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Abstract 

 

The application of drones in broadacre farming is influenced by novel and emergent factors. Drone 

technology is subject to legal, financial, social, and technical constraints that affect the Agri-tech 

sector.  This research showed that emerging improvements to drone technology influence the 

analysis of precision data resulting in disparate and asymmetrically flawed Ag-tech outputs.  The 

novelty of this thesis is that it examines the changes in drone technology through the lens of entropic 

decay. It considers the planning and controlling of an organisation’s resources to minimise harmful 

effects through systems change. The rapid advances in drone technology have outpaced the 

systematic approaches that precision agriculture insists is the backbone of reliable ongoing 

decision-making. Different models and brands take data from different heights, at different times 

of the day, and with flight of differing velocities. Drone data is in a state of decay, no longer equally 

comparable to past years’ harvest and crop data and are now mixed into a blended environment 

of brand-specific variations in height, image resolution, air speed, and optics. This thesis 

investigates the problem of the rapid emergence of image-capture technology in drones and the 

corresponding shift away from the established measurements and comparisons used in precision 

agriculture. New capabilities are applied in an ad hoc manner as different features are rushed to 

market. At the same time existing practices are subtly changed to suit individual technology 

capability. The result is a loose collection of technically superior drone imagery, with a 

corresponding mismatch of year-to-year agricultural data. The challenge is to understand and 

identify the difference between uniformly accepted technological advance, and market-driven 

changes that demonstrate entropic decay.    

The goal of this research is to identify best practice approaches for UAV deployment for broadacre 

farming. This study investigated the benefits of a range of characteristics to optimise data 

collection technologies.  It identified widespread discrepancies demonstrating broadening decay 

on precision agriculture and productivity. The pace of drone development is so rapidly different 

from mainstream agricultural practices that the once reliable reliance upon yearly crop data no 

longer shares statistically comparable metrics. Whilst farmers have relied upon decades of satellite 

data that has used the same optics, time of day and flight paths for many years, the innovations 

that drive increasingly smarter drone technologies are also highly problematic since they render 

each successive past year’s crop metrics as outdated in terms of sophistication, detail, and 

accuracy. In five years, the standardised height for recording crop data has changed four times. 

New innovations, coupled with new rules and regulations have altered the once reliable practice 

of recording crop data. In addition, the cost of entry in adopting new drone technology is 

sufficiently varied that agriculturalists are acquiring multiple versions of different drone UAVs 
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with variable camera and sensor settings, and vastly different approaches in terms of flight records, 

data management, and recorded indices. Without addressing this problem, the true benefits of 

optimization through machine learning are prevented from improving harvest outcomes for 

broadacre farming. 

The key findings of this research reveal a complex, constantly morphing environment that is seeking 

to build digital trust and reliability in an evolving global market in the face of rapidly changing 

technology, regulations, standards, networks, and knowledge. The once reliable discipline of 

precision agriculture is now a fractured melting pot of “first to market” innovations and highly 

competitive sellers. The future of drone technology is destined for further uncertainty as it struggles 

to establish a level of maturity that can return broadacre farming to consistent global outcomes. 
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1 INTRODUCTION 

Agricultural production systems in Australia are undergoing extensive technological changes 

with the introduction of digital agricultural solutions, the use of machine learning, drones, and 

automated vehicle machinery. These technologies have the potential to improve the 

productivity of broadacre farming in WA by assisting farmers to make better strategic decisions 

in real-time and with long-term planning (Hu et al 2018; Ayamga et al 2021).   This has already 

been shown for cropping scenarios in WA and Internationally (Armstrong et al 2020), (Van Es 

and Woodard, 2017). The use of drones has already been shown to be an effective tool for 

growers in the monitoring and analysis of crops and livestock (Lost et al. 2020; Daponte et al 

2019) This is achieved by combining drones, drone sensor technologies, and GPS records 

management, which allows for the highly accurate monitoring of change and subsequently 

improved crop management.  It is now also possible to closely monitor crops health, and soil 

conditions. (Basso, 2020) (Van Es and Woodard, 2017). Drones are now becoming 

increasingly more affordable and with greater flight and payload capabilities (Upadhyaya et al, 

2022; Stehr, 2015). They are being used for many applications across the farm including crop 

yield, soil and fertilizer management, pest monitoring, and spraying (Daponte et al., 2019).  

 

The emergence of a discipline that encapsulates a holistic discourse on drones and drone 

technology has brought with isit a range of terms, abbreviations, and associated jargon.  It also 

includes a range of dual-meanings and duplicated measurement constraints. For example, some 

discussions would include a notation of 50 metres in height, whilst others would refer to 

measurements of 150 feet in height. The two measurements are almost the same, however for 

the purpose of precision agriculture the exact distance is of great importance.  150 metres is 

45.72 metres not 50 metres. In the aggregation of precision data such a difference promotes 

inaccuracies that, over the life of even a small agricultural crop, could easily have enormous 

and ongoing financial, agricultural, and environmental implications. Such seemingly minor 

variances might appear frivolous, however in aggregate form, across years of data, they become 

enormous problems in the search for broadacre optimization in farming. Drone technology 

brings the promise of clear imagery to a conversation that has been blurred by inaccuracy and 

poor resolution for many decades. The ongoing quest is therefore useful if standards are 

precisely maintained, but potentially dangerous if new quests for increased accuracy brings 

constant change and comparative data that has reduced accuracy in terms of drone operating 

heights (Truong, et al, 2019; Petrides, et al., 2017). 
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The inclusion of acronyms and abbreviations is also important to note and include (Joyce et al, 

2021). There are different terms of shortened forms that overlap between different fields of 

interest. Some have emerged from military terminology whilst others are associated with 

popular themes and widespread leisure usage (Granshaw, 2018). Even the terms UAV and 

Drone are somewhat interchangeable. Whilst most people are familiar with the concept of an 

Unmanned Aerial Vehicle (UAV), the full denotation of Dynamic Remotely Operated 

Navigation Equipment (DRONE) is less widely applied (Chapman, 2014; Chabot, et al., 2022).   

Common Terms and Abbreviations 

Term Description Source 

Machine 

learning 

A computer activity which simulated human learning for an expert task. Self-improvement 

methods of computers identify existing knowledge obtain new knowledge and new skills, to 

continuously improve performance and achievement. 

Wang, Ma and 

Zhou (2009) 

Image 

Processing 

Computer activity which simulated human learning for an expert task. Self-improvement 

methods of computers identify existing knowledge, obtain new knowledge and new skills, to 

continuously improve the performance and achievement.  

Wang, MA and 

Zhou (2009) 

Image 

processing 

Computer processes whose inputs and outputs are images. In addition, processes extract features 

from images, up to and including the recognition of individual objects. 

Gonzalez 

(2009) 

 

Segmentation 

Segmentation subdivides an image into its constituent regions or objects. Segmentation should 

stop when the objects of interest have been isolated. Segmentation accuracy determines the 

eventual success or failure of computerized analysis procedures.  

Gonzalez 

(2009) page 

567 

Optimization Optimization is a term used in computer science to describe the pursuit of an algorithm that 

demonstrates the least bad choice for the purpose of maximising a benefit. It is often used in 

conjunction with machine learning approaches that use complex systems to determine an outcome 

based on reliable information and data. 

 

UAS Unmanned Aircraft System (Original term – now more commonly superseded by the acronym 

UAV) 

Chabot et al, 

(2022) 

UAV An Unmanned Automated Vehicle (commonly referred to as a Drone) is a flight capable 

instrument with directional control used for flight, visual analysis, and in some cases the 

deployment of payload. It is often used in farming for precision agriculture. They operate either 

autonomously or remotely rather than having an operator on their spindle. 

Chabot et al, 

(2022) 

DRONE Dynamic Remotely Operated Navigation Equipment – Interchangeable with UAV, it is a flight 

capable UAV. 

Chabot et al, 

(2022) 

DECAY The planning, organising, leading and controlling of an organisation’s resources” to minimise the 

potential of negative effects on the business activity. 

Borgsdorf and 

Pliszka, 1999 

ENTROPY The gradual erosion of seemingly minor systems, practices and controls that lead to significant 

harm and misunderstanding. 

Coole and 

Brooks (2009) 

GSD Ground Sampling Distance (GSD) is the measurement between 2 consecutive pixel centres 

measured at ground level. The larger the value of the GSD image, the lower the spatial resolution 

of the image and the less visible details. 

Chabot et al, 

(2022) 

LIDAR Light Detection and Ranging, (LiDAR) is also known to represent laser imaging, detection, and 

ranging. It is a method for determining ranges by targeting an object or a surface with a laser and 

measuring the time for the reflected light to return to the receiver 

Chabot et al, 

(2022) 

NDVI NDVI is the normalized difference vegetation index (NDVI). It is a straightforward graphical 

indicator that allows for the analysis of remote sensing measurements to distinguish the 

occurrence of live green foliage and vegetation. 

Chabot et al, 

(2022) 

PA Precision Agriculture is a management strategy that gathers, processes and analyses temporal, 

spatial, and individual data and combines it with other information to support management 

decisions in farming enterprises.   

Chabot et al, 

(2022) 

UAV CS Unmanned Automated vehicle Control System:  It is a system that is used to control the UAV in 

real-time (e.g., remote control or via a GPS built-in computer.) 

Chabot et al, 

(2022) 

GCS Ground Control System: A GCS is a device that is used to interact with the UAV control system 

and monitors the UAV in real-time. The operator can monitor real-time data relevant to the UAV 

and record data from sensors that are embedded in the UAV such as ground-based sensors. 

Chabot et al, 

(2022) 

RGB The Red, Green and Blue elements within a whole image can be examined by decoding a colour 

output into three images.  

Chabot et al, 

(2022) 

RePL A Remote Pilot Licence is required to fly drones under an RPA operator’s (or ReOC) and operate 

25kg – 150kg UAVs for agricultural purposes 

Civil Aviation 

Safety 

Authority, 

(2022) 

ReOC A remotely piloted aircraft operators certificate (ReOC) allows you or your business to trade as 

a drone service provider. It allows you to conduct a range of remotely piloted aircraft  

Civil Aviation 

Safety 
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Authority, 

(2022) 

ML Machine Learning is the usage of processors and computing to study and familiarise to an event 

without following explicit directions, by means of algorithms and statistical models to draw 

inferences from patterns in data. 

Chabot et al, 

(2022) 

OBIA Object Based Image Analysis (OBIA) relies upon pixels that are first grouped into objects based 

on comparison. 

Chabot et al, 

(2022) 

BVLOS BVLOS or beyond visual line of sight refers to drone operations where the drone or aircraft flies 

beyond the pilot or spotter's line of sight. 

Chabot et al, 

(2022) 

TRLs Technology Readiness Levels (TRLs) are used to evaluate the adoption and acceptance of 

transformational technology (e.g., Drones in Broadacre Farming) 

Chabot et al, 

(2022) 

Table 1.1: Commonly used Terminology, Abbreviation and Jargon 

 
 
 

1.1 Background and Context 
 

 

These introductory remarks indicate the important factors that have arisen from the changes 

that evolving drone technology has brought to the attention of the agricultural industry.  They 

are ordered in this introduction as a set of challenges that face the broadacre farming industry. 

These initial thematic statements are more fully examined in the literature review in chapter 2. 

 

The compounding challenges of improved image resolution 

 

One of the demanding areas which is dynamic in terms of quality is the field of image 

resolution. Resolution is an essential factor to consider when it comes to object detection 

methods. Higher resolution means better map reconstruction (Aasen et al., 2015; Saxena et al 

2020). The issues associated with resolution dynamics are threefold. Firstly, there is a cost 

involved in continually upgrading equipment to satisfy the need for greater image resolution. 

This can be cost prohibitive (Ren et al., 2020). Whilst the expected changes suggest that the 

quality of images will continue to rise in step with improvements in technology, there are many 

studies that point to a plateau effect that will promote changes in industry around low-cost 

imagery (Van Der Merwe, et al, 2020; Hafeez et al, 2022; Jiminez-Jiminez and Ojeda-

Bustamente, 2021). Secondly, there is an associated challenge because, for example, the 

comparison of imagery from crop to crop or from year-to-year present different image sizes 

and resolutions. This makes the task of accurate comparison difficult for ordinary farm 

environments.  Thirdly, and finally, the storage and access of the associated changing imagery 

is dynamic, meaning that images in higher resolution formats are more difficult to curate.  This 

change in image format leads to an increase in the volume of data in non-sovereign cloud 

environments. 
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In addition, there is a technology barrier restricting the access to high-performance drones such 

as fixed wing aircraft. Whilst farmers and agriculturalists can easily enter the drone market and 

acquire relatively inexpensive drone equipment, training, and licensing, the jump from simple 

four-engine quad drones (eg: DJI Phantom, and Mavic) to fixed wing aircraft is represents a 

significant leap from popular drone usage to a more sophisticated and more expensive 

environment.  Fixed wing drones however offer the ability to acquire the full mapping of a 

large agricultural property in just a few hours. However, they also require an independently 

experienced operator, flying at high speeds, beyond line of sight, and over terrain and adjoining 

properties that would be outside the purview of the standardized farm property fence lines. 

Fixed wing drones, like WingtraOne which has a 42MP resolution, full-frame camera, make it 

possible to achieve the same Ground Sampling Distance (GSD) accuracy, while flying higher 

and covering more area within a similar portion of time (WingtraOne, 2022).  Using drones 

and various cameras with different resolutions it is possible to capture images from a variety 

of heights and distances to ascertain the image value for higher resolution image capture than 

existing low-resolution image practices.  

 

In combination with a higher level of image resolution, a more accurate level of decision-

making can be obtained using a Deep Lapproach (Pound et al., 2016). Improved image 

resolution and positioning allows for an improvement in terms of computer vision, object 

recognition, and classification (Cazzato et al, 2020; Al Sobbahi et al 2022; Gupta et al., 2014). 

Using a model-based processing block it is possible to convert images to predictions (e.g., 

concepts, bounding boxes, etc) and, in this instance, a model can be trained to recognize a 

unique set of output.  Bauer et al (2019) reported on the development of open-source platforms 

that use computer vision machine learning tools and software to estimate crop production for 

aerial images.  

 

A comprehensive review of the Lost Filho et al study (2019) highlighted the importance of 

using drones and other UAVs to detect images for non-invasive crop monitoring and chemical 

application. The research reported on the possibility of using drones in tandem to guide each 

other to identify pest hotspots or other areas of interest.  

 

Many of the considerations used in assessing the broad range of drone practices are shifting in 

terms of acceptance and usage. To measure these changes this study uses a risk and decay 

approach to identify and include those elements that are decaying or at least not growing in 



14 | P a g e  

 

strength or acceptance.  Thus, this thesis examines the practices where drone usage is 

susceptible to entropy in the form of uncertainty, disorder, decline, and decay. This study 

evaluates the changing nature of broadacre farming in terms of drone practices. Whilst many 

practices are becoming more strongly consolidated there is a wide range of farming-related 

drone activities that are less rigorous in holistic terms. 

 

Overall, the inclusions of drones and drone technology in agriculture has signalled the advent 

of a set of dynamic changes and adaptations that face the broadacre farming community. Since 

many Australian farms are large in acreage yet small in the number of farm workers, the arrival 

of a tool that is potentially capable of photographing crops, spreading seeds, spreading 

fertiliser, as well as spraying specific areas in need of weeds management, is likely to be a 

popular piece of technology / farm machinery. If you then add the ability to take precise crop, 

assist in shepherding livestock, locate lost animals, and detect feral animals and predators, then 

the expectation of wide-spread usage and inclusion becomes normative.  

 

Challenges with regulations, licensing and compliance 

Despite these accolades, the ubiquity and popularity of drone technology in agriculture is both 

its greatest motivational driver for technology acceptance and simultaneously its most 

complicated adversary. The increasing demand for licensing, regulation, compliance, and best 

practice has shown to be a characteristic that boosts the change in industry of a professional 

farming community that is fragmented by complexity, cost, choice, and confusion.  The 

practices outlined in this study demonstrate a range of activities that are multifaceted in terms 

of their regulatory and pragmatic appeal. The integration of drone technology into farming 

practices has generated interest and appeal, whilst at the same time enduring malpractice, 

malfeasance, and widespread technical illiteracy in the usage of drone technology. This 

knowledge area is characterised by such widely differing variables and options that it is open 

to criticism and exposure to threat and increased risk. 

 

Drones are highly efficient aerial devices that have been used to provide unique information 

about crop and agricultural data.  They can create visual and spectral information from a range 

of aspects, set at different heights and depths, at different locations, and in alternative 

environments.  Despite advances in technology, the application and usage of drones in 

broadacre farming is influenced by a range of novel and emergent factors. The application of 

drone technology is subject to legal, financial, social, and technical limitations. The drone 
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technology is relatively new and, as each new aspect of drone development is released, there 

are a raft of factors that directly affect the ability to remain consistent within the accuracy 

demands of the Agri-tech sector.  This research is significant because it challenges the 

agricultural industry to accept and deploy new UAV technology whilst at the same time 

remaining consistent from year to year and crop to crop in terms of data accuracy. The question 

for broadacre farming is therefore centred on the question of whether drone footage can be 

accurately compared each year (despite new camera angles, camera resolutions, drone heights, 

velocities, and all-weather capabilities. 

 

Recent and emerging improvements to drone technology allow for visual data to include 

Multispectral, Thermal, GIS, RGB, RH, and Lidar imagery. This re-imagining of the usage of 

drone technology means that data can be obtained rapidly and efficiently to optimise crop 

outputs.  A key challenge is to improve the accuracy of image gathering through a variety of 

physical, software, and hardware constraints whilst retaining the authenticity of the data that is 

collected from year to year despite the ongoing expectations for the development and upgrading 

of equipment and standards associated with UAVs.  

  

This study will investigate the benefits of different pixel images, different resolutions, and a 

range of characteristics to optimise the choice of camera, imagery, and data collection 

technologies.   It will examine the limitations of UAV usage in terms of equipment, resolution, 

and deployment characteristics. The goal of this research is to assist drone users in determining 

minimum guidelines, standards, and best practice approaches for the optimisation of UAV 

deployment for precision agriculture and broadacre farming needs.   

 

1.1.1 Unmanned aerial vehicles (UAV) as Drones 

 

The definition of a UAV is an aircraft without an operator on board, which can be operated 

either autonomously or by means of a remote pilot (Sharma et al 2020; Um et al 2019; Hu et 

al 2018). The first attempt to deploy a UAV was recorded in 1916 (Taylor et al, 1977) and was 

originally developed for military purposes. For the last 100 years UAVs have worked their way 

into different sectors such as commercial, scientific, agriculture, and recreation. A strong 

emergent sector for UAVs is in remote sensing applications for precision agriculture (PA) 

(Gnädinger and Schmidhalter 2017). 
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The last decade has seen a set of user case benefits that have been attributed to the inclusion of 

drones and drone applications in the field of Precision Agriculture (Gupta et al., 2013; Rejeb 

et al, 2022; Barbedo, 2019).  UAV integration into precision agriculture has allowed for a 

“middle layer” of improved data quality that was previously difficult to obtain (Manfreda et al, 

2018; Khaliq et al, 2019). Whilst the past 50 years of precision agriculture has drawn 

information from a combination of ground data and satellite data, the introduction of drone 

technology has provided the agricultural industry with a middle layer of data and information 

that informs the precision agriculture sector within the broader industry. Past efforts to gain 

above ground data has mostly been limited to satellites (Shendryk et al, 2020). This has been 

restricted by several factors such as cloud cover, the age of the satellite cameras and the 

connectivity limitations with networks of sensors (Lee et al, 2019;Shendryk et al, 

2020;Manfreda et al, 2018). In addition, the specific time of day that a satellite comes into 

range over a given section of land can also be a limiting factor in the collection of specific data 

(Manfreda et al, 2018). The inclusion of the drone middle layer has redefined the way in which 

agricultural professionals have been able to validate existing data and improve the level of 

accuracy and measurement that has previously been limited in precision agriculture.  

 

There are several clearly defined advantages to the inclusion of drones into agriculture. One 

key advantage is that UAVs can be operated either manually or by a pre-determined flight path. 

The ability to autonomously operate UAVs and collect data under a broad range of conditions 

means that the data set of information becomes significantly richer, and significantly more 

reliable in terms of the collation of precision data. From a long-term decision-making 

perspective, the inclusion of drone usage has dramatically changed the way in which 

agricultural yields have become more profitable, more stable, and more productive (Rejeb et 

al, 2022; Tsouros et al 2019; Ayamga et al, 2021). 

 

The following examples provide a background to some of the key factors, both limiting and 

advantageous, which characterise the emergent dynamics that will drive change and technology 

acceptance in this sector. 

 

Drone development and change 

Whilst there have been some great strides taken in terms of the military development and 

application of drones (Coutinho et al, 2018; Khoufi et al 2019; Tran et al, 2022), the large 
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proportion of the emergent drone changes are clearly aligned with the leisure and recreational 

elements of the drone sector (Macrina et al 2020; Ghasri et al 2021; Giacomini et al, 2022). In 

the last decade many drones have been released to the market that have had sufficient stability, 

ease of use, and reliability, so that they have gained widespread acceptance within the popular 

leisure market. These initial drone offerings were widely adopted by individuals and families 

for recreational purposes. Drone models such as the DJI Phantom 3 and Phantom 4 drones have 

provided an entry level set of easy to operate UAVs (Chamata and Winterton, 2018; Mills, 

2016) that have allowed for the early adoption and exploration in terms of its advantages and 

opportunities. 

 

These early drone models were also used to quickly determine areas of interest and the early 

development of the models saw the release, and rapid change, on a range of important structural 

changes. These drones were used and tested in a range of settings to determine the important 

requirements for drone technology to enable them to become widely accepted and to develop 

into a more mature form of UAV technology.  At the same time, it became clear that a range 

of early limitations required a re-think in terms of their use across a wide range of 

environmentally different landscapes and outdoor elements (both naturally occurring and man-

made). 

 

The Challenge for flight time: Batteries and Performance.  

Early models were initially limited in terms of three key criteria. These were battery life, 

stability, and control reliability (Tanaka et al, 2022; Pasha et al, 2022; Chung et al, 2020). 

Under perfect conditions, drones would operate within standard flight performance criteria in 

terms of duration, time in air, take-off, and landing. Where battery life was subject to early fade 

and termination, it became apparent that it was important to establish a significant number of 

safety controls to allow for the safe return to the ground of drones from different areas, under 

different wind and light conditions. This helped to establish the reasonable prospect of landing 

in a controlled manner that would prevent the UAV from sustaining damage to props, parts and 

UAV structure (Pasha et al 2022). Damage control became an important area of development 

to ensure that expensive parts, such as cameras, could survive and continue to operate reliably 

after crashes, hard landings, landings in water, or other collisions where the parts would sustain 

damage (Tanaka et al, 2022).  Thus, much of the early development centred around the ability 

to get batteries to last for longer and enable drones to operate in a stable manner in the face of 

harsh wind and rain conditions. Drones were required to perform reliably in conditions that 
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provided a level of hardship that required, physical, electronic, and communications resilience 

that extended to include extreme factors of operation (Adão et al, 2017). 

 

Flying at different heights above ground level 

 

One of the key challenges for precision agriculture is to ensure that the data collected at one 

period holds the equal value at another point in time. For example, if we use a drone to capture 

an overhead pass of a wheat crop and we want to use that overhead pass to compare with other 

drone data collections, then we need to understand that the camera should be flown at the same 

time of the day, at the same airspeed, and in the same direction (Martínez et al., 2017; Tu et al. 

2020; Tu et al 2018).  Each data capture should have the same camera angle and use the same 

image resolution for the camera. If followed in this way, then future crop analyses can be 

immediately and directly comparable.   

 

The challenge to find the perfect camera resolution. 

 

The challenge in an early adopter stage is that as the drone market slowly matures it requires 

successive models to demonstrate additional or improved features. One area of maturation is 

in terms of camera resolution. Another is in terms of weight, size, and flying speed (Deng et 

al, 2018; Tu et al. 2020; Adão et al 2017). Features such as these are constantly subject to 

improvement and change. This study looks at which elements are maturing and offer growth 

and stability in broadacre farming. The sale and acceptance of drone technology is not yet 

considered as a mature marketplace. This study considers this factor from the viewpoint of 

entropy. It looks at those factors that are in gradual decline, or those which are losing structure, 

or those which may appear to be in a form of disorder. These factors are difficult to reconcile 

in terms of drone practices because they invoke uncertainty, disorder, randomness, and 

ambiguity.  

 

The scenario described above could be applied to any technology. However, in the case of 

drone technology, the difference is that drones are a recent technology that is finding new sales 

avenues and markets. For example, in Australia a large portion of the uptake of drone 

technology has been popularised (and therefore rapidly accepted) through the recreation and 

leisure field. In conjunction with affordable pricing, drone technology has been rapidly taken 

up across a wide range of both urban and rural areas. (Radoglou-Grammatikis et al 2020; Tran 
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et al, 2022; Ghasri et al 2021).The drones in this entry level bracket are affordable yet 

sophisticated enough to allow for early market entry by commercial entities for business 

opportunities using mapping visualisation and image gathering as part of a wider development 

of the understanding of the power of data gathered from drones. (Hafeez et al, 2022; Van der 

Merwe, et al, 2020). 

 

The Challenge of new technology and acceptance. 

   

Many farmers have purchased drones for trial purposes, aware that they may get some benefit 

from their usage, whilst unaware of the ongoing structures and challenges needed to sustain 

drone usage in a robust and resilient manner.  Some farmers have come together to share usage 

experiences. The majority are in an undecided category, aware of possible benefits, yet un-

prepared in terms of the greater technology demands. Agricultural drone practices demonstrate 

a less-mature part of wider agricultural technology practices. They are dominated by a few 

technologies and are rapidly developing without unified values  and sustainable practices. It is 

against this backdrop that this thesis examines the broad variety of drone practises and their 

varying issues. 

 

1.1.2 Emerging challenges for drones 

 

The vast differences between drones of differing shapes and sizes demonstrates the scattered 

approach that characterises the wide variety of drones and their adaptations. Some drones are 

built to perform a pay-load driven purpose whilst others are smaller and more lightweight, 

seemingly designed around maximum battery life and with a focus on range and sustainable 

time in the air. Other drones place great emphasis on the flexibility in terms of imagery, with 

a rage of different images including Lidar, NDVI, RGB, and other indices and features. The 

broad range of drones and specifications is problematic. New models are emerging rapidly, 

whilst older drone equipment uses systems and controllers that are more comparable with 

games controllers for younger children than machinery controls that hold appeal for more 

mature farming stalwarts.  

 

In November 2022, the Mavic 3 Multispectral drone was released by DJI Agriculture in order 

to spark the development of precision agriculture across the world (Figure 1.1). This drone uses 

a two in one camera system which consists of a 5 MP multispectral camera and a 4/3-inch 
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CMOS and 20MP image sensor RGB camera.  The drone has an ultra-long battery life of 43 

minutes and can complete a mapping operation over an area of 200 hectares in a single flight 

duration (DJI Mavic 3 multispectral ,2022). The Mavic 3 can support up to 15 km ultra-long 

transmission distances compares to the P4 multispectral drone which support a transmission 

distance of 7 km and a maximum battery life of 27 minutes (P4 multispectral – DJI, 2022).  

 

 

Figure 1.1 DJI Mavic 3 drone (DJI Mavic 3 multispectral ,2022) 

 

The DJI S1000 is an octocopter drone that weighs roughly 4 kg and has a maximum take-off 

weight of about 11 kg (Figure 1.2). It has a maximum flight time of 15 minutes. Depending on 

the specific research parameters, these drones can be outfitted with a variety of sensors to help 

achieve a variety of precision agriculture tasks.  

 

 

Figure 1.2 A Ping octocopter drone (DJI Spreading wings S1000) 

 

Zhou et al, in 2020 used a DJI S1000 equipped with a Sony Qx-100 HD camera to compare 

RGB images of a manned ground vehicle (MGV) and unmanned aerial vehicle (UAV) for 

recognition of maize seedling.  
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In 2018, Su et al., deployed a DJI S1000 drone with a low cost Five-bands Mica Sense Red 

Edge multispectral camera to monitor yellow rust in wheat. The image was acquired between 

16-24m with a ground resolution of 1-1.5 cm/ pixel. The research has proven that the use of 

low-cost multispectral camera, low-altitude UAV platform and machine learning techniques 

can be used to detect yellow rust when it is in diseased stage. The same author, Su et al, (2019) 

used a similar DJI S1000 to monitor yellow rust in wheat. A Five-bands Mica Sense Red Edge 

multispectral camera was mounted on the DJI S1000 and the images were acquired from an 

altitude of about 20 metres.  

 

1.1.3 Cost of Drones 

 

There is a broad range of drone technology that has a relatively low-cost barrier to entry, with 

a price range of approximately $1000 to $2000 that provides reliable UAV machinery, a 

reasonably reliable system of control, and an opportunity to trial a combination of software and 

hardware that is widely compatible with mobile phone technology, mobile tablets, and laptop 

machines (Ayamga et al. 2021). The initial cost of drones is enticing but, at the same time, is 

misleading in its general messaging.  

Whilst the initial purchase of an entry level system is affordable, the more widely sought-after 

applications of drone technologies are both increasingly cost prohibitive (Kuzmenko, 2020), 

and are misrepresented in terms of the true overall cost of a more fully extensive application 

of the technology (Joiner, 2018; Kuzmenko, 2020). Specialised features that allow for precise 

imaging and sensor diagnostics add tens of thousands of dollars and require advanced computer 

skills, software inclusions, and high levels of piloting skill and experience (Agrotechnomarket, 

2017). The cost of equipment does not fully explain or properly address the real costs which 

include training, breakages, and repair work (Ayamga et al. 2021).  

Some farmers find that using a drone is a much more awkward activity than driving a large 

modern tractor. Whilst farmers easily become familiar with farm machinery, drone technology 

is inherently more fragile, nuanced, and carries the need for a fresh set of skills (Watkins et al., 

2020). Even the entry-level training in Australia for an RePL licence is usually an endeavour 

of around 5 – 7 days, requires $3000 - $4000, and includes drone failures, crashes and fly-

aways as a part of the initial training for drone technology at the fundamental level of 

instruction.  

There are enormous differences in up-front costs for access to drone technology. That 

separation also extends to the additional costs of hardware, software, training, and additional 
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items that are often not considered but which are highly necessary in standardised drone usage 

and implementation for broadacre farming. 

 

1.1.4 Licencing and Certification of Drones 

 

The regulatory control of drones in Australia comes under the purview of the Civil Aviation 

Safety Authority (CASA). There are a wide range of legal considerations relating to the remote 

piloting of drones that vary according to location, distance from airports, proximity to people, 

height from ground, and line of sight from the pilot.  Other factors to consider include the 

weight of the drone, the classification of drone, fixed wing or multi rotor options, payload 

weight, safe flying time, the battery life, the connectivity with a network, and the level of pilot 

licencing (CASA, 2023).  In many cases the use of drones takes place in remote and rural areas 

where there is a simplified application and enforcement of specific CASA regulations.  As a 

result, many rural drone incidents take place with a strong practice of under-reporting (Ottosen, 

2014).  

 

1.1.5 Range and Distance of drones 

 

Drone regulations across Australia are characterised by a broad range of piloting constraints. 

The weight of each drone, (including the payload) has a widespread effect on where and when 

a drone can be operated (CASA, 2023). In remote and rural areas there are many occasions 

when a drone incident takes place and is recovered without the need to inform CASA or any 

local authorities. The three most significant areas for drone regulations are classified by the 

Civil Aviation Safety Authority in terms of operating a drone on a farm, in a remote area, and 

across someone else’s property. 

These are best described under the following points: 

1. A drone operator must not operate more than one drone at the same time. 

2. A drone operator must always operate with a Line of Sight to the drone. 

3. A special licence is required when using a fixed-wing drone, or long-range UAV that 

can quickly fly out of sight – known as beyond visual line of sight (BVLOS) 

In agricultural terms these points are significant because they relate to farm-specific 

activities. The first point states that a drone operator must not operate more than one drone 

at a time. Anecdotally discussions regarding the flying of more than one drone 

simultaneously have arisen in agricultural terms, since there are occasions (such as in the 
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control of locusts) where a farmer may see great benefit io using multiple drones as part of 

a timed spraying operation to control emerging larvae and to restrict the rapid emergence 

of large numbers of locusts. Similarly, many farmers see great benefit in the use of two or 

more drones as a cost-effective method of mustering sheep. (CASA, 2022) 

The second point relates to a drone operator always maintaining a line of sight to a drone. 

In broadacre farming most of the drone usage will cover large acreages of a single crop 

variety. The reliance upon a line of sight is problematic since the operator must also just 

the location of the drone against a background that is difficult to use when it might show a 

single crop (eg wheat, lupins, or canola). A drone operator should (where possible) use a 

spotter to keep a connection with a drone as it operates in broadacre settings, and in 

instances where a large bird of prey (eagle or hawk) may choose to attack the drone and 

may see it as a rival predator. (CASA, 2023) 

The third point relates to the need to understand the more specific requirements for 

operating a drone in a BVLOS scenario. In the case of high-powered drones and fixed wing 

drones, the UAV is capable of very high speeds (eg 70 – 80 Kph) and can quickly become 

lost to the naked eye. In these types of situations, the BVLOS ruling recognises that the 

operator is unable to continuously monitor the drone flight path. In such instance the drone 

is operated with a pre-determined map that indicates the intended plan of flight and the 

drone follows that path in an automatic sense – rather than in response to manual 

instructions from a drone operator. (CASA, 2023) 

 

1.1.6 Battery life – Power supply 

 

Drone operations and their developing usage is strongly constrained by the life of the 

batteries that are used to power each device as well as its motors and flight control functions. 

Larger fixed wing and multi-rotor machines have built in safety margins (often more than 

20%) that will allow a drone to maintain flight time.  Battery life is the definitive constraining 

factor, forcing the interruption of large–scale mapping functions as well as limiting how far a 

drone can fly away from a pilot and still leave sufficient battery power to achieve a successful 

flight by returning to its point of origin. 

 

1.2 Drone Rules and Regulations   

 

Due to the increased use of drones, several countries have enacted new legislation governing 

the use of drones and their operators. Every country has established its own laws, which impose 
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very particular constraints. For instance, the maximum flight altitude in Luxembourg, Israel, 

and Germany is regulated to be 50 metres above ground level, whereas in Belgium, the 

maximum flight altitude is controlled to be 45 metres (Tsiamis et al, 2019).  Every member 

nation of the Organisation for Economic Co-operation and Development (OECD) has some 

kind of restriction on the operation of drones that are permitted near airports, populous areas, 

and buildings or authority. 

 

While most countries have passed laws mandating a minimum distance from airports, a few of 

nations like Austria, Italy, Korea, Turkey, the United Kingdom, Hungary, Estonia, Belgium, 

and Luxemburg have not specified a particular distance but rather require a "safety distance." 

(Figure 1.3) 

 

 

Figure 1.3 Minimum distance of drone flights from airports (Tsiamis et al, 2019). 

 

Rules for Recreational drone operators in Australia (CASA, 2023) 

The Australian Civil Aviation Safety Authority stipulates twelve specific rule sets for 

recreational drone operators in Australia. The first rule is that pilots must not fly their drone 

higher than 120 metres (4000 feet) above ground level. The second rule is that they must keep 

their drone at least 30 metres away from other people. The third rule is that they must only fly 

one drone at a time, whilst the fourth rule states that pilots must keep their drone within their 

visual line of sight. This means always being able to see the drone with their own eyes (rather 
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than through a device, screen or through goggles. The fifth rule is that pilots must not fly over 

or above people or in a populous area. This includes beaches, parks, events, or sports ovals 

where there is a game or event in progress. The sixth rule is that they must respect personal 

privacy. They must not record or photograph people without their consent as this may breach 

other laws. The seventh rule is that if a pilot’s drone weights more than 250 grams then the 

pilot must fly at least 5.5 kilometres away from a controlled airport, which generally has a 

control tower at them. Where possible they should use a drone safety app to find out where 

they can and cannot fly.   Pilots must not operate their drone in a way that creates a hazard to 

other aircraft, personnel, or property. The eighth rule is that they must only fly during the day, 

and that they must not fly through cloud or fog. The nineth rule is that they must not fly their 

drone over or near an area affecting public safety or where emergency operations are underway. 

This includes situations including a car crash area, police operations, fire or firefighting efforts, 

and search and rescue. The tenth rule comes into play if pilots are near a helicopter landing 

site, or a smaller aerodrome without a control tower, where they can fly their drone within 5.5 

kilometres.  The eleventh rule suggests that if a pilot becomes aware of manned aircraft nearby, 

they must manoeuvre away and land their drone as quickly and safely as possible. The twelfth 

rule is that if they intend to fly their drone for work (commercially) then there are rules that 

they must follow. A pilot must also register their drone and get a licence or accreditation 

(CASA, 2023). 

 

1.2.1 Licencing and Certification of Drones 

 

In 2016, The  Civil Aviation Safety Regulations (CASR) Part 101 legislation introduced a new 

category of operation called "Excluded RPA" (Civil Aviation Safety Authority Part 101, 2021). 

Individuals are now permitted under the new Excluded RPA legislation to engage in certain 

types of flying for commercial gain without getting a Remote Pilot License (RePL) or making 

an application to CASA for an RPA Remote Pilot License (ReOC). Farmers and other private 

citizens now have more leeway in how they use drones on their own land because of the new 

laws. If a person wants to fly drones under 25 kg over their own property, they can also fly as 

an Excluded RPA. 

 

1.2.2 Drones and Standards 

 

The standards for drones and UAVs are regularly being updated and altered to reflect the 

changing needs of a world that has more and more UAVs in use (including in broadacre 
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farming). The ISO standard ISO/TC 20/SC16 Unmanned Aircraft Systems was established in 

2014 to standardise “classification, design, manufacture, operation (including maintenance), 

and safety management of UAS operations.” The ISO standards committee has 7 standards and 

24 projects in development (Ramezani et al, 2022). 

 

Australia participates in this ISO standards committee as an Observing Member. Standards 

Australia has initiated the formation of a national mirror group (SV-001-01) with the goals of 

expanding Australia's involvement on the international stage and better representing Australia's 

best interests in terms of flight safety and drone usage (Ramezani et al, 2022). 

 

Other standards relating to the use of drones includes ISO/TC 23/SC 6 (Equipment for Crop 

Protection) / and WG 25 Unmanned Aerial Spraying System (UASS), which covers the rules 

for the use of drones for aerial spraying. Similarly, there is the IEC TC 129 standard for 

Robotics for Electricity Generation, Transmission, and Distribution Systems, which includes 

the use of drones for power distribution. Both standards are being developed and are under 

ongoing revision by the International Organization for Standardization (Ramezani et al, 2022). 

 

1.2.3 Australia’s Drone Market  

 

After the United States, Australia had the largest yearly income per capita on consumer drones 

in 2019. The drone market in Australia currently contributes AUD $5.5 billion (about USD 

$4.3 billion) to the economy of the country, and it is anticipated that this number will grow to 

AUD $14.5 billion by the year 2040 (Ramezani et al, 2022; Deloitte,2021). The growth in the 

Australian demand for UAVs suggests that drone usage is well established in Australia. 

 

By the year 2040, Deloitte estimates a cost reduction of $9.3 billion, with $2.95 billion of this 

coming from the agriculture, forestry, and fisheries industries, with $2.4 billion coming from 

the mining industry, and $1.34 billion coming from the construction industry (Deloitte,2021). 

