. Rasof. The initial-and �nal-value theorems in Laplace transform theory. Journal
of the Franklin Institute, 274(3):165�177, 1962.

[118] Q. He. Fundamentals of matrix-analytic methods. Springer, 2014.

[119] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in stochas-
tic modeling, volume 5. Siam, 1999.

[120] S. Narayana and M. F. Neuts. The �rst two moment matrices of the counts for
the Markovian arrival process. Communications in Statistics. Stochastic Models,
8(3):459�477, 1992.

[121] B. Patch, T. Taimre, and Y. Nazarathy. Performance of faulty loss systems with per-
sistent connections. ACM SIGMETRICS Performance Evaluation Review, 43(2):16�
18, 2015.

[122] Queueing networks. volume 154 of International Series in Operations Research &
Management Science. 2011.

[123] T. Chihara. An Introduction to orthogonal polynomials. Gordon and Breach, New
York, 1978.

[124] B. Patch and T. Taimre. Transient provisioning and performance evaluation for
cloud computing platforms: a capacity value approach. Performance Evaluation,
118:48�62, 2018.

[125] Z. Á. Mann. Allocation of virtual machines in cloud data centers � a survey of
problem models and optimization algorithms. ACM Computing Surveys, 48(1):11,
2015.

[126] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, and J. L. Hellerstein.
Dynamic energy-aware capacity provisioning for cloud computing environments. In
Proceedings of the 9th International Conference on Autonomic Computing, 145�154.
ACM, 2012.

[127] A. K. Erlang. Solutions of some problems in the theory of probabilities of signi�cance
in automatic telephone exchanges. The Post O�ce Electrical Engineers' Journal,
10:189�197, 1918.

[128] J. Abate and J. Whitt. Calculating transient characteristics of the Erlang loss model
by numerical transform inversion. Communications in Statistics. Stochastic Models.,
14(3):663�680, 1998.

[129] C. Knessl and J. S. H. van Leeuwaarden. Transient analysis of the Erlang A model.
Mathematical Methods of Operations Research, 82:143�173, 2015.

[130] M. Mandjes and A. Ridder. A large deviations approach to the transient of the
Erlang loss model. Performance Evaluation, 43:181�198, 2015.

[131] P. Braunsteins, S. Hautphenne, and P. G. Taylor. The roles of coupling and the de-
viation matrix in determining the value of capacity inM/M/1/C queues. Queueing
Systems, 83(1):157�179, 2016.

184 Bibliography

[132] B. Patch, T. Taimre, and Y. Nazarathy. Performance of faulty loss systems with per-
sistent connections. ACM SIGMETRICS Performance Evaluation Review, 43(2):16�
18, 2015.

[133] H. Khazaei, J. Mi²i¢, V. B. Mi²i¢, and S. Rashwand. Analysis of a pool management
scheme for cloud computing centers. IEEE Transactions on parallel and distributed
systems, 24(5):849�861, 2013.

[134] L. Breuer. An EM algorithm for batch Markovian arrival processes and its compari-
son to a simpler estimation procedure. Annals of Operations Research, 112:123�138,
2002.

[135] P. Buchholz, P. Kemper, and J. Kriege. Multi-class Markovian arrival processes and
their parameter �tting. Performance Evaluation, 67:1092�1106, 2010.

[136] P. Buchholz and J. Kriege. A heuristic approach for �tting MAPs to moments
and joint moments. In Quantitative Evaluation of Systems, Sixth International
Conference on, 53�62. IEEE Computer Society, 2009.

[137] P. Buchholz and J. Kriege. Fitting correlated arrival and service times and related
queueing performance. Queueing Systems, 2017.

[138] G. Casale, E. Z. Zhang, and E. Smirni. KPC-toolbox: Simple yet e�ective trace
�tting using Markovian arrival processes. In Quantitative Evaluation of Systems,
2008. QEST'08. Fifth International Conference on, 83�92. IEEE, 2008.

[139] Amazon auto-scaling. https://aws.amazon.com/autoscaling, 2017.

[140] R. B. Sidje. Expokit: a software package for computing matrix exponentials. ACM
Trans. Math. Softw., 24(1):130�156, Mar. 1998.

[141] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of
a matrix. SIAM Review, 20(4):801�836, 1978.

