648 research outputs found

    Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition (ATR) technology

    Full text link
    This paper discusses the challenges of detecting and categorizing small drones with radar automatic target recognition (ATR) technology. The authors suggest integrating ATR capabilities into drone detection radar systems to improve performance and manage emerging threats. The study focuses primarily on drones in Group 1 and 2. The paper highlights the need to consider kinetic features and signal signatures, such as micro-Doppler, in ATR techniques to efficiently recognize small drones. The authors also present a comprehensive drone detection radar system design that balances detection and tracking requirements, incorporating parameter adjustment based on scattering region theory. They offer an example of a performance improvement achieved using feedback and situational awareness mechanisms with the integrated ATR capabilities. Furthermore, the paper examines challenges related to one-way attack drones and explores the potential of cognitive radar as a solution. The integration of ATR capabilities transforms a 3D radar system into a 4D radar system, resulting in improved drone detection performance. These advancements are useful in military, civilian, and commercial applications, and ongoing research and development efforts are essential to keep radar systems effective and ready to detect, track, and respond to emerging threats.Comment: 17 pages, 14 figures, submitted to a journal and being under revie

    Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection

    Get PDF
    The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users

    Feature Papers of Drones - Volume II

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 24–41 are focused on drone applications, but emphasize two types: firstly, those related to agriculture and forestry (articles 24–35) where the number of applications of drones dominates all other possible applications. These articles review the latest research and future directions for precision agriculture, vegetation monitoring, change monitoring, forestry management, and forest fires. Secondly, articles 36–41 addresses the water and marine application of drones for ecological and conservation-related applications with emphasis on the monitoring of water resources and habitat monitoring. Finally, articles 42–54 looks at just a few of the huge variety of potential applications of civil drones from different points of view, including the following: the social acceptance of drone operations in urban areas or their influential factors; 3D reconstruction applications; sensor technologies to either improve the performance of existing applications or to open up new working areas; and machine and deep learning development

    An investigation of change in drone practices in broadacre farming environments

    Get PDF
    The application of drones in broadacre farming is influenced by novel and emergent factors. Drone technology is subject to legal, financial, social, and technical constraints that affect the Agri-tech sector. This research showed that emerging improvements to drone technology influence the analysis of precision data resulting in disparate and asymmetrically flawed Ag-tech outputs. The novelty of this thesis is that it examines the changes in drone technology through the lens of entropic decay. It considers the planning and controlling of an organisation’s resources to minimise harmful effects through systems change. The rapid advances in drone technology have outpaced the systematic approaches that precision agriculture insists is the backbone of reliable ongoing decision-making. Different models and brands take data from different heights, at different times of the day, and with flight of differing velocities. Drone data is in a state of decay, no longer equally comparable to past years’ harvest and crop data and are now mixed into a blended environment of brand-specific variations in height, image resolution, air speed, and optics. This thesis investigates the problem of the rapid emergence of image-capture technology in drones and the corresponding shift away from the established measurements and comparisons used in precision agriculture. New capabilities are applied in an ad hoc manner as different features are rushed to market. At the same time existing practices are subtly changed to suit individual technology capability. The result is a loose collection of technically superior drone imagery, with a corresponding mismatch of year-to-year agricultural data. The challenge is to understand and identify the difference between uniformly accepted technological advance, and market-driven changes that demonstrate entropic decay. The goal of this research is to identify best practice approaches for UAV deployment for broadacre farming. This study investigated the benefits of a range of characteristics to optimise data collection technologies. It identified widespread discrepancies demonstrating broadening decay on precision agriculture and productivity. The pace of drone development is so rapidly different from mainstream agricultural practices that the once reliable reliance upon yearly crop data no longer shares statistically comparable metrics. Whilst farmers have relied upon decades of satellite data that has used the same optics, time of day and flight paths for many years, the innovations that drive increasingly smarter drone technologies are also highly problematic since they render each successive past year’s crop metrics as outdated in terms of sophistication, detail, and accuracy. In five years, the standardised height for recording crop data has changed four times. New innovations, coupled with new rules and regulations have altered the once reliable practice of recording crop data. In addition, the cost of entry in adopting new drone technology is sufficiently varied that agriculturalists are acquiring multiple versions of different drone UAVs with variable camera and sensor settings, and vastly different approaches in terms of flight records, data management, and recorded indices. Without addressing this problem, the true benefits of optimization through machine learning are prevented from improving harvest outcomes for broadacre farming. The key findings of this research reveal a complex, constantly morphing environment that is seeking to build digital trust and reliability in an evolving global market in the face of rapidly changing technology, regulations, standards, networks, and knowledge. The once reliable discipline of precision agriculture is now a fractured melting pot of “first to market” innovations and highly competitive sellers. The future of drone technology is destined for further uncertainty as it struggles to establish a level of maturity that can return broadacre farming to consistent global outcomes