 

1.2.4 Sensors 

 

There are several key applications for the use and integration of sensors into drone technology.  

The key areas of application for sensors demonstrate the importance of the acquisition of image 

data through the usage of indices from sensors such as LIDAR sensors and NDVI features. 

Drone acceptance is reliant upon the overall value of these different sensors, including their 
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technology value, their data value, their limitations, and a range of variations in terms of costs. 

Some drones are significantly more expensive than others, and this research needs to 

understand the cost benefit of a wide variety of sensors. Further agricultural research needs to 

consider the practicality and integration of drone instruments that have a very expensive cost 

(both for flying and for repairing). 

 

Remote sensing technologies such as unmanned aerial vehicles (UAV) are repeatedly equipped 

with sensors. These sensors are used to capture images of high resolution as well as  temporal 

resolutions which can help to analyse various characteristics. Drones have a wide variety of 

potential applications due to their ability to be outfitted with cutting-edge technology, advanced 

computing capacities, and on-board sensors to assist in crop management (e.g., mapping, 

monitoring, irrigation, plant diagnosis) (Zhong et al., 2020; Lin and Habib,2021; H. Huang et 

al., 2021). Sensors can offer information that may be used for risk assessment, such as by 

updating farmers on cand growth monitoring, water stress, disease detection, weed and yield 

estimation (Inoue, 2020; Panday, Pratihast, et al., 2020).  

 

Low cost RGB camera equipped drones have proven to be successfully deployed in precision 

agriculture. In 2016, Lopez-Granados et al, undertook a research study for early season weed 

mapping in sunflower crops using UAV technology comparing an RGB and a multi-spectral 

camera. Two specific flight altitudes were copied for the use of UAVs so that they would 

specifically be operated at heights of 30 metres and 60 metres above ground level. In particular, 

the flying height at which a drone is operated has a profound effect on the image's spatial 

resolution, as well as the area captured by each photograph, and the total flight time. When the 

UAV was operating with the RGB camera at a lower altitude, it was able to acquire imagery 

with a finer spatial resolution than when it was operating with the multi-spectral camera at the 

same altitude. Additionally, the number of images required by the RGB camera to cover the 

entire field at an altitude of 30 metres above ground level was significantly lower than the 

number of images required by the multispectral camera.  

 

Different specifications regarding the inclusion of sensors in UAV instruments has a 

considerable impact on the price and associated additions of drone technologies. It is important 

to point out that the inclusion of a multispectral sensor into an unmanned aerial vehicle (UAV) 

will incur significantly higher costs than the price of a regular RGB (red, green, and blue) 

camera. Unmanned aerial vehicles (UAVs) equipped with RGB cameras start at between one 
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thousand and two thousand dollars and are therefore significantly more accessible to farmers 

(Gašparović et al, 2020). In comparison, the cost of individual multispectral cameras can range 

between seven thousand and fifteen thousand dollars, and this price does not include the cost 

of the UAV (De Oca et al., 2018). The less expensive RGB fittings for drones have 

demonstrated that they are useful for several procedures in farming. The application of low-

cost UAV-RGB images has been proven to be successful in estimating barley biomass (Zheng 

et al., 2018a) and (Zheng et al.,2018b).  Emerging sensor devices, such as Lidar, are some of 

the commonly used sensors in Precision Agriculture (PA). These are particularly useful in the 

identification of specific types of objects (notably livestock) and are becoming more recognised 

as appropriate for a range of farming applications. 

 

1.2.5 Visible light sensor (RGB) 

 

The red, green, and blue sensors (RGB) can capture an image in different conditions on both 

sunny and cloudy days.  Before a picture is taken, the RGB sensor guides the camera to 

determine the amount of light needed to create a well-exposed image (Nikon, 2021). The RGB 

sensor is then deployed to capture a high-quality image in poor lighting by combining the 

different optical elements. This includes a special filter that can divide light into various 

wavelengths and display a clear image onto the sensor (Nikon, 2021; Tsouros et al., 2019). 

 

1.2.6 Multispectral Sensors 

 

Multispectral cameras with remote sensing image technology use Green, Red, Red-Edge, and 

Near-Infrared wavebands to capture both visible and invisible images of crops and vegetation 

(Corrigan, 2021). Multispectral cameras work by imaging different wavelengths of light. For 

example, the Mica Sense Red Edge multispectral consists of 5 images.  In such an example 

each imaging device is equipped with a special optical filter whose purpose it is to allow a 

certain set of light wavelengths to be captured by the imager (Rise Above, 2021). 

 

The P4 multispectral drone (Figure 1.4) is equipped with multispectral camera that  features a 

total of six imaging sensors, five of which are multispectral sensors and one RGB sensor. The 

P4M camera (Figure 1.5) has a focal length of 5.74 millimetres, an image resolution of 1600 

by 1300 pixels, and the sensor size is 4.87 mm × 3.96 mm (P4 multispectral DJI, 2022).  In 

addition, the P4M camera is also equipped with a sunshine sensor, but reflectance data cannot 
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be obtained directly compared unlike the Sequoia Multispectral camera (Figure 1.6) (Lu et al, 

2020).   

 

Figure 1.4 P4 multispectral drone (P4 multispectral – DJI, 2022). 

 

 

Figure 1.5 P4 Multispectral drones’ multispectral camera (Lu et al, 2020). 

 

The Sequoia camera has a total of five imaging sensors including four multispectral sensors 

and one RGB sensor (Lu et al, 2020). It has a sunshine sensor that can record the illumination 

information of each image, which makes the process of calibrating multispectral photos much 

easier. It allows for the reflectance data to be obtained directly. 

 
 

Figure 1.6: Sequoia Multispectral camera (Lu et al, 2020). 

 

In 2020, Lu et al, compared the difference between the Sequoia multispectral camera 

technology and the P4 Multispectral camera drones. In term of data collection both the Sequoia 

and P4M demonstrated similar capabilities, and their spectral values and Vegetation Index 

(VIs) are highly correlated. Both the P4 and Sequoia sensors had similar qualities, making it 

possible to use them interchangeably for remote sensing applications that required daily 
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coverage of wide areas with great spatial resolution. Additionally, the authors noted that the 

Vegetation Index (VI) obtained from both sensors had good precision and were suitable for 

vegetation remote sensing monitoring. 

 

A recent study by Ashapure et al, (2019) compared RGB and Multispectral images of cotton 

canopies. The study used a DJI Phantom 4 Pro for RGB images and the DJI Matrices 100 

platform with the Slant Range 3p sensor for a multispectral data collection. The result of the 

study showed that in the early-growth stage of a crop, the RGB-based CC estimation was 

useful, but later in the season, the MS-sensor-based indices were more accurate. Similar studies 

in 2019 that quantify vegetation cover in olive groves was conducted by Lima-Cueto et al, 

(2019).  That study suggested that an MS-sensor-based CC had better accuracy compared to 

RGB – based CC (Lima-Cueto et al, 2019). 

 

1.2.7 Machine Learning  

 

Machine learning (ML) is often used in broadacre farming to analyses information acquired by 

UAVs. Due to the large volume of information that is acquired from those UAVs, ML can be 

used to boose the performance and extract knowledge for differing variables within the 

vegetation.  

 

Deep Learning (DL) models are a subset of the machine learning algorithms that are built up 

of artificial neural networks that are multi-layered. These models derive their hierarchy and 

formation from the structure and operation of the human brain. In deep learning the goal is to 

identify previously undiscovered structures or patterns in the input distribution, so as to allow 

them to create accurate representations of the data and learn the various characteristics via a 

hierarchical organisational structure (Deng et al 2014; Al Sobbahi et al 2022; Buters et al. 

2019). 

 

UAV-based RS and advanced computational algorithms, including Artificial Intelligence (AI), 

Machine Learning (ML) and Deep Learning (DL), are progressively being applied to make 

predictions and solve decisions to optimize the production and operation processes in many 

farming industries (Amarasingam et al, 2022; Tsouros et al, 2019; Buters et al. 2019). 
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Object-based Image Analysis (OBIA) is one of the commonly used applications in Precision 

Agriculture (Buters et al., 2019). The Purpose of OBIA is to discriminate objects within 

agricultural images acquired from UAVs (Borra-Serrano et al., 2015; Huang, Lan, Yang, 

Zhang, Wen & Deng, 2020; Blaschke, 2010). OBIA is usually composed of two main steps: 

image segmentation, and object classification (Blaschke et al., 2014). 

 

In 2018, Liakos et al., reviewed the state of machine learning in agriculture. The review study 

noted that machine learning plays an important role in several agricultural sectors, such as crop 

management in the form of yield production, disease detection, weed detection, crop quality, 

species recognition, livestock management, water management, and soil management. 

 

 

The Challenge of different software for image analysis 

Table 1.2 gives an example of the software tools for flight plan, image processing and image 

analysis. The table displays a wide and varied range of instruments that can provide a range of 

photogrammetric equipment that provide for many differing processing areas. 

 

Software Tools for flight plans 

 

Flight Plan Image 

Processing 

Image analysis 

Altizure DJI Pix4D 

mapper 

ArcGIS 

autopilot ArcGIS 

Pro 

ENVI 

eMotion flight 

planning 

ENVI MATLAB 

DJI Flight Planner Global 

Mapper 

QGIS 

PIX4Dcapture Open 

Drone 
Map 

GIMP 

DroneDeploy Agisoft 

Metashape 

ImageJ 

 

Table 1.2: Software tools for flight plan, image processing and analysis (Amarasingam et al, 2022) 
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1.3 Problem Statement 

 

Farmers who rely on technology to provide precision agriculture solutions are increasingly 

aggregating expensively captured data that combines different conditions, cameras, drone 

velocities, shadow distributions, and locational ground truths. These aggregated combinations 

are sufficiently disparate from each other that the decision-making process is inaccurate and 

less effective than necessary. When described over time and with the addition of season-by-

season comparisons, the use of inconsistent drone-based image capture represents a level of 

inaccuracy that is likely to impact the yield and efficiency of crops based on precision 

agriculture decisions. The problem, therefore, is to reduce the number of inconsistencies by 

means of determining consistently similar measurement areas such as the optimal height and 

velocity for drone-based image capture.   

 

Image quality can be improved with the use of computer software, however, a study conducted 

by National Taiwan university suggested that a super-resolved image is often not cleared 

compared to the image that is directly acquired by a high-resolutions camera (Shih, Hsu, Yang 

and Chen, 2014). 

 

However, getting accurate recordings on height, resolution and velocity has always been a 

challenge. There are many factors that need to be taken into consideration that can have a 

significant impact on image resolution. One factor is the consideration of image capture where 

there is likely to be adverse weather conditions. This is an area of widespread benefit where 

the quality of pictures captured on a rainy, cloudy or sunny day will not be the same. The white 

balance (direction of the sun), focal length and resolutions, stability, flight time, and ground-

level can all affect the quality of the resolution from different images (Hu et al., 2019). 

 

Drone practices are being adopted across a wide range of agricultural enterprises however the 

focus of this study specifically considers broadacre farming where the dynamics of drone 

interaction is largely premised upon remote areas with large acreages that require drone activity 

in large cross-sectional areas of land. These emerging practices are developing from a market 

position that describes UAVs as an area of technology that is yet to reach maturity (Schmeitz, 

2020; Ren, 2020). That same developmental position is an observable feature of the UAV 

industry whereby rules, regulations and guidelines are only loosely formative.  
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Farmers and agriculturalists are quickly realising the benefit of data and its application in terms 

of precision agriculture. The demand for precise mapping, Internet of Things (IoT) data, and 

sensor driven information has galvanised the need for UAVs to take a permanent role in 

broadacre farming practices.  The issues that accompany this new technology are varied and 

complex in nature. Farmers are increasingly being asked to engage with the computer science 

of technology but are doing so from a low base of knowledge and experience. This raises key 

questions about the risks, maturity, and readiness to deploy globally professional solutions in 

the context of broadacre farming. 

 

A study undertaken in 2020, comparing the difference between low-resolution, high resolution, 

and super-resolution images, outlined that super-resolution images have a higher accuracy 

margin compared to low-resolution images and underlines the amount of data that is lost in 

low-resolution images (Yamamoto, Togami, and Yamaguchi, 2020).  

 

The research reviewed in this thesis will be viewed through multiple lenses. Part of the 

challenge to solve these challenging differences is to determine the  elements where small 

differences can determine a great deal of crop variance. Images captured by a UAV during 

different periods of the day, season, and different height levels may benefit from being 

examined using machine learning. Such examinations aid in understanding  the impact of 

resolution and recording approximate resolutions for image capture.  

 

 1.4 Significance, Potential impact, and Novelty 

 

An optimal framework for UAV practices that standardizes specific image resolution, as well 

as defining the height at which drone operations should be performed, is needed to provide 

consistency in terms of data and agricultural record keeping.  This study will identify issues 

experienced at ground-level, as well as in the air in terms of height, position, angle, and speed. 

This would make a significant contribution in capturing a range of images to suit best practice 

and utility in broadacre farming. Problems arise from the inconsistencies in image resolution 

and in the inconsistent ways that images are being captured in broadacre farming. The 

usefulness of the images that are obtained through drone practices can be significantly 

improved by using a standardised approach to specifying ways to classify the way in which 

data can be used to improve outcomes in broadacre farming. 
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 One of the novel features of this investigation is the decay and entropy approach to the way 

yearly crop data is added to the many years of agricultural data. This thesis seeks to expose the 

way in which decay and entropy can change critical data used in precision agriculture. In an 

extended for, it may demonstrate a decaying system that will affect future crop decision-

making for many decades. There is currently no consistency in the way in which data is being 

collected and analysed in broadacre farming. For the last three decades in Western Australia 

the collection of satellite imagery across broadacre farming areas has been collected at the same 

height and time of day. These consistent practices are highly reliable in one sense, but 

problematic in another because the quality of the images in terms of their resolution is based 

upon the quality of cameras that were installed many years ago when satellites were placed into 

Earth’s orbit to observe and record information.  New practices using drones are hindered by 

the opposite challenge. They allow for measurements to be taken at any time of the day, at any 

speed, at any height or angle, and with a changing guard of camera technology that renders any 

two image sets highly incompatible because of the lack of a consistent set of image parameters. 

  

This study aims to improve the way in which data is collected and analysed in broadacre 

farming. The advent of drone usage has brought a raft of options in terms of how data can be 

collected.  This broad set of choices means that agriculturalists in broadacre farming (especially 

early adopters of technology), are faced with multiple decisions and opportunities. The aim of 

this study might therefore draw a focus on the ability to assist those using drone technology to 

achieve some form of standardisation.  This study also aims to assist with the development of 

standards of practice that allow for a consistent comparison across seasons and across years. 

The changing nature of drone technology has made the task of standardisation increasingly 

difficult and instead of drawing the Agtech drone community together, has instead brought 

about fragmentation and accelerated the decay of a consistent set of agricultural practices, 

especially in precision agriculture where the reliability and quality of the precise measurement 

has always been the mainstay of the efforts to improve yields, efforts and productivity. 

 

This study seeks to better understand these practices in terms of accurate height measurement, 

velocity of drones when capturing data, and the resolutions that are accepted that represent a 

constantly improving set of high-resolution images. This type of knowledge and understanding 

can greatly assist farmers to save money and time by re-setting the standard means by which 

data is collected.  It will also serve as a guideline to self-operated drone usage in capturing 

accurate images that can be used for data analysis. However, different sets of cameras need to 
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be explored to get a better understanding of options and choices in terms of the quality of 

agricultural imagery.  

 

The significance of this study also lies in the application of machine learning techniques to 

maximize the quality of images. The tools of machine learning could prove instrumental in the 

advance made in this research area. The novelty of this research has three aspects. The first is 

to understand the quality of images (Resolution), operating heights, and the flight speed of 

drones in farming practices. The second aspect is to understand about the usage of drones to 

characterise the deployment of drones in a meaningful manner, and finally the third aspect is 

to understand the rules and regulations that provide for a highly fragmented and segmented set 

of guidelines in the UAV industry. 

 

The study will identify novel approaches to address the ways in which UAV machines capture 

images in broadacre farming. At the conclusion of this thesis the result will be seen in the 

development of a revised approach for image-capturing using UAV in broadacre farming.  

 

1.5 Research Objectives 

 

A long-term goal of this research is to determine the most effective techniques for the 

application and accepted usage of drones in broadacre farming for high yield wheat productions 

in Western Australia. The research also considers how UAV imagery can best be acquired and 

compared from season to season after different models, lenses, cameras and upgrades have 

changed each season.  To achieve this goal, the following Research Objectives (RO) are 

discussed. 

 

RO1:  To identify factors that impact upon the use of UAVs in Broadacre farming. 

RO2: To identify limitations in UAVs in Technologies, Cameras, Costs, Laws, Acceptance of 

the technology. This includes the issues of different height standards and resolution standards 

for measuring crop indices and aggregating crop data. 

RO3: To ascertain what consistencies are required to make the use of UAV Drones a 

sustainable practice in terms of precision agriculture. 

RO4: To ascertain optimisation features that will drive higher yields in precision agricultural 

terms.  
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1.6 Research questions 

 

On the basis of the research objectives and the significance of this study, a set of research 

questions were devised to provide knowledge and understanding about the practices of drone 

usage in broadacre farming. 

Main Research Question  

Q1: “What are the important factors influencing the development of UAV 

technology for broadacre farming?” 

Sub questions  

Sub questions 1  

SQ 1. What are the ongoing limitations of the development of drone technology? 

Sub questions 2 

SQ 2. What are the important optimization features of image analysis using 

UAVs?  

Sub questions 3 

SQ 3. What are the important standardisation approaches for using drone 

technology in broadacre farming?  

 

1.7 Summary  

 

This project aims to use drone-based object detection for wheat crop and paddock management 

using drone technology. This research will explore how drone technologies and Machine 

Learning tools can be uses to identify the optimal physical placement of drones to best allow 

for decision making in high yield wheat productions in Western Australia. This project 

considers how UAVs can be best displayed prior to harvest. These systems could be used to 

map crop changes and other specific object crop altering phenomena. The research will 

examine the most effective techniques for capturing images under different field conditions. 

The project will use technology to develop optimum decision-making parameters with 

reference to specific image reference positioning. It will consider systems for capturing images 

in wheat crops at different stages of growth and will include a consideration of how to predict 

objects of agricultural relevance and commercial concern.  

This project aligns with existing research within the School of Science in drone usage, image 

processing and machine learning.   
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2. LITERATURE REVIEW 

 

This chapter describes three main areas. The first is an explanation of the Selection Criteria 

that underpins the way literature is chosen, screened, and collated. The second is an explanation 

of the search-string methodology that was used to select literature that was relevant, aligned 

with research themes, and valuable in terms of relevance, collaborative appeal, and likely to 

align with a wider selection of contributing research narratives. In this sense, a deliberate 

attempt was made to avoid using literature from “one-time-only” authors, and to instead look 

where the research themes had been developed and consolidated over several research fields 

of study. The third area outlined is an organised selection of relevant research themes 

applicable and highly relevant to the specific research direction of this thesis, as well as being 

drawn (wherever possible) from literature within the past 5 to 6 years. 

 

2.1 Literature Selection Criteria 

 

This section describes the methodology that informs the following section: A systematically 

driven scoping review was undertaken of the literature on important factors influencing the 

optimization of UAV technology for broadacre farming. The broad discipline of science 

sometimes has difficulty in the usage of literature from authors and from research teams who, 

whilst passionate and qualified, lack two important qualities.  The first is that the literature on 

drones is relatively new and has captured the excitement and intrigue from many authors 

(Schmeitz, 2020; Maciejczak and Faltmann, 2018; and Straub, 2015).  This is both intriguing 

and problematic. On the one hand, the literature contains a range of works which are unique, 

single-issue driven, and often specifically related to the author and their research.  This makes 

for a range of fractured and highly dissimilar research vectors which, although potentially 

interesting,  are unlikely to become the subject of in-depth and further defined areas of research. 

One of the criticisms of the emergent narratives regarding drone practices is that they are highly 

splintered.  

 

This reflects the very recent beginnings in research terms within this area. Drones have their 

historical origins in the 1850s, 1920s and 1930s (Azoulai,  2011), however their more 

ubiquitous emergence is more clearly connected with the 1980s when the US Department of 

Defence contracted the Israeli company Malat to assist in the development of drones based in 

larger numbers for defence and surveillance purposes (Goraj, et al. 2004; Azoulai, 2011)     
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The literature included in this thesis study has been selected because it has been deemed  

appropriate for the purpose of helping to answer the research questions for this work.  Literature 

has been sourced on the basis that it contributes towards a deeper understanding of drone 

practices, broadacre farming, and the factors that either limit drone technology, optimise it, or 

assist in the standardisation of drone technology.  This study draws upon the characteristics 

and features of UAVs to better understand the present state of development and application in 

broadacre farming. To achieve this goal a specific method has been chosen to identify relevant 

literature so that it does not include research contributions that form the outlier portion of the 

research contributions for this field of study. The search criteria, and its associated search 

string, are therefore important elements of this study in terms of the provision of a body of 

literature that is current, instructive, and provides a purposeful means by which information 

and data can be used in achieving the objectives of this study.  

 

The search criteria revealed several themes and phrases that are critical in terms of generating 

the informed literature for this study. These terms are emergent from the initial background 

literature and have been tested to demonstrate thematic alignment with the area of research that 

describes this research study. The following keywords were used to create our search strings: 

• UAV, UAS, Drone 

• Remote Sensing, Camera, Pixel  

• Smart Farming, Agriculture, Broadacre farming  

• Development, limitation, Guideline  

As a result, this literature review comprises a range of literature that creates a collated aggregate 

of knowledge from two main research strings. 

 

Search string One:  

ti=drone OR ti:(UAS) OR ti=UAV OR ti:(remote sensing) OR ti=camera OR kw:(Farming) 

OR kw:(Agriculture) OR ti:(livestock) OR au:(battery life) OR kw:(weather) OR kw:(Pixel) 

 

Search string Two:  

kw:(Drone) OR kw:(UAV) OR kw:(UAS) AND kw:(Rules) OR kw:(Regulations) OR 

kw:(Guideline) OR kw:(Framework) AND kw:(broadacre) OR kw:(regional) OR kw:(remote) 
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OR kw:(farming) OR kw:(agriculture) AND kw:(camera) OR kw:(velocity) OR kw:(Ground 

coverage) OR kw:(remote sensing) AND kw:(multispectral) 

Based on the selected keywords the following search string was assembled:  

(∼Drone∼ OR ∼UAV∼) AND (∼Rule∼ OR ∼Regulation ∼ OR Guideline ∼ Framework) 

AND (∼broadacre∼ OR ∼regional∼ OR ∼remote∼ OR Farming ~ OR Agriculture).  

 

The following databases andpublishers served as data sources: ACM Digital Library, IEEE 

Xplore, Science@Direct, Springer, Elsevier, and Scopus. After performing the set of queries 

on the databases, we collected 403 articles. Further filtering was carried out based on a range 

of inclusion and exclusion criteria. The inclusion criteria focused on articles that were peer 

reviewed, were published in the last five years, and described at least one drone-related 

activity within the broad context of broadacre farming.  The exclusion criteria focused on 

articles published before 2018 that were not peer reviewed and/or were not written in the 

English language. The exclusion criteria also extended to articles not related to farming or 

agriculture, articles from Blogs, personal websites, YouTube, and Facebook social media 

sites. 

Inclusion criteria 

 

• Peer reviewed. 

• Published in between 2018 and 2022 

• Describes at least one drone related activity in Broadacre farming.  

 

Exclusion Criteria 

• Before 2018 

• Not in English 

• Not Peer reviewed. 

• Not related to farming or agriculture 

• Blogs 

• Personal websites 

• YouTube 

• Facebook 

 

 

The formal literature was drawn from the following databases and key collections of science-

based journals. 

Formal Literature 

 

 No. of 

Abstracts 

No. after 

Screening 

No. of Full 

papers 

No after 

screening 

Final 

nos. 
ACM 145 90 90 77 38 

Web of Science 177 134 134 69 46 

IEEE Explor 208 156 156 68 33 
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Elsevier 201 144 144 85 39 

Springer 268 187 187 116 48 

Science Direct 98 75 75 43 13 

Scopus 158 123 123 62 39 

TOTAL     256 

Table 2.1 Scoping Literature review and Screening data 

 

This thesis also takes into consideration a range of informal literature sources. Whilst the 

main provision of literature has been sourced from peer reviewed material and high-ranking 

journals, a small section of the literature has come from blogs, social media, government 

reports, and early works.  

Informal / Grey Literature 

• Youtube 

• Blogs 

• Not related to farming or agriculture 

• Early works/Seminal Works 

 

2.1.1 Literature review Components 

 

The components listed below constitute a broad thematic range of information that was initially 

collated as part of the initial search string. This collation forms the formal literature that comes 

from the search strings and demonstrates a specific scoping review that includes clearly 

specified inclusion and exclusion criteria. 

 

2.2 Drones in Broadacre farming  

 
UAVs are experiencing very high demand in the agricultural sector (Floreano, and Wood 2015; 

(Borra-Serrano et al., 2015). In agriculture drones were initially used for spraying a chemical, 

to overcome the visibility problems associated with cloudy weather (Simelli and Tsagaris 

2015). 

 

2.2.1 Drone applications in Farming   

 

Crop Spraying and Pest Management  

There is a wide range of applications that drones have been applied to in farming. Drones can 

scan the ground and spray the appropriate quantity of liquid while also adjusting their distance 

from the ground and spraying in real time (Budiharto et al, 2019, Michels et al 2020; 

Delavarpour et al, 2023). This ensures that the liquid is evenly distributed. As a consequence 

of this, there is a corresponding reduction in the quantity of chemicals that seep into the 
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groundwater. This leads to an increase in efficiency and has proven beneficial in reducing 

environmental and human contamination risks and raising food quality and safety standards 

(Rani et al., 2021; Salcedo et al., 2021; Sabzevari and Hofman, 2022).  

 

The rapid development and application of agricultural UAVs within rice cultivation is 

generating considerable commercial and practical interest among rice farmers, particularly for 

aerial spraying. This is because agricultural UAVs can fly at low altitudes, use low volumes of 

spraying fluids, and operate with reduced operating costs.  In rice crops drones are effective in 

terms of improved spraying outcomes, reduced energy consumption, and improved harvesting 

results (Lan et al 2018). 

 

The effect of unmanned aerial vehicle (UAV) spray treatments in vineyards was investigated 

by Biglia et al. 2022 using a DJI Matric 600 Pro. This study showed that when using 

conventional nozzles, spray losses could be minimised, and canopy spray distribution could be 

boosted by using a high-level UAV operating at cruising speed .  In this study the drone flight 

plan was shown to be a critical element in influencing the success of the spray application. 

 

An innovative and practical design and development of a small application system that is 

capable of being mounted on an unmanned aerial vehicle for agrochemical spraying tasks is 

presented by Martinez-Guanter et al., in 2019. Additionally, an analysis of the quality of the 

application and economic costs in olive and citrus orchards is presented and compared to those 

of a conventional treatment. The research made use of an unmanned aerial vehicle (UAV) 

model DJI S1000, which had been redesigned and rebuilt with low-cost materials while taking 

into consideration the payload. The design has proven to be effective in reducing costs, and 

additionally has the capacity to conduct variable spraying tasks at a variety of places in a 

consistent manner.  

 

Mapping and soil analysis 

In terms of large-scale farming, the effective management of weeds in a timely manner has 

proven to be essential for maintaining optimal crop yield. To reduce the harmful effect of 

herbicides, site-specific weed management (SSWM) methods have been deemed as necessary 

(Lopez-Granados, F. ,2010; Huang et al 2020). To carry out site-specific weed management 

farmers typically obtain an orthophoto map of their fields. UAVs have been proven to be useful 
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for weed mapping due to their high spatial resolution. (Huang et al., 2021; Wang et al., 2019; 

Schmeitz, 2020). 

 

In 2020, Huang et al., combined deep learning and object-based image analysis (OBIA) with 

UAV data for site-specific weed management (SSWM) in rice paddies. The findings of these 

experiments showed that in cases where remote sensing is carried out by a drone using deep 

learning, it can deliver accurate support information for SSWM applications carried out in rice 

fields. 

 

Pérez-Ortiz et al, (2015) collected UAV images that demonstrated improved performance for 

weed mapping in sunflower fields. To assist in the classification of maize and weeds for 

herbicide patch spraying, Castaldi et al. (2017) used a fixed-wing drone equipped with a 

modified Canon S110 camera and operated at a flight altitude of 150 metres above ground 

level.  

 

In 2019, Wu et al. conducted soil moisture mapping in the loess belt region of Belgium (a low 

plateau forming a flood plain). This study made use of a DJI phantom 4 pro drone equipped 

with ground-penetrating radar (GPR). The findings demonstrated the potential and benefits of 

drone based GPR for rapid, high-resolution mapping of soil moisture at the field scale to 

support, for example, precision agriculture and environmental monitoring. Furthermore, the 

results demonstrated the potential of drone based GPR for mapping soil moisture at the field 

scale. 

 

The DJI Mavic 3M drone (DJI Mavic 3, 2023) has demonstrated improved performance in 

terms of image capture and application. This type of drone has the capability of capturing multi-

spectral imagery of crops before fertilising rice, regulating the growth of cotton, or spraying 

foliar fertiliser on potatoes. The prescriptive maps that are generated by both the DJI Terra and 

the DJI SmartFarm Platform, which capture variations in crop potential, permit the drone to 

subsequently conduct variable-rate applications. Users are able to reduce expenditure, increase 

their output, and reduce the amount of damage they do to the environment as a result of using 

a sophisticated image-based smartfarm platform. 

 

Agricultural insurance investigation  
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UAV drones can efficiently carry out jobs in the aftermath of natural disasters due to their agile 

response time, high-resolution imagery, and high-precision positional data collection 

capabilities. They possess extended application capabilities for a diverse set of tasks by means 

of varying devices, flexible configurations, and straightforward system maintenance. Insurance 

firms can more precisely pinpoint the areas affected by a disaster due using aerial surveys, post-

processing and technological analysis of aerial pictures. This approach allows for the 

comparison with field measurement results. Drones can provide insurance firms with a bird's-

eye view of hail damage, allowing them to quickly assess a specific level of damage. In 

insurance cases it can be important to differentiate whether a field has sustained a 70% 

(medium) or 90% (catastrophic) level of agricultural loss (Ren et al, 2020). 

 

Mechanical Pollinator  

Dropcopter, a start-up business based in New York, has developed a pollen dump drone that 

assists in the pollination of crops such as almonds, cherries, and apples (Dropcopter, 2021). 

The company has been using drones to pollinate crops for many years, stating that it has an 

advantage in terms of saving time and labour as the drones can travel to the area requiring 

cross-pollination in a matter of minutes. This approach demonstrates the efficient use of pollen 

pump drone technology where the conventional approach would normally take several hours 

to cross-pollinate a similar area while driving in a truck (VGN, 2020). 

 

Crop monitoring and Disease detection.  

When a tree is under stress, whether it be from an infestation of pests, a lack of nutrients, or an 

insufficient supply of water, its leaves will change in terms of colour, texture, and condition. 

These alterations might be observable in the visible light spectrum, such as a change in the 

colour of the leaf's green pigmentation. They are also able to be digitally recognised in different 

bands of the electromagnetic spectrum. For example, a shift in the texture of the waxed coating 

on a leaf may cause a change in the way infrared light is reflected by the leaf (Hogan et al, 

2017). The application of imagery acquired by drone footage provides increased information 

and leads to improved and better resourced decision making for crop monitoring and disease 

management. 

 

Recent improvements in the use of unmanned aerial vehicles (UAVs) based remote sensing 

(RS) in precision agricultural techniques have proved essential in improving crop health and 

management. In many farming industries, remote sensing technology that is based on 
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unmanned aerial vehicles (UAVs) and advanced computational algorithms, such as artificial 

intelligence (AI), machine learning (ML), and deep learning (DL), are increasingly being used 

to make predictions, solve problems, and make decisions in order to maximize production and 

operational processes (Amarasingam et al, 2022, Napier et al, 2023). 

 

An investigation into the use of unmanned aerial vehicle platforms, sensors, and applications 

for the surveillance of sugarcane fields was carried out by Amarasingam et al, (2022). The 

research article - discusses the use of unmanned aerial vehicles (UAVs) in the sugarcane 

industry. Drones were successfully deployed for the management of pests and diseases, the 

estimation of yields, the measurement of phenotypic traits, the assessment of soil moisture 

levels, and the evaluation of nutritional status in order to improve productivity and 

environmental sustainability. The authors state that unmanned aerial vehicles (UAVs) allow 

for the accurate management of sugarcane and significantly reduce the amount of pesticide 

inputs. In addition, the research highlights some of the challenges that unmanned aerial vehicles 

UAVs) face in agriculture, including the need for technological adaptation, high initial costs, 

inclement weather, communication failure, policy and regulation. 

 

The deadly fungal disease known as yellow rust affects winter wheat all throughout the world 

(Wellings et al, 2011), and it is responsible for considerable losses in terms of crop yields 

(Beddow et al, 2015). To guarantee consistent and reliable wheat production as well as food 

safety, it is essential to undertake thorough monitoring and accurate identification of yellow 

rust (Wan et al, 2007). Standard procedures currently in use often include agronomists or 

trained surveyors performing manual inspections of disease symptoms in agricultural areas that 

are quite modest. As a result of the subjective and annotative approach by surveyors, this 

procedure is not only expensive but also time consuming and prone to error (Sankaran et al, 

2010). There has, however, been recent progress made in unmanned aerial vehicles (UAVs), 

which can be equipped with hyperspectral image sensors. These UAVs can solve these 

problems in an efficient and cost-effective manner (Zhang et al, 2019). 

 

Zhang et al., 2019 used a DJI s1000 UAV system in conjunction with a deep learning-based 

approach for the purpose of automating the diagnosis of yellow rust disease using high 

resolution hyperspectral UAV photos. According to the finding of the study, combining 

spectral information with spatial information is a viable strategy for boosting the accuracy of 

crop disease identification using high resolution UAV hyperspectral pictures.  
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Schirrmann et al, (2016) was able to create ultra-high resolution orthoimages and surface 

models of a farm comprising of an 11 hectare wheat field using inexpensive UAV imagery 

based on an RGB consumer-level camera. From the wheat's initial "booting" stage through to 

its final "grain filling" stage, the author witnessed the formation of distinct spatial patterns.  

Other biophysical indicators, including leaf area index, fresh biomass, dry biomass, and plant 

height, were also met with great success. 

 

Challenge and benefit of drones  

 

Figure 2.1 Challenges and benefits of drones in agriculture 

In the last decade, there has been a significant rise in the usage of drones of different sizes, 

shapes, and capabilities (Figure 2.1) (Banu, Borlea and Banu, 2016; Colomina and Molina, 

2014). They have mostly emerged in different sectors like civilian application, precision 

agriculture forestry, military, and many other applications (Shahbazi, Theau, and 

Menard,2014). Figure 2.2 shows the rise of UAV remote sensing from 1950- 2020. The paper 

from Banu et al, (2016) highlights the global spread of the same issues for agriculture (although 

through a forestry lens). It shows that in Europe, South and North America, and throughout 

Asia there is a rapidly accelerating reliance upon precision data as acquired by the UAVs and 

that are several challenges in terms of image quality, variations in terms of equipment and 

differences in camera resolution. 

A summary of these challenges and benefits from the literature suggests that the issues are 

rapidly accelerating. The challenges are rapidly growing alongside the similarly fast paced 

nature of the development of the technology, and that challenges and benefits are a useful 

expression in defining the hand in glove connection between these two areas of UAV 

development. There are clearly a range of similarities between forestry and agriculture where 

shared alignment with benefits and with challenges are clearly articulated (Banu et al, 2016). 
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The overarching commonality of these challenges and benefits are strongly connected to 

outcomes issues with precision data, either precision agriculture or precision forestry data. The 

key information remains focused on the best practice usage of increased accuracy set against 

existing practices that use past data aggregations.  

 

Figure 2.2: UAV remote sensing in the civilian application (Banu, Borlea and Banu, 2016) 

The classification of a drone’s frame construction is dependent on the number of motor arms 

it has. In general, the more arms a drone has, the more stable the flight (Kardasz & Doskocz, 

2016). Based on the number of arms, drones are classified according to five principal categories 

(See Fig 2.3) 

• Bicopters – two engines 

• Tricopters – three engines 

• Quadrocopters – four engines 

• Hexacopters – six engines 

• Octocopters – eight engines 

 

Figure 2.3: Drone’s arms (Kardasz & Doskocz, 2016) 
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In 2016, (Mokros et al) used a quadcopter DJI phantom 3 professional drone to estimate the 

volume of wood-chip piles. The results were compared with the GNSS (Global Navigation 

Satellite System) images. The author concluded that there were not many significant 

differences between the two, and in fact, there was 10.4 % more volume estimated via the drone 

method with an advantage of collecting data 12-20 times less compared to GNSS, as 

highlighted in Fig 2.1.  

 

An emerging feature of drone development is that the industry continues to shift upwards to 

offer more sophisticated drones that are available to market such as the DJI Phantom 4 Pro v2.0 

and P4 Multispectral (P4 Multispectral; Phantom 4 Pro v2.0, DJI 2020).  

 

Such drones have a multispectral camera that is designed for agriculture missions or 

environmental monitoring.  The Mavic-mini 2 is a small but powerful drone that weighs 

249grams. It is equipped with a 12 MP camera and can fly up to 31 minutes with a wind 

resistance of up to 29-38 kph (Mini 2, DJI 2020). A more advanced version of the Mavic-Mini 

2 is the Mavic Air 2 which is equipped with a 48 MP camera and has a flight time of 34 minutes 

(Mavic Air 2, DJI, 2021). A recent study by Huuskonen and Oksanen, (2018) has used drones 

to demonstrate soil sampling. Tu et al. (2020) was able to demonstrate that similarly small-

sized drones could be successfully used in measuring horticultural tree structures.  

 

A study conducted by the University of Finland on data and resolution requirements deployed 

drones for mapping vegetation by means of spatially comparing images from three different 

platforms (UAV, Aerial, and Satellite). The approach suggested that the UAV images were 

more accurate than other images (see Fig 2.1). The drones image resolution captured used a 

combination of 8 MP and 18 MP image resolution (A. Räsänen and T. Virtanen 2019). 

In 2017, Gnädinge and Schmidhalter from the University of Munich, conducted a study on 

precision farming and precision phenotyping to collect information on plant properties and 

plant health using aerial image detection with UAVs.  The study suggested that UAVs not only 

provide time and cost-saving data for further processing but also allows for flexible and 

weather-independent data collection (Gnädinge and Schmidhalter,2017) 
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2.3 Image Resolution 

 

Image resolution refers to the number of pixels in an image. Image resolution is sometimes 

also described in PPI, which refers to how many pixels are displayed per inch of an image 

(Herasymenko, 2021; Michigan Library, 2021).  Resolution can also be identified by the height 

and width as the total number of pixels in the image (Jin et al., 2017).  For example, images 

that are 2580 pixels wide and 1944 pixels high (2580 x 1944) contain 5,015,520 pixels or 5.0 

megapixels.  Pixel density is a noteworthy feature as it governs the quality of an image (See 

Figure 2.4). Research has demonstrated that the smaller pixel sizes provide both greater 

accuracy and more detailed information of plants (Hengl, 2006; Hsieh et al., 2001; Jin et al., 

2017). 

 

Figure 2.4: Pixel Density on branches and leaves of a plant. 