[142] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb. Performance evaluation
of cloud computing centers with general arrivals and service. Parallel and Distributed
Systems, IEEE Transactions on, 2015.

[143] S. Zhang, Z. Qian, Z. Luo, J. Wu, and S. Lu. Burstiness-aware resource reservation
for server consolidation in computing clouds. IEEE Transactions on Parallel and
Distributed Systems, 27(4):964�977, 2016.

[144] H. Khazaei, J. Mi²i¢, and V. B. Mi²i¢. Performance analysis of cloud centers under
burst arrivals and total rejection policy. In Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE, 1�6. IEEE, 2011.

[145] H. Khazaei, J. Mi²i¢, and V. B. Mi²i¢. Performance of cloud centers with high
degree of virtualization under batch task arrivals. IEEE Transactions on Parallel
and Distributed Systems, 24(12):2429�2438, 2013.

[146] Y. Tan and C. H. Xia. An adaptive learning approach for e�cient resource provision-
ing in cloud services. ACM Sigmetrics Performance Evaluation Review, 42(4):3�11,
2015.

https://aws.amazon.com/autoscaling

Bibliography 185

[147] D. Bruneo. A stochastic model to investigate data center performance and QoS in
IaaS cloud computing systems. Parallel and Distributed Systems, IEEE Transac-
tions on, 25(3):560�569, 2014.

[148] V. J. Maccio and D. G. Down. On optimal policies for energy-aware servers. Per-
formance Evaluation, 90:36�52, 2015.

[149] J. S. H. van Leeuwaarden, B. Mathijsen, and F. Sloothaak. Cloud provisioning in
the QED regime. In Proceedings of the 9th EAI International Conference on Perfor-
mance Evaluation Methodologies and Tools, 180�187. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2016.

[150] M. Harchol-Balter. Performance modeling and design of computer systems: queue-
ing theory in action. Cambridge University Press, 2013.

[151] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi. Quantifying resiliency of IaaS
cloud. In Reliable Distributed Systems, 2010 29th IEEE Symposium on, 343�347.
IEEE, 2010.

[152] J. G. Kemeny and J. L. Snell. Finite continuous time markov chains. Theory of
Probability & Its Applications, 6(1):101�105, 1961.

[153] P. Coolen-Schrijner and E. A. Van Doorn. The deviation matrix of a continuous-time
markov chain. Probability in the Engineering and informational Sciences, 16(3):351�
366, 2002.

[154] AberdeenGroup. Service parts management, unlocking value and pro�ts in the
service chain. AberdeenGroup, Boston, 2003.

[155] Z.-J. M. Shen, C. Coullard, and M. S. Daskin. A joint location-inventory model.
Transportation science, 37(1):40�55, 2003.

[156] A. Kranenburg and G. Van Houtum. A new partial pooling structure for spare parts
networks. European Journal of Operational Research, 199(3):908�921, 2009.

[157] L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation models.
European journal of operational research, 147(3):451�463, 2003.

[158] P. L. van den Berg, J. T. van Essen, and E. J. Harderwijk. Comparison of static
ambulance location models. In Proceedings of Logistics Operations Management
(GOL). IEEE, 2016.

[159] P. Agrawal, D. K. Anvekar, and B. Narendran. Channel management policies for
handovers in cellular networks. Bell Labs Technical Journal, 1(2):97�110, 1996.

[160] M. Sidi and D. Starobinski. New call blocking versus hando� blocking in cellular
networks. Wireless networks, 3(1):15�27, 1997.

[161] R. Kwan, R. Arnott, R. Paterson, R. Trivisonno, and M. Kubota. On mobility load
balancing for lte systems. In Proceedings of IEEE Vehicular Technology Conference
(VTC), 2010.

[162] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge
computing: The communication perspective. IEEE Communications Surveys &
Tutorials, 19(4):2322�2358, 2017.

186 Bibliography

[163] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and
mixed networks of queues with di�erent classes of customers. Journal of the ACM,
22(2):248�260, 1975.

[164] J. M. Harrison and R. J. Williams. Brownian models of feedforward queueing net-
works: Quasireversibility and product form solutions. The Annals of Applied Prob-
ability, 263�293, 1992.

[165] S. Axsäter. Modelling emergency lateral transshipments in inventory systems. Man-
agement Science, 36(11):1329�1338, 1990.