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    VGC 2023 - Unveiling the dynamic Earth with digital methods: 5th Virtual Geoscience Conference: Book of Abstracts

    Get PDF
    Conference proceedings of the 5th Virtual Geoscience Conference, 21-22 September 2023, held in Dresden. The VGC is a multidisciplinary forum for researchers in geoscience, geomatics and related disciplines to share their latest developments and applications.:Short Courses 9 Workshops Stream 1 10 Workshop Stream 2 11 Workshop Stream 3 12 Session 1 – Point Cloud Processing: Workflows, Geometry & Semantics 14 Session 2 – Visualisation, communication & Teaching 27 Session 3 – Applying Machine Learning in Geosciences 36 Session 4 – Digital Outcrop Characterisation & Analysis 49 Session 5 – Airborne & Remote Mapping 58 Session 6 – Recent Developments in Geomorphic Process and Hazard Monitoring 69 Session 7 – Applications in Hydrology & Ecology 82 Poster Contributions 9

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF

    Concepts and tools to improve the thermal energy performance of buildings and urban districts - diagnosis, assessment, improvement strategies and cost-benefit analyses

    Get PDF
    Retrofitting existing buildings to optimize their thermal energy performance is a key factor in achieving climate neutrality by 2045 in Germany. Analyzing buildings in their current condition is the first step toward preparing effective and efficient energy retrofit measures. A high-quality building analysis helps to evaluate whether a building or its components are suitable for retrofitting or replacement. Subsequently, appropriate combinations of retrofit measures that create financial and environmental synergies can be determined. This dissertation is a cumulative work based on nine papers on the thermal analysis of existing buildings. The focus of this work and related papers is on thermography with drones for building audits, intelligent processing of thermographic images to detect and assess thermal weaknesses, and building modeling approaches to evaluate thermal retrofit options. While individual buildings are usually the focus of retrofit planning, this dissertation also examines the role of buildings in the urban context, particularly on a district level. Multiple adjacent buildings offer numerous possibilities for further improving retrofits, such as the economies of scale for planning services and material procurement, neighborhood dynamics, and exchange of experiences between familiar building owners. This work reveals the opportunities and obstacles for panorama drone thermography for building audits. It shows that drones can contribute to a quick and structured data collection, particularly for large building stocks, and thus complement current approaches for district-scale analysis. However, the significant distance between the drone camera and building, which is necessary for automated flight routes, and varying recording angles limit the quantitative interpretability of thermographic images. Therefore, innovative approaches were developed to process image datasets generated using drones. A newly designed AI-based approach can automate the detection of thermal bridges on rooftops. Using generalizations about certain building classes as demonstrated by buildings from the 1950s and 1960s, a novel interpretation method for drone images is suggested. It enables decision-making regarding the need to retrofit thermal bridges of recorded buildings. A novel optimization model for German single-family houses was developed and applied in a case study to investigate the financial and ecological benefits of different thermal retrofit measures. The results showed that the retrofitting of building façades can significantly save energy. However, they also revealed that replacing the heating systems turns out to be more cost-effective for carbon dioxide savings. Small datasets, limited availability of technical equipment, and the need for simplified assumptions for building characteristics without any information were the main challenges of the approaches in this dissertation
    • 

    corecore