A study conducted at the University of Queensland explored the impact of pixel size on the 

estimated accuracy of the ground cover (GC) from RGB imagery (Hu et al., 2019). The images 

captured in this study were either (3456 x 2304 (MP)) or (5184 x 3456 (18 MP)) taken at 1m 

above the canopy plants. The study proposed that an alternative method like multiple flights 
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with extreme high-resolution cameras (100 MP) or a camera with a long focal lens could be 

used to obtain more optimal results.  

The improvement achieved in computational analysis, electronic sophistication, and software 

integration has enabled both multi and hyperspectral imaging to emerge as the prevailing tools 

for gathering data relevant to many different fields in the last decade (Gowen, O’Donnell, 

Cullen, Downey, and Frias 2017; Lorente, Aleixos, Gómez-Sanchis, Cubero, García-Navarrete 

and Blasco, 2017; Napier et al, 2023; Dale, Thewis, Boudry, Rotar, Dardenne, Baeten, and 

Pierna, 2013). The DJI Phantom 4 Multispectral drones have a multispectral camera and a 

sunlight sensor to deliver an integrated multispectral solution. With a flying time of 27 minutes 

the Phantom 4 uses an image sensor that includes a standard RGB camera plus separated red, 

green, red edge, and near-infrared image sensors. 

 

Sandino et al., (2018) researched tea trees in New South Wales studying the aerial mapping of 

forests that were affected by pathogens. The research was conducted using UAVs, 

hyperspectral sensors, and artificial intelligence. The individual rates for healthy trees was 

measured at 95 %, and at 97 % for deteriorated trees. Using hyperspectral three-dimension 

(3D) imagery, Aasen et al (Aasen et al, 2015) were able to deploy UAS instruments to boost 

vegetation monitoring.  

 

2.4 Flight Altitudes and Operating Heights 

 

This section covers three main areas of discovery. The first section looks at the different heights 

that are chosen and used for image capture. The second section looks at similar studies in image 

capture challenges. The third section looks at how drones demonstrate different capabilities 

under variable conditions. This is critical in understanding the issues of wind, sustainability, 

battery life and a wide variety of environmental and introduced conditions (as highlighted in 

Fig 2.1). This thesis is interested in understanding tests where different flight heights using 

different cameras and configurations can be used to determine the optimal frame need to  

acquire high-quality images.  

 

There are various issues regarding optimal height and flight altitudes, as variable parameters 

can have a direct impact on the Ground Sample Distance (GSD), as well as the average image 

and image forward overlap. Other issues arise from variations in terms of the velocity or flying 
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speed which can cause a change to the forward overlap when the camera trigger speed is fixed 

(Figure 2.5).  

 

 
Figure 2.1 Fight height or Ground Coverage 

 

By using an analysis of different CNN architectures and machine learning it becomes possible 

to train instruments to change according to their analysis of noise levels, mixed pixels and 

detection rates. The GSD of the drone images can enable visual identification of major substrate 

types, which is acceptable to use as reference data for training the classifier and accuracy 

assessment (Congalton, 2001). Such technology would help to determine the effective 

technique for object detection and to understand the impact, change, and effect on wheat crops 

using an aggregated approach to objects. 

2.4.1 Drone Flying heights for image capture. 

 

When capturing photographs from a UAV, one of the most significant considerations to make 

is the flight height, also known as ground coverage (GC), because this has a direct impact on 

the pixel size of the images (Hu et al., 2019; Zhou et al., 2018; Seifert et al., 2019).  

 

In 2019, Hu et al. used ground coverage (GC) as an example trait to show how the major flight 

attributes could affects the size of images in terms of their pixels. According to the findings of 

the research carried out by the University of Queensland in Australia it suggests that the most 

practical height for canopy photos given the limitations (fight time/ battery) is in the range of 

20 to 30 m with a 20 MP camera with a focal length of about 50 mm. This research found 

similar results to Jin et al., who published a study in 2017 that estimated wheat plant density at 

early  could be determined using extremely low altitude UAV footage (less than 10 metres). 

However, the study also suggested that more research needed to be done to explore the real 

UAV imagery captured when flying at different heights and including an analysis of other 
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environmental factors like wind, light conditions and sun direction that can affect the image 

quality (Hu et al., 2019). 

 

In 2018, Zhou et al. compared RGB images obtained from an unmanned aerial vehicle (UAV) 

and a manned ground vehicle (MGV) utilising the identical camera configuration (Sony Qx-

100 HD camera), but the images were captured at different heights. when compared to the 

UAV image, the MGV image had a distinct advantage in terms of recognition accuracy. The 

authors note that differences in the height altitude has a direct impact showing differences in 

image quality. 

 

Images captured at both 25 metres and 50 metres above ground were compared by Seifert et 

al. in (2019). 

The image acquired at 25 metres had nearly 20 times more identify distinct features. These 

features are described as Tie Points and allow for a comparison between the two above ground 

heights of 25 metres and 50 metres. This research demonstrated that drone flights conducted at 

low altitudes significantly enhanced the number of tie points and, consequently, the level of 

reconstruction detail. The research pointed out that it is difficult to provide optimal values for 

the flying and sensor settings since every combination of drone, sensor, and post-processing 

system would be quite unique and would need to be evaluated on an individual basis. 

 

2.4.2 Similar Studies related to image capture  

 

A similar study has been conducted by the University of Queensland using ground coverage 

(GC) as an exemplar in order to explore its relationship to pixel size. The study suggested that 

it can be challenging when the GC is less than 25 % in plants with thin leaves (ranging from 2 

to 15 mm across). Furthermore, the study also demonstrated that small pixel sizes (e.g <0.1 

cm) are significant for accurate ground coverage estimations in wheat plants where the height 

of the drone is between 20 to 30 metres above ground. As per Waiter et al (2015), Ground 

Cover (GC) is a key factor in characterizing the temporal and genotypic characteristics 

involved in plant breeding.  

 

2.4.3 Drone Altitudes and impact on conditions, sustainable flight, and batteries. 

 

This section examines the way in which drones can be affected by the conditions in which they 

are operated. For example, flying drones at higher altitudes invokes a range of dangers such as 
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wind speeds, increased chance of bird strike, lack of sustained flight from excessive battery 

strain, and loss of signal and frequency dropouts. These issues also include challenges to 

maintaining Line of Sight (LoS) and possible challenges arising from lost UAVs and “Fly 

Away” scenarios. 

 

Seifert et al. (2019), noted that drone flight altitude had a direct impact on both drone-flying 

time and processing time. This finding demonstrated an impact upon the number of images 

being captured.  In 2020, Biglia et al used a DJI Matrice 600 inspray mode to test different 

flight modes and spray systems on canopies and vineyards.  The study cited that in windy 

conditions the fine droplets could be diverted and blown away from the intended spraying area 

by the environmental wind.  The study showed that such issues could be minimized, by 

reducing the drone speed and flight altitude, and by using different types of nozzles. In 2018, 

Lou studied the effect of drone height on droplet distribution drift on cotton fields. The study 

showed that flight height had a significant effect on the droplet distribution. The conclusion 

was determined by an experiment conducted at two different heights of 1.5 metres and 2 metres. 

The coverage rates at 2 metres were significantly higher than those of 1.5 metres.  

 

To address the limitations of conventional commercial drones, small unmanned aerial vehicles 

(SUAVs) have adopted  nature-based concepts and design principles from flying animals. 

Tanaka et al (2022), conducted research to address some of the limitations that are faced by the 

drone industry like flight stability, flight efficiency, collision avoidance, damage mitigation 

and grasping (grasping and carrying irregularly shaped heavy objects) during flight.  The study 

made use of nature-based designs to develop a drone that was based on the concept and design 

principles of flying animals.  

 

2.5 Sensors 

 

This section explains many of the different types of sensors that are in use with UAV devices.  

These include NDVI, Thermal, RGB, Multispectral, Lidar, and Hyperspectral sensory 

devices. 

2.5.1 NDVI   

 

In order to complete the photosynthetic process, green plants use visible light (solar radiation). 

During photosynthesis, the plants scatter and reflect solar radiation in the near infrared range. 

This variation in absorption is exclusive to plant life and serves as an indicator of plant 
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greenness (Map information, 2022). The normalised differential vegetation index (NDVI) 

calculates this difference and provides information about the health and density of plants 

(Huang et al 2020; Robinson et al, 2017). Research has shown that the NDVI is a useful index 

for distinguishing between types of evergreen and seasonal forests, as well as between 

savannahs, dense forests, areas that are not forested, and agricultural fields (Pettorelli et al. 

2005).  NDVI has become popular in UAV applications because of its ability to differentiate 

and quantify live green vegetation (Huang et al 2020). In 2017, Tian et al, mapped mangrove 

forest leaf area index (LAI) and used it to to estimate various vegetation properties using a 

UAV mounted multispectral camera.  

 

RED NDVI video and images were obtained by Ghazal et al. (2015) using an autonomous 

UAV system equipped with a GoPro camera that had its infrared (IR) filter replaced with a 

custom filtered lens. The author notes that one of the benefits of utilising a GoPro camera is 

that it not only helps lower the payload of a UAV, but it also eliminates the need to use two 

cameras in order to acquire images in the visible spectrum and the infrared spectrum.  Neupane 

et al (2021) used a DJI Mavic Air drone equipped with a single NDVI camera to identify and 

monitor plant disease. 

 

2.5.2 RGB Sensors   

 

The most popular sensors used by UAV systems for Precision Agricultural applications are 

RGB sensors (Tsouros et al, 2019, Hassler et al, 2019; Delavarpour et al 2023). Compared to 

the other types of sensors, RGB sensors are cheap and can take images with a high resolution 

(Matese et al, 2018). They are also easy to use and operate, and they don't weigh much. Also, 

the information that is gathered is easy to process. The pictures can also be taken under different 

conditions, like on sunny or cloudy days (Tsouros et al 2019; Yao et al, 2019).  

 

Some of the criteria for selecting RGB sensors includes the choice of different Lens qualities 

(higher quality lenses produce less geometric distortions). Such choices affect the resolution 

and quality of the charge coupled device (CCD)/complementary metal oxide semiconductor 

(CMOS) chips (pixel size and noise level) (Yao et al, 2019; Adão et al., 2017). Many studies 

have used RGB cameras to obtain the canopy height and biomass of crops like barley, wheat, 

and black oats (Bendig et al 2014; Acorsi et al 2019;).  An RGB imaging system based on an 

unmanned aerial vehicle was used by Bendig et al. in 2014 to estimate the height of barley, and 
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based on that height measurement, they determined the biomass of the plants. The study 

showed that the approach used has the potential to be simply implemented by those who are 

not trained in the field, such as farmers. 

 

In 2019, Acorsi et al, used a DJI Phantom 3 in order to determine the height of black oats and 

to provide an estimate of their biomass. The study showedthat UAV RGB imaging can be used 

to predict and study the spatial and temporal variation of black oat biomass, which provides 

useful information for precision farming. In 2020, Panday et al, made used of a DJI Phantom 

3 Advanced to determine the height of wheat, and to make an estimation of their biomass and 

crop yield in Nepal. Based on the findings of this research, it is possible to predict wheat above-

ground biomass (AGB) and yield in a manner that is mathematically reliable by assessing plant 

height using crop surface models (CSMs) produced from drone photos. 

 

In 2018, Hu et al. compared humanly measured sorghum height with measurements taken by 

an RGB UAV. The UAV self-calibration system had the best performance overall, with 

repeatability that was comparable to human measurement. The study demonstrated that high 

throughput phenotyping of plots using UAV surveys is both practical and reliable. The 

popularity and wide-spread acceptance of RGB images is largely a product of the much larger 

selection of RGB drone-capable systems. RGB systems tend to be much more prevalent in low 

to medium size drones and are regularly used in places where higher-order sensors are not able 

to be included in the data gathering exercise. A study in Spain, used a drone with an infrared 

camera to calculate canopy height measurements which suggest that when comparing the UAV 

images to traditionally acquired field data the heigh measurements were accurate (Zarco-

Tejada et al., 2014). 

 

2.5.3 Multispectral UAV Sensors   

 

In addition to RGB cameras, multispectral cameras are one of the most frequently used types 

of sensors in the family of UAV sensors. This is because multispectral cameras are able to 

obtain spectral information in the red-edge and near-infrared band at an extremely high 

resolution, which is useful for applications involving vegetation (Yao et al, 2019; Patrick et al 

2017; Iqbal et al, 2018).  
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In comparison to standard RGB (red, green, and blue) photographs, multispectral photography 

has the potential to provide enormous amounts of additional information. (Adão et al., 2017, 

Navia et al., 2016). As per Candiago et al. (2015), multispectral photography captured by 

unmanned aerial vehicles (UAVs) has the potential to be a very dependable and efficient tool 

for use in agricultural evaluation and precision farming.  To that end, multispectral imaging 

can provide higher-order imagery, but at a much higher cost in terms of the cost of each drone 

system. 

 

Khaliq et al, (2019) conducted a study comparing multispectral satellite imagery with UAV-

based imagery. The authors concluded that images captured by unmanned aerial vehicles 

(UAVs) increased the precision of describing vineyard variability and producing maps of crop 

canopies. Patrick et al, (2017), used unmanned aerial vehicles and multispectral imaging to 

conduct high-throughput phenotyping of tomato spot wilt disease in peanuts. Cao et al. (2020) 

analysed the development of sugar beetroot using multispectral images captured by a UAV. 

Neupane et al (2021) used a DJI Mavic air drone equipped with a single NDVI camera to 

identify and monitor plant disease. In 2019, Ampatzidis et al. counted 4,931 citrus trees using 

a DJI Matrice 600 for detection and counting. The technique was tested and shown to be 

effective in recognising and quantifying citrus trees with high precision of 99.9%. UAV-based 

RGB and hyperspectral imaging has shown promise for measuring biomass and forecasting 

output in potato crops, according to a study by Li et al. in 2020. 

 

Thermal and multispectral imaging can be integrated with AI approaches (e.g., deep learning) 

to identify plant stress(Ampatzidis et al, 2022; Ampatzidis et al 2019; Jung et al 2021; Syeda 

et al 2021). These studies demonstrate the benefit of more precise monitoring of plant 

development, stress, and plant health for increased crop and harvest results (Cao et al, 2020; 

Buter et al, 2019; Neupane et al, 2021). 

 

Based on the literature, drones and high-resolution imagery has proven to demonstrate accurate 

results, however, some of the limitations in those studies relate to different drone altitudes as 

well as the integrated deployment of cameras like RGB and Multispectral cameras. For 

example, in Germany Getzin et al (2014) studied the use of higher altitude flights (250 metres) 

to capture UAV footage of 7 cm in resolution. Similarly, Chianucci et al, (2014), used a fixed-

wing UAV, equipped with an RGB camera and a flight altitude of 130 metres to captured 

canopy images.  
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2.5.4 Lidar                         

 

Light Detection and Ranging, (LiDAR), is a technique for remote sensing that measures 

distance. It generates a three-dimensional projection of distant surfaces and objects by 

combining laser pulses with other significant data that can be acquired by a LiDAR-equipped 

UAV (Gautam et al 2020; Zhou et al, 2020). LIDAR may be used to assess the height of 

vegetation as well as its vertical structure (Chung et al, 2019; Tilly et al 2015). In addition to 

this, it is unaffected by the natural light in the environment (Lin et al 2015). The information 

obtained from LiDAR on the height of plants is more accurate than that obtained from digital 

photographs (Madec et al 2017). In Belgium, Lisein et al, (2013) made used of a small drone 

to capture near-infrared images with a spatial resolution of 7.6 cm for accurately measuring 

canopy heights. The results suggested that the equipment (Spatial camera resolution of 7.cm 

and small drone about 2 kg) showed similar measurements to those obtained by an expensive 

LIDAR-based UAV.  

 

Measurements showing wheat plant height, ground coverage, and aboveground biomass were 

all acquired using LiDAR in a study by Jimenez et al, (2018).  The estimated findings for wheat 

canopy height revealed R2 = 0.99 and RMSE = 0.017 m, both of which imply better plant 

height estimation accuracy.  

Several research studies using LIDAR to track plant height have shown promising results for 

crops including rice (Tilly et al ,2014), tomatoes (Llop et al, 2016), Maize (Zhou et al 2020) 

and cotton (Sun et al 2017). 

 

2.5.5 Other Sensors  

 

2.5.5.1 Hyperspectral Sensors  

 

Hyperspectral imaging, like multispectral imaging, can collect light over a wider range than 

traditional methods.  The differences, however, are in the size of the light bands.  Hyperspectral 

cameras can potentially monitor thousands of narrow bands of light for every pixel in the 

resulting images. This is in comparison to multispectral imaging, which can only collect light 

over a narrower range (Adão et al 2017; Lowe et al 2017). This imaging method may be helpful 

if extremely specific wavelengths of light need to be detected separately. In most cases, 

hyperspectral images detect light produced by specific biomolecules like chlorophyll (Gevaert 

et al, 2015; Cilia et al 2014).  
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The disadvantages of hyperspectral imaging include the typically expensive cost of cameras, 

particularly the lightweight versions that may be installed onboard a UAV. Deery et al, (2014) 

as well as  Adão et al (2017), have documented the overwhelming quantity of worthless data if 

the equipment is not correctly calibrated by skilled specialists (Lowe et al 2017; Saari et al 

2017). Hyperspectral imaging was used by Cilia et al. (2014) to measure the nitrogen content 

of maize. 

 

2.5.5.2 Thermal Cameras 

Thermal sensors and cameras can collect infrared light radiation from a distance that ranges 

from 0.75 to 1000 metres, which enables it to provide the precise temperatures of objects within 

a thermal picture (Hassler et 2019; Adão et al 2017; Costa et al 2013). In the agricultural 

industry, thermal imaging is most often used to detect stomatal control (Table 2.2) and, as a 

result, water stress in plants (Costa et al 2013; Katsigiannis et al, 2016; Gago et al, 2015; 

Gautam et al 2020). 

 

Spectral 

Category 

 

Sensor Type 

 

Sensor 

 

Color Space/Spectral 

Band 

 

Carrier Drone 

RGB 1 CMOS DJI FC6310 sRGB DJI Phantoms 

 

 

 

Multispectral 

CMOS SlantRange 3p/4p/4p+ 470-850 nm (6bands) DJI M100 

CMOS MicaSense RedEdge 475-842 nm (5bands) DJI M100, S800 EVO 

9 CMOS Mono-
Chromatic Sensors 

MAIA S2 Same wavelength 
intervals as of sentinel-2 
(9 bands) 

 

 

 

 

 

 

 

Hyperspectral 

 SPECIM AFX10 400-1000nm (224 bands) DJI M600 

CMOS Headwall Nano-
Hyperspec VNIR 

400-1000nm (270 bands) S800 EVO 

9 CMOS Mono-
Chromatic Sensors 

Headwall Nano-
Hyperspec VNIR 

A/E-Series 

400-1000nm (324/369 
bands) 

DJI M600 Pro  

 

 

Thermal 

CMOS FLIR Tau 2 7.5- 13.5 µm S800 EVO, modified 
Hexacopter 

 FLIR DUE Pro R 7.5- 13.5 µm DJI Phantom 4 Pro 

 FLIR Vue Pro R 7.5- 13.5 µm DJI M600 Pro, DJI 
S1000+ 

1/3” Sensor WIRIS Agro R Long Wavelength 
InfraRed  

DJI M600 Pro, DJI S1000 

 

 

LiDAR 

 Velodyne VLP-32C 32 channels DJI M600 Pro 

 RIEGL VUX-1UAV  Hexacopter, RiCopter 

 Hesai Pandar40 40 Channels DJI M200 Series, LiAir 
200 

Table 2.2 Typical sensors available for multi-rotor drones (Pandey et al, 2020) 
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2.5.6 Object Detection               

 

Object-Based Image Analysis (OBIA) is a method that divides each image into spectrally 

similar "objects." This makes it possible to classify things not just by colour, but also by shape, 

size, and how they relate to other things within a given image (Baena et al, 2017).  It further 

supports the use of supervised machine learning (a method that "teaches" a computer what set 

classes look like by supplying training examples). This type of programme then classifies the 

remaining pictures by their resemblance to each stated class (Cruzan et al 2016). Monitoring 

small features of interest requires very high spatial resolution (e.g., individual plants) (Shahbazi 

et al, 2014; Baena et al 2017). 

 

Buters et al. (2019) used a DJI Phantom 4 drone with automated object-based image analysis 

software to detect juvenile plant seedlings. The author mentions that OBIA classification from 

captured imagery also allowed for the accurate tracking of individual target seedling objects 

through time. This provides a perfect demonstration of the capability of UAV-based monitoring 

to undertake plant performance monitoring of individual plants at very fine spatial scales.   

 

Jiménez-Brenes et al (2017), used UAV-based 3D modelling and methods to estimate the 

pruning effect on olive trees. The study makes a specific mention that assessing tree dimensions 

and quantifying the effects of three distinct pruning procedures on hundreds of trees was made 

possible by combining UAV-based pictures with an OBIA process. 

 

2.6 Networking, Signals and connections with LoRa and LPWANs.  

 

The connection between LoRa systems and drones has been well established. LoRa and long 

range wide area networks have proven to be particularly useful in a range of otherwise complex 

tasks. The use of the Internet of Things (IoT) as a dominant technology is supported for the 

benefit of networking systems that can operate in rural and remote regions (Park et al., 2018). 

This combination of LoRa networks with drone usage has thrived and succeeded because it has 

consistently proven to be a useful set of technologies that can harness the signal power of long-

range network radios with the flexibility and area access that can exist because drones can fly 

to areas that other vehicles and farm workers cannot easily reach (Khawaja, 2019). 

 

In combination, the ability to access a range of IoT sensors via the power of long range LoRa 

networking with the additional reach and flexibility of access from drone presents a useful 
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solution for farm areas without access to 3G,4G networks. As such it provides for a number of 

exceptionally sought-after technology opportunities. This type of combinational approach 

allows for sensor data to be drawn through the LoRa gateway using a potentially large number 

of sensor nodes (Verman et al, 2013).  

 

Given that there are radio propagation challenges that exist in remote areas of forest and 

agricultural land, the use of a relatively small drone with a gateway mounted on the drone can 

collect sensor data from a number of ground-located nodes. This type of arrangement allows 

farmers to get environmental data over large areas where much of the land area is hazardous 

for vehicles and others to try and gain access (Khawaja, 2019). 

 

The LoRa gateway / drone combination has been continuously tested to figure out whether the 

gateway attached on a drone that hovers over farm field can gather data from nodes on the 

ground. The aim of this work is to help farmers get environmental data over the geographically 

large farm field, and from locations where it is difficult or dangerous for farmers to access. The 

use of LoRa provides a double-edged benefit. It can access IoTs in long-range mode but is also 

a method of gaining long-range access with very low power requirements. The traditional way 

of farming and the standard farm systems are in the process of undergoing enormous change, 

where smart farming is becoming an established norm in the battle for access to data and 

opportunities in remote and rural areas. 

 

The combinational value of LoRa alongside farm IoTs and sensors is of augmented value, with 

a drone carrying a LoRa Gateway as an example of a data collection system that can access 

and gather data across a broadacre farming environment irrespective of connectivity with urban 

staples such as 3G and 4G networks, which are either uneven or not accessible in remote and 

rural areas of most of Australia’s broadacre farming community. Unmanned aerial vehicles 

(UAVs) make for exceptionally efficient gatherers in the sense of data collection (Boursianis 

et al, 2020). On the ground sensors can store sensing data which can be collected through drone 

deployment in locations without fixed communication infrastructure (Caruso et al, 2021). 

 

The increased acceptance of smart farming has brought together broad interest from service 

providers who are able to visualise the value of using a digital technology strategy to bring 

together IoT sensors for a wide range of characteristics including asset monitoring, livestock 

locational retrieval, and water management (Behjati, et al., 2021). The clear value of this type 
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of combination is the ability to gather data quicky and efficiently without endangering other 

assets such as livestock.  When combined with a larger fixed-wing drone, the combinational 

value extends to provide capability for large scale broadacre enterprises (Gong et al, 2018). 

This is particularly effective when using fixed wing drones with normalised fly-over speeds of 

around 95 Kmh per hour (Behjati et al., 2021). The resulting combination gives excellent access 

to ground-based data and also allows for higher-level data collection for expected high-yield 

crops such as wheat (Farajzadeh et al., 2019). 

 

2.7 Machine Learning and Software Processing 

 

One of the emerging benefits of UAV deployment for broadacre farming has been the use of 

machine learning and other software-based applications that allows for a range of drone 

practices to significantly increase the exercise of precision farming (Taha et al., 2019). This 

has a direct impact on improved decision-making and, in terms of broadacre farming, is a 

critical element for improved yield and productivity expectations (Baig et al, 2022). 

 

There is, however, a risk of incorporating images that use pre-processing because they can 

negatively impact unsupervised ML models by making alterations to images. This can affect 

the accuracy of the data. Dilshad, Hwang, Song, and Sung (2020) discuss the use of a Heridal 

dataset using object detection to make suitable corrections for a precise method of increased 

accuracy.  Marusic et al, (2019) suggests that a useful method for reducing this risk is to review 

images using a human expert approach to form annotated knowledge based on local expertise. 

By using expertise drawn from those from the specific area knowledge, it becomes useful to 

rely on agricultural experts from the discipline of precision agriculture. The issue of 

misclassified machine learning algorithms can also be addressed by using statistical analysis. 

Ishida et al, (2018) suggests it is an important inclusion to improve the robustness of an 

approach that uses similar ML techniques. A similar approach is described by Nhamo et al, 

(2018). 

 

To address the issue of clarity, object detection algorithms such as convolutional Neural 

Networks (CNN), Single shot detector (SSD) and YOLO (you only look once) are used. Data 

from drone images is stored in different categories. Some experiments have shown that the 

Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains 

independently of the baseline detector strength. (Cai & Vasconcelos, 2021, Dai et al; Gidaris 
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& Komodakis,2021). For example, different images taken at the same height and velocity will 

be compared with others of the same height and velocity. There are comparisons of drone 

images but with different camera configurations and angles. This helps to determine the height, 

velocity, and the ideal camera setting/angles for standardised best practice in drone usage. 

   

The machine learning approach uses an unsupervised pathway (Gentleman et Carsev, 2008; 

Lloyd et al., 2021). Data from qualitative datasets can be used to validate the optimisation and 

to confirm a needs-based approach that can be applied back into farming environments.  Issues 

such as the risk of object detection can be mitigated by means of a TIDE approach (Toolbox 

for identifying object detection errors) (Guo et al., 2021; Bolya et al., 2021) 

 

 

2.8 Animal Welfare 

 

One of the emergent vectors for drone usage is in animal welfare. Smart Farming allows 

farmers to identify and track animals of all types of backgrounds. This allows for farming 

livestock, but also permits the tracking and monitoring of feral and wild animals (Bolden et al., 

2020), as well as protected livestock (McCarthy, et al, 2022). Animal welfare now carries a 

much higher level of responsibility in Australia as the greater rural area is more directly 

involved in both livestock and native animal species.  

 

Livestock monitoring  

Animal detection in remote areas is a difficult topic  which has gained a lot of attention in 

ecology (Linchant et al, 2015; Hollings et al 2018). It is primarily used for monitoring the 

movements and location of animals in the wild and can provide ecological and agricultural 

information (Vayssage et al., 2018). It has application in both livestock and also feral animals. 

 

In 2018 Vayssade et al. designed a system to automatically track the activity of goat using 

drone camera. The study noted that image analysis may be used to not only determine the 

whereabouts of the animals, but also their activities, which presents exciting new possibilities 

for the monitoring of a large number of animals. 

 

In 2021 Alvarez-Hess et al, from the University of Melbourne used a DJI M200 hyperspectral 

image for measuring pasture depletion in cow paddocks. In 2017, Nasirahmadi et al., 

implemented a machine  for detecting the behaviour of cattle and pigs. A study by Rivas et al, 
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(2018), proposed a method for counting cattle which combines a deep learning model for 

difficult to access animal locations.  

 

The use of drone technology can be harnessed in order to show a strong level of success with 

monitoring and locating the movement of livestock. This can be extended to include the 

monitoring of temperatures, as well as showing specific locational information for different 

animals.  There is a downside to this type of approach in so much as it can be used to monitor 

and to track animals based on their lack of movement during a given day(McCarthy et al 2022).  

 

Using drone technology has demonstrated success with livestock, monitoring their 

temperature, identifying and detecting their position, and other factors. However, it has also 

been shown to have a bad effect on the wellness of animals. For example, if drones are unable 

to maintain a safe distance from animals, the resulting noise, which includes a distinctive 

buzzing sound, may have a detrimental effect on the animals' physiological health. This may 

cause the animals to experience higher levels of stress. If animals are subjected to such an 

environment for a long time, it may result in health problems since the effects of such an 

environment may be especially severe on animals who are either pregnant or are caring for 

young. Studies has shown that drones may sometimes be the victims of bird attacks, such as 

hawks and eagles. This can result in the animal being harmed, and it can also pose a safety risk, 

as the drone could end up crashing into a person, a vehicle, a structure, or even a high voltage 

electrical cable. 

 

2.9 Rules and Standards for operating Drones 

 

The potential of drones has been recognised by nations all over the world, and countries are 

actively investing in the creation of innovative drone technologies (Ayyapan, et al, 2007). Yet, 

they are aware of the dangers that may arise from the unrestricted use of drones and have 

established laws and guidelines for their use for ensuring safety and privacy of the population 

(Tsiamis et al 2019; Pathak et al, 2020; Clarke et al 2014). 

 

Globally there are a number of challenges for drones in terms of policies, structure and 

regulations (Pathak, et al, 2020). The current accepted standards in many parts of the world 

have yet to properly integrate a workable standard for the BVLOS (Beyond Visual Line of 

Sight) drone operations, in particular at 125 metres height and above (Pathak, et al, 2020). In a 
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worldwide sense, the rules of drone operations in terms of training, licencing and standard 

operating procedures are all inconsistent. There is a need to establish clear, globally accepted, 

regulations about standard operating heights operating speeds, and the obstacle avoidance 

literature. 

 

In Australia, the Australian Civil Aviation Safety Authority (CASA) is responsible for ensuring 

flight safety and imposing regulations on various types of drone operations, such as those 

carried out for the purpose of recreation, hobbies, or for profit-making enterprises. The new 

regulation known as the Civil Aviation Safety Rules (CASR) Part 101 came into effect from 

2016, and included a new category of operation known as "Excluded RPA." Under the new 

law, property holders don’t need approval to operate drones up to 25 KG on their properties. 

While operating a drone in Australia, it is important to pay attention to the following 

regulations: You are only allowed to fly your drone during the day, and it needs to be always 

kept within line of sight. You should not fly the drone higher than 40 metres above the ground, 

and the drone should be kept at least 30 metres away from other people. You are only allowed 

to fly one drone at a time. 

 

In the United States of America, the Federal Aviation Administration (FAA) has introduced 

the New Small Unmanned Aircraft (UAS) Regulation (107), which relates to the flying of 

drones for commercial or industrial purposes. According to this regulation, a drone that weighs 

less than 249 grams does not need authorisation to fly, but a drone that weighs between 249 

grams and 25 kg  is required to be registered with the FAA. The drone must be always in the 

pilot’s direct line of sight.  

 

The laws and regulations for operating drones in Japan are handled by the Ministry of Land, 

Infrastructure, and Transportation (MLIT). Drones are banned between the hours of sunset and 

sunrise and must stay at least 30 metres away from any individuals or property. Drone flights 

that extend above an altitude of 150 metres need prior authorisation from the MLIT. In Japan, 

breaking the law can result in a fine of up to 500,000 yen (about AUD $4,000). 

 

In India, the Directorate General of Civil Aviation (DGCA) oversees the drone laws. All drones 

that are flown in India are required to have valid third-party insurance coverage to cover any 

potential liabilities that may emerge as a result of an accident. In addition, it is prohibited to fly 

above any national parks or animal sanctuaries. Flying drones is illegal within 50 kilometres 
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of a country's border. The drone must be equipped with a licence plate containing the name and 

contact information of the pilot and drone users must be trained drone pilots who are at least 

18 years old. 

 

In 2019, Tsiamis conducted an extensive research of comparative studies showing the evolution 

of laws regarding the use of drones in Economic Co-operation and Development (OECD) 

nations: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, 

Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, 

Latvia, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, 

Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the 

United States of America.  According to Tsiamis, only Italy, Latvia, and the Slovak Republic 

have defined air traffic zones for the use of drones, and the author also stated that the regulatory 

framework in Canada is stricter than in any of the other OECD nations. On the other side, the 

legal system in the United States takes a more permissive approach. Within the OECD flight 

purpose laws differ. There is an onus on remote pilots to have a reason for the use of a drone 

on a range of countries.  Australia, Austria, Canada, Czech Republic, France, Greece, Israel, 

The Netherlands, Poland, Portugal, Slovak Republic, Spain, Sweden, UK, and USA have flying 

purpose guidelines, compared to the other OECD nations which do not give emphasis to such 

guidelines. In 2014, Clarke et al. did a study on the effects that the regulation of civilian drones 

may have on individuals' behavioural privacy. These apply to populous areas more than in the 

remote and rural areas often used by farmers. 

 

 

2.9.1 Governance of Drones and in remote spaces and / or satellite-affected networks 

 

One area of interest is the way in which governance has been arranged in terms of the rules and 

standards for drones. On the one hand there is an Australian national authority (CASA) which 

exercises its authority in terms of the regulation of civil aviation.  However, the governance 

arrangements are less obvious for drone users / farmers / pilots that use UAVs in rural and 

remote areas. Whilst the CASA rules are prescriptive in terms of typical usage within urban 

and built-up areas, the use of drones in rural settings is less clear, and there is a community of 

people who will informally use drones based upon their own judgement rather than follow 

specific rules relating to people with licences, such as REPL, or the selection of drones based 

upon payload, multi-rotor, or fixed wing categories.  
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The way in which governance is followed can be seen through two different lenses. On one 

hand there is a national authority which provides clarity on specific rules and regulation that 

relate to the usage of UAVs. On the other hand, many farm-related UAV flights are neither 

documented nor recorded in the same manner that urban UAV usage is carried out. The farming 

/ agricultural community has drone users who fly UAVs for agricultural reasons. This informal 

self-managed governance is effectively comprised of private actors who may choose to form 

their own set of guidelines. This is not to describe the remote agricultural usage of UAVs as 

reckless or hazardous, but rather to acknowledge that the practices followed by many drone 

users vary greatly from the prescribed expectations of CASA.  This new mode of governance 

is clearly made up of stakeholders who use drones for the purpose of agricultural business, but 

also share knowledge in terms of hardware software and associated land resources for the 

purpose of increased profitability in terms of high yield broadacre crops. This can be described 

as self-organising networks of participation, authority, and cross boundary accountability. 

(Cook, 2011).  

 

2.10 Training and Licencing 

 

Remote pilot licence (RePL) 

 

In Australia if a person wants to fly a drone that weighs more than 25 kilograms, but less than 

150 kilograms, over their own land or work as a remote pilot for an individual or a business 

that has a remotely piloted aircraft operator's certificate (ReOC)., they can apply for a remotely 

piloted aircraft licence (RePL). The Remote Pilot License will specify the model and weight 

class of drones that a pilot is allowed to fly. These are the following: less than 7 kg, less than 

25 kg, less than 150 kg (type specific ratings only), more than 150 kg (type specific ratings 

only). An RePL does not expire. There is no age requirement in order to obtain a RePL. 

RPAs (also called drones) are classified by weight and operations. Table 2.3 outlines the 

different types. 

Classifications for RPAs 

Micro: 250 g or less 

Very small: more than 250 g, but not more than 2 kg 

Small: more than 2 kg, but not more than 25 kg 

Medium: more than 25 kg, but not more than 150 kg. 

Table 2.3  Classifications for RPAs 
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If an operator falls into any of the following categories, an RePL is not required: Qualified to 

fly a micro-RPA (weighing 250 g or less) or an RPA from the excluded category: Excluded 

categories are RPA that are either: more than 250 g but not more than 2 kg more than 2 kg but 

less than 25 kg (only over your own land).  

 

If a pilot wants to use their drone for commercial purposes, then they must obtain an operator 

accreditation. This stipulation extends to activities such as selling images or films shot from 

above, inspecting machinery, buildings, or other infrastructure, monitoring traffic, doing 

research, or providing security services. The Operator Accreditation is free and is valid for a 

period of three years. In addition, in obtaining an operator accreditation, pilots need to be at 

least 16 years old. If they are under the age of 16, they are required to have an authorised adult 

(someone older than 18) to supervise them. 

 

Depending on the weight of a pilot’s drone, they may need to have qualifications or 

accreditation that supports the specific usage of the instrument being flown. 

 

Micro: 250 g or less 

Any RPA or micro drone weighing less than 250g can be flown commercially or for work 

purposes. A Remote Pilot's License (RePL) or remotely piloted aircraft operator’s certificate 

(ReOC) is not required (see Table 2.4).  

Requirements to fly a Micro Drone weighing 250 grams or less 

1 Obtain an aviation reference number (ARN) – you may require an 

organisation ARN for your business 

2 Obtain an RPA operator accreditation 

3 Register your drone 

4 Only fly your drone within the drone safety rules. 

Table 2.4 Requirements to operate a Micro Drone 

 

Very small: more than 250 g, but not more than 2 kg 

A pilot may operate a very small drone or RPA weighing less than 2 kg for commercial or work 

purposes. This is also known as the sub-2Kg exempt category and no RePL or ReOC is 

required. Examples of businesses that fly under this excluded category may include 

photographers and film makers, real estate agents, researchers, construction workers and 

tradespeople, government and community service providers. (See table 2.5). 
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Requirements to fly a Small Drone weighing more than 250 grams 

but not more than 2Kgs 

1 Obtain an aviation reference number (ARN) – you may require an 

organisation ARN for your business 

2 Obtain an RPA operator accreditation 

3 Register your drone 

4 Only fly your drone within the standard operating conditions 

Table 2.5 Requirements to operate a Small Drone 

 

Small: more than 2 kg, but not more than 25 kg 

A pilot can fly a small drone or RPA that weighs more than 2 kg but not more than 25 kg over 

their own land for business or as part of their job, provided they do not accept any type of 

payment for their services. This is called the landowner or private landholder excluded category 

because the pilot doesn’t need an RePL or ReOC. Some of the operations they can perform 

under this excluded category include aerial spotting, crop, livestock or equipment inspections, 

land surveying, agricultural operations, carrying cargo. 

 

In Australia a UAV Drone pilot must follow the rules described in Table 2.6 

 

Requirements to fly a Small Drone weighing more than 250 grams 

but not more than 2Kgs 

1 Obtain an aviation reference number (ARN) – you may require an 

organisation ARN for your business 

2 Obtain an RPA operator accreditation 

3 Register your drone 

4 Only fly your drone within the standard operating conditions 

5 Keep the required operational records 

6 Not Accept payment for the services you provide. 

Table 2.6 Australian Requirements to operate a Small Drone 

 

Medium: more than 25 kg, but not more than 150 kg. 

A pilot may fly a medium-sized drone or RPA weighing more than 25 kg but less than 150 kg 

over their own property for business or work purposes, so long as they do not take money for 

their services. This category is known as landowner or private landholder excluded. They must 

get an RePL for the drone type and model that they intend to fly. 