[166] M. Restrepo, S. G. Henderson, and H. Topaloglu. Erlang loss models for the static
deployment of ambulances. Health care Management Science, 12(1):67, 2009.

[167] J. M. Harrison and A. Zeevi. A method for sta�ng large call centers based on
stochastic �uid models. Manufacturing & Service Operations Management, 7(1):20�
36, 2005.

[168] S. C. Borst, A. Mandelbaum, and M. I. Reiman. Dimensioning large call centers.
Operations Research, 52(1):17�34, 2004.

[169] R. Hassin, Y. Y. Shaki, and U. Yovel. Optimal service-capacity allocation in a loss
system. Naval Research Logistics (NRL), 62(2):81�97, 2015.

[170] L. M. Wein. Capacity allocation in generalized jackson networks. Operations Re-
search Letters, 8(3):143�146, 1989.

[171] S. G. Henderson and B. L. Nelson. Handbooks in operations research and manage-
ment science: simulation, volume 13. Elsevier, 2006.

[172] S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms and analysis,
volume 57. Springer Science & Business Media, 2007.

[173] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400�407, 1951.

[174] J. Kiefer, J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462�466, 1952.

[175] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008�
1031, 2016.

[176] M. Brown and H. Solomon. A second-order approximation for the variance of a
renewal reward process. Stochastic Processes and their Applications, 3:301�314,
1975.

[177] D. L. Jagerman. Some properties of the Erlang loss function. Bell Labs Technical
Journal, 53(3):525�551, 1974.

[178] A. Harel. Convexity properties of the Erlang loss formula. Operations Research,
38(3):499�505, 1990.

[179] E. Pinsky. A simple approximation for the Erlang loss function. Performance
Evaluation, 15(3):155�161, 1992.

Bibliography 187

[180] A. J. E. M. Janssen, J. S. H. Van Leeuwaarden, and B. Zwart. Gaussian expansions
and bounds for the Poisson distribution applied to the Erlang B formula. Advances
in Applied Probability, 40(1):122�143, 2008.

[181] H. Chen and A. Mandelbaum. Leontif systems, RBV's and RBM's. In H. A. Davis
and R. J. Elliott, editors, Applied Stochastic Analysis, 1�43. Gordon and Breach,
New York, 1991.

APPENDIXA

Mathematical miscellany

A.1 One-dimensional Skorohod problem

The following proposition describes standard properties of solutions of the one-dimensional
Skorohod problem. The proof of this proposition can be found in [181].

Proposition 41. Let w = (w(t), t ≥ 0) be a continuous function in D([0,∞),R) such
that w(0) ≥ 0. Then the following hold:

(i) There exists a unique pair (z◦, y◦) of functions in D([0,∞), R) such that:

(a) z◦(t) = w(t) + y◦(t) ≥ 0, t ≥ 0;

(b) y◦ is nondecreasing and nonnegative;

(c) y◦(0) = 0;

(d) for any t ≥ 0, if z◦(t) > 0, then t is not a point of increase of y◦.

This unique pair is (z, y), where

y(t) := −
[
0 ∧ inf

0≤u≤t
w(u)

]
, z(t) = w(t) + y(t), t ≥ 0 .

(ii) For any pair of (z◦, y◦) of functions in D([0,∞),R) satisfying (a) and (b) we have

y◦(t) ≥ y(t) , z◦(t) ≥ z(t) , t ≥ 0 .

A.2 Martingales and concentration

In Chapter 4 we develop a simulation based algorithm with sample paths that exhibit
di�erent random behaviour depending upon whether the system that is used as an input
to the algorithm is stable or unstable. In the chapter we use a de�nition of stability that
is closely related to Theorem 2, where we know that except for some �nite set the process
must have expected downward movement. Key to our analysis is utilising this expected

189

190 Appendix A. Mathematical miscellany

downward movement to provide an almost sure bound on the behaviour of sample paths
generated by the algorithm. This type of bound is known as a concentration inequality.
One of the simplest and most famous of such results is Markov's inequality, which states
that for a non-negative random variable X and some constant a > 0 we have

P(X ≥ a) ≤ EX
a

.

This result directly relates the deviations of a random variable to its expected value, thus
providing information on the concentration of variability about the expected value.