 

2.11 Classifications of Drones 

 

 

https://www.casa.gov.au/drones/get-your-operator-credentials/remote-pilot-licence
https://www.casa.gov.au/drones/get-your-operator-credentials/remotely-piloted-aircraft-operators-certificate
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CASA classifies drones into a range of segmented categories and sizes (types).  They can be 

recognisably described as multi-rotor helicopters, single rotor helicopters, aeroplanes, power-

lift vehicles, and airships. Whilst the main category of interest pertaining to this thesis lies 

within the category of multi-rotor helicopters, the scope of this study also closely considers 

that the progressive extension for large-scale farming enterprises will also cross-over into 

fixed-wing drones operating at much higher elevation, and at much greater speeds.  

 

Multi- rotor helicopter 

 

 
Figure 2.6 Multi-rotor helicopter 

This category includes machines that include more than one power-driven rotor that can spin 

or revolve in a vertical direction. It operates in the same manner as a standard helicopter with 

a "single rotor," including taking off, landing, flying, and hovering, but it has more than one 

rotor. Figure 2.6 show a basic multi rotor helicopter. 

 

Single-rotor helicopter 

 

Figure 2.7 Single-rotor helicopter  

This type has one power-driven engine (rotor) and looks a bit like a traditional helicopter. It 

usually also has another rotor on the tail or end of the aircraft. (See Figure 2.7) 

Aeroplane  
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Figure 2.8 Aeroplane  

This type of model looks and flies like a regular plane – it has fixed wings. It also takes off and 

lands horizontally and usually can't hover. (See Figure 2.8) 

 

Power-lift  

 

Figure 2.9 Power-lift  

This kind of model can take off and land vertically (straight up and down) like a helicopter, but 

then it can fly forwards like a regular plane. (See Figure 2.9) 

 

Airship 

 

Figure 2.10 Airship 

This type of engine is powered and is 'lighter than air' - it can be filled with a buoyant gas and 

usually 'floats' in the air. A blimp is a good example of an airship. (See Figure 2.10) 

 

2.12 Gaps in the Literature 
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This literature review has extensively discussed three main factors which can be described as 

a gap in the literature (Hu et al., 2019)) and also the absence of a standardized workflow 

focusing on the most frequently used techniques explaining and processing of UAV imagery 

from agriculture fields (Tsouros, D.C, Bibi, S. & Sarigiannidis, P.G., 2019). A study conducted 

by the University of Queensland (Hu et al., 2019) has suggested that more research need to be 

undertaken to explore the real nature of UAV imagery captured at different flight considering 

the three main factors which are environmental, cameras, and altitude.  

 

Environmental factors  

In 2019 Hu et al suggest that factors like wind speed, light condition, and sun direction are 

some of the environmental elements that can affect the quality of the images.  In 2019 Lee & 

Sim, mention that remote sensing devices are usually contaminated by aerosol particles in the 

air, and thus satellite images often exhibit hazy or cloudy pixels.  

 

Camera configuration  

Some of the camera configurations that need to be considered to acquire a high-quality image 

are focal length, shutter speed, ISO white balance, camera angle, and camera stabilization. For 

example, the shutter speed is normally defined as the amount of time that the camera’s shutter 

is open (Schult, 2021).  The longer the timeframe,the lighter that can pass through to the 

camera’s sensor. As per Hu et al., (2019) the focal length is directly related to pixel size, and 

that a lens with a long focal length leads to small pixel size when the flight height is fixed.  This 

research will explore those camera configurations that result in acquiring a high-quality image. 

 

Flight height/ altitude.  

The height or flight altitude is an important factor to take into consideration as it can have a 

direct impact on the quality of the image. For example, A study conducted by Seifert et al., 

(2019) suggested that low flight altitudes yield the highest reconstruction details and best 

precision. This research explores different flight altitudes and analyses the effect on image 

resolutions. In 2014 Getzin et al, suggest that to get a very good image, low flight altitude, low 

cloud cover conditions, and no direct sunlight light are recommended. 
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2.13 Risk, Maturity, Readiness, Entropy and Decay 

 

This section of the literature considers five evaluation mechanisms that focus on areas of 

expected alignment with this research. The introductory information provided in chapter One 

showed that these five areas held the key to understanding a way to make sense of what is 

otherwise a complex and dynamic set of variables that are otherwise seemingly disconnected 

from each other (Boursianis, et al, 2022; Wahab et al., 2018; Hall et al, 2018).  

 

Some areas, such as the cost of equipment, demonstrates the wide gap between entry-level 

drone instruments and high-level multi-sensory drones that can provide high level productivity 

data that is world class in terms of broadacre farming (Grieve et al, 2019). There are risks on 

either spending too much money in a new area of technology or otherwise not investing enough 

to realise the true benefits of the integration of IoT and sensor analysis across large areas of 

land with little or no telecommunication infrastructure (Zuo et al, 2021; Dutta et al, 2021).  

 

Similarly, the areas of cost and expenditure are strongly connected with drone expenses that 

are dynamically changing and have high-end costs that are being rapidly replaced by new 

technology every few months (Benke et al, 2017).  It is clear, even from a cursory examination, 

that some components of drone-based broadacre farming are a great deal less mature than 

others (Stampa et al, 2021), and that change is taking place at a relentlessly brisk pace (Tokekar 

et al., 2016).  

 

The areas of risk and maturity are therefore areas of uncertainty that require an evaluation of 

technology readiness. In the first instance the readiness needs to show that the technology being 

practiced in broadacre farming is sufficiently organised so that it can be used with confidence. 

The use of Technology Readiness Levels (TRLs) is practical in this study because the specific 

purpose of TRL management is very closely aligned to the transformational elements that are 

in play with drones in broadacre farming (Mankins, 1995; Straub, 2015; Barari et al, 2015).  In 

particular, the evaluation of TRLs match (loosely) the expected changes that may eventuate in 

the inclusion of drone technology in order to generate better outcomes for precision farming, 

especially in terms of broadacre farming. In the second instance there needs to be an evaluation 

of whether the specific technology will be used using repetition so that the impact of the 

technology is not so much an element of readiness at one point in time, but rather that it can be 
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deployed in a state of readiness across an entire season, or in the case of broadacre farming for 

multiple seasons or multiple crops (Balafoutis et al, 2020; Jellason et al, 2021). 

 

Having examined the various factors through the areas of risk maturity and readiness, the final 

area of entropy is a project feature that is used to determine whether any of the key factors have 

either stalled, been delayed, or have fallen away from the key broadacre practices. By 

measuring each factor in terms of its entropy, an area can be evaluated so that it shows its state 

of currency, and whether parts of the process or parts of the broadacre practices no longer 

support the specific technology usage (Dainelli and Saracco, 2023).  This form of examination 

is particularly well suited to information systems, and technology uses where the data and 

information goes through networks and areas where data is stored, aggregated and shared with 

others (Fanigliulo, et al 2020).   
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3 RESEARCH METHODS 

 

A number of phases have been structured for the research approach to deliver knowledge and 

understanding about the practices of drones.  This section outlines the research methods for 

this research study. The methodology has been chosen based on the knowledge drawn from a 

review of the relevant literature. This includes the research methodology (section 3.1), and the 

research approach to be undertaken for the study (section 3.2) 

3.1 Research Methodology 

 

This study will use a mixed-method approach, which will adopt a largely qualitative approach 

that incorporates an extensive literature review. It will allow for a high level of understanding 

of the various parameters that influence accuracy in decision-making using precision 

agriculture. To better understand the problems that farmers face in gathering valuable data in 

real-time, the study also includes an examination of the efficacy of a possible framework, by 

means of a study using the technology readiness levels as adapted from NASA and gaining 

global acceptance for usage in digital agriculture (Schmeitz, 2020; Agrawal, et al. 2021).  

 

This is a literature-based methodology that draws key insights from a wide range of literature 

on drone practices and standardisation issues.  The literature considered in this study helps to 

define the challenges of broadacre drone usage and deployment.  The approach taken to this 

literature builds upon a qualitative evaluation of known information. This thesis examines the 

various literature vectors by description, analysis and comparison. Information is then collated 

using a thematic approach to ensure that the most activate themes are drawn from the 

comparison of literature. 

3.2 Research Approach 

 

Several phases are implemented for the research approach in order to deliver the stated research 

outcomes. A brief description of the approach is outlined below. This study will assist in the 

early recognition of the important labelling terms used, so that a uniform set of descriptors can 

be formed to allow for the accurate comparison of data acquired from different makes and 

model of drones.  A diagram that describes the research development processes used in this 

thesis is illustrated below (Figure 3.1). 

 



74 | P a g e  

 

Research Methodology For Drone Practices  and Issues 

  

Figure 3.1 A Visual flow chart showing the Research methodology. 

 

To structure each of the emergent themes a process of identification is used to highlight the 

main areas.  There are a number of over-lapping ideas, with some areas more directly connected 

with technology themes, whilst others are more closely connected with rules, governance and 

technology acceptance.  

 

From the background information and literature review there are ten firmly emergent themes. 

These themes can each be directly framed towards the research questions and therefore inform 

the process through a series of explanatory and illustrative comparisons. This thesis attempts 
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to identify factors of influence. In this sense, the thesis differentiates between small popular 

elements that have novelty value within leisure and recreation circles from stronger elements 

that have a profound impact upon the current practices as well as the future developments that 

are expected to dominate the UAV market as it approaches global ubiquity. 

 

This thesis will identify normalised and standardised practices in drone operating heights. It is 

anticipated that the different results will provide a snapshot of the range and size of variance 

between different altitudes. These differences will provide an insight into the types of 

comparative heights that might form the starting point for the determination of optimised 

heights for drone flights. Additional questions will consider the different drone equipment 

currently in use, as well as the relative age and generation of the drones being used. Further 

examination of the types of camera optics, lens sizes, number of pixels, and focal lengths of 

different cameras, will take place in order to gather the starting point for questions relating to 

the optimum type of camera equipment. 

 

Literature Review  

This early phase gathers the substantive body of information and data for this research through 

a review of the body of literature on drones, image resolutions (pixels), governance, networks, 

data, and privacy issues. The research makes use of the literature to identify gaps in the current 

knowledge base. Much of the information required to understand this research problem is 

available in the form of existing reports, government exchanges, and formal research work. 

The emerging dynamics of this research can be found in two different sources. The first is the 

technical and regulatory information that comes from the military application and development 

of drone technology. The second source is from the leisure and recreational usage of drones 

that has captured the popular accepted rationale of modern technology integration. This study 

is referent to an agricultural environment that is neither military in nature nor based upon 

popular recreational technology usage. This study therefore has a challenge in drawing from 

these two pools of information to apprise a research question that has a unique environmental 

and social setting.  

 

Research problem and research question 

The identification of the problem was based on the literature review, and gaps in the literature, 

which led to the crafting of the research questions, objectives, and aims of the study.  This 

thesis has been researched through literature-based resources.  The approach to the literature 
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in this study has been to use keyword searches to determine emergent themes, and to take those 

themes and use them to drive search strings that meaningfully draw together a body of literature 

that describes the attributes belonging to this study.  Screening has been used to filter out those 

papers that belong to outlier themes and one-off authorships.  

 

Methodology 

The methodology has been formulated to account for the gaps in knowledge and the 

shortcomings of existing methods for problem investigation. The collection of data, data 

analysis, and validations are iterative processes that lead to the development of a frame of 

reference to support the research question.  This is depicted in the chart-based diagram showing 

the 15-step process (Figure 3.1).   The method of analysis and discussion draws from a thematic 

analysis of individual attributes which are applied jointly and severally to a framework that 

considers risk, maturity of technology readiness, and entropy as the concluding phases of the 

research, enabling the formulation of selected and well-ordered answers to the research 

questions. 
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4 ANALYSES OF DATA 

 

This chapter draws from the literature to provide answers and to inform the discussion on the 

key elements that have become the emergent themes, and which clearly demonstrate the areas 

of greatest interest and dynamic change. There are ten emergent themes and each one has a 

separate evaluation and analysis.  

 

4.1 Key Areas of Evaluation 

 

There are several critical areas that emerge from a thematic understanding of the known and 

discovered literature that has been examined in this thesis. Individual thematic segments are 

discussed separately to each other.   Initially the basis for each area of evaluation has been 

determined through key word and search-string analysis, allowing for Boolean parameters to 

find, select, and screen out critical elements.  The more nuanced selection of these areas is 

discussed here in the form of ten evaluation points that develop a clear understanding of each 

area by means of literature, data, information, and by example.  

 

Evaluation point A. Cameras and Sensors 

 

The first area of discussion and analysis concerns the limitations of cameras and sensors. The 

broad overview of concerns raised through the literature indicates that there are six areas that 

impact on the efficacy, value and impact of drone usage within farming enterprises.  In terms 

of precision farming, the critical areas of value are related to the ability of a farmer to capture 

high-quality imagery of a specific area or designated crop acreage and determine specific 

elements for treatment. This can include high-impact considerations such as weed control, 

removal of rocks and debris, pest management, water impact and climate change. In these types 

of segmented examples, the critical value of such drone imagery is dependent upon two main 

factors. The first is the quality of the camera-driven images, and the second is the ability to 

repeat the image capture process to allow for comparisons over time. 

 

The literature clearly demonstrates that the quality of cameras in drone instruments changes 

with different models, cameras, and drone types. This is an issue in terms of comparison 

because the difference in the image resolution means that crop flyovers from season to season 

(or from crop rotation to crop rotation) may make comparisons that are inaccurately 

differentiating some of the key areas. For example, a farmer uses a DJI Phantom IV drone to 
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record a wheat crop in August 2021, and then decides to use a fixed-wing drone in 2022 to 

more quickly capture the images of that same crop area in August 2022. Although the farmer 

would be focused on making comparisons in order to make improvements for yield, efficiency 

and productivity, the differences between a Phantom IV drone and a fixed wing upgrade would 

be significant. The Phantom IV drone would typically be capturing imagery at a height of 20 

metres flying at 30kph using an f/2.8 wide-angle lens and a 12 Mega pixel camera. This would 

provide a vastly different image set to a fixed wing drone flying at a height of 100 metres with 

an f/2.4 lens at 70 kph and using a 60 Mega pixel camera.  

 

Comparisons from differing measurements, resolutions, heights and at different speeds all 

combine to provide a complex range of differences that need calibrating.  If the same example 

also considers additional outside factors such as time of day, cloudy versus clear skies, wind 

force, and rain, then comparisons can be further mis-aligned. Time factors and shadow impact 

are key elements that affect such comparisons being of reliable use. As per the analysis drawn 

from the literature and examples, the flight height can have direct impact on picture quality, 

flight time, drone stability, processing time, identifying object and crop spraying.  

 

The above example only considers photo and video imagery. If the example is then extended 

to include other image data such as thermal, NDVI and RGB features, then the comparisons 

continue to hold a decreasingly disparate set of comparison values. The issue of image 

compatibility is perhaps best described here as a form of data entropy. Effectively, the dynamic 

change and rapid development of increasingly different drone features provide elements 

whereby the process is under decay, and imagery holds different values over time.  In a 

discipline where yearly crop data is critical to the ongoing improvements and changes at the 

farm management level, image comparisons are subject to a set of data that demonstrates a 

historically decayed data set. 

 

Lidar sensors are regarded as one of the most significant areas of sensor enhancement that is 

currently included in drone technology.  The application of Lidar sensors demonstrates that 

future iterations are likely to become standardised with reliable Lidar sensor technology. 

Current Lidar technology is still in the development phase, and whilst some applications are 

used well, the great majority of Lidar development has yet to be sufficiently refined so that it 

can accurately identify and specifically count, and tally numbers such as the number of 
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livestock, numbers of wheat heads, and other key elements that can be well served through 

more accurate measurement than an extrapolated approximation of a number.  

 

In precision farming, a LIDAR UAV-based system has been shown to have some success; 

nevertheless, there are several limitations associated with it. The first limitation is the expense 

of the LIDAR sensor as sophisticated LIDAR sensors are more expensive than other image 

recognition sensors. Another limitation of LIDAR is that according to some research, it is 

unable to function correctly when the weather is poor, and the data that it collects may be 

inaccurate or rendered useless as a result. Scanning a dense area with a UAV-LIDAR system 

can be complex. For example, the point clouds obtained via the use of UAV LIDAR are 

significantly different from those acquired through the use of static LIDAR. While using static 

LIDAR, the distance between the scanner and the object is the primary factor that determines 

the point density. The target area for UAV LIDAR starts at the surface of the canopy and 

extends all the way down to the ground below.  

 

In some cases where the vegetation is very dense, the pulses may not be able to reach the 

ground beneath the canopy.  Typically, UAV LIDAR data is not colourized, making it 

challenging to analyse without the addition of RGB photographs and, due to its complexity, it 

requires a deep knowledge of the technology and skills to process the data and recognise 

inconsistencies and inaccuracies.  

 

In the agricultural industry, these types of challenges are further exacerbated by the 

complicated integration of machine learning with a variety of sensors for purposes such as crop 

monitoring and livestock tracking, as an example. The accuracy of the sensor equipment's 

calibration is a crucial aspect to take into consideration. 

 

4.1.1 Thematic Analyses 

 

This chapter discusses several themes as part of the analysis. To assist with this a thematic 

diagram allows the reader to grasp a single overview of the chapter, and to understand the 

relationship between the evaluation points and the key issues.  The diagram below provides a 

single view that enables an understanding of a number of complex issues and their relationships 

with other elements. 
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The recognition of these differentiated elements is important in terms of the way different 

technology themes overlap and interfere with each other.  The mind map diagram below 

(Figure 4.1) provides a simple hierarchy that shows the nine major areas that affect drone 

capability. The individual segmentations show differentiations but are listed together to 

indicate the connectivity between segments of a similar grouping. 

 

 

 

Figure 4.1 A Visual mapping of the key segmentation of analysis 

 

Main Theme Segmentations 

  
Cameras and Sensors Quality of the Camera Driven Images 

 Ability to Repeat the image 

 Change in Technology 

 Weather and Environment 

  

Drone Operation, Training and Piloting Capabilities Drone Operation, Training & Piloting Capabilities 

 Need / Confusion about a Drone Licence 

 Right to Fly Privately 

 Access to Drone Training 

 Different Altitudes in Precision Agriculture 

 Different Levels of Internet Access 
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 Access to Robust Computers 

  

Signal Strength, Data Connectivity, Long Range LPWAN, 

and Mobile networking 

Internet or network coverage is low 

 Software requires updating 

 Drones expected to cover larger areas 

 Increasing numbers of adverse weather events 

  

Cost, Time, and Return on Investment Increasing Demand for Quality Drones 

 Lack of Time – Need Time to work 

 Length of Time in Training 

 Competing Drones 

  

Animal Welfare Animal Well Being 

 Health and Safety 

  

Technology Issues, Battery Life and Drone System Failures Drone System Failure 

 Battery Life 

 Bandwidth 

  

Data Privacy, Rules and Regulations Data Privacy 

 Rules and Regulations 

  

Technology Acceptance Technology Acceptance 

 Farmers Engagement with Technology 

  

Device Cross-Usage and Capability Ambiguities False Sense of Acceptance in Technology 

 Picture Quality 

 Data Quality 

Table 4.1.1 Themes and Segmentations for UAV Drone usage 

 

 

The multi-functional capabilities of UAVs and drones highlight the importance of 

understanding the significant segmentations that inform drone usage. The table 4.1.1 

demonstrates nine main areas of significance with a further thirty-one areas of discussion and 

evaluation. Whilst many areas have the possibility of overlap, each individual sub-heading is 

treated as important, and individual segmentations demonstrate key areas of value. For 

example, whilst the quality of camera imagery improves at regular intervals as the market 

adjusts to emerging cameral technology updates, the effects of improved image capture remain 

controlled and constrained by non-technical elements such as the environment and weather.  

An improved camera used on a wheat field 12 months after the original images are captured 

may still provide less than favourable results if the 2nd capture takes place on a rainy, windy 

day with overcast clouds and variable climactic conditions. The individual segmentations are 

discussed below to clearly show individual attributes, whilst collating them in subsets that 

allow for intersections where technology elements are influenced by other constraints and 

conditions. 
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The evaluation of key themes from the examination on cameras and sensors has a number of 

challenges. From these challenges there are four major areas of concern. They cover the 

changing quality of camera images, the ability to compare images from different cameras, the 

overall change in sensors and camera-driven technology, and the impact of weather events 

upon normal drone usage. This is shown in Table 4.1 below. 

 

Key Themes 

1. The quality of the camera-driven images, 

2. The ability to repeat the image 

3. Change in technology 

4. Weather and Environment 

Table 4.1 Key Themes for Cameras and Sensors 

 

 

Theme 1 

The evaluation of cameras and sensors in drone applications draws out four major themes. The 

first is the issue of quality in terms of camera images. Since the advent of miniature cameras 

there has been a strong push towards better and more accurate lens applications. In the last 

decade the quality of the cameras on drones has repeatedly evolved in terms of accuracy and 

resolution. It is worth noting that a similar change has occurred with the built-in cameras that 

appear on mobile phones.  The early drones produced by leisure and recreation-based 

companies, such as DJI, had a number of options however the option which has repeatedly 

improved technically in terms of quality and resolution has been the camera.  Early drones had 

cameras that were only 4Mb in size.  A typical drone in 2013 had a 4 MP camera, whereas in 

2022 a MiniPro 3 has a 48MP camera. These differences raise several issues. The first point is 

that every year a new drone or drone assembly is launched, with increasingly better optics and 

better resolution. This then brings about the problematic option whereby each year broadacre 

farmers are required to make a new attempt to fly the same areas for farming, but with a 

different camera with revised optics and different specifications. 

 

Theme 2. 

In addition to improved camera resolution, every year there are new models of drones and they 

do not always have the same camera optics as the year before. In a similar way to resolution, 

the improvement of camera optics is another changing feature of drone evolution because it 



83 | P a g e  

 

changes the way in which drone images become clearer and make better use of imagery in low 

light conditions. One of the key areas of drone improvement is the ability for small cameras to 

take high quality photographic images in low-light and shadow-affected conditions. Farmers 

who take repeated footage of the same land area with the same type of seeding are discovering 

that the footage that is a year apart is not the same. A camera with different optics will 

increasingly improve over time as new forms of miniature optically clearer camera lenses 

improve the quality aspects of cameras that are fitted to drones. Other issues come about 

because unless the farmer takes the footage at the same height, and with similar conditions, 

they will suffer the challenges of two seemingly identical pictures taken one season apart. The 

more recent footage is likely to have a progressively superior camera pixel value and optical 

clarity, whilst the old one will still operate but will have an outdated, less clear version because 

it retains a previously standardised camera capability. 

 

 

Theme 3. 

Irrespective of the expectation of yearly upward advancements in camera resolution, there is a 

similar shift taking place with images, sensors, and other software that is expensive and under 

continuous improvement. At the same time some poorer farmers fly their drones, whilst they 

many find that the newer / slightly improved drones provide markedly increased resolutions. 

There is a market-based expectation of yearly change in drone features that are driven by the 

competition of competing brands and offerings. 

 

Theme 4. 

Despite many people vocalising their opinion about climate change, there are many detractors 

who do not believe in seasonally adjusted weather patterns. However, there are many drone 

owners who are unable to fly their drone under medium weather conditions. Some farmers have 

limited ability in the control of drones, whilst other farmers are exceptionally resilient in their 

physical ability to work in storms in rain, yet incapable to fly drones in the same weather. For 

some farmers, the use of a drone takes place on days when there is sufficient spare time from 

other duties, fair weather with light to no wind, and daylight conditions that are neither overcast 

or stormy. From here we can conclude that the changing dynamic of drone technology is 

harming the ability of ordinary drone users being able to take footage from two different 

cameras if they are more than a few metres apart.  The changing guidance on different heights 

will soon need to issue disclaimers that insist that both usages were (at some time during the 
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day) the approximately same time of day and with the same light conditions.   The control of 

drones is something that appeals to a younger generation of technology users who have trained 

on video games rather than on tractors. 

 

In summary, the use of cameras and sensors in broadacre farming has three significant barriers 

that undermine their effectiveness.  The first barrier is that farmers and agricultural consultants 

see the value of multiple sensors and measurement devices but may not understand or even be 

able to interpret the results of this information in an accurate and thorough manner. Farmers do 

not generally come from a background in computer science, networking and IoTs, but are now 

expected to deliver ongoing determinations without sufficient higher-level training in these 

areas. The second barrier is that many cameras and sensors used in drone technology are 

constantly being upgraded as this area of technology development dynamically alters its course 

to include higher pixel counts on technology, and new dimensions of sensing using emergent 

areas such as LIDAR. This has meant that whilst the precision agriculture movement is now 

obtaining more accurate data than ever before. Many agricultural consultants are discovering 

that season after season and year after year the data lacks the ease of a fixed comparative set of 

values.  Data that was obtained in 2020 with a 20-megapixel device at a height of 30 metres 

above a wheat canopy is being compared with data from 2021 with a 48-megapixel camera 

using different LIDAR sensors and operating from a height of 100 metres. Each year there is 

significant adjustment required to ensure that the data can be meaningfully compared with the 

data from the previous crop or season. The third barrier is the challenge of new technology 

using IoTs which can be actively exploited using connectivity through sensor networks driven 

by software such as LoRa and LoRaWAN gateways. This emerging usage of edge systems is 

again well outside the normal skillset of the farming community and usually requires someone 

with advanced capability in computer science in order to guarantee successful technology 

exploitation.  

 

Evaluation point B. Drone Operation, training and piloting capabilities 

 

Whilst the evolution of drone technology improvements remains seemingly unstoppable, a 

second critical factor is the area of drone operation, drone usage, training and piloting 

capabilities. Many farmers can demonstrate proficiency and expertise in driving tractors and in 

using farm machinery. If we make similar comparisons in terms of the control and operation 
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of drones as farm machinery, there are several important differences that are emerging as part 

of the broader appreciation of skills in terms of farm machinery.    

 

Theme 2 

The evaluation of operations, training and flying in drone applications draws out seven major 

challenges. These key challenges are tabled in Table 4.2 

 

Key Challenges 

1. Inability to understand sensors 

2. Need / confusion about a drone licence. 

3. Right to fly privately 

4. Access to drone training 

5. Different altitudes in precision agriculture 

6.  Different levels of internet access 

7. Access to robust computers. 

Table 4.2 Key Challenges for Drone operations, Training and Flying 

Drones may be highly useful tools, but not everyone can use them to their maximum potential, 

which is a harsh reality that may disappoint some individuals. There is no problem making use 

of them for leisure and recreational purposes. However, to use drones professionally in 

agriculture, there is a requirement for a specialist user in the discipline of agriculture. This is 

required in order to acquire the necessary competence to operate each instrument safely and 

legally, and to use the instrument’s various sensors and cameras at their appropriate level, 

altitude, and condition. The utilization of these unmanned aerial vehicles for in-field 

monitoring is therefore ideally suited to pilots who have obtained the proper training.  Despite 

this suggestion, many farmers will consider that the use of a drone on their own property is a 

private matter and that they feel within their rights to fly a drone on their land, so long as no 

one else is affected. There is a long historical record of farmers and their immediate farm 

workers being active in the independent use of UAVs to the individual and non-standardised 

agricultural practices of the day. 

At the more commercially industrial end of the drone equipment range there are UAV 

instruments with significant payload capabilities. If a farmer wants to use a drone that weighs 

more than 150 kg for spraying crops, then they will need to obtain a license to operate a drone 

which may be both expensive and may entail considerable time devotion in order to acquire 

the necessary competencies to manage the remote pilot skillset. Many such courses are 
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developed based on the weight of the drone, and they often require 40 – 80 hours of instruction 

(either over 5- 10 days or over a longer period if undertaken in a part-time mode). 

 

In the great majority of cases, farmers would typically need to go to a training location quite a 

distance away from where they are located in order to participate in these courses. The remote 

location of many farming enterprises is a barrier to entry for many farmers seeking training for 

increased payload-bearing drones. Urban training is more widely offered, and distance can be 

a significant impediment to such appropriate drone training.  Unfortunately, access to training 

does not share the same ease of access as is required for the purchase of a drone.  The access 

to training may be a significant challenge for farming workers. The ability to order and pay for 

a drone online and subsequently have it delivered is an easy activity to undertake. Thus, the 

remote location of farm enterprises might not be regarded by farmers as the same level of 

barrier that prevents people from acquiring a drone to use (both in leisure mode or in the 

agricultural sense on a farm).   

 

When it comes to operating a drone for either surveying or crop spraying, one of the most 

important considerations to make is the height above ground altitude of the area being surveyed 

or sprayed. Since some drones have a unique configuration, such as a different sensor camera, 

weight, and resistance to wind speed, specifying an optimal framework for height forms a 

critical part of the professional use of a large-scale payload drone. 

 

As per the literature, a variation of 0.5 metres might have a substantial influence on crop 

spraying due to environmental factors like wind. It has also been observed that inaccurate data 

was gathered from a UAV when it was flying at an unusually high altitude with an angle that 

was directed more 30 degrees differently from its previous travelling line. Drone footage relies 

on a consistent line of image capture that is acquired under similar conditions, level of daytime 

shadow, wind, daylight, and other environmental conditions. 

 

When flying a drone in Australia, it is required to be registered with the Civil Aviation Safety 

Authority (CASA). Operators must fulfil a number of reporting mechanisms that ae best carried 

out using access to the internet. Such activities and reporting expectations can be frustrating 

and difficult for some farmers. This is because some farmers may not have access to 

fundamental technologies such as the internet, and if they use satellite phones, it may be very 

expensive for them to constantly upload data. 
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Another vital factor to consider is the complexity of the competing software that is utilised for 

image processing, mapping, and object recognition. Completing these tasks can often demand 

several stages before the desired outcome is reached. For example, if a farmer wants to 

implement 3D mapping of their farms for crop health monitoring or disease/livestock 

inspection, the first thing that they will need to do is gather the appropriate data using a UAV, 

which can prove to be the first challenge. The second challenge, which comes after the initial 

data collection, is to process and analyse the data using a robust computer and the right software 

and techniques. Sometimes, software does not work as expected, and in situations like this one, 

it can be problematic for farmers if they do not have the ability to solve these issues themselves. 

This also implies that farmers would have received the proper training in order to use those 

applications. Since accidents involving drones have been widely reported in the relevant 

literature, it is reasonable to assume that farmers will also require the ability to repair drones. 

 

Finally, this section can be summarised by the need to consider a range of limitations placed 

upon the users of the technology. Drone users are often unable to properly use all of the features 

on their drones. They are unable to access the different camera sensors or to adjust them to 

different positions and controls. Farm-based users believe it is their right to fly a drone on their 

own property. These users feel that it is ok to want to fly a drone on their own property, 

irrespective of other people or of the law.  Access to quality training is difficult, and many 

farmers will continue to try to fly a drone until it fails or breaks.   New drones place big demands 

on the need for greatly improved computing in terms of hardware and software.  This in turn 

drives the need for network storage, cloud access, and a range of data storage and shared data 

arrangements. For many farmers the need to share data with others presents a significant trust 

issue that is difficult for the farming community to reconcile with based on past issues where 

data has been inappropriately shared or restricted. 

 

Evaluation point C. Signal Strength, Data Connectivity, Long Range LPWAN, and Mobile 

networking 

 

A third point considers the way in which different farms operate in remote and rural areas, 

having vastly different access to internet coverage, signal strength for different networks, and 

long-range considerations where they are effectively isolated from urban technology access. 

These challenges are important to recognise in the context of technology usage and behaviours 
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that take place irrespective of the expected norms that the commercial marketplace offers to 

entry level farmers when engaging with drone technology.  See table 4.3.  

Key Challenges 

1. The internet or network coverage is very low 

2. Software requires updating. 

3. Drones expected to cover larger areas. 

4. Increasing numbers of adverse weather events. 

Table 4.3 Key Challenges for Signal Strength, Data Connectivity and Networking 

 

Most unmanned aerial vehicles (UAVs) have at least a fundamental requirement to be 

connected to some form of network or internet access (eg: 3G / 4G) in order to function to their 

full potential in terms of accuracy, mapping alignment, and data transfer. For instance, many 

versions of drone software frequently make use of access to Google Maps as a primary 

reference layer for location and mapping accuracy. As a result, the requirement for 

communications and network access can be a major impediment to data access in terms of 

precision-agriculture as there is an ongoing and repeated reliance on the need to connect to the 

internet in order to function correctly. The absence of a reliable network, mobile or internet 

access in rural locations is problematic in terms of the primary function of data management 

and precision agriculture outcomes.  

 

Taking this into consideration, there are many instances where farms are not displayed on 

Google Maps or their equivalent. As such there is a necessity for farmers to manually create 

maps of their own lands, suggesting an increasing reliance on non-traditional farming skillsets 

that includes computer and keyboard-driven skills, network and communication skills, and 

drone operating and camera image acquisition skills.  

 

Farmers who have, in the past, undertaken agricultural studies may have received instructions 

in terms of basic mapping skills, and perhaps some level of training in terms of accessing 

internet through standardised mobile networks (3G / 4G) and their network communications 

systems. However, to suggest that an average farmer will have a strong set of computer-

generated mapping skills, GIS skills, and network skills is a challenging concept with an 

ambitious set of expectations with regard to technical elevation. 
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A significant proportion of remote and rural farm locations have extensive areas that need to 

be covered and, in these circumstances, drones can be susceptible to interference from the 

environment around them.  In some instances, there is a high likelihood of UAV instruments 

losing their connectivity and signal strength. This might make the operation more difficult. If 

an appropriate pre-flight plan has not been established, it may be difficult to process drone 

photographs efficiently in environments with poor signal strength. 

 

There are also many recorded instances where it becomes difficult to upload data to the cloud 

in locations where internet connectivity is poor or unavailable. For instance, if a farmer wants 

to send some UAV imagery that has been collected from his farms to an associate or hired 

contractor, or even save them for future analysis, this can prove to be difficult as often high-

resolution UAV data is large in size, and it can be tricky for the farmer to transfer them. Cloud 

and data sharing that relies on connectivity to third party cloud providers is problematic in 

relation to the integration of reliable drone instrumentation on farming enterprises. 

 

The flow-on effect of network accessibility extends beyond crop mapping. The monitoring of 

animals and crops, as well as pest and disease inspections, are all vulnerable to disruption from 

a weak signal. If a farmer is using an unmanned aerial vehicle (UAV) drone to watch his 

animals in real time, then having a low signal connectivity can be problematic and prove to be 

a waste of time since the average drone battery does not generally last for a very long period.  

The reliability to connect in such instances can sometimes be achieved through other network 

means. This might include LPWAN or LoRa Wide Area Networks (LoraWAN). 

 

When it comes to flying a drone, some of the rules and regulations mandated by the government 

may turn out to be challenging for certain farmers. For example, agricultural properties that are 

within a radius of five kilometres of an airport, will be subject to additional regulations on the 

use of drones. Farmers may also find it challenging to comply with the regulation that states a 

drone must be within line of sight at all times. If a farmer wants to fly a drone weighing more 

than 150 kg, they'll need to get licensed to do so, which might be difficult for older farmers to 

obtain. 

 

This concluding area can be summarised in terms of a baseline understanding of the need for 

technology that works in remote and rural areas. Many of the current answers to the use of 

signal and network distribution anchor back to LoRa or other similar systems. LoRa is known 
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for low power, long range, low bandwidth, low security, and low speed. It is not a real-time 

solution that compares with the 3G/4G speed of drome and sensor needs that occur in built-up 

and urban areas. 

 

Evaluation Point D. Cost, Time, and Return on Investment 

 

Whilst the upside of drone integration is seen by many in the agricultural business as an exciting 

area of improvement and opportunity, the discussion of cost and time requires consideration 

for on-going farm management. This area recognises that stereo-typical farming has its roots 

firmly connected with standardised farming practices that have not changed much over time. 

In contract, modern farming practices require significant financial outlay, higher levels of 

technical understanding across a range of areas, and an investment of time and money into 

making these changes.  

 

Whilst farmers have historically been encouraged to improve crops, and improve livestock, the 

introduction of drone technology looks very different and invokes a different set of skills and 

capabilities. Farmers who integrate drone practices need to appreciate the full extent of the 

ongoing financial investment, the rapid decay of obsolete technology, the fragility of that 

technology, and the significant time investment required to achieve professional and reliable 

implementation.  In some cases, these considerations drive the need to have a new drone every 

year in comparison to the purchase of tractors and other farm machinery that typically can be 

amortised over several years.  The return-on-investment evaluation required for drone 

implementation is significantly different from traditional farm management practices. Drones 

hold a mixed set of agreed values because some will claim them as depreciating assets whilst 

others will classify them as investments. This usually means that the cheaper the drone, the 

fewer functions it has. Function points in new areas of the globe denote areas of enhanced 

functionality. Good agriculture drones are cost prohibitive. 

 

In addition to the cost of the drone itself, farmers will need to spend money on equipment like 

a powerful computer for data collection and processing, a professional image-editing screen, 

software, advanced sensors/cameras, spare drone batteries, and some costly agriculture 

processing software if they want to use drones for precision farming. High-resolution images 

can be rather large and, with the amount of data expected to grow over time, the farmer will 

need to investigate either traditional storage hardware or online storage options such as the 
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cloud. Furthermore, the cost of electricity, which is required in order for such technologies to 

operate, is going to increase over coming years. 

 

The obtaining of a drone licence is another area in which the farmer will not only need to invest 

financial resources, but also their time. The process of acquiring a licence often takes a few 

days, and some farmers will need to travel to cities several hundreds of kilometres away to 

undertake the necessary courses. .  Farmers will also need to learn how to use a computer for 

data processing and how to operate  complicated software programmes. This would involve 

more time and incur additional costs. There is a potential risk that the investment and time may 

be wasted since some farmers may not be able to master the technologies needed to operate a 

drone. 

 

Due to the inevitable force of Mother Nature, drone crashes are unavoidable, and as a result, 

farmers may end up needing to purchase replacement drone components or even a new drone. 

Another problem that has been identified in the literature is the fact that a UAVs are not 

designed to be flown in conditions where there is a risk of severe weather. For instance, 

unfavourable conditions such as wind or a cloudy day may interfere with crop spraying or the 

acquisition of high-resolution images, both of which can result in an unsatisfactory return on 

investment for the farmer who relies on the drone to increase productivity. 

 

Like many, farms are sometimes the victims of robbery, and the possession of expensive 

technology might further expose them to risk if additional investments in the farm's security 

are not also implemented. The increase in remote and rural theft of livestock, unguarded fuel 

in storage drums, and machinery and tools are important factors in the consideration of 

additional technology in the form of UAVs and drones. The key challenges are shown in Table 

4.4 

 

Key Challenges 

1. Increasing demand for quality drones – only 
cheap drones available, 

2. Lack of Time – need time to work. 

3. Length of time in training 

4. Competing drones 

Table 4.4 Key Challenges for Costs, Time and Return on Investment 
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This point can be summarised by considering the cost impact in terms of short, medium, and 

long term considerations. Short term expenditure in drone systems have a limited life before 

new models emerge with higher specifications and different and new technology features. 

Consistency is yet to be established and the drone market has not yet reached maturity. That 

means that new products continue to emerge yet there is a lack of standardisation and best 

practices are viewed as few and far between. 

 

Evaluation Point E: Animal welfare  

 

Using drone technology may have a demonstrated to have a lot of success with livestock, 

monitoring their temperature, identifying and detecting their position, and other things. 

however, it has also been proven to have an adverse effect on the welfare of animals. For 

example, if drones are unable to maintain a safe distance from animals, the resulting noise, 

which includes a distinctive buzzing sound, may have a detrimental effect on the animals' 

physiological health. This may cause the animals to experience higher levels of stress. If 

animals are subjected to such an environment for a long time, it may result in the widespread 

disruption of livestock management, since the effects of such an environment may be especially 

severe on animals who are either pregnant or  caring for young. Studies have shown that drones 

may sometimes be the victims of bird attacks, such as eagles and hawks. This can result in the 

animal being harmed, and it can also pose a safety risk, as the drone could end up crashing into 

a person, a vehicle, a structure, or even an electrical line. 

 

Animal Activism 

As per the literature, farmers have recently been the target of undercover filming conducted by 

animal rights groups. These interruptions have a major impact on farmers, and deceptive 

footage is published in social media, which results in great emotional distress. 

 

Of concern in recent years has been the increased focus on activism. Farmers of livestock 

(especially those involved in the sheep and beef live-export industry), have come under 

increased scrutiny and exposure to activists seeking to push a political cause. The key 

challenges are listed in Table 4.5  

 

Key Challenges 

1. Animal Well-being 
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2. Health and safety 

3. Exposure and stress of public scrutiny 

Table 4.5 Key Challenges for Animal Welfare 

 

This point can be summarised in a precautionary sense. Currently the greatest fear appears to 

emerge from animal activism, climate change activism, and vegan activism. There are 

increased and growing instances of activism that attacks or hinders the work of farmers and 

agricultural workers. Globally, there is a general move towards plant-derived protein sources 

that are offered as substitutes to traditional livestock farming. Live animal export is a political 

topic and farmers are realising that traditional markets are slowly being removed as a possible 

export option because of activism, political will, and the globally re-defining of food and 

protein sources. 

 

Evaluation Point F: Technology issues, battery life and drone system failures  

 

When technologies operate properly, they can be extremely beneficial and useful.  Yet, when 

they do not work harmoniously, they can, be a complete disaster. There have been various 

incidents of drone failure, where a drone merely loses signal or begins to behave improperly to 

the point where it becomes uncontrollable and crashes.  As such farmers may find it difficult 

to rely on such technology. See Table 4.6 for the list of Key Challenges. 

 

Key Challenges 

1. Drone system failure 

2. Battery life 

3. Bandwidth 

4. Loss of Control / Fly Away 

Table 4.6 Key Challenges for Technology issues, Battery life, and Drone Failures. 

 

Another challenging element is the positioning and calibration of additional sensors and 

cameras. As per experts, if a sensor is not correctly calibrated, it might have a detrimental 

influence on the quality of the picture or data obtained. Having additional cameras and sensors 

can add additional weight to the drone, which reduces the available flight time. Furthermore, 

additional cameras and sensors increase the weight of the drone, reducing its flying duration. 

These factors complicate the task of experts in developing a uniform framework for drone 

models.  
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One of the most significant limitations for UAVs is battery life, which varies from model to 

model. The normal batteries that come with commercial or low-cost drones do not have a very 

battery duration, which can make it difficult to operate them on large farms. The latest DJI 

Mavic 3 Multispectral, for instance, has a maximum flying time of just 43 minutes, allowing 

the user to survey and map an area up to 2 square kilometres in size on a single charge. 

However, this may not be sufficient, and the farmer may need to conduct multiple flights in 

order to map the complete farm. 

 

Not every drone has the technology or sensors to carry certain advanced data for precision 

farming, for example, a low-cost RGB UAV will not be capable of collecting the same 

information as a Thermal or Multispectral camera, but the advantage of UAV is that you can 

customise the drone by installing additional sensors. Hence, an agriculture drone equipped with 

a specialised camera, or a sprayer, adds weight to the aircraft, which may significantly affect 

flight performance, which in turn is directly linked to battery life.     

 

 

The maximum range a drone can fly also varies by model, with the majority of commercial 

drones having a limited flying range. For example, the P4 Multispectral drone uses a frequency 

of either 2.4 GHz or 5 GHz.  The 2.4 GHz frequency band has a larger coverage area but a 

slower data rate than the 5 GHz frequency band, which has a faster data rate but a shorter range. 

If there is no interference, the greatest range of a 2.40 GHz signal is around 1.6 km. which is a 

relatively small amount for a farm that is hundreds of hectares in size. 

 

This point can be summarised in terms of the technology usage and the increased complexity 

that is attached to drone practices. Drone failure is a common occurrence. Sometimes the drone 

failure is a subset of bad weather, whilst at other times a simple drone “fly-away” can take 

place for technology-driven reasons beyond the understanding and scope of the operator. 

Indeed, the easy entry low-level multi-rotor drones such as the DJI Phantom and Mavic models 

are extremely popular but have a level of failure that is unacceptable in a professional sense. 

When compared to the level of reliability required for a truck or a tractor, there is a 

disproportionate expectation placed upon the reliability of drones compared to other farm 

machinery.   
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Perhaps the most defining barrier to drone practices on broadacre farming are the challenges 

associated with batteries and battery life. Battery life directly affects the range of each drone, 

and has associated restrictions in terms of early “return home” functions. Battery life is  

responsible for the ongoing occurrence of drone failure episodes. The cost of batteries, their 

life cycle, and their overall performance and reliability have remained a constant barrier to a 

more fully accepted integration towards drone equipment ubiquity.  

 

Evaluation Point G: Technology issues, Drone system failures and Calibration 

 

Another challenging element is the positioning and calibration of additional sensors or cameras. 

If a sensor is not correctly calibrated, it may have a detrimental impact on the quality of the 

picture or data obtained. Having additional camera and sensors can add additional weight to 

the drone, which would impact the flight time. More cameras and sensors might increase the 

weight of the drone, reducing its flying duration. This complicates the task of experts in 

developing a uniform framework for drone models. 

 

This area can be summarised as an emergent challenge driven by increased technology 

improvements and the associated increase in fragility, complexity and interoperability. As new 

models are introduced, they trade competitively for market share. However, in the farming and 

agricultural sector, they are continually restricted by the lack of appetite for expensive UAV 

technology that is not consistently fail-proof, and which requires an increasingly regular need 

for calibration, servicing, and maintenance of equipment. If compared to other areas of farm 

equipment, the integration of drone technology is markedly more demanding and yet to achieve 

a satisfactory level of consistency, accepted usage, and day to day reliability. 

 

 

Evaluation Point H: Data Privacy, rule and regulations  

 

 

Key Themes 

1. Data Privacy 

2. Rules and Regulations 

3. Data Sharing 

4. Third party data users 

5. Cloud environments and data sovereignty 

Table 4.7 Key Themes for Data Privacy, Rules and Regulations. 
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Data Sharing.  

It has always been problematic to determine how data is shared and utilised, as well as who 

owns the data and whether a third party can be trusted with certain essential data, such as the 

amount of harvesting that is done throughout each session. There are some farmers who will 

choose not to disclose this information, which may result in them deciding against using all the 

technology provided by drones. 

Data sharing by the wider farming community is a contested issue. Many farmers have shared 

crop data in the past with government organisations and departments of agriculture at the state 

and federal level within Australia. (see table 4.7).  In many instances these experiences have 

driven mixed feelings of trust and cooperation between organisations. Some farmers have felt 

betrayed at the lack of agreement in the way that their data has been used and shared with other 

entities, resulting in a disconnection between state government service provisions and farming 

communities. 

 

There is a similar parallel issue with third party groups and associations that have increasingly 

infiltrated the agricultural data industry. Third party groups have received similar treatment as 

agricultural departments because they have used data acquired from farms for their own 

profitability, on some occasions to the farmer and their business. In some cases, the data 

acquired by a third party using the sensors on a tractor is stored in an offshore cloud facility 

and farmers may be required to pay to get access to their own data which was taken from the 

very farm equipment which they own and operate. 

 

Proximity to Infrastructure 

Due to their proximity to airports, some farms may be required to comply with drone 

regulations. Farmers require a specific licence and are required to notify any drone activities to 

the appropriate authority in Australia if you want to operate their drone within a 5-kilometer 

radius of an airport. Some of these restrictions may make farmers wary about investing in drone 

technology, whilst some farmers simply choose to operate drones without the knowledge of 

others. 

 

Unlawful Surveillance 

The inappropriate applications of drones in agricultural settings have also been taken into 

consideration. The issues were brought to light in a study by the NSW farmers federation, 
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which stated that a poll of members had found that drones were responsible for thirty percent 

of unlawful surveillance incidents on farms. For instance, some farmers who can operate drones 

might take advantage of this situation to spy on neighbouring farms and collect information for 

their own personal gain.  

 

 

This area can be summarised in terms of the crossover boundary between regulatory 

stipulations and on-farm accepted practices. It is clear that many drone practices in farming 

locations do not align with the codified and organised expectations that are placed upon drone 

users in urban and built-up areas.  At the same time there is little appetite by drone pilots and 

farmers for regulatory adherence to accepted privacy practices.  In remote and rural areas, the 

misalignment of drone practices with other areas is very different. It is almost impossible for 

one farm to be aware of another farm using fixed-wing UAV technology and gathering 

unauthorised crop data and livestock information. Surveillance in this form is extremely 

challenging. New governance and regulatory changes do not yet sufficiently address the issues 

with beyond visual line of sight (BVLOS) practices that overlap and survey beyond boundaries 

and established lines of shared mapping and observation (Politit et al, 2022). 

 

Evaluation Point I. Technology Acceptance 

 

There is a significant body of evidence that suggests that drone technology is only partially 

accepted in terms of broadacre farming. In one sense the farming community (especially the 

broadacre community) is split in terms of size and scale. The very large broadacre farming 

enterprises tend to be early adopters of drone and UAV technology. They can afford to invest 

in a range of high-tech options based on the financial size and strength of their broadacre 

operations. These operators have overcome many of the networked and signal-related 

challenges through the implementation of backhaul networks, new software defined network 

offerings such as Starlink and a range of other emerging network options (Martos, 2020).  Many 

will have sophisticated systems, using LoRa Wide Area Networks, or other proprietary systems 

such as SIGFOX (Wang et al, 2020). 

Key Themes 

1. Technology acceptance 

2. Farmers engagement with technology 

Table 4.8 Key Themes for Technology Acceptance 
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In contrast, medium to small operators consider the integration of UAV technology as difficult 

in terms of the upskilling networking and training required. See Table 4.8. Traditionally, 

broadacre farming can cover large areas – yet there is a divide between those enterprises taking 

large acceptance steps compared to others who are unavoidably lagging behind. This is based 

on several factors including shared services, cost implications, technology acceptance and 

technology skills.  

This area can be summarised as a dichotomy of technology uptake where the industry holds an 

uneasy balance between the desire for precision agriculture and yet is uncertain about the 

ongoing cost of the upskill in terms of trusted areas where the reliance for support lies with 

other sectors that have previously not been closely associated with agriculture. This dichotomy 

is further aggravated by a continuing discourse regarding trust, information, and shared data. 

This touches on cultural boundaries and demonstrates a separation between the sharing of 

traditional farm machinery in hard times (e.g. when a harvester breaks down) and the hesitancy 

to share technology items where there is uncertainty about the storage and data location of 

valuable crop and livestock information.  

Evaluation Point J. Device Cross-usage and Capability Ambiguities 

 

Key Themes 

1. False sense of technology Acceptance 

2. Picture quality 

3. Data Quality 

Table 4.9 Key Themes for Data Privacy, Rules and Regulations. 

 

The research investigated in this thesis shows that there is a wide variety of drone usage that 

crosses existing boundaries. (See Table 4.9). The delineation between leisure drones and 

professional drones is unclear. The DJI range of UAV instruments has (like many other brands) 

rapidly changed its product line so that new models of all shapes and sizes have capability and 

resolution beyond earlier expectations. The advanced features of even a low-cost drone for 

under $1000 AUD now makes it possible for anyone (including those in agriculture) to enter 

the market with ease, and to test the application of drone technology with relative financial 

ease.  
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There are three main concerns. The first is whether the low cost of entry misleads would-be 

professionals in agriculture to assume that the applied use of drone technologies will be easy 

to implement. The second concern is that these low-cost adopters will mistakenly equate the 

accuracy of inexpensive drone instruments with the opportunity to acquire a significantly 

larger, and exceptionally accurate, data collection of farm data that can provide substantial 

benefit in terms of precision agriculture. The third concern is that whilst small drones (sub 

$1000) provide a false sense of technology acceptance in terms of ease of use and perceived 

usefulness.    

For example, the picture quality, resolution, and flight capability of a DJI Mavic Pro combines 

affordability alongside exceptionally high photographic image resolution. A very high level of 

photogrammetric imagery and picture resolution is now possible. However, the immediate 

application of this size and type of instrument should be evaluated in terms of the far greater 

extension of the technology in the form of higher-level instruments that provide enormously 

beneficial data with a considerably greater demand for three main adaptations. The first is the 

requirement to upskill farm workers in terms of mapping interpretation and its associated IT 

skillset. Taking drone footage and stitching together large sections of mapped areas requires 

increased skills in software application, alongside an accompanying requirement for hardware 

uptick in the form of visualisation, processing, and storage technology. The real cost of basic 

entry into the applied use of drone technology in farming enterprises is significantly 

underestimated in terms of price, training, technology skill, hardware requirements, software 

requirements, and support. 

This area can be summarised in terms of the traditional reliance upon season after season data. 

Farming communities have traditionally relied upon reference to the history of previous crops 

and previous seasonal yields and productivity measures.  The rapid change in technology 

instruments (in some cases several changes take place within a single season or crop cycle) 

creates uncertainty. Most farming communities are resistant to immediate change, preferring 

to opt for a slower rate of change. The rapid uptake, upskill, and dynamic upheaval of sensor 

data drives the discourse towards the fear of too much technology or at least technology and 

data that is dependent upon the advice of others who are non-traditional in terms of previous 

past sources of consultation, advice and agricultural support. 
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4.2 Summary of the Analysis of Data 

 

This chapter has examined a broad range of factors. During the analysis and discourse around 

the principal question of the important factors influencing the application and acceptance of 

UAV technology for broadacre farming, there are six areas that stand out as the more critically 

significant themes involved with the research. The analysis demonstrates that there are six areas 

that form a more prominent part of the discussion on drone practices. These six areas are cost, 

complexity, ongoing dynamic change, governance, drone failure, and technology acceptance.   

The following chapter discusses each of these six areas in greater depth. The method of 

discussion in chapter five works through four guiding frameworks in the area of risk, maturity, 

technology readiness, and entropy.  
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5 DISCUSSIONS 

 

This chapter looks at the issues raised in terms of analysis and orders them in terms of the 

priorities raised through the research questions of this thesis.  The main areas of discussion are 

based on a progression of ideas that examines risk, maturity, technology readiness, and entropy. 

Through these outlines the key emergent themes are cast. The result is a focused discussion on 

the more critical areas of behaviour in the usage of drones. The main areas of concern are those 

connected with matters of criticality. In each of the four discussion areas the themes that are 

discussed are evaluated on the basis of their criticality towards the use of drones in broadacre 

farming. 

 

5.1 The general Research problem and the Gap in knowledge 

 

This study has exposed a wide range of issues that highlight areas that impact upon drone 

practices in broadacre farming. The chapter 4 analysis is both edifying and instructive in 

guiding this study to the specific areas of greatest impact and greatest influence.  The analysis 

sections describe the pathway that makes it  clearer as to how the six thematic vectors of 

greatest interest and concern are interconnected with the fundamental challenges that face 

farmers in their pursuit of agricultural data and information. 

 

This study has examined a broad range of issues.   From all of the thematic vectors there are 

six major areas of concern.  These are discussed in greater detail so as to develop beyond the 

thematic analysis and to seek to apply broader meaning to each area and to contextualise these 

issues so that they can inform this research and address the research questions. 

  

5.1.1 Cost 

The first discussion area is cost. Farmers have an easy entry into drones with a relatively low 

barrier to becoming involved. However, that involvement rapidly changes in terms of 

complexity, technology, training, regulations, reliability and overall return on investment. 

Farmers who invest in high-level drone technology are regularly incapable of realising a return 

on the investment. 

 

Despite the low entry barrier,  the key limitations of upskilling into drone usage for broadacre 

farming are linked to the significantly higher costs of fixed wing drones, and heavy payload, 

multi-rotor UAVs. These investments require a re-configuration of technology priorities that 
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extends to include drones, operator training and licencing, the need for at least one spotter or 

assistant, high specification desktop capabilities with large screen viewing, graphics card 

interface, and drone image mapping software. To properly facilitate these changes there is a 

need for high-level internet access with improved bandwidth. The upgrade in most cases will 

include the need for an additional member of staff with IT skills, networking skills, and 

capability around drones and software analysis.  From this position the next set of options might 

be to share data with a 3rd party or to consolidate the data into a secure storage system that can 

provide the ability to interrogate the data at a sufficiently organised data management level so 

that the broadacre operations can derive significant benefit from a precision farming standpoint. 

 

Even if an operation chooses not to set up their farm to the extent outlined above, the decision 

to use high-level drones will still encounter significant expenditure in the form of outsourced 

operators, data storage, data management and data retrieval. All of these costs are variable in 

terms of the application, size, and scale of each broadacre operation. However, the cost of this 

type of high-level drone set up are inescapable whether they come in the form of internal 

technology set up or a model that outsources the drone usage side of the operation.  

 

Another consideration is that these costs are associated with ongoing changes and updated 

technology. The significance of farm records and the best practice for precision agriculture 

relies upon decision-making that forms a reliable data set based upon ongoing measurements 

throughout each season. The financial commitment to high-level drone usage holds an 

obligation on the farmer to continue with  wide-spread usage with a commitment to its 

permanency.   

 

In contrast, the opposite consideration to this proposition is that some broadacre farming 

enterprises will consider the size and scale of their operation and decide not to make such a 

commitment in terms of cost and equipment. Farm operations that attempt to take a low-cost 

option into the deployment of drones will have limited success, using uneven data networking 

and will endure a range of compromised elements within the technology usage and partial 

transition.  The compromised approach also includes an ongoing set of challenges in terms of 

technology knowledge, equipment fragility, and increasing portions of obsolete technology. 

 

The literature suggests that, from a return on investment (ROI) stance, the holistic commitment 

to drone practices and drone usage is the only approach that is likely to deliver a reasonable 
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ROI. The commitment to drone usage in isolation only makes sense if there is an accompanying 

commitment to the data management and visualisation / mapping requirements at the same 

time. 

 

Many agricultural discussions use John Deere as a useful case study that depicts a global data-

sharing practice (especially in the US) of farmers buying expensive technology, seeing their 

sensor data be transferred to a private (in this case John Deere) cloud platform, and then finding 

themselves forced to effectively buy back their own data from the very provider that sold them 

the initial farm machinery.  The literature points to a number of such cooperative arrangements 

that gather data from farmers and then re-arrange the data to sell back to the farmer.  A useful 

comparison could be drawn from a sheep farmer who sells their sheep to the market and then 

goes to the local butcher to buy a piece of lamb for dinner. 

 

There are additional micro costs that should also be included in this discussion. They include 

safety workshops; CASA governance and regulatory requirements; training and registrations; 

security considerations (both cyber and physical); and dust-proof areas for drone maintenance 

and cleaning.  These additional smaller costs assist in explaining that the commitment to drone 

technology is difficult to separate into one or two costs, but rather the commitment relies upon 

a wide range of different elements being exercised together.  

 

 

5.1.2 Complexity 

The second area is one of complexity.  This study demonstrates that there is an increasingly 

large variation in the numbers and types of sensors that can be used. Farmers will be familiar 

with sensors in terms of the many devices that are used in and on tractors and harvesters to 

provide immediate data at the point of harvest or the point of seeding in many broadacre 

operations. The integration of drone technologies would allow for sensor deployment at a 

different level of quantum and scale.  

 

Whilst high-level multi-rotor and fixed wing drones do carry different camera sensors that can 

provide a range of sophisticated data and measurement, the introduction of drone usage allows 

for widespread ground sensors provide a range of soil and ground level metrics. These can be 

activated as drones pass overhead and the data can be silently gathered directly onto a LoRa 

gateway via a LoRaWAN (Wide Area Network). The application of such sensors means that 



104 | P a g e  

 

the entire broadacre operation can become operationally active for a range of different ground 

sensors that provide regular information in low bandwidth long range format. If required, this 

can be accessed daily in terms of crop management, water, disease, pests and other attributes. 

The use of widespread ground sensors adds the opportunity to provide rich, specific sources of 

data that enable a very high level of accurate decision making in real-time. This inclusion raises 

an issue for farmers and farm workers as to how to understand the complex variable nature of 

sensors as well as understand the need to have high level computing. 

 

5.1.3 Changing Camera Technology 

 

The third area for discussion revolves around the constantly changing camera technology 

associated with drones. If the goal of precision agriculture is to be able to make high-level 

decisions, then the reliance for accuracy must also take into account the challenge of differing 

measurements obtained through different cameras. Australian farmers have had access to 

satellite imagery for decades. However, the quality of the imagery has been poor in terms of 

pixel resolution.   

 

Drone usage provides for significantly higher levels of image resolution. However, this is 

somewhat offset by the challenge presented by new models of drones with ongoing increases 

in different sensors from RGB to NDVI and Multi-spectral sensing. Each successive new 

model has a higher specification of camera with a higher pixel count, a different F stop, and 

different sized lens. Farmers (or their technologists) need to constantly recalibrate and adjust 

to suit for a data set that can be compared.  

 

These issues remain firmly centred on changing levels of camera technology, in concert with 

drone footage that has been taken from different heights, at different angles, and in different 

parts of the farm. These changes in heights mean that one map taken in a previous year will 

visually, show widespread differences. There is an ongoing need to standardise and adapt to a 

fixed set of drone operating heights and camera selections to avoid comparing two different 

sets of data that have very different measurement assumptions and constraints.  This issue can 

be further exacerbated in terms of the understanding and deployment of sensors from a 

computing background. Long range systems such as LoRaWAN can be set up by others, but 

there are often ongoing set up issues associated with the network side of the technology. This 
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is less onerous than full scall drone deployment, but still retains an element of technological 

skill and training to ensure that the technology is working seamlessly.  

 

5.1.4 Rules, Regulations, Guidelines and Procedures. 

 

The fourth area is that of governance. This  includes rules, regulations, guidelines, and 

procedures, Drones that are flown remotely, and with no large likelihood of being seen by 

others are regularly flown under a private set of rules (based on being flown over private 

property). Some of this activity is legal and is sanctioned under the rules for use on rural and 

agricultural holdings. However, the great majority of the drone rules require a suitable person 

with a high--level pilot’s licence to fly drones.  This point is important because new regulations 

are constantly evolving all the time. Urban systems are gearing up for widespread drone usage 

for parcel and package delivery in cities.  In remote and rural areas, the key issues for 

governance include the proximity to small airstrips, as well as the emerging rules and laws 

about drone operation. In particular, the emerging rules and legislation pertaining to BVLOS 

(Beyond Visual Line of Sight) drone operations are seeking a uniform response to a set of 

globally accepted rules. The need to address BVLOS issues is a critical part of Australian 

broadacre farming and requires a successful arrangement to the satisfaction of other countries. 

 

5.1.5 Drone Failure 

 

The fifth consideration is that of drone failure. Taking into consideration the already heavy 

emphasis placed upon the need to address new forms of technology, this area recognises that 

drone technology is inherently more technically based than perhaps traditional machinery used 

on farms. Whilst some farmers and drone operators have a dislike for new technology, others 

are capable of embracing both the need and the commitment necessary to learn how to safely 

operate drones. Appendix 8.2 shows globally a large number of agricultural scenarios where 

drones have crashed with some notable consequences. 

 

Drone failure, however, has a number of precedent factors that are more widespread than 

crashes from pilot error. These include unfavourable weather conditions, signal loss and signal 

jamming from nearby devices (non-drone telemetry-related sources). In the South West of 

Western Australia there are a large number of reports where large birds (especially birds of 

prey such as eagles and hawks) have attempted to attack and interfere with drones at high 

altitudes (Junda, Greene and Bird, 2015). 
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Drone maintenance and drone upkeep is an area that is relatively new to farmers and broadacre 

technology agriculturalists. One of the recognised issues for large scale farms looking to deploy 

drone technologies is that there is a significant requirement for the cleaning and upkeep of 

drones. Broadacre farms are harsh environments for expensive drone UAV technologies., and 

the upkeep of motors, rotors, batteries, and cameras requires steady hands and a dedicated 

“clean room” that is free of dust, chaff, and moisture. Some drone parts are subject to oxidation 

and there is a need to commit to maintenance on a regular basis to ensure that drones fly at 

their optimum to ensure safety and performance. 

 

5.1.6 Technology and Engagement 

 

The sixth area looks at technology acceptance and farmer engagement with drones. There are 

always a small number of farmers who fly drones and are engaged in the development of the 

technology. The question is, what will happen or change for all of the other farmers. There are 

concerns from traditional farmers that the use of drones is too reliant on technology and not 

reliant enough on traditional farming practices.  Some farmers have concerns about the use of 

drones with livestock and there is evidence of frightened animals suffering after drones have 

been used in proximity (Yaxley et al, 2021). 

 

There is little doubt that drone technology has captured the imagination of the agricultural 

community in a broad sense. At the individual level, the opinion is divided between farmers 

holding different views. Some are concerned for animal welfare while others are concerned 

with costs. The overarching hesitation seems to come from farmers who do not wish to lose 

sight of the more traditional farming practices. Whilst the business of growing crops and raising 

livestock has been going for thousands of years, the advent of drone technology raises issues 

about training, skills and knowledge that may appear counter-intuitive to traditional farm 

operators who have known their craft for decades.  

 

The acceptance of drone technology requires more than a few enthusiastic young farmers 

showing off their technical skills. The challenge is to embed a culture of acceptance that has 

the same general benefits of farming community trust as other areas. In general, farmers look 

out for one another. They will advise other farmers of the presence of foxes, feral pigs, broken 

fencing and a range of challenges. However, the advent of drone technology brings a different 
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trust paradigm. In this scenario, farmers are expected to understand and tolerate drones flying 

over private property, over livestock, and identifying new sources of engagement and intrusion. 

The literature suggests that farming communities (including broadacre operations) are split into 

two, divided groups. Once the development becomes more widespread the acceptance will 

change. In the meantime, the issues of acceptance most likely to hinder and influence drone 

technology usage will be rules, regulations, governance, privacy and security interests. 
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5.2 Risk 

 

Having examined the six areas that demonstrate the most impact in terms of drones in broadacre 

farming, this segment studies these individual factors in terms of ongoing, future and residual 

risk.  A full risk register was created and populated based upon known risks as discovered from 

the literature review. The register lists 50 risks and tracked each risk in terms of likelihood and 

in terms of impact (See Appendix 7).  Note that each line item is tracked based upon the impact 

to the drone practice. The risk register includes a standardised probability versus impact 

comparison, using a 5 x 5 matrix as the visual descriptor, with the risk score developed based 

upon those line items with the highest levels of probability and impact. 

 

Using this system, the area with the highest risk ratings were determined and  are discussed in 

this segment. There was one risk with a rating of 20, six risks with a rating of 16 and one risk 

with a rating of 15. They represent the eight risk items with the highest risk level based on the 

50 risks from the register. (See Table 5.1) The complete register can be seen in Appendix 7. 

 

Top 8 Risks Technology Issues Challenge Probability Impact Risk Score 

(P x I) 

1 Rules and Regulations Too complex – people do what they 
want on their own land. 

5 4 20 

2 multi-spectral image 
processing 

Required to apply more complex pre-
processing method 

4 4 16 

3 lack of drone-related 

software 

Lack free open source 4 4 16 

4 storms and bad weather Inability to fly drones in bad weather 4 4 16 

5 cost of fixed wing 
drones 

Very large expense 4 4 16 

6 cost of heavy payload 
drones, 

Large expense, + training, hardware, 
software 

4 4 16 

7 machine learning skills Better computers, extra software, 
computer skill 

4 4 16 

8 Farmer Engagement Willing to adopt drone tech 
knowledge for precision farming 

3 5 15 

Table 5.1 Summary risk register (Top 8 Risks) drawn from Register in Appendix 7. 

 

This segment discusses the 8 top risks derived from the risk register in Appendix 7. The risks 

listed here are ranked as priority items because the literature reviews mentioned these items in 

terms of risk and in terms of expected change and transformation in the way that UAVs are 

integrated into society. Whilst the most prominent areas of transformation are in built up and 

urban areas, there are several challenges from new regulations that will have adverse effects 

and bring about limitations in drone usage in rural and remote areas. Some new areas are based 

on operating presumptions around dangers and interactions with people, and do not translate 

well into broadacre farming environments. 
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Risk rating 20: 

One risk scored a rating of 20. This risk is described as the challenges of Rules and Regulations 

and their increasing complexity for drone usage. The literature review determined that, in 

Australia, the rules and regulations that control the usage of UAVs and drones are perceived to 

be complex and onerous. There are large numbers of farmers and grower groups who have 

cited that, whilst in urban areas the usage of UAVs is quite strictly controlled.  They have raised 

concerns that on farm properties (many of which are large and privately separate from built up 

areas), some drone operators do whatever they want when it comes to drone usage. There is no 

oversight of drone operation in these areas, and many accidents (many under-reported) have 

occurred in remote and rural parts of Australia. Other issues relating to this risk include issues 

of damage, livestock harm, privacy and security. There are several individual references to the 

challenge of BVLOS rules (Beyond Visual Line of Sight) which go unreported on many private 

farm acreages. 

 

Risk rating 16: 

There are six risks with a rating score of 16. These include multi-spectral image processing; a 

lack of drone-related software; storms and bad weather; the cost of fixed wing drones; the cost 

of heavy payload drones; and machine learning skills and equipment. Two of these risks relate 

to costs and the barriers to entry in to the market. One risk relates to extreme weather 

conditions, and three risks are concerned with image processing, a lack of software, and issues 

about the development of machine learning using drone technology. All of these risks are 

connected strongly with the early discussions about gaps in terms of drone entry and 

engagement in UAV usage in. The benefits of a risk assessment of this nature are that change, 

and transformation can be measured.  

 

In the case of the two risks that highlight excessive costs, the change can be measured over 

time. Risks that present in terms of costs are best measured over a period of time. The key 

metric for expenditure on expensive drones and on cost prohibitive features such as drones 

with 25 kilogram payloads, is to consider the return on investment. The key elements are the 

life cycle of the drone, and evaluating the point in time when the drones being used are 

sufficiently close to being obsolete and either need replacement or need a change in technology 

direction.  
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The three risks that identify with software, image processing and machine learning are elements 

of the computer science segmentation. They draw in perceptions of difficulty for traditional 

broadacre farmers because they require a person that have a technology skill set that enables 

and can interpret software for the benefit of broadacre farming productivity.  At the same time, 

they are all representative of a technology challenge, requiring access to online internet 

connectivity, cloud storage, and structural programming skillsets. They are inherently risk-

based because they require people and products that do not normally exist in or around the 

surrounding areas where we might expect to find broadacre farming. Individually they score 

highly as risks. In combination they represent the largest combination challenge to the drone-

related factors that affect broadacre farming. 

 

The risk cited against storms and bad weather highlights the attention given (through drone-

related literature) to climate change and extreme weather events. One of the reassuring 

elements of the two main satellites that pass over much of Western Australia every 12 hours is 

that they keep the same orbit, follow the same routine, and are not physically affected by local 

individual weather events. In contrast, the use of UAVs to take footage and measurements is 

far more constrained and needs to follow specific guidelines in terms of wind speeds, extreme 

weather in form of rain and hail, and the important feature of tracking, returning and landing 

safely during windy events. 

 

Risk rating 15 

The one risk rated at a score of 15 concerned farmer engagement. This risk cites the risk of 

restricted farmer engagement citing the need to convince broadacre farmers to be willing to 

adopt drone technology for the benefit of precision farming. The risks around engagement with 

technologies are well founded because they are (in some cases) perceived to be counter-

intuitive to traditional farming methods. Part of the secret of engagement with technology is 

the ability to join together traditional practices with modern changes from technology to form 

a single objective. In one sense, the shift to encourage farmer engagement is dependent upon 

existing farmers taking an interest in drones so that their own farm activities can benefit from 

the experience. 

 

The use of risk evaluation in the normalised method of evaluating probability and impact is a 

clever but simple task which draws out the key elements of concern based upon existing 

literature discourse. It is easy to extract and has an ongoing role in terms of allowing risks to 
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be continually evaluated since they rise and fall as different transformations in agriculture take 

place. 
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5.3 Maturity 

 

Given the obvious evidence that modern drone development has a short history of just 30- 40 

years, it should not be surprising that there is a discussion about the maturity of an evaluation 

of broadacre farming that uses and exploits drone technology. The commercial usage of drone 

technology that incorporates mapping, sensor management, online data management and 

remote networks is closely linked to the development and ubiquity of the internet, mobile 

wireless telecommunications, and modern applications of agile systems and machine learning. 

 

The discussion of factors affecting drone practices is uniquely beneficial because drone 

technology is relatively new. Where technology is operating under more established conditions, 

the maturity of drone technology would provide many more distinctions. If we consider the 

drone practices individually, we can identify that some areas are more mature than others. For 

example, the maturity of multispectral drones has not reached a level of sufficient maturity so 

that users would settle into a specific reliance upon the one type or style of instrument.  Instead, 

the literature depicts a long, but progressively dynamic, list of changing styles with many 

variations on different spectra, different sizes and operating capabilities. In contrast, when we 

look at the literature on payload drones, we can see that the reliability and deployment of 

payloads is nearing maturity, given the widespread acceptance in the fields of emergency 

medicine, parcel delivery and remote supply purposes. The advances in heavy lift drone 

mobility are clearly regarded as significant milestones in Africa and in the Middle East to the 

point where the World Economic Forum has expressly announced their heavy lift programs as 

having reached a global level of maturity (WEF, 2021).  

 

The drone development in small drones and in payload drones are described in the literature as 

those drone elements that are nearing maturity. The high-level technology driven instruments 

used in precision agriculture are clearly described as less mature and demonstrate a dynamic 

set of developing changes in sensors, camera types, pixel values, and operating flight altitudes. 

These are areas of drone development that are developing with uncertainty and less 

organisational structure than other elements within the stable of drone technology UAVs. 
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5.4 Technology Readiness levels 

 

Technology readiness is a significant measurement in areas where a relatively new form of 

technology is being applied into an area of business. From a business perspective, there is a 

need to judge the level of preparedness so that the cost of the transformation, and the challenges 

with the transformation, are anticipated in advance.  Advanced drone applications (such as the 

fixed wing and heavy payload options discussed in this study) have the potential to invoke 

great change, however they can also bring about unnecessary complications if they are 

introduced without planning for their acceptance and impact upon other existing practices 

which may be required to change.   

 

The use of unmanned aerial vehicles (UAVs) in precision agriculture has been shown to have 

some success in a variety of applications, including crop monitoring, livestock monitoring, 

disease and pest inspection, and crop spraying. More farmers are becoming aware of the many 

benefits that may be achieved by using these unmanned aerial vehicles in agricultural. 

Nonetheless, there have been several limitations found with UAVs. The major concerns are 

clearly connected with the very cost prohibitive nature of technology that has a low level of 

technology readiness. 

 

Technology Readiness Levels (TRLs) are useful in identifying the areas where, as a result of 

transformational change, the introduction of new technology alters the way that other, more 

normalised, practices are continued. In broadacre farming, there is an established system of 

record keeping that relies on a historical comparison of past crops in terms of yield, production, 

climate, frost events, weeds, pests, diseases and weather. The use of UAVs provides records 

that are more detailed in almost all of these areas. Data can be extracted at the times the 

enterprise wants to extract them. They will typically be more accurate, more detailed, more 

specific, and more reliable. However, they will also be more complex. One of the important 

questions that a TRL assessment generates is whether farmers are ready to interpret a richer, 

more complex set of measurements and records, and whether that change draws away from 

past traditional records and systems. In some cases, the introduction of complex and more 

accurate information makes other systems become ignored or obsolete. That can affect the 

overall performance of a farming enterprise if those systems are perceived as less useful. One 

of the functions of a TRL assessment is therefore to check for entropy in the form of 

transformation-driven areas that decay or become misrepresented.  
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5.4.1 A TRL Model Assessment 

This segment draws upon the NASA system of technology readiness in developing a chart 

describing the technology readiness levels (TRLs) for drone usage in broadacre farming 

(Mankins, 1995; Straub, 2015; Barari et al, 2015).  To describe the TRLs for drones in 

broadacre farming a number of processes and levels of achievement were identified as part of 

the thematic descriptors used in the initial segmentation of the literature review. 

 

“Technology Readiness Levels (TRLs) are a systematic metric/measurement 

system that supports assessments of the maturity of a particular technology and 

the consistent comparison of maturity between different types of technology” 

(Mankins, 1995).   

 

TRL (Technology Readiness levels) 

 

Technology Readiness levels (TRLs) 

TR1 Technology Research 

TR2 Technology notion /idea 

TR3 Proof-Of-Notion 

TR4 Technology Proof 

TR5 Drone types – different maturity levels 

TR6 Sensor Maturity 

TR7 Rules and Regulations 

TR8 Software Maturity – Integrated Precision Ag data and real-time 

information analysis 

TR9 UAV system Operational Maturity 

TR10 Demonstrated Operations 

Table 5.2 Technology Readiness Levels for Drones in Broadacre farming (Adapted from Mankins 1995) 

 

The interpretation of TRLs is important to understand. Commercially, some of this work is 

done by a cooperative firm that charges a fee for consultation. This type of consultation 

involves an interpretation of new data for the purpose of improving productivity, yields, and 

profitability.  The description below explains the process and includes some specific inclusion 

for drone practices in broadacre farming. 

 

In Table 5.2, the adapted NASA TRL Model has been applied with the following explanatory 

notes:  

 

TR1. Technology Research  

Fundamentals were noted and reported. In broadacre farming specific large-scale areas of land 

were prepared and treated for use. Seeding and harvesting schedules were selected and locked 
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into place. The application of UAV-based data is acknowledged as potentially useful in the 

context of a broadacre farming opportunity. The overall attributes for technology research are 

clearly indicative of the ongoing expectation of a continued race to develop UAV technology 

across the areas of camera resolution, increased indices usage, battery life and extended flight, 

and sensor development and network capabilities. The broadacre farming needs in the 

immediate future are driven by the lack of technology maturity, and the literature evidence 

shows that there are competing differences between technology advances and regulatory 

improvement. TR1 is likely to see ongoing rapid change and development in UAV technology, 

which will drive high level impact into the profitability of broad acre farming. 

 

TR 2. Technology notions and ideas 

Development of a concept and/or a use case scenario. Here the conceptualisation requires a 

broadening of past practices to include a much larger pool of data / information. At the same 

time, there is a conceptual commitment to using that data, in real-time, to obtain the maximum 

benefit from the information.  The conceptual change required for UAV development is 

strongly connected to future skills. In the current state, there is clear evidence of a skills 

shortage in qualifies drone pilots as well as the ability to analyse sensor data and imagery for 

the purpose of generating information that is suitable for future proofing precision agriculture.  

TR2 is likely to see increased growth in line with skills development, which will assist 

broadacre farming to improve its maturity within the acceptance of high-level UAV technology 

in broadacre farming. The impact of broadening UAV practices has the potential to grow the 

UAV business into a reliable sub section of broadacre farming. 