Martingales are a class of random process where a non-trivial bound on the sample
path behaviour of the process is readily available, so long as the process has bounded
increments. A discrete time index random process (X(t), t ∈ Z+) is called a martingale
if for any time t

E[|X(t)|] <∞, and (A.1)

E[X(t+ 1) |X1, . . . , X(t)] = X(t) , (A.2)

almost surely. If the equality in (A.2) is replaced by ≤, then the process is called a
super-martingale, which are a more common class of process that often share many of the
desirable attributes of martingales. A key observation is if for a process (Y (t), t ∈ Z+),
we know that E[Y (t + 1) − Y (t)] = δ where δ < ∞ is some constant, then the process
de�ned by X(t)− δ t is a martingale. If we also know that |Y (t)− Y (t− 1)| < ct almost
surely for some constants {ct}Nt=1, then this allows us to directly connect the known (or
assumed) expected movement of the process to the probability the process exceeds any
pre-speci�ed level by its t-th time step. We do this using the Azuma-Hoe�ding inequality,
which is given in the following theorem.

Theorem 10. Suppose (Y (t), t ∈ Z+) is a martingale (or super-martingale) and |Y (t)−
Y (t− 1)| < ct almost surely, then for all positive integers N and all real numbers a > 0,

P
(
Y (t)− Y (0) ≥ a

)
≤ exp

(
a2

2
∑N
t=1 c

2
t

)
.

In Chapter 4 an assumption of stability allows us to create a supermartingale to
which we can apply this theorem and consequently give the distribution of a random
process which stochastically dominates stable processes. We then combine this with other
martingale methods to obtain our key results. We use the optional stopping theorem,
which says that after a random number of time steps (with distribution satisfying certain
properties) the expected value of the process is equal to the expected value of the process
at its starting location (see e.g. [93, Section 10.1]). We also use a strong law of large
numbers for martingales, which says that a martingale (Y (t), t ∈ Z+) with bounded
second moment, that is EY (t)2 < ∞ for all t, increases at a sub-linear rate, meaning
EY (t)/t→ 0 as t→∞ (see e.g. [93, Section 12.14]).

A.3. Simulation scenarios 191

A.3 Simulation scenarios

Table A.1: Coe�cients of variation in the experiments in Section 8.6.

A1 A2 S1 S2 S3 S4 S5 S6
1 4.5 4.5 2 2 0.75 0.75 1.5 1.5
2 3 4.5 2 2 3.25 0.75 1.5 1.5
3 4.5 3 2 2 3.25 0.75 1.5 1.5
4 4.5 4.5 2 2 3.25 0.75 1.5 1.5
5 4.5 1.5 2 2 0.75 2 1.5 1.5
6 3 1.5 2 2 2 2 1.5 1.5
7 1.5 3 2 2 0.75 3.25 1.5 1.5
8 1.5 4.5 2 2 0.75 3.25 1.5 1.5
9 4.5 3 2 2 0.75 3.25 1.5 1.5
10 4.5 3 2 2 2 3.25 1.5 1.5
11 3 4.5 3.75 2 0.75 0.75 1.5 1.5
12 3 3 3.75 2 2 0.75 1.5 1.5
13 1.5 4.5 3.75 2 3.25 0.75 1.5 1.5
14 3 3 3.75 2 3.25 0.75 1.5 1.5
15 1.5 1.5 3.75 2 0.75 2 1.5 1.5
16 3 1.5 3.75 2 0.75 2 1.5 1.5
17 4.5 1.5 3.75 2 0.75 2 1.5 1.5
18 1.5 3 3.75 2 2 2 1.5 1.5
19 3 1.5 3.75 2 2 2 1.5 1.5
20 4.5 3 3.75 2 2 2 1.5 1.5
21 1.5 3 3.75 2 0.75 3.25 1.5 1.5
22 4.5 4.5 3.75 2 0.75 3.25 1.5 1.5
23 1.5 3 5.5 2 0.75 0.75 1.5 1.5
24 3 3 5.5 2 0.75 0.75 1.5 1.5
25 4.5 1.5 5.5 2 2 0.75 1.5 1.5
26 3 1.5 5.5 2 3.25 0.75 1.5 1.5
27 3 4.5 5.5 2 3.25 0.75 1.5 1.5
28 4.5 3 5.5 2 3.25 0.75 1.5 1.5
29 1.5 4.5 5.5 2 0.75 2 1.5 1.5
30 3 1.5 5.5 2 2 2 1.5 1.5
31 1.5 3 5.5 2 3.25 2 1.5 1.5
32 1.5 3 5.5 2 2 3.25 1.5 1.5
33 4.5 1.5 5.5 2 2 3.25 1.5 1.5
34 1.5 4.5 2 3.75 0.75 0.75 1.5 1.5
35 3 4.5 2 3.75 0.75 0.75 1.5 1.5
36 3 1.5 2 3.75 2 0.75 1.5 1.5
37 3 3 2 3.75 2 0.75 1.5 1.5
38 4.5 3 2 3.75 0.75 2 1.5 1.5
39 4.5 4.5 2 3.75 0.75 2 1.5 1.5
40 4.5 1.5 2 3.75 2 2 1.5 1.5
41 1.5 3 2 3.75 2 3.25 1.5 1.5
42 3 3 2 3.75 3.25 3.25 1.5 1.5
43 1.5 1.5 3.75 3.75 0.75 0.75 1.5 1.5
44 3 3 3.75 3.75 0.75 0.75 1.5 1.5
45 1.5 1.5 3.75 3.75 3.25 0.75 1.5 1.5
46 3 1.5 3.75 3.75 3.25 0.75 1.5 1.5
47 1.5 4.5 3.75 3.75 0.75 2 1.5 1.5
48 4.5 1.5 3.75 3.75 0.75 2 1.5 1.5
49 3 1.5 3.75 3.75 2 2 1.5 1.5
50 4.5 4.5 3.75 3.75 2 2 1.5 1.5