 

TR 3. Proof-Of-Notion  

This is a critical function analysis and/or experimental demonstration of the idea. Here the 

integration of broadacre mapping and the determination of specific areas of attention is based 

on expectations from initial sensor mapping and discovery. This involves revised performance 

expectations, technology deployment, implementation timing, and alignment of time 

commitments to suit seasonal (e.g., optimum seeding) timeframes. As new sensors come to 

fruition in a commercial sense, the ability to leverage from a new set of data will have enormous 

impact and will drive considerable change. LIDAR technology, and its related areas of 

recognition, are likely to have a significant impact on the development of new high-level UAVs 

that will be able to detect a range of features including accurate numbers of feral cats, feral 

pigs, as well as the accurate detection of stray livestock.  The impact of this type of proof of 

notion is likely to generate enormous savings in livestock losses, as well as providing 
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opportunities for future sills and job changes in the different usage of UAVs in broadacre 

farming. 

 

TR 4. Technology Proof 

This requires a generic design that demonstrates performance that is consistent with potential 

uses and enables the development of new concepts. It involves the integration of drone usage, 

LoRaWAN networks across the whole area, data collection and access, and installation of 

visualisation hardware and the establishment of CS workstations. Whilst the economic benefits 

of Long Range platforms such as LoraWAN show obvious merit, the more advanced technical 

development of UAV technology has  chosen to look at 5G/6G platforms and the advent of 

wide spread Low Earth Orbiting satellites ( LEOs) The likelihood of change from LoRa-based 

technology development is lower than other areas, and the impact of this area of UAV 

technology is likely to sit of the fringe of rapid development in broadacre farming. 

 

TR 5. Drone type  

This identifies the different design of UAVs such as Wing-fixed, multi-rotor (quadcopters, hex-

copters and octocopters), a selection of fixed wing overhead mapping and analysis drones, 

combinational heavy multi-rotor drones for LIDAR, as well as spraying payloads for weeds, 

pests, fertiliser treatments. This also requires access to spare parts and machinery redundancy 

features.  Changes in design features for different flyable versions of UAVs is increasing 

because the development has other growth sectors outside of agriculture are driving change 

and innovation. The applications for UAVs are gaining wide acceptance for issues such as 

parcel delivery, fast food delivery, and a range of service and repair maintenance usages. The 

next generation of UAVs are likely to follow new design arrangements in terms of rotors, range, 

and payload variations. There will be a new generation of fit-for-purpose UAVs that will 

emerge. This will have expected spin-off benefits for broadacre UAVs and will generate global 

acceptance and market maturity of the overall UAV definitions of drone types and variations.  

 

TR 6. Rules and Regulation  

This outlines the precision farming drone regulations. It involves an acknowledgement of 

overlapping surveillance, issues on BVLOS challenges, proximity to airstrips and other 

infrastructure, as well as the required training for pilots and spotters. This generates an 

acknowledgement from CASA for readiness to operate UAVs according to intended plan. 

CASA is predicted to make significant changes in the rules and regulations that govern UAV 

usage. Some of these will have an impact upon the agricultural sector. In specific terms the 

most impactful areas are the ability to fly and control multiple UAVs with a single controller 
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and/or licensed operator, and the changing of regulations governing the BVLOS sector. In 

concert, these two areas will generate large amounts of agriculturally specific change. The 

challenges of these two areas remain within CASA oversight, however if driven alongside 

consumer demand, are likely to change future capability for agriculturalists and operators in 

broadacre farming.  

 

TR 7. Sensor Maturity 

This requires the identification of sensors that have been used without incident (or with incident 

levels within acceptable range) for precision farming. Sensors are fully calibrated, and data 

access becomes operational from combined UAV and ground sensor systems using LoRa and 

LPWAN infrastructure.  The rapid development of the global IoT market is strongly associated 

with UAV development. For example, the development of LIDAR technology has widespread 

commercial applications – that stretch from broadacre farming to smart fridges. Sensor 

technology, once embedded into the market, are likely to drive innovation and change in 

broadacre farming UAV usage. It is, however, and area with a high cost of development, and 

will require the urban IoT sensor development to emerge in order for the agricultural sector to 

see and realised the applied benefits. 

 

 

TR 8. Software Maturity 

In this process there is the need to identify the software design / algorithm that has been used 

and tested for each specific purpose. This involves an acknowledgement that the algorithms 

perform to include all data (including past historical information and seasonally relevant 

records).  One of the challenges for the Broadacre farming sector is that the cost of analysis is 

seen as a solution that requires third party involvement. In this state, the development of the 

Agtech industry has a large skills shortage. The key challenge is to create new software that 

allows for high-level analysis that can be achieved without the need for software analysis that 

requires computer science expertise. The impact of new easy to use software can enable 

farming communities to engage in the analysis side of farming with considerably greater levels 

of confidence, which will drive technology acceptance, engagement, and expenditure.  

 

TR 9. UAV system Operational 

This process examines the UAV System design with different modified sensors and involves 

being thoroughly tested against requirement and operating scenarios. The operations are 

checked for extreme weather conditions including rain, wind, bushfire to ensure maximum 

operational inclusion across a range of environmentally challenging conditions.  A key attribute 
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that underpins the whole of farming approach to UAVs is the reliability and resilience features 

that have so far not matched the corresponding levels of robustness by traditional farming 

machinery.  This challenge is a factor holding back the operational levels of commitment. 

Technology readiness of a whole of farm UAV solution is clearly dependent upon the ability 

of drones to supply daily performance and to achieve the expectation of ongoing usage under 

rugged conditions in variable climate-driven weather environments. 

 

TR 10. Demonstrated Operations 

In this process there is a review of the studies demonstrating the usage of UAV that has been 

used without incident (or with incident levels within acceptable range) for precision farming. 

There is a further review process involving the testing for decay and signs of entropy based on 

a fully operational system deployment. There is a probability that many of the existing 

standards and regulations require review and re-imagination to meet the broadacre farming 

vision of the future. These issues include flight operation standards, operator rules, privacy 

rules, and security issues. The technology barriers of UAV implementation in broadacre 

farming relate to existing practices that need t change and become nimble in the face of global 

technology acceptance. The impact of these barriers could slow the maturity of the UAV 

industry. Many existing farm practices face considerable change from traditional precision 

farming methods. Whilst new UAV technology seems likely, the acceptance of probable tech 

innovation that is cost prohibitive will offset some of the impact of UAV development for 

broadacre farming using UAVs. 

 

 

5.4.2 Model Assessment Limitation and Precautionary items 

 

Based upon the 10point TRL outlined above a number of limitations and precautionary notes 

then require inclusion to act as standardised cautionary planning preparations: 

 

1. Batteries and flight time.  

The time in air of drones is largely dependent upon battery life. In some cases, this is in regard 

to low-flight crop and pasture review, and in other situations it is related to payload and overall 

weight and impediments. There is a need to identify what constitutes safe operating procedures 

and what restrictions on flight range generate additional requirements for batteries and spare 

parts in preparation for redundancy. 
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2. Drone flight Range  

The range of flight for some drones is a critical area of comparison. Larger fixed wing drones 

will complete flights without line of sight (BVLOS) and will complete the task in a fraction of 

the time for standardised multi rotor UAVs. 

 

3. Rule and Regulations 

The rules and regulations of drones are, at best, confusing and at the least, sufficiently different 

that they required a series of questions in order to answer any given question correctly. New 

requirements for BVLOS and alignment with both CASA nationally and local shire authorities.  

There is a level of entropy with past practices taking place on private land to the exclusion of 

other safety and guidance procedures from CASA and other authorities. 

 

4. Height  

Operational flying altitudes are established and agreed upon. The range of heights at which 

drones can fly demonstrates the widespread inconsistencies and fosters an ongoing challenge 

in terms of whether farmers operating drones are, in fact, sufficiently qualified and/or informed 

to use drone technology. Flight altitudes require strict adherence to ensure that post-flight data 

analysis compare data from on day in similarity to the same altitude on subsequent data 

collection days. 

 

5. LIDAR  

LIDAR sensors are regarded as one of the most significant areas of sensor enhancement that is 

currently included. Some corrections will evolve to allow for nuances on LIDAR deployment 

such as cloudy days, wind speed, camera optics. 

 

6. RGB camera 

Critical procedures for the cleaning of lenses, testing of gimbals and other fragile UAV 

elements. A dust free environment is required which is often insufficiently addressed in farm 

workshops and maintenance areas where farm machinery is included. 

 

7. Thermal camera – tested for specific heat-signatures for map clarity and optimisation 

ofThermal camera sensor data. 
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8. Wind speed  

Environmental factors such as wind have proven to be problematic for unmanned aerial 

vehicles (UAV). For instance, wind has been shown to affect UAVs in their ability to acquire 

high-resolution images by making the vehicle unstable while it is in the air, which can also 

sometimes lead to the drone crashing. When it comes to crop spraying, wind has also been 

shown to be a disadvantage, since the chemical might be carried away from the area that it is 

designed to target. Wind can also have an effect on livestock monitoring, as it causes the 

unmanned aerial vehicle (UAV) to adjust itself in response to wind interference, which can 

lead to a delay in either the processing of data or the detection of the target. 

 

9. Weather  

 

Cloudy conditions have an effect not only on the data quality obtained from a UAV but also 

on the drone signal strength. This may prove to be problematic, particularly in regions where 

fog is common or during the winter weather. Cloudy weather, with its reduced visibility, will 

also have an effect on the streaming of live data from a UAV when utilising the UAV for object 

identification or mapping, sunlight might also be problematic. 

 

10. Drones can't be used for all type of pest detection. 

 

 

Some crops cannot benefit from the use of drones. For instance, if there was a necessity to 

utilise an unmanned aerial vehicle (UAV) to detect slugs in strawberry planting, the process 

would endure a challenging time doing so because slugs are nocturnal organisms that rarely 

come out during the day. 

 

11. Complexity of machine learning.  

 

Many investigations have shown that the software or methodology utilised for mapping or 

object detection and avoidance (OBIA) was custom designed specifically for the researchers' 

projects. This might prove to be a significant obstacle for many farmers who may have little or 

no experience with computers. Ensure training and skillsets are matched to allow for access 

and interpretation of data (in real-time). 

 

12.  Additional Equipment  
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In order for a farmer to perform a precise analysis of the data obtained from a UAV, they will 

need to make additional investments in equipment such as a powerful computer, a screen 

designed specifically for professional image processing, internet access, storage hardware, and 

expensive agriculture software. 
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5.5 Entropy and Decay 

 

In this section the discussion draws on the areas of risk, maturity, and readiness to examine the 

level of impact and influence that is evident from the combined examples and areas that pertain 

to drone practices. This discussion deliberately examines the three areas of risk, maturity, and 

readiness through the lens of entropy so that these factors can be compared in a single 

framework, rather than as a loose collection of otherwise disparate elements.  If compared more 

openly, the issues that relate to costs are difficult to compare with issues about governance or 

technology acceptance. 

 

This study includes entropy because there is a specific need to examine transformational 

change in terms of the challenges to that change. This segment is interested in the areas of 

disorder, uncertainty, exclusion (of past systems and practices) and areas where practices have 

decayed or are showing signs of decay. 

 

By considering these different factors as part of an inquiry into the entropy of drone practices, 

it will provide farmers and drone practitioners with a clearer way to make conclusions that 

position the discussion firmly in the area of items that are uncertain or in disorder and will also 

show those factors that are more closely aligned with progress, productivity, and functional 

change. The evaluation principles using entropy and classifying areas of decay versus progress 

can be regarded with greater veracity because they directly connect with the key scientific 

questions that relate to information systems and the transmission of information and effective 

communication. 

 

The discussion of factors has three areas of validation that is supported by the evidence from 

the literature. This discussion looks at an evaluation in terms of: technology risk to broadacre 

farming; the maturity of accepted drone practices and accepted usage; and the technology 

readiness of each factor. This evaluation looks at the individual factors on an item-by-item 

basis, but also considers the items in combination as part of a holistic evaluation of the risk 

profile of drone farming as a varied practice, rather than a specific technology enterprise. 

 

The Risk Register in Appendix 7 also included a column entry for each identified risk in terms 

of a check on entropy and decay (see Appendix 7). A discussion of that assessment highlights 

the following areas of discussion. 
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Entropy and Decay assessment on UAVs in Broadacre Farming 

Key Issues Challenges Entropy / Decay problems Increasing or 

decreasing 
Weather Events Inability to fly safely in bad 

weather 

Increasing: Climate Change  

Cost on Fixed Wing Drones Cost Prohibitive – wear and 

tear 

Cost may exclude redundancy yet 

equipment is critical to the required 

transformational change 

 

Cost on Large Payload drones Cost Prohibitive – wear and 

tear 

Cost may exclude redundancy yet 

equipment is critical to the required 

transformational change 

 

Cost of Thermal Camera Cost Prohibitive – new changes 

every 6 months 

Can end up running older cameras if not 

updated every season 
 

Rules and Regulations Complexities emerging in line 

with maturity adaptations 

Expected reversion of private land - 

independent use of UAVs 
 

Bird Attack Birds of prey (Eagles and 

Hawks etc) see UAVs as a 

threat and recognise theme as a 

species of bird. 

Reversion to illegal practices destroying 

protective species of bird 
 

UAV Spraying Overspray of treatments to 

neighbouring properties 

Due to Climate change   

Multispectral camera and 

software 

Increased features and 

complexities 

Requires software updates as new 

algorithms will adapt to broader data. 
 

Camera Calibration Inaccurate data capture Size and weight of sensors keeps changing  

Farmer Engagement Willingness (or lack of) to 

adopt new technology 

Requires positive socialisation and 

distribution 
 

Planned Flight arrangements No standardised guidelines Requires community group and GGA 

alliance to exploit and grow strategy  
 

Lack of Software Lack of free open-source 

software – monopolies forming  

Increased allegiance with universities to 

publish new areas of R and D 
 

Machine Learning Skills Lack of skills Pressure on TAFEs and Universities to 

develop more grads with AI and Machine 

Learning. 

 

Table 5.3 Entropy and Decay assessment on UAVs in Broadacre Farming 

 

The issues raised in the above table (Table 5.3) are useful in understanding the separation 

between technology that works in a reliably stable manner for long periods of time, and the 

technology which requires a higher level of examination and maintenance in order to deal with 

issues of entropy and decay. These above identified areas demonstrate that there is a likelihood 

of entropic systems decay as the transformational change to include UAVs in broadacre 

farming takes its next steps. These entropy trends require ongoing assessment and vigilance to 

reduce their occurrence. Socialisation is key to many of these solutions because public and 

community support are critical factors for almost all of the major items on the assessment. 

Drone technology is more problematic in terms of the required integration into farm enterprises 

because it is reliant upon many supporting infrastructural considerations. Unlike mainstream 

farm machinery, drone technology is by comparison a far more fragile proposition. It is 

dependent upon support mechanisms that are physical, technical, and human-centred. 
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5.5 Summary of Discussion 

 

This chapter outlined the specific areas that represented challenges to broadacre farming. In 

several examples these changes were measured against other similar areas of consideration. 

The alignment against the four areas of risk, maturity, technology readiness and entropy 

provide a strong set of identifiable factors that can be acted upon to better prepare the industry 

for the transformational change that comes with the adoption of UAVs into the broader 

application in broadacre farming. The broad differences that are identified in these challenges 

demonstrate that the principal area of convergence is clearly reliant upon emergent technology 

and the need for sufficient maturity to allow seamless integrate with existing farm machinery 

practices. 
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6 CONCLUSION AND RECOMMENDATIONS 

 

This chapter summarises the key parts of the research carried out in this study. It answers the 

research questions and delivers specific concluding observations regarding the findings that are 

made in this study.  The chapter also makes a number of recommendations in regard to future 

work in the areas of Standards, Government Policies, and Best Practice.  This study concludes 

its research through the overarching finding that the adoption and broader inclusion of UAVs 

on broadacre farming represents a transformational change. 

 

This study aimed to identify factors of influence, limitations, areas of optimisation, and areas 

of standardisation. It specifically examined the use of drone technology as a means to improve 

the way data is collected, analysed and applied into broadacre farming. The advent of drone 

usage has brought a series of options in terms of how data can be collected.  This 

comprehensive set of adoptions means that agriculturalists in broadacre farming (especially 

early adopters of technology), are faced with multiple decisions and prospects. There are many 

different options considered in this study, and a general observation is that not all options are 

compatible with each other. What is required is a higher degree of standardisation and the 

development of best practice so that a uniform approach can allow for collectively enhanced 

agricultural benefits. 

 

The aim of this study might therefore draw its principal focus on the ability to assist those using 

drone technology to achieve some form of standardisation.  This study aimed to assist with 

standards of practice that allow for consistent comparisons across seasons, crops, and rotations. 

The changing nature of drone technology has made the task of standardisation become 

increasingly difficult and, instead of drawing the drone Agtech community together, has 

instead facilitated a fragmented set of engagements. The same divisions have prompted an 

accelerated decaying of traditional and consistent agricultural practices. This is especially 

important in precision agriculture where the reliability and quality of the precise measurement 

has always been the mainstay of the efforts to improve yields, efforts and productivity.   

 

6.1 Answering the Research Questions 

Based upon the findings of this research there are four specific areas of concern that relate to 

the research and which represent the key approaches needed to answer the research questions 

that form the key objectives of this study. 
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The Principal Research Question  

What are the important factors influencing the of UAV technology for broadacre farming? 

Key Findings 

Based upon the findings of this study there are four critical factors that influence drone 

practices in broadacre farming environments.  The first is the issue of Cost and Return on 

Investment (ROI). This study has found that although there is a low cost of entry to begin using 

drones, the more sophisticated technology adoptions require considerable cost and outlay to 

implement and to establish. Whilst UAV technology has bespoke pricing; the underestimated 

area of concern is clearly in the area of its supporting infrastructure.  

Broadacre farming is becoming increasingly more aligned with technology, however the 

implementation of drone technology for broadacre purposes requires large-scale upgrades in 

software, hardware, skills, training, computer and data literacy, networking, and technology 

acceptance. It requires a team of people rather than the work of an individual, however the 

benefits of broadacre farming at scale are so significant that despite the enormous financial 

commitment, the expected ROI is well within the limits of what might be expected to improve 

the profitability of a broadacre farm. 

 

The second factor of influence is in the uniform development of acceptable rules and 

regulations. UAVs have emerged from two uniquely driven areas. The first is the military 

sector and the second is the leisure and recreation sector. Both are immeasurably different from 

one or other, yet they have, collectively, driven change and advancement in a very short space 

of time. For agricultural use, drone technology has had an uneven footing, with popular 

recreational drones being trialled and tested throughout Australia in recent years. These have 

created the perception of a two-tier appreciation of the technology. At the first-tier level there 

are drone manufacturers that sell drones for under $1000. This has enabled a widespread 

adoption of “first time” drone enthusiasts. The second-tier level is characterised by 

sophisticated fixed wing drones, multirotor heavy payload drones with erudite camera options 

and high-speed methods of mapping and scanning large sized broadacre farms.  

To functionally service these tiers there is a need for a more uniform approach to regulations, 

as well as rules and engagements that are meaningful, authentic and represent an honest 

appraisal of drone usage behaviour in the agricultural sector.  Many farmers fly drones on the 

basis that they operate on private land and do not need to comply with regulations as long as 

they operate on private property in remote locations. In reality, there are many different 

approaches that require stronger codes of practice, as well as agreed approaches to key 
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challenges. Agricultural drones are often large instruments, designed and operated to fly at high 

speed for efficient mapping and to enable long travel distances. There are also unresolved 

issues regarding surveillance, security, privacy, and community agreement. Furthermore there 

are animal activists who criticise drone usage as a hazard to livestock, neighbouring property 

owners who decry the overlapping nature of aerial drone photogrammetry, and uncertain 

acceptance of the provisions for drone operation in regard to the challenge of Beyond Visual 

Line of Sight (BVLOS) rules and guidelines.  

 

The third factor of influence is the issue of training and skills. The development of UAV 

integration into broadacre farming requires an understanding of the various skillsets required. 

These skills go well beyond the singular operation of drones. This research finds that the 

broader set of requirements in terms of skills and training involve an understanding of 

computing, hardware, software, mapping, security, networks, and network systems. The full 

benefits of drone usage allow for LoRa Wide Area Networks (LoRaWANs) so that drones can 

interact with sensors on the ground.   An enormous portion of broadacre farming takes place 

outside of 3G and 4G mobile network coverage. The use of long range solutions such as 

LPWANs (usually LoRa networks) is critical to the optimisation of data gathering across a 

large–scale farming enterprise. Drone operations gather sizeable amounts of information and 

data which needs to be acquired, stored, and analysed. In some cases, the data is better stored 

in 3rd party cloud systems. In other cases, it is the farmer who must develop their own cloud 

storage system and must manage the integration of the security and privacy sharing of that data. 

Overall, there is a greater dependency on computer science-based skills that accompanies the 

integration of drone systems on broadacre farming enterprises.  

 

The fourth factor of influence is technology acceptance.  This finding describes the reluctance 

of the community as a whole to accept the benefits of drone usage over and above the concerns 

with privacy, security, animal welfare, and lawfulness.  It is clear from the literature that drone 

usage is a contested idea that does not have the complete support of the wider community. 

There is room therefore, for a greater level of socialisation in drone usage that allows for deeper 

inclusion. There is also no doubt that the criticisms raised about privacy and surveillance are 

genuinely concerning and must also be addressed. The knowledge that many farms follow 

drone practices that operate according to their own rules is perhaps unhelpful to the broader set 

of values. To more profoundly obtain a wide level of technology acceptance this research finds 
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that the adoption and adherence to codes of conduct, codes of practice, and uniform rules and 

regulations should be more actively pursued.  

 

Sub Question 1. What are the Ongoing limitations in the development of drone technology? 

 

This research study has highlighted eight key areas that limit the development of drone 

technology. This question was an important inclusion for this research, since it assisted in the 

deeper understanding of the limitations of drone practices in farming. The overarching 

limitation at the broadacre farming level is in financial outlay.  This is both an initial impost as 

well as an ongoing challenge because drone usage has ongoing developmental costs that 

continue to require upgrade and re-alignment with emerging precision farming practises. There 

are many cases where the size and scale of broadacre farming requires drone integration to 

such a high level that the inclusion of UAVs are considered to be cost prohibitive for medium 

to small scale farming enterprises. That is not to say that they hold no benefits at all. Smaller 

farming operations (sub-broadacre categories) should adopt a different approach, using smaller 

drones and accepting the benefits of more easily understood data such a RGB images and 

simple maps that give excellent information for farmers with lower technical applications due 

to lower size and scale of operation.  This type of differentiation is important because large 

scale broadacre farming carries a higher level of data and sensor-driven information. 

 

The second limitation was a specific challenge with LIDAR technology. This is a current 

challenge that can be demonstrated in terms of accuracy whereby LIDAR sensors can have 

difficulty in recognising specific features. They are less accurate in environments where there 

is dense vegetation or abundant undergrowth, and they have difficulty in recognising precise 

head count such that they cannot be relied upon to guarantee and to recognise an exact number 

of livestock in a given area or location. Nevertheless, LIDAR is a sensor with a potentially 

great future once the recognition-side of the technology becomes capable of providing 

definitive accuracy in patterns, livestock, and object recognition. 

 

A third limitation is in the area of thermal sensors. In this area many of the multispectral 

features demonstrate limitations in summer temperatures where key differentiators are difficult 

to obtain during day-time drone flight. Again, as with LIDAR technology, these limitations 

mat be resolved in the near future. Thermal sensors offer inexpensive tracking and movement 

capabilities because in colder weather conditions they represent extremely accurate options for 
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the movement and condition of both livestock and feral animals. They remain problematic 

during high summer temperatures where the thermal characteristics of livestock are 

indistinguishable against the heat of property and ground cover. 

 

A fourth area of limitation is the ‘lag’ between hardware and software. Recent developments 

in drone technology show remarkable potential for sensory knowledge at an extremely high 

level. At present, the general population does not have access to an equally sophisticated level 

of software development as it does with hardware. This limitation is in train and is predictably 

likely to catch up with the hardware demands in the near future.  

 

The fifth limitation that this research has found is in terms of battery innovation. Drones in 

general continue to be limited in terms of total flying time by their battery life. The recent 

innovations with smart batteries have narrowed the gap in terms of extended flying time, 

however drones remain limited in terms of their range away , and returning to, a set destination 

on the basis of limitations in battery technology. 

 

The sixth limitation that emerged from this research concerns weather events. There is 

statistical evidence that there is an increase in the number of adverse weather events, and drone 

technology has yet to become as fully robust as required to operate under these parameters. 

There is evidence of robust military machinery, however within the agricultural sector the 

choice of drone instruments still carries limitations for drone usage during extremes such as 

heavy wind, rain, and hail. Drones do not operate well in bush fire scenarios, and often compete 

for airspace with water bombers, helicopters, and emergency machinery. Drones have the 

potential for immense benefit during adverse weather events but are yet to find an appropriate 

agreed set of operating conditions to be of high-level assistance. They ae capable of providing 

critical real-time information without the need to place individual humans in physical danger. 

 

The seventh limitation is associated with specific rules for flying. Currently the extended 

operational purpose for broadacre drone usage needs the ability to fly beyond the visible line 

of sight of an operator. There is currently an emerging set of reforms addressing the issues for 

operating drone beyond the visual line of sight (BVLOS), however it remains unresolved, and 

once organized, it will provide certainty and release some of the entropic disorder to the way 

that drone operations are applied to broadacre farming enterprises. 
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The eighth limitation for drones is the absence of 3G and 4G mobile wireless internet coverage. 

In urban areas this technology allows for a very complex integration of services. In the remote 

and rural areas where the great majority of broadacre farming takes place, there is an absence 

of 3G and 4G mobile coverage. Over time this may be rectified however, based on current roll-

out information, the likely coverage requirements are not consistent with the major 

telecommunications companies and their commitment to more densely populated areas. Whilst 

many farms have 3G and 4G access at the farmstead, the wider coverage over a typical 

broadacre operation is absent. The commitment to 3G across Australia will be withdrawn by 

mid 2024, however the required infrastructure for 4G and 5G capability is still in need of 

substantial development in remote and rural parts of Australia. 

 

 

Sub Question 2. What are the important optimization features using UAVs? 

 

This research study identified two main areas in need of improved optimisation features. They 

are both connected in terms of object detection. Drones have demonstrated the ability (at low 

speed) to detect objects such as plants and trees in sufficient time to avoid a collision. Similarly, 

drone cameras have demonstrated the ability to recognise a range of objects such as feral 

animals predators such as foxes, and differing varieties of livestock. Whist the general ability 

of drone cameras to recognise shapes has reached near maturity, the specific ability to recognise 

and count objects remains unfulfilled. There is substantial ongoing research work in this area, 

and the impacts are likely to benefit a range of scientific endeavours including artificial 

intelligence, neural networks, and many additional research areas.  As previously described the 

work on LIDAR sensors is one of the areas that forms the basis for optimisation in drone usage. 

 

 

Sub questions 3.  What is the challenge for repeated locational drone footage in agriculture? 

 

This research study found that the rapid improvements in camera visibility have allowed drones 

to provide an extremely high-quality level of footage and imagery. This advance has allowed 

agriculturalists and precision agriculture experts to differentiate many features, finding pests, 

identifying diseases, and assisting with soil management. The benefits of such advances are 

clearly of great value. This level of rapid development however comes at a price in terms of 
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agricultural records and crop management. Since each new drone now comes with an improved 

set of optics, improved battery life, and improved aerial stability, there are a number of 

variations in the way in which information is gathered and analysed.  Early drone usage would 

typically operate at a height of 25 metres above ground level. Subsequent seasons and years 

have seen different altitude such as 30 metres, 50 metres, 60 metres, 100 metres and so on. In 

order to remain accurate for yearly and seasonal comparisons, the drone farming industry needs 

to strike a balance in terms of agreed values. It must standardise to an agreed operating height 

for the benefit of comparative images and the consistent quantification of farm records to 

enable high-level precision farming and best practice decision-making. Drone footage (to 

remain purely accurate) should ideally be collated whilst operating at the same height, taken at 

the same time of day, with the same velocity, and under as similar conditions as possible.  

The new challenge for what is rapidly becoming an enormous repository of done footage and 

UAV image management, is to retain imagery that is highly compatible with other footage. 

Whilst there are ways to adapt and re-order some footage, the most significant revision will be 

best serviced by an accepted set of accepted values for drone altitudes, camera angles and 

operating speeds. In that way, a consistent set of comparative values can be used to create a 

new generation of highly accurate plant and livestock data.  

 

6.2 Future Work 

 

This research has identified several important areas requiring further investigation and study. 

In the first instance, there is an urgent need to look at the way in which drone usage in broadacre 

farming aligns with the overall needs of the Australian UAV community. Clearly the future of 

UAVs and drones will extend well beyond existing current practices. It will reach into areas of 

data collection and mapping that are significantly more detailed than current systems and data 

collections. The way in which that data is acquired, stored and shared is a matter of urgency 

because it affects industry and business at the corporate level, and affects individuals and 

families at the personal level. The integration of shared agricultural data with information 

systems, stored data systems, and agricultural cooperatives underpins the successful future of 

the agricultural industry. 

 

6.3 Final Conclusion 
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With all of the changes and enhancements that are outlined in this thesis, there is a greater 

aspirational endeavour that should be encouraged.  The use of technology to improve 

productivity and efficiency is obvious in terms of its benefits. However, the single most 

powerful enhancement that can accompany the benefits of technologies such as drones, is the 

fulfilment of uniformly accepted digital trust. There is great opportunity for global 

improvement, whether at the micro level, or with the achievement of the 17 United Nations 

sustainable development goals. They are all dependent upon digital trust.     
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8 APPENDICES 

 

This section arranges a set of data and data sets and tables that provide key touchpoints for 

the comparison and understanding of key values. Many data items are inconsistent between 

different regions, governments and nation states. Each appendix should be read with a clear 

understanding of its origin, its intended audience, and its reliability. 

 

8.1 Appendix 1. 

UAV investigations reviewed: April - May 2021 

Event Date UAS 

Type 

Location  Record only occurrence Text 

    

20 Mar 2021 DJI Mavic Mini Stockport, 

Greater 

Manchester 

  

The UAS was being used to film a moving car. 

However, the UA collided with the side of the car and 

fell to the ground. It suffered substantial damage when it 

was then run over by the car. 

30 Mar 2021 Parrot Anafi 

USA 

Cassington, 

Oxfordshire 

The UA struck overhead telephone wires and fell to the 

ground. 

30 Mar 2021 Parrot Anafi Cassington, 

Oxfordshire 

During a night takeoff, the UAS collided with an unseen 

telephone wire approximately 20 m above ground level 

31 Mar 2021 DJI Unknown Trellech, 

Monmouthshire 

While taking photographs of a building, the UAS 

clipped the branch of a tree and fell to the ground. 

31 Mar 2021 DJI FPV Waskerley, 

County 

Durham 

The pilot was flying the UA over a hillside. He lost 

control of the UA and it fell to the ground. 

04 Apr 2021 DJI Phantom 4 

Pro 

Holywell, 

Flintshire 

The UA was flown to a height of 55 m for handling 

checks when power to the motors was lost. It descended 
rapidly colliding with the ground close to the take-off 

point. 

04 Apr 2021 DJI Inspire 2 Covent Garden, 

London 

The UAS was in a stable hover while the operator was 

looking at the screen. The UAS flew into a nearby 

building before falling to the ground. 

11 Apr 2021 Align T-Rex 

500x 

Little Stoke, 

Bristol 

The UA, a model helicopter, was being flown from a 

playing field. The operator hit the rescue button on the 

transmitter, the button jammed, and the UA did not 

respond. It disappeared into a housing estate and was 

not recovered. 

14 Apr 2021 DJI Matrice 300 Guildford, 

Surrey 

During night training operations, a warning appeared on 
the control unit that the UAS was not receiving data 

from the gimbal payload. The operator was bringing the 

UA in to land when, at a height of around 10 m, the 

payload dropped to the ground. 

14 Apr 2021 Sky Falcon P93 Salisbury Plain, 

Wiltshire 

The UA made an uncommanded climb while in a 

height-holding manoeuvre. The remote pilot shut down 
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the engine and attempted to recover the UA which 

resulted in a hard landing. 

15 Apr 2021 DJI Unknown Sawtry, 

Cambridgeshire 

The pilot, who was visual with the UA, misjudged its 

trajectory and it hit a tree despite the UA’s collision 

avoidance having been turned on. 

17 Apr 2021 FPV Inflight 

Protek certified 

HD 

Newquay, 

Cornwall 

The UAS was conducting commercial photography 

shoot some 15 m above the cliff top near Newquay 

when the control feed cut out and the pilot lost control. 

The UA struck the cliff top, rolled down the cliff into 

the sea and was not recoverable. 

21 Apr 2021 DJI Phantom 4 Swindon, 

Wiltshire 

Shortly after take-off, control of the UA was lost. It flew 

into a fence and sustained damage to three propellers. 

 

23 Apr 2021 

DJI Mavic 2 King’s Lynn,      

Norfolk 

The UAS was being used to for aerial photography. 

During manoeuvring the UA struck a tree and fell to the 

ground 

24 Apr 2021 Radio Controlled 

Glider 

Near 

Abingdon, 

Oxfordshire 

From a model flying club, the pilot was flying his model 

glider at 50 m above the ground towards him. It 
However, it flew past him, disappeared, and was not 

recovered. 

27 Apr 2021 DJI Mavic 2 Pro Gainsborough, 

Lincolnshire 

The propellers of the UAS struck the branches of the 

tree causing it to fall onto a parked car. 

02 May 2021 DJI Matrice 210 

V1 

Bury St 

Edmunds, 

Suffolk 

The operator started the rotors, and the UA took off to a 

height of about 5 m where the response checks were 

carried out. After the first check the UA turned but did 

not respond to control inputs and struck a tree. The UA 

sustained substantial structural damage. 

06 May 2021 DJI M300 RTK New Malden, 

Surrey 

 

The UAS was being operated in the hours of darkness in 

support of a police operation. Whilst manoeuvring to 

land it collided with some unseen telephone wires 

causing it to fall to the ground and collided with a 

parked car. All propeller blades, a propeller arm, leg, 

and camera mount were broken in the accident. 

19 May 2021 DJI Phantom 4 

Pro V2 

Brent Cross, 

London 

After surveying from a height of approximately 10 m, 
the pilot flew the drone to a height of 30 m when, 

without warning, it flipped over and fell to the ground. 

The UA came to rest on a rubble plie approximately 50 

m from any person. The pilot reported that, on 

inspection, it appeared the battery connector had melted. 
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8.2 Appendix 2. 

 

UAV incidents from around the World  
 

Event Date Location  Record only occurrence Text 
16 Feb 2023 US Border  

  
10,000 Cartel Drones Detected Crossing US Border Last Year 

4 Feb 2023  Dublin Airport  

  

Dublin Airport drones: Ryanair calls for Government action to 

prevent further disruption 

29 Jan 2023 Isfahan defense facility  Iran says drone attack targets defense facility in Isfahan 

27 Jan 2023 Las Cucharas prison in 
Ponce 

Drugs and phones by drone in prison 

29 Jan 2023 Dublin Airport Drone sighting causes flights to be suspended at Dublin Airport 

23 Jan 2023 Ukraine Ukraine's battlefields look like World War I but with a new and 
terrifying addition 

23 Jan 2023 Islamabad airport Authorities alerted after drone comes close to UN aircraft. 

23 Jan 2023 Canada  Canada issues report on 2021 police drone’s collision with a 
plane descending to land 

23 Jan 2023 Quebec Prison 
 

Drone intercepted at Quebec prison 

23 Jan 2023 St. Mary’s Stadium  

England  

Another English pro soccer match halted by a drone in the 

stadium 

22 Jan 2023 India – Pakistan Border  Punjab: Drone with 5 kg heroin shot down near India-Pakistan 
border, two held 

16 Jan 2023 River Thame England  A 28kg (62lb) drone crashed into a boat at the Henley Royal 
Regatta,  
narrowly missing its occupants, before sinking in the river 
Thames 

16 Jan 2023 Bournemouth England  A MAN has been fined by the courts for flying a drone at the 
beach in restricted airspace during the Bournemouth Air Festival 

 
15 Jan 2023 

Koko head trail (USA) Drone interferes with helicopter rescue at Koko Head Trail 

4 Jan 2023 South Carolina Prison 3 accused of using drone to smuggle contraband into South 
Carolina prison 

23 Dec 2022 Townsville Correctional 

Centre  
Queensland Australia  

Drone used in attempt to smuggle $250,000 worth of drugs into 

Townsville Correctional Centre 

20 Dec 2022  North Texas  North Texas criminals using drones to drop drugs onto prison 
grounds  

12 Dec 2022 Jasper National Park  
Canada  

Man fined $10,000 for flying drone near forest fire in Jasper 
National Park 
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12 Dec 2022 Gatwick Airport  Gatwick Airport's 'drone sightings' that closed runway for three 
days in Christmas 2018 

16 Nov 2022 Oman   Official says oil tanker hit by bomb-carrying drone off Oman 

30 Oct 2022 England  Up to six mystery drones spotted over UK nuclear plant in 
possible ‘malicious’ event 
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8.3 Appendix 3. 