192 Appendix A. Mathematical miscellany

Table A.2: Coe�cients of variation in the experiments in Section 8.6.

A1 A2 S1 S2 S3 S4 S5 S6
51 0.75 3.25 3.75 3.75 4.5 3 1.5 1.5
52 0.75 3.25 3.75 3.75 4.5 4.5 1.5 1.5
53 2 3.25 3.75 3.75 3 4.5 1.5 1.5
54 3.25 3.25 3.75 3.75 1.5 4.5 1.5 1.5
55 3.25 3.25 3.75 3.75 3 3 1.5 1.5
56 0.75 0.75 5.5 3.75 4.5 4.5 1.5 1.5
57 2 0.75 5.5 3.75 1.5 1.5 1.5 1.5
58 3.25 0.75 5.5 3.75 3 1.5 1.5 1.5
59 0.75 2 5.5 3.75 4.5 1.5 1.5 1.5
60 2 2 5.5 3.75 4.5 4.5 1.5 1.5
61 2 3.25 5.5 3.75 3 1.5 1.5 1.5
62 2 3.25 5.5 3.75 4.5 4.5 1.5 1.5
63 3.25 3.25 5.5 3.75 1.5 1.5 1.5 1.5
64 3.25 3.25 5.5 3.75 1.5 3 1.5 1.5
65 0.75 0.75 2 5.5 4.5 4.5 1.5 1.5
66 2 0.75 2 5.5 1.5 1.5 1.5 1.5
67 2 0.75 2 5.5 4.5 3 1.5 1.5
68 3.25 0.75 2 5.5 1.5 4.5 1.5 1.5
69 3.25 0.75 2 5.5 3 4.5 1.5 1.5
70 0.75 2 2 5.5 1.5 3 1.5 1.5
71 0.75 2 2 5.5 3 3 1.5 1.5
72 0.75 3.25 2 5.5 1.5 3 1.5 1.5
73 0.75 3.25 2 5.5 3 4.5 1.5 1.5
74 0.75 3.25 2 5.5 4.5 3 1.5 1.5
75 2 3.25 2 5.5 1.5 1.5 1.5 1.5
76 2 3.25 2 5.5 1.5 3 1.5 1.5
77 2 3.25 2 5.5 1.5 4.5 1.5 1.5
78 2 3.25 2 5.5 3 1.5 1.5 1.5
79 3.25 3.25 2 5.5 1.5 1.5 1.5 1.5
80 0.75 0.75 3.75 5.5 1.5 3 1.5 1.5
81 2 0.75 3.75 5.5 1.5 3 1.5 1.5
82 2 0.75 3.75 5.5 3 1.5 1.5 1.5
83 2 0.75 3.75 5.5 4.5 3 1.5 1.5
84 3.25 0.75 3.75 5.5 4.5 4.5 1.5 1.5
85 0.75 2 3.75 5.5 4.5 1.5 1.5 1.5
86 0.75 2 3.75 5.5 4.5 4.5 1.5 1.5
87 2 2 3.75 5.5 1.5 4.5 1.5 1.5
88 3.25 2 3.75 5.5 1.5 1.5 1.5 1.5
89 3.25 2 3.75 5.5 4.5 3 1.5 1.5
90 0.75 0.75 5.5 5.5 1.5 3 1.5 1.5
91 2 0.75 5.5 5.5 4.5 4.5 1.5 1.5
92 3.25 0.75 5.5 5.5 1.5 3 1.5 1.5
93 3.25 0.75 5.5 5.5 1.5 4.5 1.5 1.5
94 0.75 2 5.5 5.5 1.5 4.5 1.5 1.5
95 0.75 2 5.5 5.5 3 4.5 1.5 1.5
96 2 2 5.5 5.5 4.5 4.5 1.5 1.5
97 3.25 2 5.5 5.5 3 3 1.5 1.5
98 3.25 2 5.5 5.5 4.5 1.5 1.5 1.5
99 0.75 3.25 5.5 5.5 3 4.5 1.5 1.5
100 3.25 3.25 5.5 5.5 4.5 1.5 1.5 1.5