 

Drone crashes in Australia 

 

Event Date Location  Record only occurrence Text 
15 Jan 2021 New South Wales  Loss of control and collision with terrain involving DJI Inspire 2 

remotely piloted aircraft Darling Harbour Sydney, New South 
Wales on 15 January 2021 

21 Nov 2022 Perth   Perth drone show: Remote controlled aircraft crash into Swan 
River during City of Light 

30 Sep 2022 Queensland   Wing delivery drone crashes into power lines in Australia 

23 Jun 2022 Sydney  Drone crash in Sydney hotel injures guest 

25 Jun 2014 Geraldton CASA plans legal action over drone crash in Geraldton 

19 Feb 2016 New South Wales CASA TO INVESTIGATE DRONE CRASH AT 
AUSTRALIAN WAR MEMORIAL 

28 Sep 2019 Wyndham Airport Western 

Australia 

In-flight break-up involving Airbus Zephyr unmanned aerial 

vehicle, near Wyndham Airport, Western Australia, on 28 
September 2019 
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8.4 Appendix 4  

 

Global Press Documentation of Drone Incidents 

 

All drone incidents documented by the press worldwide 

 

 

 

Map of global drone incidents by Dedrone Anti-Drone / cuas solution. (2023). Retrieved 

February 19, 2023, from https://www.dedrone.com/resources/incidents-

new/all?bd17d27c_page=1 

 

Date Location Industry Incident 
 
January 29, 2023 

 
Ishafan, Iran 

 
Government/Military 

 
Israel carried out a drone strike on an Iranian 
ammunition factory 
 

 
January 22, 2023 

 
Kakkar, India 

 
Government/Military 

 
Punjab: Drone with 5 kg heroin shot down 
near India-Pakistan border, two held 
 

 
January 21, 2023 

 
Southampton, 
United Kingdom 

 
Stadiums 

 
Southampton and Aston Villa players rushed 
off pitch as drone flies above St Mary's 
 

January 19, 2023 Kingston, ON, 
Canada 

Prisons Contraband seized at Bath Institution after 
suspected drone drop 
 

January 19, 2023 McAllen, TX, USA Government/Military Texas DPS encounter 'drone incursions,' 
recover make-shift ladders used to scale wall 
 

January 17, 2023 Kingston, ON, 
Canada 

Prisons Contraband seized at Joyceville Institution 
 

January 16, 2023 Rawalpindi, 
Pakistan 

Airports A drone came dangerously close to a UN 
plane at 3,400 feet near the runway of 
Islamabad airport 
 

January 16, 2023 Horden, United 

Kingdom 

Law Enforcement/First 

Responders 

Bungling County Durham cop crashes drone 

into house during major operation 
 

January 15, 2023 Tamil Nadu, India Private/Non-Coporate Man fined for filming private forest area of 
Anamalai Tiger Reserve using drone 
 

January 5, 2023 Gravenhurst, 
Ontario, Canada 

Prisons Man charged after drone with prohibited 
items crashes near Beaver Creek Institution 

 

January 1, 2023 Gurdaspur, India Government/Military Border Force Fires At Pak Drone, Pushes It 
Back Across Punjab Border 

January 1, 2023 Brasilia, Brazil Law Enforcement/First 
Responders 

Federal Police shot down four unauthorized 
drones that flew over the Esplanada dos 
Ministério during President Lula da Silva's 
inauguration ceremony 

 

December 27, 
2022 

Taiwan Entertainment/Media Drone crash on Netflix set causes ‘serious 
disfigurement’ to actor’s face 
 

December 26, 
2022 

Val-de-Reuil, 
France 

Prisons Suspicious drone flights over Val-de-Reuil 
prison 
 

 
December 25, 
2022 

 
Delhi, India 

 
Energy/Utilities 

 
Drone crashes on track, Delhi Metro halts for 
1 hour on Magenta Line 
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December 21, 
2022 

Daoke, India Government/Military BSF shoots down Pak drone, seizes 4.3 kg 
contraband in Amritsar 

 

December 17, 
2022 

Asheville, NC, USA Private/Non-Coporate It's not a joke or funny' Drone harassing 
children, staff & therapy horses at Eliada 
Home 

December 15, 
2022 

Jaffa, Israel Law Enforcement/First 
Responders 

An assassination was foiled: a drone with an 
explosive device, on the main street in Jaffa 

December 12, 
2022 

Kelantan, Malaysia Prisons Three arrested for attempting to smuggle 
tobacco items into Machang prison using 
drone 

December 11, 
2022 

Bennettsville, SC, 
USA 

Prisons Deputies: Drone delivering contraband to 
correctional facility; two arrested 

December 9, 
2022 

Auckland, New 
Zealand 

Private/Non-Coporate Drone spirals, crash-lands near popular 
Auckland bar after hitting bird 

December 4, 
2022 

Kingston, ON, 
Canada 

Prisons Contraband seized following suspected drone 
drop at Joyceville Institution 
 

December 4, 
2022 

Amritsar, India Government/Military BSF Shot down a drone with a payload of 2 
kg heroin near the international border in 
Amritsar 

 
December 4, 
2022 

 
Baltimore, MD, 
USA 

 
Airports 

 
FAA: Spirit Airlines crew found unusual 
drone flying beneath their plane at BWI 
airport 
 

December 4, 
2022 

Naha, Okinawa, 
Japan 

Airports Airport in Japan's Okinawa Pref. disrupted by 
possible drone sighting 

December 2, 
2022 

Warkworth, ON, 
Canada 

Prisons Another drone drop suspected after drugs, 
tobacco seized at Warkworth Institution 

November 28, 
2022 

Amritsar, India Government/Military Two Pakistani drones shot down by BSF, 
10kg of heroin recovered 

November 28, 
2022 

Delhi, ON, Canada Law Enforcement/First 
Responders 

Drone spotted hovering around people’s 
homes in Norfolk County 

November 26, 

2022 

Mexico Law Enforcement/First 

Responders 
 

A Cartel Used Armed Drones and a Plane to 

Bomb Police 

November 26, 
2022 

Jalisco, Mexico Law Enforcement/First 
Responders 
 

A Cartel Used Armed Drones and a Plane to 
Bomb Police 

November 24, 

2022 

Jammu and 

Kashmir, India 
 

Government/Military Drone Drops IEDs, Rs 5 Lakh Cash In J&K’s 

Samba 

November 24, 
2022 

Gold Coast, 
Queensland, 
Australia 

 
Stadiums 

Axl Rose Slams ‘Drone Pirates’ at Guns N’ 
Roses Shows 

November 24, 
2022 

Bavla, India Government/Military Three Arrested for Flying Drone During PM 
Modi’s Visit to Bavla, Gujarat 

 

November 23, 
2022 

Algeciras, Spain Prisons Drone smuggling contraband crashed before 
entering prison's 

November 16, 
2022 

Lahore, Pakistan Law Enforcement/First 
Responders 

Police were called to investigate a drone crash 
near the Orange Line automated rapid transit 
metro station 

November 12, 
2022 

 
Dallas, TX, USA 

 
Airports 

US B-17 Bomber & P-63 Kingcobra Collide 
Over Dallas Executive Airport Due to A 
Drone? 

November 3, 
2022 

Mission, BC, 
Canada 

Prisons A drone dropped a firearm at the medium-
security Mission prison, causing a lockdown 
 

November 3, 

2022 

Montreal, QC, 

Canada 

Airports When on final approach to Montreal Trudeau 

Airport, an airline pilot reported seeing a 
drone fly at 2,000 feet just 400 feet 
underneath his aircraft 
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November 3, 
2022 

Ferozepur, India Government/Military 3rd drone spotted near Pak border in 2 weeks 

November 2, 

2022 

Raska, Serbia Government/Military Serbian Army comes out with details after the 

downing of a drone in the Mt. Kopaonik 
region 

October 28, 2022 Ranbir Singh Pura, 
India 
 

Government/Military Drone-dropped Weapons Recovered Along IB 
in Jammu; 2 Arrested 

October 24, 2022 London, United 
Kingdom 

Airports EasyJet plane comes within '10 feet' of drone 
in 'close encounter' 

October 20, 2022 Sweden Government/Military Swedish Royal Armed forces dealing with 
incident involving drone activity over military 
facility 

October 14, 2022 Susort, Norway Energy/Utilities Norwegian police investigate drone sighting 
over the Kaarstoe gas plant 

October 4, 2022 Denmark Energy/Utilities For the second time in a week: Drones spotted 

near North Sea gas fields according to Danish 
Police 

October 4, 2022 Dera Baba Nanak, 
India 

Government/Military Drone hovered nearly 10 km inside Indian 
territory above Abbad village 

 
October 2, 2022 

 
Wuhan, China 

 
Private/Non-Coporate 

 
An investigation confirmed a woman's report 
of a drone invading her privacy and 

photographing her home 

October 1, 2022 Wildflecken, 
Germany 

Government/Military Suspicious drones seen over German military 
sites training Ukrainian soldiers 

September 30, 
2022 

Parkland, FL, USA Construction A drone used by a subcontractor to inspect a 
residential roof crashed 

September 30, 

2022 

Logan, Queensland, 

Australia 

 

Energy/Utilities 

Thousands of people were left without power 

for up to 3 hours after a food delivery drone 
crashed into powerlines 

September 29, 
2022 

Rio de Janeiro, 
Brazil 

 
Stadiums 

Botafogo vs. Goias pro soccer match was 
interrupted by an unauthorized drone flying 
over the stadium 

September 28, 
2022 

 
Denmark 

 
Energy/Utilities 

Mysterious Drone Activity Spotted at Danish 
Gas Field in North Sea – TotalEnergies 

September 28, 
2022 

Washington D.C, 
USA 

Government/Military White House Partially Evacuated After Drone 
Enters Restricted Area 

September 28, 
2022 

Palma de Mallorca, 
Spain 

Law Enforcement/First 
Responders 

Drone operators fined for use in Royal Family 
security zone 

September 25, 
2022 

 
Seattle, WA, USA 

 
Stadiums 

Falcons-Seahawks game momentarily delayed 
after unidentified drone flies over Lumen 

Field 

September 25, 
2022 

Seattle, WA, USA Stadiums Drone delays Seahawks-Falcons game in 4th 
quarte 

September 24, 
2022 

Seattle, WA, USA Stadiums A rogue drone over Husky Stadium caused a 
10–15-minute delay in the Washington 
Huskies vs Stanford Cardinals college 
football game 

September 24, 
2022 

Nasik, Maharashtra, 
India 

Law Enforcement/First 
Responders 

Residents were ordered to turn over all private 
drones after police spotted unauthorized 
drones flying near defense establishments 
 

 
September 23, 
2022 

 
Al Jahra 
Governorate, 

Kuwait 

 
Prisons 

 
Three drones attempting to drop contraband 
into the Sulaibiya Central Jail complex were 

discovered by security personnel 
 

September 23, 
2022 

Glasgow, United 
Kingdom 

Airports Flights to Glasgow Airport forced to divert 
after suspected drone sighting 

September 19, 
2022 

Amritsar, India Government/Military Pak drone airdropped pistol and drugs near 
Amritsar 

September 14, 
2022 

Montreal, QC, 
Canada 

Airports Police and security were dispatched to 
Montreal Airport to investigate a drone 
reported flying near a runway 
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September 13, 
2022 

Sawtooth National 
Forest, Idaho, USA 

Law Enforcement/First 
Responders 

Drone Flies ‘Extremely Close’ to Firefighting 
Helicopters in Idaho 

September 13, 

2022 

Oslo, Norway Airports Norway's airport owner Avinor reports 50 

drone incursions per month at Oslo airport 
alone, resulting in delays, costs, and traffic 
rerouting for passengers, airlines, and the 
airport 

September 9, 
2022 

Jasper, AB, Canada Law Enforcement/First 
Responders 

Illegal drones temporarily ground firefighting 
helicopter 

September 5, 

2022 

Bournemouth, UK Law Enforcement/First 

Responders 

Bournemouth police pocket seven drones in 

banned airshow space 

September 4, 
2022 

Zigong, China Construction Drone pilot got fined for flying close to the 
Zigong high-speed railway station 
 

September 2, 
2022 

Huntington Beach, 
CA, USA 

Private/Non-Corporate Drone hovers over house, peeps into 
daughter’s room, mother says 

September 2, 
2022 

Amedi, Iraq Government/Military An unidentified drone crashed onto the roof 
of a house in an apartment complex following 
several skirmishes between Turkish troops 
and Kurdistan Worker's Party troops 

September 1, 
2022 

Kinmen Islands, 
Taiwan 

Government/Military Taiwan Shot Down a Suspicious Drone 
Flying Over Its Islands Off China’s Coast 

August 31, 2022 Kuala Lumpur, 

Malaysia 

Law Enforcement/First 

Responders 

Law Enforcement shot down at least four 

drones during national day parade venue 
where numerous dignitaries, including Their 
Majesties the King and Queen, were gathered 
 

 
August 29, 2022 

 
Madrid, Spain 

 
Airports 

Five flights scheduled to land at Adolfo 
Suárez-Madrid Barajas airport were diverted 
and airport operations were disrupted for one 
hour due to the presence of unauthorized 

drones 

August 28, 2022 Montreal, QC, 
Canada 

Airports A Cessna pilot reported having to evade a 
drone near the La Fontaine tunnel 

August 27, 2022 Tel Aviv, Israel Airports United flight diverted from Tel Aviv landing 
after small drone enters its path 

August 27, 2022 St. John's, NL, 

Canada 

Airports At 3,200 feet, an Air Canada Airbus reported 

a drone at the same altitude, just off its left 
wing 

August 25, 2022 Brighton, Ontario, 
Canada 

Prisons Tobacco, marijuana, shatter, allegedly seized 
after suspected drone drop at Warkworth 
Institution 

August 24, 2022 Victoria, BC, 
Canada 

Law Enforcement/First 
Responders 

Drone operator risked steep fines for 
capturing billowing smoke and responders in 

action during a fire 

August 20, 2022 Pitt Meadows, BC, 
Canada 

Airports A Cessna pilot spotted a drone at 
approximately 2000 feet in restricted airspace 
4NM northeast of Pitt Meadows Airport 

August 16, 2022 Kimmen Islands, 
Taiwan 

Government/Military Troops Throw Rocks At Drone Over 
Taiwanese Island Close To Chinese Coast 

August 14, 2022 McRae-Helena, GA, 
USA 

Prisons Two people were arrested for using a drone to 
smuggle contraband into Telfair Prison 

August 13, 2022 Spokane, WA, USA Law Enforcement/First 
Responders 

A burglar used his own drone to attack a 
police drone in mid-air as it chased him 

August 12, 2022 Kolkata, India Law Enforcement/First 
Responders 

As India prepares to celebrate its 75th 
Independence Day, two people were arrested 
for flying drones over the Victoria Memorial 

August 4, 2022 Orlando, FL, USA Airports High flying drone comes within 8-feet of 
Delta flight landing at Orlando International 
Airport 

August 2, 2022 Jammu, India Government/Military BSF fires on suspected drone at International 
Border in Jammu 

July 30, 2022 Birmingham, UK Law Enforcement/First 

Responders 

Drone seized in Birmingham after being 

flown ‘dangerously’ over Commonwealth 
Games crowds 
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July 28, 2022 Manjh, India Government/Military Amritsar police arrested drug traffickers and 
seized five kg of heroin drone dropped into 
the country 

July 27, 2022 Ajnala, India Government/Military 5kg heroin dropped by drone seized near 
border in Ajnala 

July 27, 2022 Haikou, China Law Enforcement/First 
Responders 

Photographer operating a DJI Mini 2 without 
permission above the railway line was 
arrested and fined by the Haikou Railway 
Police 

July 26, 2022 Sagaing, Myanmar Government/Military Drones bomb junta troops stationed in 

Sagaing's Shwebo Township 

July 24, 2022 Al-Suqaylabiyah, 
Syria 

Law Enforcement/First 
Responders 

One Killed, Several Injured in Drone Attack 
on Syria Church Gathering 

July 21, 2022 Washington D.C, 
USA 

Airports DC’s Reagan National Airport briefly halts 
flights after drone reported in area 

July 18, 2022 Israel Government/Military A Hezbollah drone breached the Israeli border 

from Lebanon and was intercepted by the IDF 

July 16, 2022 Canada Prisons Multiple packages seized following suspected 
drone drops at Collins Bay Institution 

July 16, 2022 Bronx, NY, USA Stadiums Drone hovers above Yankee stadium during 
match against Boston Red Sox 

July 16, 2022 Unadilla, GA, USA Prisons Arrests made in attempt to smuggle 

contraband into Dooly State Prison 

July 14, 2022 Lawton, OK, USA Prisons 2 People Arrested in Connection with Drone 
Drug Smuggling Operation 

July 12, 2022 Saint-Jacques, 
Canada 

Airports Ambulance flight delayed 20 minutes because 
of drone at Edmundston Airport 

July 9, 2022 Dortmund, Germany Law Enforcement/First 
Responders 

Drones spy on private homes of Borussia 
Dortmund football stars 

July 6, 2022 Aberdeen, UK Airports Several sightings of drone flown illegally near 
city airport 

July 3, 2022 Stony Mountain, 
Canada 

 
Prisons 

B.C. men arrested after drone; meth 
intercepted at Manitoba prison 

July 2, 2022 Israel Energy/Utilities IDF shoots down 3 Hezbollah drones heading 
for Karish gas field 

July 2, 2022 Popasna, Ukraine Government/Military Ukrainian miniature drone destroyed a huge 
Russian ammunition depot with just one 
grenade 

July 1, 2022 
 

Spangdahlem, 
Germany 

Airports Drone was operated in no-fly zone near US 
airbase 

June 29, 2022 Rice, Minnesota, 
USA 

Law Enforcement/First 
Responders 

Minnesota sheriff's office locates operator of 
drone that approached kids, dropped candy 

June 27, 2022 Barcelona, Spain Law Enforcement/First 

Responders 

Mossos report man for flying a drone over 

Barcelona without permission 

June 27, 2022 Srikaranpur, India Government/Military Pakistan drone drops heroin in Srikaranpur 
subdivision of Ganganagar 

June 27, 2022 Benton County, 
MN, USA 

Law Enforcement/First 
Responders 

Minnesota officials are investigating after a 
drone drops a bag of candy near children 

June 25, 2022 Mallorca, Spain Law Enforcement/First 

Responders 

Drone over the "Ballermann": Pilot reported 

by police 

June 25, 2022 Glastonburry, UK Law Enforcement/First 
Responders 

Glastonbury: Police detect illegal drone flight 
over festival 

June 23, 2022 Sydney, Australia Hospitality/Real Estate Drone crash in Sydney hotel injures guest 

June 22, 2022 Rostov, Russia Energy/Utilities Russian refinery says it was struck by drones 
from direction of Ukraine 

June 20, 2022 Ettumanoor, India Law Enforcement/First 
Responders 

Man booked for flying drone over Ettumanur 
temple 

June 19, 2022 Amritsar, India Government/Military BSF troopers repulse Pak drone spotted in 
Amritsar 

June 19, 2022 North Wales, UK Private/Non-Corporate Caution advised after suspicious drone 
activity over farms in North Wales 



162 | P a g e  

 

June 13, 2022 Marinka, Ukraine Government/Military Mavic 3 drones were used to bomb the 
Ukrainian front line with makeshift grenade 
carriers under the drones in paper coffee cups 

June 11, 2022 Ritidian, Guam Government/Military Air Force security personnel confiscated a 
drone that entered military airspace near 
Ritidian Overlook 

June 10, 2022 Leicestershire, UK Law Enforcement/First 
Responders 

Airport disruption after drone sightings near 
Download Festival 

June 10, 2022 Kelowna, BC, 
Canada 

Airports A drone flew within one kilometre of 
Kelowna International Airport as aircraft took 

off below it 

June 9, 2022 Jammu, India Government/Military BSF troops shoot at Pak drone, force it back 

June 8, 2022 Erbil, Iraq Government/Military Explosive drone detonates in Iraq's northern 
city of Erbil 

June 8, 2022 Miami, FL, USA Prisons Inmates Attempted to Smuggle Contraband 
Using Drones, Correctional Officer Says 

June 7, 2022 Jammu, India Government/Military Police fire at drone in Kanachak border 

June 6, 2022 Pugachev, Russia Prisons Prison officers forcibly landed a contraband-
laden quadcopter that was spotted over the 
Federal Penitentiary Service for the Saratov 
Region 

June 6, 2022 Baghdad, Iraq Prisons Iraqi forces down drone over prison in 

Baghdad 

June 6, 2022 Ukraine Government/Military Ukraine drone drops grenade in Russian 
soldiers’ trench 

June 5, 2022 Kingston, Canada Prisons The Correctional Service of Canada has again 
seized several packages containing 
contraband dropped by drones at the Collins 
Bay jail 

June 5, 2022 Mallorca, Spain Law Enforcement/First 
Responders 

Drunk man hovered drone over Mallorca Bay: 
Pilot threatens beach guests 

June 4, 2022 Düsseldorf, 
Germany 

Airports Drone at Düsseldorf Airport: Airbus 380 must 
be rerouted to Cologne 

June 3, 2022 American Canyon, 
CA, USA 

Law Enforcement/First 
Responders 

California man arrested for dropping illegal 
fireworks from drone 

June 2, 2022 Douglas, Isle of 
Man, UK 

Law Enforcement/First 
Responders 

Police seized a drone within the restricted 
zone of the TT Course, a street and public 
rural road circuit used for motorcycle racing 

June 1, 2022 Whanganui, New 
Zealand 

Private/Non-Corporate Girl lucky not to be hurt after drone chased 
Riding for Disabled Whanganui horses 

May 29, 2022 Kathua, India Law Enforcement/First 
Responders 

Pak drone loaded with magnetic bombs; 
grenades shot down in J-K's Kathua 

May 29, 2022 Berea, OH, USA Law Enforcement/First 
Responders 

Man injured by falling drone at rib cook-off 

May 24, 2022 Parchin, Iran Government/Military Drone Targets Iran's Parchin Military Base 

May 23, 2022 Venice, Italy Law Enforcement/First 
Responders 

Drone crashes into Palazzo Ducale 

May 19, 2022 Preston, UK Law Enforcement/First 
Responders 

Rogue drones interfere with firefighters 
tackling Preston blaze 

May 17, 2022 Haifa, Israel Government/Military IDF says it downed Hezbollah drone that 
entered Israeli airspace amid major drill 

May 16, 2022 Nuremberg, 
Germany 

Airports Drone interfers passenger plane at Nuremberg 
airport 

May 15, 2022 London, UK Energy/Utilities Drones seized at UK nuclear bases after a 
‘swarm’ and reports of ‘red lights’ 

May 14, 2022 Cerro Pelado, Costa 
Rica 

Law Enforcement/First 
Responders 

Unauthorized Drone Down Firefighting 
Aircraft 

May 14, 2022 Nai Basti, India Government/Military J&K Police Recover Drone from Satwari; 
BSF Continues to Foil Pak's Attempt To Drop 
Drones 

May 14, 2022 Enugu, Nigeria Private/Non-Coporate Police Arrest Drone Operator Allegedly 
Filming, Spying on Church, Cleric’s House in 
Enugu 

May 14, 2022 Jordan Government/Military Jordanian army downs drone carrying drugs 
from Syria 
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May 14, 2022 Grünheide, 
Germany 

Airports Drone interferes approaching plane close to 
Berlin airport 

May 10, 2022 Liverpool, UK Prisons HMP Liverpool staff spot drone flying above 

prison as man arrested nearby 

May 9, 2022 Amritsar, India Government/Military BSF shoots down drone from Pakistan, 
recovers 10.6kg of heroin in Amritsar 

May 8, 2022 Quebec, Canada Prisons Police foiled an attempted drone delivery of 
drugs to the Quebec City detention Centre 

May 7, 2022 Jammu and 

Kashmir, India 

Government/Military BSF Fires at Pak Drone Near Jammu 

May 6, 2022 Berlin, Germany Airports Drone sighting causes delays at Berlin airport 

May 4, 2022 Glasgow, Scotland, 
UK 

Airports Flight to Dubai delayed due to drone in 
Inchinnan area 

May 4, 2022 Jammu and 
Kashmir, India 

Government/Military BSF troops open fire at Pakistani drone near 
IB in Jammu 

April 29, 2022 Dhanoe Kalan, India Government/Military BSF shoots down drone in Amritsar sector 

April 28, 2022 Rankin County, MS, 
USA 

Prisons Mississippi man pleads guilty after flying 
drone with weed, lighters, cell phone to prison 

April 28, 2022 Leeds, UK Airports Leeds Bradford Airport plane almost collides 
with drone 

April 26, 2022 Golan Heights, 

Syria 

Government/Military IDF drone crashes in Syria, army says no data 

leaked 

April 23, 2022 Rome, Italy Law Enforcement/First 
Responders 

Tourists crash drones into Italy landmarks in 
Rome and Pisa 

April 23, 2022 Dorangala, India Government/Military Pak drone sighted along Punjab border 165 
shots fired 

April 20, 2022 Boulder County, 

CO, USA 

Law Enforcement/First 

Responders 

Researchers Drone Crash Caused Fire in 

Colorado 

April 19, 2022 Marseille, France Law Enforcement/First 
Responders 

Drone pilot arrested for flying drone in 
restricted area where French President 
Macron spoke 

April 17, 2022 Tarn Taran, India Law Enforcement/First 
Responders 

Gang using drones for smuggling drugs from 
Pakistan busted in Tarn Taran; 3 held 

April 14, 2022 Minsk, Belarus Government/Military Drone Shot Down on Belarusian-Lithuanian 
Border 

April 14, 2022 Singapore Airports $51k fine for man who unlawfully operated 
drone, causing 2 RSAF aircraft to be rerouted 

April 13, 2022 Sydney, Australia Airports Warning after drones enter Sydney Airport 
airspace 

April 13, 2022 Chennai, India Law Enforcement/First 

Responders 

Marina police detained and warned two 

people for flying a drone over a lighthouse in 
a restricted area. 

April 12, 2022 Havelian Village, 
Pakistan 

Prisons BSF seizes 4-kg heroin dropped via drone in 
Tarn Taran 

April 8, 2022 Riga, Latvia Government/Military Latvia's National Armed Forces identified 
drones that had entered a restricted area of a 
military facility 

April 8, 2022 Poole, UK Law Enforcement/First 
Responders 

Police drone could have 'seriously injured' 
people in Poole 

April 4, 2022 Prince George, 
British-Columbia, 
Canada 

Private/Non-Corporate Prince George RCMP looking into low-flying 
drone incident 

April 2, 2022 Kumbia, Australia Law Enforcement/First 

Responders 

Drone Mystery in Kumbia 

March 31, 2022 Casablanca, 
Morocco 

Stadiums Drone interrupts training by the DR Congo-
team in the lead-up to the 2022 World Cup 
qualifying play-offs 

March 29, 2022 Chennai, India Law Enforcement/First 
Responders 

A man was arrested for flying a drone over 
high court 

March 28, 2022 Toronto, Ontario, 
Canada 

Airports Pilot spotted two drones at 3,000 feet 

March 27, 2022 Dublin, Ireland Airports All flight operations at Dublin Airport 
stopped for around 20 minutes due to a drone 
being flown in the area 
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March 25, 2022 Jeddah, Saudi 
Arabia 

Energy/Utilities Houthis rebels attacked oil depot and other 
facilities with rocket and drone strikes. 

February 15, 

2022 

Valetta, Malta Government/Military Drone Spied on Maltese Politicians Home 

February 12, 
2022 

Gobabis, Namibia Law Enforcement/First 
Responders 

Cops confiscate drone from journalist spying 
on private elephant farm 

February 10, 
2022 

Kingston, Canada Prisons A suspect has been arrested for trying to use a 
drone to drop 265 grams of cannabis, 
cellphones, and cellphone accessories into the 
Collins Bay Institution 

February 8, 2022 Amritsar, India Law Enforcement/First 
Responders 

Punjab: Drone drops bombs in Amritsar, flees 
to Pakistan after BSF opens fire 

February 8, 2022 Fremont, CA, USA Consumer Products Disrespectful and dangerous: Tesla employees 
are harassed by "fan drones" 

February 7, 2022 Bishopville, SC, 
USA 

Prisons 20+ People Have Been Arrested Due to 
Drone-Based Attacks 

February 7, 2022 Saskatoon, Canada Airports Unauthorized Drone Spotted Near Saskatoon 
Airport 

February 5, 2022 Berkeley, CA, USA Education Drones and Falcons Don’t Mix, Recent 
Incident at UC Berkeley Proves 

February 4, 2022 Fort Dix, NJ, USA Prisons Two Men Plead Guilty for Their Roles in a 
Drone Smuggling Operation at the Fort DIX 

Federal Correctional Facility (Incident 
Between November 2018 and March 2020) 

January 31, 2022 Saladin, Iraq Government/Military UAV Crashes Near Speicher Military Base in 
Saladin 

January 30, 2022 Brighton, United 
Kingdom 

Private/Non-Corporate Drone crashed into Brighton i360 - accident 
report 

January 29, 2022 Gaza Government/Military Israeli military forces shot down a Hamas 

drone 

January 29, 2022 Porto, Portugal Airports Drone forces flight diversion to Lisbon 

January 29, 2022 Marymount, 
Singapore 

Law Enforcement/First 
Responders 

Singapore branch of the China Railway First 
Group was fined $22,000 for flying a drone in 
public areas without a permit 

January 29, 2022 Shenyang, China Airports An Underage Teen Uploaded a Video of His 

Drone Flying into Shenyang Airport and 
Being Shot Down on the Runway 

January 29, 2022 Marib, Yemen Education Houthis fire explosive-laden drone at school 
in Yemen's Marib 

January 29, 2022 USA Prisons Inmate Coordinated a Drone Drop of 
Cannabis Oil and a Cellphone into the Prison 
Yard 

January 29, 2022 Mississauga, 
Ontario, Canada 

Airports A pilot reported a drone flying 200 feet above 
his aircraft as he landed at Toronto Pearson 
International Airport 

January 29, 2022 Vancouver, British 
Columbia, Canada 

Airports A helicopter pilot reported seeing a small red 
drone flying over Lonsdale Quay at a height 
of 1700 -1800 feet 

January 29, 2022 Amritsar, India Government/Military Drone sighted at Indo-Pak border 

January 26, 2022 Jabalpur, India Stadiums Two hurt as drone falls on them during R-Day 
event at Jabalpur stadium 

January 24, 2022 Amberg, Germany Law Enforcement/First 
Responders 

Drone confiscated during demonstration in 
Amberg 

January 22, 2022 Brentford, United 

Kingdom 

Stadiums Premier League game between Brentford, 

Wolves stopped due to unidentified drone 

January 17, 2022 Abu Dhabi, United 
Arab Emirates 

Energy/Utilities Drone attack in Abu Dhabi claimed by 
Yemen’s rebels kills 3 

January 15, 2022 Stockholm, Sweden Government/Military Sweden drones: Sightings reported over royal 
palace and airports 

January 15, 2022 Cincinnati, OH, 

USA 

Stadiums Illegal Drone Footage of the Cincinnati 

Bengals Game 

January 14, 2022 Forsmark, Sweden Energy/Utilities Swedish police hunt for drone seen flying 
over Forsmark nuclear plant 

January 14, 2022 Bermuda Prisons Drone Intercepted at Westgate, Man Arrested 
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January 10, 2022 Tigray, Ethiopia Government/Military Ethiopia: 19 people killed in latest drone 
strikes in Tigray 

January 10, 2022 Michoacan, Mexico Law Enforcement/First 

Responders 

Bomblet Dropping Drones Are Now Being 

Used by Cartels In Mexico’s Drug War 

January 5, 2022 Blue Line, Israel Government/Military Hezbollah drone downed by IDF mistakenly 
reveals operatives' pictures 

January 5, 2022 Victoria, Australia Energy/Utilities Two men electrocuted while retrieving drone 
stuck in power lines 

January 4, 2022 Arthur, Canada Private/Non-Coporate OPP: drone spotted near Arthur house at 1am 

January 3, 2022 Baghdad, Iraq Airports Coalition: 2 armed drones shot down at 
Baghdad airport 

January 3, 2022 Vannes, France Stadiums Drone interrupts Coupe de France match PSG 
vs. Vannes 

January 3, 2022 Coimbatore, India Law Enforcement/First 
Responders 

Drone over Kovai kilns: 11 booked 

January 3, 2022 New Delhi, India Government/Military A member of Sikhs for Justice is being 
investigated by India's National Investigation 
Agency for his involvement in the use of 
drones for cross-border smuggling 

December 31, 
2021 

Richland County, 
OH, USA 

Law Enforcement/First 
Responders 

A drone valued at $2,100 carrying marijuana, 
cell phones, and tobacco crashed into a house 

December 26, 

2021 

Stuttgart, Germany Prisons German state wants to protect prisons against 

drone threats 

December 26, 
2021 

Rajatal, India Government/Military Shots fired after drone spotted along border 

December 15, 
2021 

Normandy, France Law Enforcement/First 
Responders 

A trio suspected of using drones for burglaries 
arrested in Normandy 

 

December 1, 
2021 

 

Valledupar, 
Columbia 

 

Prisons 

 

Colombian prison guards use drones to fly 
contraband – and burgers – into their own jail 

November 23, 
2021 

Frankfurt, Germany Finance Drone accident - perergrine falcon killed on 
Commerzbank tower 

November 15, 
2021 

Quensferry, United 
Kingdom 

Law Enforcement/First 
Responders 

Queensferry Crossing: Van struck by low-
flying drone 

November 11, 
2021 

Glasgow, United 
Kingdom 

Law Enforcement/First 
Responders 

Police seized 27 drones flying illegally in 
Glasgow 

November 7, 
2021 

Baghdad, Iraq Government/Military Iraqi Prime Minister Survives Drone Attack 

November 7, 
2021 

Dietzenbach, 
Germany 

Private/Non-Coporate Drones in Dietzenbach: espionage among 
neighbors 

October 8, 2021 Newcastle, United 
Kingdom 

Stadiums Police and air traffic control intervene after 
drone spotted at Newcastle 

October 7, 2021 Tecate, CA, USA Government/Military A Tiny DJI Drone Smuggled Its Own Weight 
in Drugs Over the Us Border Wall 

October 1, 2021 France Law Enforcement/First 
Responders 

Criminals Use Drones to Drop 5 Litres of 
Flammable Liquit 

September 28, 

2021 

Pisa, Italy Private/Non-Coporate Drone crashes into Leaning Tower of Pisa 

September 22, 
2021 

Le Mont-Sain-
Michel, France 

Private/Non-Corporate Student got fined with 4,000€ for filming 
Mont-Saint-Michel 

September 18, 
2021 

Hanau, Germany Law Enforcement/First 
Responders 

Drone attack on vaccination opponents in 
Hanau 

September 13, 

2021 

Stansted, United 

Kingdom 

Airports Stansted Airport: Drone came within 6ft of 

Boeing 737, report says 

September 13, 
2021 

Lawrenceville, VA, 
USA 

Prisons Drug-carrying drone bound for prison lands 
outside Virginia school 

September 13, 
2021 

Guayaquil, Ecuador Prisons Drones drop explosives in Ecuador prison 
attack by suspected drug cartels 

September 12, 

2021 

Orange County, CA, 

USA 

Prisons Man arrested after drug-smuggling drone 

found at jail 

September 11, 
2021 

Donetsk, Ukraine Energy/Utilities Ukrainian drone strike leads to explosion with 
fire at oil depot in Donetsk 

September 8, 
2021 

Duisburg, Germany Hospitality/Real Estate Illegal drones during demolition 
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September 2, 
2021 

Herford, Germany Private/Non-Corporate Family feels harassed by unauthorized drone 

September 1, 

2021 

Chisinau, Republic 

of Moldova 

Stadiums Drone incursion during world championship 

qualifiers between Austria and Republic of 
Moldova 

August 15, 2021 Boston, MA, USA Airports Drone Reportedly Passes Below JetBlue 
Flight Landing at Logan Airport; FAA 
Investigating 

August 14, 2021 Peoria, IL, USA Stadiums It's a bird, it's a plane, it's a drone delay during 
a baseball game in Peoria 

August 10, 2021 Doksy, Czech 
Republic 

Law Enforcement/First 
Responders 

Police officer intercepts drone carrying drugs 
in Czech Republic 

August 7, 2021 Nîmes, France Prisons Nîmes: when prison inmates have saw blades 
and shisha delivered by drone 

August 2, 2021 Manhattan, NY, 
USA 

Law Enforcement/First 
Responders 

Drone Slams into Building in World Trade 
Center 

July 28, 2021 Lochwinnoch, 
United Kingdom 

Airports Police scrambled after drone comes within 
100ft of plane near Glasgow Airport 

July 20, 2021 Jammu and 
Kashmir, India 

Law Enforcement/First 
Responders 

Drone with 5kg Explosives Shot Down 7 km 
Inside Indian Border 

July 13, 2021 Lake County, FL, 
USA 

Law Enforcement/First 
Responders 

Man accused of shooting down Sheriff's 
Office drone 

July 11, 2021 Albringhausen, 
Germany 

Private/Non-Coporate Drone spies on private home 

 
July 2, 2021 

London, United 
Kingdom 

Law Enforcement/First 
Responders 

London helicopter ambulance reports near 
collision with drone 

June 26, 2021 Isernhagen, 
Germany 

Private/Non-Coporate Drone flies over residential area 

June 24, 2021 Bremen, Germany Private/Non-Coporate Drone spies on private homes 

June 21, 2021 Großburgwedel, 
Germany 

Law Enforcement/First 
Responders 

Drone spies on swimmers in private garden 

June 19, 2021 Munich, Germany Stadiums Police arrests drone pilot at Allianz Arena 

June 12, 2021 Bleiburg, Austria Private/Non-Coporate Farmer shoots down drone with shotgun 

June 10, 2021 Baghdad, Iraq Government/Military Airport in Iraqi capital comes under drone 
attack 

June 8, 2021 Sondershausen, 
Germany 

Private/Non-Coporate 18-year-old uses drone to spy on people near 
private pool 

June 6, 2021 Albaghdadi, Iraq Government/Military Drones shot down over Iraqi airbase housing 
US troops and coalition forces 

May 13, 2021 Huntington Beach, 

CA, USA 

Private/Non-Coporate Drone Crash in Nesting Ground Leaves 1,500 

Tern Eggs Parentless 

May 13, 2021 Helsinki, Finland Airports Drone Flew Close to Aircraft Wing at 
Helsinki Airport 

May 11, 2021 Hopfen am See, 
Germany 

Law Enforcement/First 
Responders 

Drone over the Hopfensee - ban in the 
landscape protection area 

May 8, 2021 Keula, Germany Private/Non-Coporate Unauthorized drone spotted in private area 

May 3, 2021 Waterval City, 
South Africa 

Airports Gauteng heliport grounded by drones that 
flew into flight path 

May 2, 2021 Wynnewood, OK, 
USA 

Entertainment/Media Is Carole Baskin spying on "Tiger King" star 
with a drone? 

May 2, 2021 Newmarket, United 
Kingdom 

Law Enforcement/First 
Responders 

Prosecuted drone pilot breached Civil 
Aviation Authority regulations 

April 29, 2021 Salzburg, Austria Law Enforcement/First 
Responders 

Snow removal on Großglocknerstrasse - high-
tech drones drop explosive devices 

April 29, 2021 Bremervörde, 
Germany 

Private/Non-Coporate Spy drone hovers over residential area 

April 27, 2021 Bad Orb, Germany Law Enforcement/First 
Responders 

Near miss with drone. Mother of two brakes 
in time 

April 27, 2021 Auckland, New 
Zealand 

Airports Drone spotted 30 metres from plane at 
Auckland Airport 

April 24, 2021 Baniyas, Syria Energy/Utilities Oil tanker off Syrian coast hit in suspected 
drone attack 

April 20, 2021 Fort Dix, NJ, USA Prisons NJ man used drones to smuggle cell phones, 
tobacco, other contraband into federal prison 
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April 20, 2021 Aguililla, Mexico Government/Military Mexico cartel used explosive drones to attack 
police 

April 20, 2021 England Stadiums Low-flying drone at Mansfield Town match 

sparks police warning 

April 17, 2021 Kaster, Germany Private/Non-Coporate Drone crashed in a van - police looks for 
whitnesses 

April 14, 2021 Erbil, Iraq Government/Military Drone Attacks Iraq Airport Housing U.S. 
Troops 

April 3, 2021 Waiblingen, 

Germany 

Law Enforcement/First 

Responders 

Citizens concerned: Mysterious UFO sighted 

over Baden-Württemberg 

April 1, 2021 New York, NY, 
USA 

Law Enforcement/First 
Responders 

Pennsylvania Man Arrested for Crashing 
Drone at World Trade Center Site 

March 31, 2021 Kincardine-on-
Forth, Scotland 

Law Enforcement/First 
Responders 

Police Scotland Given Criminals’ Drone After 
Case 

March 31, 2021 Mombasa, Kenya Airports Polish man charged over drone at DP Ruto's 
Karen residence 

March 31, 2021 Munich, Germany Stadiums Drone crash during Bayern training 

March 29, 2021 Rosenheim, 
Germany 

Law Enforcement/First 
Responders 

Trouble for drone pilots 

March 26, 2021 Bilbao, Spain Stadiums Spanish league responds to drone incident in 
Bilbao 

March 24, 2021 Duisburg, Germany Stadiums Drone over the stadium: final training with 23 
players 

March 23, 2021 San Clemente 
Island, CA, USA 

Government/Military Multiple Destroyers Were Swarmed By 
Mysterious 'Drones' Off California Over 
Numerous Nights 

March 23, 2021 Ruislip, United 
Kingdom 

Government/Military UK Diplomat’s Flight in Near Miss with 
Drone 

March 20, 2021 Bilbao, Spain Stadiums Football: Anti-Euro 2020 drone interrupts La 
Liga game 

March 20, 2021 Cologne, Germany Private/Non-Coporate Drones at the Cologne Cathedral 

March 19, 2021 Simi Valley, CA, 
USA 

Law Enforcement/First 
Responders 

Arrest After Drone Found with a Bag of 
Heroin 

March 15, 2021 Sarakhs, Iran Government/Military French drone tourist in Iran Benjamin Briere 
'facing spy charges' 

March 10, 2021 Manchester, United 
Kingdom 

Entertainment/Media Drone crashes onto balcony in Salford Quays 
apartment block 

March 9, 2021 Greensboro, NC, 
USA 

Airports Illegal drone activity diverts, hold flights at 
N.C. airport, FBI investigating 

March 5, 2021 Madrid, Spain Government/Military Drone flying over strategic buildings in 

Madrid intercepted by police 

March 4, 2021 Seymour, IN, USA Law Enforcement/First 
Responders 

Indiana police looking for the owner of a 
drone that flew into child’s window 

February 25, 
2021 

Altenmünster, 
Germany 

Private/Non-Coporate Drone flies over pasture in Altenmünster and 
startles horse: mare injured by electric fence 

February 24, 

2021 

Barcelona, Spain Stadiums Mossos stop drone flight over Camp-Nou in 

Barcelona 

February 20, 
2021 

Frankfurt, Germany Airports Illegal drone activity causes delays at 
Frankfurt airport. 