	ThesisCover_FINAL_compressed
	thesis-mainUvA
	Overview, background, and motivation
	I Queueing models and stability
	Introduction to queueing models and stability
	Queueing networks
	Stability
	Foster–Lyapunov stability
	Fluid scaling limits and stability
	Outline of Part I

	Networks of infinite-server queues with multiplicative transitions
	Introduction
	Analysis
	Model
	System of partial differential equations
	Moments
	Stability
	Efficient evaluation of performance metrics

	Retrial queues, rerouting, storage systems
	Retrial queues
	Rerouting
	Applications to storage networks

	Numerical experiments
	Retrial queue
	A storage system

	Discussion and concluding remarks

	Stability of weighted queue-proportional rate allocation
	Introduction
	System model
	System stability region
	Weighted queue-proportional rate allocation scheduler
	Key assumptions
	Diffusion limit
	Additional system model detail and intuition behind main conjecture
	Some properties of fluid sample paths for the WQPRA scheduler
	Sketch of diffusion limit proof
	Attraction property of fluid sample paths
	Diffusion limit of workload process and state space collapse
	Workload minimisation property

	Other supporting lemmas

	Detecting Markov chain instability: a Monte Carlo approach
	Introduction
	Framework
	Implementation and main results
	Algorithm
	Main results
	A test for instability

	Proofs
	Stable parameter set
	Proof of Theorem 7 for the global search algorithm
	Proof of Theorem 7 for the local search algorithm

	Examples
	Parallel queues with randomly varying connectivity
	Tandem queues
	Rybko–Stolyar queueing network
	A switch network
	A broken diamond random access network

	Supporting lemmas
	Concluding remarks

	II Loss models and capacity management
	Introduction to loss models and capacity management
	Loss systems
	Capacity value function and Laplace–Stieltjes transforms
	Markovian arrival processes
	Outline of Part II

	Management of faulty loss systems
	Introduction
	Model
	Results
	Illustration
	Concluding remarks

	Loss system models for cloud computing platforms
	Introduction
	Related work
	Organisation

	Model of cloud computing platforms
	Encompassing performance evaluation model
	Transient performance evaluation
	Unpredictable arrival rate expected value
	Incorporating predictable bursts

	Illustrations
	Simple time homogeneous system
	System with predictable bursts
	Unpredictable time-varying system
	Batchiness

	Concluding remarks

	Stochastic networks with blocking
	Introduction
	Outline of the functional form approach
	Stochastic networks with blocking
	Model outline
	Specific examples

	Finding the right functional form
	Single-station case
	Speeding up the algorithm
	Extension to tandem systems
	Extension to two customer classes

	Algorithms for network setting
	Numerical experiments
	Supporting material
	Matrix derivations
	Stochastic approximation implementation

	Outlook

	Mathematical miscellany
	One-dimensional Skorohod problem
	Martingales and concentration
	Simulation scenarios