February 10, 
2021 

Abha, Saudi Arabia Airports Passenger plane is engulfed in flames at Saudi 
international airport after 'drone attack' 
claimed by Yemen's Houthi rebels 

February 9, 2021 Qayyarah Air Base, 
Iraq 

Government/Military Drones are biggest tactical concern since the 
rise of IEDs in Iraq, CENTCOM boss says 

February 7, 2021 Tampa, FL, USA Stadiums Florida Man Charged for Flying Drone Near 
Super Bowl 

January 23, 2021 Santo Domingo, 
Chile 

Airports Chilean navy helicopter collides with DJI 
Mavic Air 2 drone 

January 20, 2021 Frankfurt, Germany Airports Drones cause a lot of trouble even with less 
air traffic 

January 18, 2021 Hamburg, Germany Airports 10 Malicious Drones Were Spotted in 
Hamburg 

January 14, 2021 Oskarshamn, 
Sweden 

Energy/Utilities Swedish Security Service investigates drones 
at three nuclear plants 

January 14, 2022 Bermuda Prisons Drone Intercepted at Westgate, Man Arrested 
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January 10, 2022 Tigray, Ethiopia Government/Military Ethiopia: 19 people killed in latest drone 
strikes in Tigray 

January 10, 2022 Michoacan, Mexico Law Enforcement/First 

Responders 

Bomblet Dropping Drones Are Now Being 

Used by Cartels In Mexico’s Drug War 

January 5, 2022 Blue Line, Israel Government/Military Hezbollah drone downed by IDF mistakenly 
reveals operatives' pictures 

January 5, 2022 Victoria, Australia Energy/Utilities Two men electrocuted while retrieving drone 
stuck in power lines 

January 4, 2022  Arthur, Canada Private/Non-Coporate OPP: drone spotted near Arthur house at 1am 

January 3, 2022 Baghdad, Iraq Airports Coalition: 2 armed drones shot down at 
Baghdad airport 

January 3, 2022 Vannes, France Stadiums Drone interrupts Coupe de France match PSG 
vs. Vannes 

January 3, 2022 Coimbatore, India Law Enforcement/First 
Responders 

Drone over Kovai kilns: 11 booked 

January 3, 2022 New Delhi, India Government/Military A member of Sikhs for Justice is being 
investigated by India's National Investigation 
Agency for his involvement in the use of 
drones for cross-border smuggling 

December 31, 
2021 

Richland County, 
OH, USA 

Law Enforcement/First 
Responders 

A drone valued at $2,100 carrying marijuana, 
cell phones, and tobacco crashed into a house 

December 26, 

2021 

Stuttgart, Germany Prisons German state wants to protect prisons against 

drone threats 

December 26, 
2021 

Rajatal, India Government/Military Shots fired after drone spotted along border 

December 15, 
2021 

Normandy, France Law Enforcement/First 
Responders 

A trio suspected of using drones for burglaries 
arrested in Normandy 

December 1, 

2021 

Valledupar, 

Columbia 

Prisons Colombian prison guards use drones to fly 

contraband – and burgers – into their own jail 

November 23, 
2021 

Frankfurt, Germany Finance Drone accident - peregrine falcon killed on 
Commerzbank tower 

November 15, 
2021 

Quensferry, United 
Kingdom 

Law Enforcement/First 
Responders 

Queensferry Crossing: Van struck by low-
flying drone 

November 11, 

2021 

Glasgow, United 

Kingdom 

Law Enforcement/First 

Responders 

Police seized 27 drones flying illegally in 

Glasgow 

November 7, 
2021 

Baghdad, Iraq Government/Military Iraqi Prime Minister Survives Drone Attack 

November 7, 
2021 

Dietzenbach, 
Germany 

Private/Non-Corporate Drones in Dietzenbach: espionage among 
neighbors 

October 8, 2021 Newcastle, United 

Kingdom 

Stadiums Police and air traffic control intervene after 

drone spotted at Newcastle 

October 7, 2021 Tecate, CA, USA Government/Military A Tiny DJI Drone Smuggled Its Own Weight 
in Drugs Over the Us Border Wall 

September 28, 
2021 

Pisa, Italy Private/Non-Corporate Drone crashes into Leaning Tower of Pisa 

September 22, 
2021 

Le Mont-Sain-
Michel, France 

Private/Non-Corporate Student got fined with 4,000€ for filming 
Mont-Saint-Michel 

September 18, 
2021 

Hanau, Germany Law Enforcement/First 
Responders 

Drone attack on vaccination opponents in 
Hanau 

September 13, 
2021 

Stansted, United 
Kingdom 

Airports Stansted Airport: Drone came within 6ft of 
Boeing 737, report says 

September 13, 
2021 

Lawrenceville, VA, 
USA 

Prisons Drug-carrying drone bound for prison lands 
outside Virginia school 

September 13, 
2021 

Guayaquil, Ecuador Prisons Drones drop explosives in Ecuador prison 
attack by suspected drug cartels 

September 12, 
2021 

Orange County, CA, 
USA 

Prisons Man arrested after drug-smuggling drone 
found at jail 

September 11, 
2021 

Donetsk, Ukraine Energy/Utilities Ukrainian drone strike leads to explosion with 
fire at oil depot in Donetsk 

September 8, 
2021 

Duisburg, Germany Hospitality/Real Estate Illegal drones during demolition 

September 2, 
2021 

Herford, Germany Private/Non-Corporate Family feels harassed by unauthorized drone 
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September 1, 
2021 

Chisinau, Republic 
of Moldova 

Stadiums Drone incursion during world championship 
qualifiers between Austria and Republic of 
Moldova 

August 15, 2021 Boston, MA, USA Airports Drone Reportedly Passes Below JetBlue 
Flight Landing at Logan Airport; FAA 
Investigating 

August 14, 2021 Peoria, IL, USA Stadiums It's a bird, it's a plane, it's a drone delay during 
a baseball game in Peoria 

August 10, 2021 Doksy, Czech 
Republic 

Law Enforcement/First 
Responders 

Police officer intercepts drone carrying drugs 
in Czech Republic 

August 7, 2021 Nîmes, France Prisons Nîmes: when prison inmates have saw blades 
and shisha delivered by drone 

August 2, 2021 Manhattan, NY, 
USA 

Law Enforcement/First 
Responders 

Drone Slams into Building in World Trade 
Center 

July 28, 2021 Lochwinnoch, 
United Kingdom 

Airports Police scrambled after drone comes within 
100ft of plane near Glasgow Airport 

July 20, 2021 Jammu and 
Kashmir, India 

Law Enforcement/First 
Responders 

Drone with 5kg Explosives Shot Down 7 km 
Inside Indian Border 

July 13, 2021 Lake County, FL, 
USA 

Law Enforcement/First 
Responders 

Man accused of shooting down Sheriff's 
Office drone 

July 11, 2021 Albringhausen, 
Germany 

Private/Non-Corporate Drone spies on private home 

July 11, 2021 Becker Lake, 
Canada 

Law Enforcement/First 
Responders 

Drone spotted flying near out-of-control 
Vernon wildfire 

July 2, 2021 London, United 
Kingdom 

Law Enforcement/First 
Responders 

London helicopter ambulance reports near 
collision with drone 

June 26, 2021 Isernhagen, 
Germany 

Private/Non-Corporate Drone flies over residential area 

June 24, 2021 Bremen, Germany Private/Non-Corporate Drone spies on private homes 

June 21, 2021 Großburgwedel, 
Germany 

Law Enforcement/First 
Responders 

Drone spies on swimmers in private garden 

June 19, 2021 Munich, Germany Stadiums Police arrests drone pilot at Allianz Arena 

June 12, 2021 Bleiburg, Austria Private/Non-Corporate Farmer shoots down drone with shotgun 

June 10, 2021 Baghdad, Iraq Government/Military Airport in Iraqi capital comes under drone 
attack 

June 8, 2021 Sondershausen, 
Germany 

Private/Non-Corporate 18-year-old uses drone to spy on people near 
private pool 

June 6, 2021 Albaghdadi, Iraq Government/Military Drones shot down over Iraqi airbase housing 
US troops and coalition forces 

May 13, 2021 Huntington Beach, 

CA, USA 

Private/Non-Corporate Drone Crash in Nesting Ground Leaves 1,500 

Tern Eggs Parentless 

May 13, 2021 Helsinki, Finland Airports Drone Flew Close to Aircraft Wing at 
Helsinki Airport 

May 11, 2021 Hopfen am See, 
Germany 

Law Enforcement/First 
Responders 

Drone over the Hopfensee - ban in the 
landscape protection area 

May 8, 2021 Keula, Germany Private/Non-Corporate Unauthorized drone spotted in private area 

May 3, 2021 Waterval City, 
South Africa 

Airports Gauteng heliport grounded by drones that 
flew into flight path 

May 2, 2021 Wynnewood, OK, 
USA 

Entertainment/Media Is Carole Baskin spying on "Tiger King" star 
with a drone? 

May 2, 2021 Newmarket, United 
Kingdom 

Law Enforcement/First 
Responders 

Prosecuted drone pilot breached Civil 
Aviation Authority regulations 

April 29, 2021 Salzburg, Austria Law Enforcement/First 
Responders 

Snow removal on Großglocknerstrasse - high-
tech drones drop explosive devices 

April 29, 2021 Bremervörde, 
Germany 

Private/Non-Corporate Spy drone hovers over residential area 

April 27, 2021 Bad Orb, Germany Law Enforcement/First 
Responders 

Near miss with drone. Mother of two brakes 
in time 

April 27, 2021 Auckland, New 
Zealand 

Airports Drone spotted 30 metres from plane at 
Auckland Airport 

April 24, 2021 Baniyas, Syria Energy/Utilities Oil tanker off Syrian coast hit in suspected 
drone attack 

April 20, 2021 Fort Dix, NJ, USA Prisons NJ man used drones to smuggle cell phones, 
tobacco, other contraband into federal prison 
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April 20, 2021 Aguililla, Mexico Government/Military Mexico cartel used explosive drones to attack 
police 

April 17, 2021 Kaster, Germany Private/Non-Coporate Drone crashed in a van - police looks for 

whitnesses 

April 14, 2021 Erbil, Iraq Government/Military Drone Attacks Iraq Airport Housing U.S. 
Troops 

April 3, 2021 Waiblingen, 
Germany 

Law Enforcement/First 
Responders 

Citizens concerned: Mysterious UFO sighted 
over Baden-Württemberg 

April 1, 2021 New York, NY, 

USA 

Law Enforcement/First 

Responders 

Pennsylvania Man Arrested for Crashing 

Drone at World Trade Center Site 

March 31, 2021 Kincardine-on-
Forth, Scotland 

Law Enforcement/First 
Responders 

Police Scotland Given Criminals’ Drone After 
Case 

March 31, 2021 Mombasa, Kenya Airports Polish man charged over drone at DP Ruto's 
Karen residence 

March 31, 2021 Munich, Germany Stadiums Drone crash during Bayern training 

March 29, 2021 Rosenheim, 
Germany 

Law Enforcement/First 
Responders 

Trouble for drone pilots 

March 26, 2021 Bilbao, Spain Stadiums Spanish league responds to drone incident in 
Bilbao 

March 24, 2021 Duisburg, Germany Stadiums Drone over the stadium: final training with 23 
players 

March 23, 2021 San Clemente 
Island, CA, USA 

Government/Military Multiple Destroyers Were Swarmed By 
Mysterious 'Drones' Off California Over 
Numerous Nights 

March 23, 2021 Ruislip, United 
Kingdom 

Government/Military UK Diplomat’s Flight in Near Miss with 
Drone 

March 20, 2021 Bilbao, Spain Stadiums Football: Anti-Euro 2020 drone interrupts La 
Liga game 

March 20, 2021 Cologne, Germany Private/Non-Corporate Drones at the Cologne Cathedral 

March 19, 2021 Simi Valley, CA, 
USA 

Law Enforcement/First 
Responders 

Arrest After Drone Found with a Bag of 
Heroin 

March 15, 2021 Sarakhs, Iran Government/Military French drone tourist in Iran Benjamin Briere 
'facing spy charges' 

March 10, 2021 Manchester, United 
Kingdom 

Entertainment/Media Drone crashes onto balcony in Salford Quays 
apartment block 

March 9, 2021 Greensboro, NC, 
USA 

Airports Illegal drone activity diverts, hold flights at 
N.C. airport, FBI investigating 

March 5, 2021 Madrid, Spain Government/Military Drone flying over strategic buildings in 
Madrid intercepted by police 

March 4, 2021 Seymour, IN, USA Law Enforcement/First 

Responders 

Indiana police looking for the owner of a 

drone that flew into child’s window 

February 25, 
2021 

Altenmünster, 
Germany 

Private/Non-Corporate Drone flies over pasture in Altenmünster and 
startles horse: mare injured by electric fence 

February 24, 
2021 

Barcelona, Spain Stadiums Mossos stop drone flight over Camp-Nou in 
Barcelona 

February 20, 

2021 

Frankfurt, Germany Airports Illegal drone activity causes delays at 

Frankfurt airport. 

February 10, 
2021 

Abha, Saudi Arabia Airports Passenger plane is engulfed in flames at Saudi 
international airport after 'drone attack' 
claimed by Yemen's Houthi rebels 

February 9, 2021 Qayyarah Air Base, 
Iraq 

Government/Military Drones are biggest tactical concern since the 
rise of IEDs in Iraq, CENTCOM boss says 

February 7, 2021 Tampa, FL, USA Stadiums Florida Man Charged for Flying Drone Near 
Super Bowl 

January 23, 2021 Santo Domingo, 
Chile 

Airports Chilean navy helicopter collides with DJI 
Mavic Air 2 drone 

January 20, 2021 Frankfurt, Germany Airports Drones cause a lot of trouble even with less 
air traffic 

January 18, 2021 Hamburg, Germany Airports 10 Malicious Drones Were Spotted in 
Hamburg 

January 14, 2021 Oskarshamn, 
Sweden 

Energy/Utilities Swedish Security Service investigates drones 
at three nuclear plants 

January 8, 2021 Portlaoise, Ireland Prisons Man arrested for flying drone carrying mobile 
phones and drugs near maximum security 
prison in Laois 
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8.5 Appendix 5 

 

Drone Specifications adapted from DJI. 

 

Drone Specifications adapted from DJI. 

 

2019 

 

 

 

 

P4 Multispectral 

 

 
Figure 6: P4 Multispectral (P4 multispectral, DJI store, 2023) 

 

Cost (AUD) $9,300 (DJI store, August 24, 2023) 

Aircraft 

Take-off weight Max Ascent 

Speed 
Max Descent Speed Max Horizontal Speed  Max Take-off 

Altitude  
1487 g 6 m/s 3 m/s 31 mph /36 mph 6000 m 

Max Flight Time Max Wind 

Speed 

Resistance 

Global Navigation Satellite System Max Flight 

Distance 

 
27 minutes 

 
31 mph (50 kph) 

(P-mode); 36 

mph (58 kph) (A-

mode) 

 
GPS + BeiDou + Galileo 

2.4 GHz: < 20 
dBm (CE / MIC 

/ KCC) 
5.8 GHz: < 26 
dBm (FCC / 

SRRC / NCC) 

Camera 

Image Sensor Max Image Size RGB Sensor ISO Range Photo 

Format 
 

Six 1/2.9” CMOS, including one 
RGB sensor for visible light imaging 

and five monochrome sensors for 
multispectral imaging. 

Each Sensor: Effective pixels 2.08 
MP (2.12 MP in total) 

 

 
 1600×1300 

(4:3.25) 

 

 

200 - 800 

 
JPEG (visible 

light imaging) + 
TIFF 

(multispectral 
imaging) 

Mapping Functions 

Ground Sample Distance (GSD) Rate of Data Collection 

 
(H/18.9) cm/pixel, H indicates the aircraft altitude relative to the 

area mapped (unit: m) 

Max operating area of approx. 0.63 km2 for a single flight 
at an altitude of 180 m, i.e., GSD is approx. 9.52 

cm/pixel, with a forward overlap rate of 80% and a side 
overlap ratio of 60%, during a flight that drains the 

battery from 100% to 30%. 

 

  



172 | P a g e  

 

 

 

 

2020 

 

 

 

 

    DJI Mini 2 

  
Figure 6: DJI Mini 2 (DJI Mini 2, DJI store, 2023) 

Cost (AUD) $749 (DJI store, August 24, 2023) 

Aircraft 

Takeoff weight Max Ascent 

Speed 
Max Descent Speed Max Horizontal Speed  Max Takeoff Altitude  

242 g  5 m/s 3.5 m/s 16 m/s 4000 m 

Max Flight 

Time 

Max Wind Speed Resistance Global Navigation Satellite System Max Flight Distance 

31 minutes 10.7 m/s GPS + GLONASS + Galileo 16 km 

Camera 

Image Sensor Max Image Size Video Resolution Photo Format 

 
1/2.3-inch CMOS, 
Effective Pixels: 
12 MP 

 
4:3: 4000×3000 
16:9: 4000×2250 

 
4K: 3840×2160@24/25/30 fps 

 
JPEG/DNG (RAW) 

Sensing  

Sensing Type Max Transmission Distance (free of interference) 

Downward vision system 10 km 

 

 

 

2021 

 

 

 

 

    DJI Mini SE 

  
Figure 5: DJI Mini SE (DJI Mini SE, DJI store, 2023) 

Cost (AUD) $459 (DJI store, August 24, 2023) 

Aircraft 
Takeoff weight Max Ascent Speed Max Descent Speed Max Horizontal 

Speed  

Max Takeoff 

Altitude  

242 g 4 m/s 3 m/s 13 m/s 3000 m 
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Max Flight 

Time 

Max Wind Speed Resistance Global Navigation Satellite System Max Flight Distance  

30 minutes 10.7 m/s  GPS + GLONASS 11KM 

                                                                       Camera 

Image Sensor Max Image Size Video Resolution Photo Format  

1/2.3-inch 
CMOS, Effective 

Pixels: 12 MP 

4:3: 4000×3000 
 

16:9: 4000×2250 

2.7K: 2720×1530@24/25/30 fps 
 

FHD: 1920×1080@24/25/30/48/50/60 
fps 

 
 

            JPEG 

Sensing 

 

Sensing Type Max Transmission Distance (free of 

interference) 

Downward vision system 4 KM 

 

 

 

2021 

 

 

 

 

DJI Mini 3 

pro 

 
 

Figure 6: DJI Mini 3 pro (DJI Mini 3 pro, DJI store, 2023) 

Cost 

(AUD) 

$1,119  (DJI store, August 24, 2023) 

Aircraft 

Takeoff weight Max Ascent 

Speed 
Max Descent Speed Max Horizontal Speed  Max Takeoff Altitude  

249 g  

With intelligent 

battery weight 
about 290 g 

5 m/s 5 m/s 16 m/s 4000 m 

Max Flight 

Time 

Max Wind Speed Resistance Global Navigation Satellite System Max Flight 

Distance 
34 minutes 

(with Intelligent 
Flight Battery) 

 
47 minutes 

(with Intelligent 
Flight Battery 

Plus) 

 

 
 

10.7 m/s 

 

 
 

GPS + Galileo + BeiDou 

18 km (w Intel Flight 

Battery and measured 
while flying at 43.2 

kph in windless 
conditions) 

25 km (with Intelligent 
Flight Battery Plus* 
and measured while 
flying at 43.2 kph in 

windless conditions) 

Camera 

Image Sensor Max Image Size Video Resolution Photo Format 
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1/1.3-inch 
CMOS, 

Effective 

Pixels: 48 MP 

4:3: 
8064×6048 (48 MP) 
4032×3024 (12 MP) 

 

16:9: 
4032×2268 (12 MP) 

 
4K: 3840×2160@24/25/30/48/50/60 fps 

 
 
 

JPEG/DNG (RAW) 

Sensing  

Sensing Type Max Transmission Distance (free of 

interference) 

Forward, backward, and downward vision 

system 

12 km 

2022 

 

 

 

 

DJI Mavic 3 
 

Figure 6: DJI Mavic 3 (DJI Mavic 3 - DJI store, 2023) 

Cost (AUD) $2,899 (DJI store, August 24, 2023) 

Aircraft 

Takeoff weight Max Ascent 

Speed 
Max Descent Speed Max Horizontal Speed  Max Takeoff Altitude  

895 g 8 m/s 6 m/s 21 m/s 6000 m 

Max Flight Time Max Wind Speed 

Resistance 

Global Navigation Satellite System Max Flight Distance 

 

46 minutes 

 

12 m/s 

 

GPS + Galileo + BeiDou 

 

16 Km 

Camera 

Image Sensor Max Image Size Video Resolution Photo Format 

Hasselblad Camera: 
4/3 CMOS, Effective 

Pixels: 20 MP 
 

Tele Camera: 
1/2-inch CMOS, Effective 

Pixels: 12 MP 

 
Hasselblad Camera: 

5280×3956 
Tele Camera: 4000×3000 

 
Hasselblad Camera: 

5.1K: 5120×2700@24/25/30/48/50 fps 
Tele Camera: 

4K: 3840×2160@25/30/50 fps 

 
 
 

JPEG/DNG (RAW) 

Sensing  

Sensing Type Max Transmission Distance (free of 

interference) 

Omnidirectional binocular vision system, 

supplemented with an infrared sensor at the 

bottom of the aircraft 

12 km 

 

2022 

 

 

 

 

Phantom 4 

Pro V2.0 

 

 
Figure 6: Phantom 4 Pro V2.0 (Phantom 4 Pro, 2023) 
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Cost 

(AUD) 

$2,399 (DJI store, August 24, 2023) 

Aircraft 

Takeoff weight Max Ascent 

Speed 
Max Descent Speed Max Horizontal Speed  Max Takeoff Altitude  

1375 g 6 m/s 4 m/s 45 mph 6000 m 

Max Flight 

Time 

Max Wind Speed Resistance Global Navigation Satellite System Max Flight Distance 

 

30 minutes 

 

10 m/s 

 

GPS/GLONASS 

2.400-2.483 GHz, 

5.725-5.850 GHz 

(Unobstructed, free 
of interference)) 

Camera 

Image Sensor Max Image Size Video Resolution Photo Format 

 

1-inch CMOS 

Effective 

pixels: 20M 

 

3:2 Aspect Ratio: 5472×3648 

4:3 Aspect Ratio: 4864×3648 

16:9 Aspect Ratio: 5472×3078 

 

4K: 3840×2160 24/25/30p 

@100Mbps 

 

JPEG, DNG 

(RAW), JPEG + 

DNG 

Sensing /Sensor 

Sensing Type/ Vision System Infrared Sensing System 

Forward Vision System 

Backward Vision System 

Downward Vision System 

Obstacle Sensory 

Range 

0.6-23 feet (0.2-7 m) 

Measuring Frequency 10 Hz 

 

 

2022 

 

 

 

 

DJI Mavic 3 

Multispectral M3M 

 
Figure 6: DJI Mavic 3 Multispectral M3M (DJI Mavic 3 Multispectral, 

2023) 

Cost (AUD) $7,919 (DJI store, August 24, 2023) 

Aircraft 

Takeoff weight Max Ascent 

Speed 
Max Descent 

Speed 
Max Horizontal Speed  Max Takeoff Altitude  

951 g 6 m/s (Normal 

Mode) 

8 m/s (Sport 

Mode) 

6 m/s (Normal 

Mode) 

6 m/s (Sport 

Mode) 

15 m/s 6000 m 

Max Flight Time Max Wind Speed 

Resistance 

Global Navigation Satellite System Max Flight Distance 

 

43 minutes 

 

12 m/s 

 

GPS + Galileo + BeiDou 

 

32 Km 

RGB Camera 

Image Sensor Max Image Size Video Resolution Photo Format 
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4/3 CMOS 

Effective Pixels: 20 MP 

 

5280×3956 
4K: 3840×2160@30fps 

FHD: 1920×1080@30fps 4K: 

3840×2160@25/30/50 fps 

 

JPEG/DNG 

(RAW) 

Multispectral Camera 
Image Sensor Multispectral 

Camera Band 
Video Resolution Photo Format 

1/2.8-inch CMOS, effective pixels: 5 

MP 

Green (G): 560 ± 

16 nm; 

Red (R): 650 ± 

16 nm; 

Red Edge (RE): 

730 ± 16 nm; 

Near infrared 
(NIR): 860 ± 26 

nm; 

FHD: 1920 x 

1080@30fps 

Video content: 

NDVI/GNDVI/N

DRE 

 

TIFF 

Sensing System Antennas 

Omnidirectional binocular vision system, 

supplemented with an infrared sensor at the 

bottom of the aircraft 

4 antennas, 2 transmitting and 4 receiving 

 

 

2023 

 

 

 

 

    DJI Mini 3 

  
Figure 6: DJI Mini 3 (DJI Mini 3, 2023) 

Cost (AUD) $829 (DJI store, August 24, 2023) 

Aircraft 

Takeoff weight Max Ascent 

Speed 
Max Descent Speed Max Horizontal Speed  Max Takeoff Altitude  

249 g  

With intelligent 
battery weight 

about 290 g 

5 m/s 3.5 m/s 16 m/s 4000 m 

Max Flight 

Time 

Max Wind Speed Resistance Global Navigation Satellite System Max Flight Distance 

38 minutes (with 

Intelligent Flight 

Battery) 

 

51 minutes (with 

Intelligent Flight 

Battery Plus*) 

 

 

 

10.7 m/s 

 

 

 

GPS + GLONASS + Galileo 

18 km (with 

Intelligent Flight 

Battery and 

measured while 

flying at 43.2 kph in 

windless conditions) 

25 km (with 

Intelligent Flight 

Battery Plus* and 
measured while 

flying at 43.2 kph in 

windless conditions) 

Camera 

Image Sensor Max Image Size Video Resolution Photo Format 
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1/1.3-inch 

CMOS, 

Effective Pixels: 

12 MP 

 

4000×3000 
 

4K: 3840×2160@24/25/30 fps 

 

JPEG/DNG 

(RAW) 

Sensing  

Sensing Type/Vision system Max Transmission Distance (free of 

interference) 

Downward vision system 10 km 

 

 

 

P4 multispectral, (2023). DJI store .Phantom 4 Multispectral Combo Retrieved August 24, 

2023, from https://www.d1store.com.au/products/P4-Multispectral-Combo 

 

DJI Mini 2, (2023). DJI store .DJI Mini 2 Retrieved August 24, 2023, from 

https://store.dji.com/au/product/mini-2?vid=99411 

 

DJI Mini SE, (2023). DJI store.  DJI Mini SE Retrieved August 24, 2023, from 

https://store.dji.com/au/product/dji-mini-se-tm?vid=105351 

 

DJI Mini 3 pro , (2023). DJI store.  DJI Mini 3 Pro (DJI RC-N1) SE Retrieved August 24, 

2023, from https://store.dji.com/au/product/dji-mini-3-

pro?gclid=EAIaIQobChMIzbnE5of1gAMVSklgCh0izgIJEAAYASAAEgJgifD_BwE&

vid=113961 

 

DJI Mavic 3 (2022). DJI store. Retrieved August 24, 2023, from 

https://store.dji.com/au/product/dji-mavic-3?site=brandsite&vid=109821 

 

Phantom 4 pro v2.0. DJI store. Retrieved August 24, 2023, from 

https://store.dji.com/au/product/phantom-4-pro-v2?from=search-result-

v2&position=0&vid=43151 
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8.6 Appendix 6 

Summary of Drone Models and associated variations 

 

 

 

 

 

 

 

2019 2020 2021 2022                    2022             2022 2023 

Model P4 

Multispectral 

DJI 

Mini 2 

DJI Mini 

SE 
  

DJI Mini 3 

pro 
 

DJI Mavic 3 Phantom 4 

Pro V2.0 
 

DJI Mavic 3 

Multispectral 
M3M 

DJI Mini 3 

 

Cost 

(AUD) 

 

 

 

$9,300 

 

 

$749 

 

 

$459 

 

 

$1,119 

 

 

$2,899 

 

 

$2,399 

 

 

$7,919 

 

 

$829 

Max 

Horizontal 

Speed 

      

36 mph 

 

36 mph 

 

30 mph 

 

36 mph 

 

47 mph 

 

45 mph 

 

34 mph 

 

36 mph 

 

 

Max Flight 

Distance 

2.4 GHz: < 20 

dBm (CE / MIC / 

KCC) 

5.8 GHz: < 26 

dBm (FCC / 

SRRC / NCC) 

 

 

 

16 km 

 

 

 

11 km  

 

 

 

18 km- 25 km  

 

 

 

16 KM 

 

2.400-2.483 

GHz, 5.725-

5.850 GHz 

(Unobstructed, 

free of 

interference)) 

 

 

 

 

32 km 

 

 

 

 

18 -25 KM 

 

Battery 

 

27 minutes 

 

31 

minutes 

 

30 minutes 

 

34 minutes  

47 min w/ 

Intelligent 

flight battery 

Plus 

 

46 minutes 

 

30 minutes 

 

43 minutes 

 

38 minutes  

51 minutes 

w/ intelligent 

flight battery 

Plus  

 

Camera 

Sensor 

Six 1/2.9” CMOS, 

Inc. RGB sensor 

for visible light 

imaging + 

5 monochrome 

sensors for 

multispectral 

imaging. 

Each Sensor 2.08 

MP 

 

 

 

1/2.3-

inch  

CMOS,  

Effective 

Pixels: 12 

MP 

 

 

 

1/2.3-inch 

CMOS, 

Effective 

Pixels: 12 

MP 

 

 

 

1/1.3-inch 

CMOS, 

Effective 

Pixels: 48 MP 

Hasselblad 

Camera: 

4/3 CMOS, 

Effective Pixels: 

20 MP 

 

Tele Camera: 

1/2-inch CMOS, 

Effective Pixels: 

12 MP 

 

 

1-inch CMOS 

Effective pixels: 

20M 

 

1/2.8-inch 

CMOS, effective 

pixels: 5 MP 

 

RGB Camera  

4/3 CMOS 

Effective Pixels: 

20 MP 

 

1/1.3-inch 

CMOS, 

Effective 

Pixels: 12 

MP 

Weight 1487 g 242 g 242 g 249g or 290 g 

W/intel 

battery 

895 g 1375 g 951 g 249 g 

Global 

Navigation 

Satellite 

System 

 

GPS + BeiDou + 

Galileo 

 

GPS + 

GLONA

SS + 

Galileo 

 

GPS + 

GLONASS 

 

GPS + 

Galileo + 

BeiDou 

 

GPS + Galileo + 

BeiDou 

 

GPS/GLONASS 

 

GPS + Galileo + 

BeiDou 

 

GPS + 

GLONASS + 

Galileo 

 

 

Sensing 

Type 

 

Ground Sample 

Distance (GSD) 

 

Downwar

d vision 

system 

 

Downward 

vision 

system 

 

Forward, 

backward, and 

downward 

vision system 

Omnidirectional 

binocular vision 

system, 

 

supplemented with 

an infrared sensor 

at the bottom of the 

aircraft 

Forward Vision 

System 

 

Backward 

Vision System 

 

Downward 

Vision System 

 

 

Omnidirectional 

binocular vision 

system, 

 

supplemented 

with infrared 

sensor at bottom 

of aircraft 

 

Downward 

vision system 
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8.7 Appendix 7  

Risk Register with entropy / decay column  

 

This risk register lists known technology issues and suggests a probability and impact 

assessment based on analysis of the literature. The table includes a column showing the 

movement (increasing or decreasing) of entropy and the presence of decay. 

 
Technology Issue Challenge Probability 

(P) 

Impact 

(I) 

Entropy and Decay Risk Score 

P x I 

Lidar Lack of Clarity in 

Recognising 

Objects / Livestock 

4 3 Decreasing- many research are being 

conducted in this field. 

12 

3G/4G Lack of Mobile 

Signal Access in 

Remote & Rural 

areas 

3 4 Decreasing – better Coverage Telstra / 

Optus Others Software defined 

networks (eg Starlink) 

12 

Storms Inability to Fly 

Drones in Bad 

Weather 

4 4 Increasing (Climate Change) 16 

Cloud Cover Clarity of image 3 3 Decreasing- some drone has semi-auto 

pilot, which can direct the drone to 

original take off position 

9 

LoRaWAN Problem if not Line 

of Sight and Low 

Bandwidth 

4 3 Decreasing – LoRaWAN technology 

increasingly used and connected with 

adjoining areas / farms 

12 

Cost on Fixed 
Wing Drones 

Very Large 

Expense 

4 4 Increasing 16 

Cost on Large 
Payload +25Kg 

Multirotors e.g. 
Octa  

Large Expense + 

Training + 

Hardware + 

Software 

4 4 Increasing – High End Drone expenses 

above $100,000 

16 

Cost of Small 
Multirotors (DJI 
Phantom / Mavic 

or similar 

Very inexpensive – 

BUT - No Payload 

Limited camera and 

sensor capabilities 

4 2 Decreasing – Very cheap entry – but 

unable to assist large scale broadacre 

operations 

8 

Smart Battery 

Technology 

Expensive 3 3 Decreasing – cost of Batteries slowly 

decreasing 

9 

Cost of 
Thermal Camera 

Expensive 3 3 Increasing- as they used unique and 

distinct metal to for manufacture 

9 

RGB 
 

Limited in the task 

that can be 

performed 

3 3 Decreasing- camera can be modified to 

capture additional feature like infra -red 

9 

Rules and 
Regulations 

Too complex, 

people do what they 

want on their own 

land 

5 4 Increasing – Rules and differences are 

increasing with different local and 

bespoke rules and regs. 

20 

Rainy day Cannot fly drone 1 5 Increasing (Climate change) 5 

Sunny day Affect the image 

clarity 

2 3 Decreasing- image can be modify with 

appropriate software 

6 

Access to 
electricity 

Outage 1 5 Depend on locations 10 

Equipment defect Damaged drone 1 5 Decreasing- drone come with warranty 1 

Flight flying 
planning 

Wrong coordinates 

entered -poor data 

collection 

2 4 Decreasing- many UAV are using 

google map as their base platform 

8 

Drone Crash Software failure 

 

2 5 Decreasing- more drones are getting 

automated 

10 

Drone loss in 
Wheat field 

Lack of Visual 

Recognition 

3 3 Steady – wheat fields less likely to 

suffer fatal crash 

9 

Pilot Error Accidental press the 

wrong button 

1 5 Decreasing 5 

Drone loss of 
signal 

Drone can loss 

signal 

2 5 Intermittent depending on access and 

topography 

10 
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Bird attack attacking drone 2 5 Increasing- specially in hill area 10 

Animal Impact Animal welfare 

Animal stress 

2 3 Decreasing, as some drones are being 

designed to be silent 

6 

Obstacle Trees, 

Electric poles 

1 3 Decreasing- some drones have collision 

detection system 

3 

Wind impact on 
UAV 

Air -Turbulence 2 3 Decreasing- some drone design has 

higher wind resistance 

6 

Wind impact on 
UAV-Spraying 

Chemical can be 

blow away 

2 5 Increasing -due to climate change 10 

Flight altitude 

impact on image 

Flying to distance 

from the target can 

affect image clarity 

2 4 Decreasing- image can be modify with 

appropriate software 

 

8 

Flight altitude on 
Crop spraying  

Affect the droplet 

rates 

3 4 Decreasing- researcher are working on 

automate drone which are pre-plan 

 

12 

Multispectral 
camera 

hyperspectral which 

captures in 100s  

3 2 Increasing- due to the complexity of 

some crops or farms 

6 

Multispectral 
Image process 

method 

Required to apply 

more complex pre-

processing method 

4 4 Increasing- as image processing in 

precision farming is new 

 

16 

Thermal image Hard to 

interpret/analysis 

2 3 Decreasing-slowly algorithm are being 

train for image processing 

6 

Lidar bad weather Poor performance 2 5 Increasing reliance on Lidar 10 

Lidar on Harsh 
environment 

Lidar cannot reach 

dense area 

4 3 Deceasing – as yet poor recognition 

 

12 

Amount of space 
on the Drone 

Cannot install many 

sensor 

2 3 Decreasing- some companies giving 

more room to fit additional gadgets 

6 

Camera 
calibration 

Inaccurate data 

being captured 

Image overlapping 

3 4 Increasing- as size and weight of new 

sensors keep changing 

12 

Payload 
 

Limited weight for 

take-off and landing 

2 4 Increasing- some sensors can be heavy 12 

Farming 
application 
complexity 

Need to use a range 

of application 

sometime 

3 3 Increasing- precision farming is new, 

and application are still being develop 

or in trail / testing phase 

6 

Flight Range 
Sml Multi-rotors 
Phantom / Mavic  

Limited to distance 

drone can travel 

3 3 Decreasing- new design are constantly 

improve drone range 

6 

Drone repair 
 

Replacing defect or 

broken parts 

3 3 Decreasing- lot for drone spart are 

available 

9 

Farmer 
engagement 

 

Willing to adopt 

drone technology in 

precision farming 

3 5 Increasing- with the license, rule and 

skills required to operate some drone 

15 

No framework for 
standard planned 

flight 

No standard or 

guideline for drone 

can be used for 

what purpose 

3 3 Increasing- commercial UAV are 

becoming affordable and their usage in 

agriculture will increase o 

 

 

9 

Lack of software 
available 

 

Lack free open-

source software 

available for image 

processing 

4 4 Increasing- there are many areas in 

agriculture where drone experimental 

has not be yet conducted.it will take 

time to develop accurate Algorithm 

16 

Image 
overlapping 

UAV capture both 

overlapping image 

4 2 Decreasing- this can be addressed 

photogrammetry technique 

8 

Machine learning Lack of algorithms   

detection of disease 

4 2 Decreasing- algorithm are getting train 

to detect new disease 

8 

Machine learning 
Skill & equipment 

Better computers 

Extra software 

computer skills 

4 4 Increasing- for advance image 

processing, ML is normal use 

16 

Multispectral 
camera 

availability 

A variation of 

Multispectral to 

reduce payload 

3 2 Decreasing- some drone designs are 

coming with in-build multispectral 

camera 

6 

Lack of Research 
Knowledge in 

agriculture 

Research needs to 

have knowledge of 

farming 

2 3 Decreasing – much research exists with 

agricultural companies to address 

precision farming issue 

6 

Drone Parts Lack of Parts 4 3 Increasing – post Covid limits 12 

3rd Party Data Shared data 3 4 Increasing – Predatory tactics   12 

Privacy Laws New Drone Laws 3 3 Increasing – focus on surveillance Laws 9 
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