245 research outputs found

    Target localization in MIMO radar systems

    Get PDF
    MIMO (Multiple-Input Multiple-Output) radar systems employ multiple antennas to transmit multiple waveforms and engage in joint processing of the received echoes from the target. MIMO radar has been receiving increasing attention in recent years from researchers, practitioners, and funding agencies. Elements of MIMO radar have the ability to transmit diverse waveforms ranging from independent to fully correlated. MIMO radar offers a new paradigm for signal processing research. In this dissertation, target localization accuracy performance, attainable by the use of MIMO radar systems, configured with multiple transmit and receive sensors, widely distributed over an area, are studied. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and noncoherent processing. The CRLB is shown to be inversely proportional to the signal effective bandwidth in the noncoherent case, but is approximately inversely proportional to the carrier frequency in the coherent case. It is shown that optimization over the sensors\u27 positions lowers the CRLB by a factor equal to the product of the number of transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem. The BLUE\u27s utility is in providing a closed-form localization estimate that facilitates the analysis of the relations between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours are used to map the relative performance accuracy for a given layout of radars over a given geographic area. Coherent processing advantage for target localization relies on time and phase synchronization between transmitting and receiving radars. An analysis of the sensitivity of the localization performance with respect to the variance of phase synchronization error is provided by deriving the hybrid CRLB. The single target case is extended to the evaluation of multiple target localization performance. Thus far, the analysis assumes a stationary target. Study of moving target tracking capabilities is offered through the use of the Bayesian CRLB for the estimation of both target location and velocity. Centralized and decentralized tracking algorithms, inherit to distributed MIMO radar architecture, are proposed and evaluated. It is shown that communication requirements and processing load may be reduced at a relatively low performance cost

    Hardware Development of an Ultra-Wideband System for High Precision Localization Applications

    Get PDF
    A precise localization system in an indoor environment has been developed. The developed system is based on transmitting and receiving picosecond pulses and carrying out a complete narrow-pulse, signal detection and processing scheme in the time domain. The challenges in developing such a system include: generating ultra wideband (UWB) pulses, pulse dispersion due to antennas, modeling of complex propagation channels with severe multipath effects, need for extremely high sampling rates for digital processing, synchronization between the tag and receivers’ clocks, clock jitter, local oscillator (LO) phase noise, frequency offset between tag and receivers’ LOs, and antenna phase center variation. For such a high precision system with mm or even sub-mm accuracy, all these effects should be accounted for and minimized. In this work, we have successfully addressed many of the above challenges and developed a stand-alone system for positioning both static and dynamic targets with approximately 2 mm and 6 mm of 3-D accuracy, respectively. The results have exceeded the state of the art for any commercially available UWB positioning system and are considered a great milestone in developing such technology. My contributions include the development of a picosecond pulse generator, an extremely wideband omni-directional antenna, a highly directive UWB receiving antenna with low phase center variation, an extremely high data rate sampler, and establishment of a non-synchronized UWB system architecture. The developed low cost sampler, for example, can be easily utilized to sample narrow pulses with up to 1000 GS/s while the developed antennas can cover over 6 GHz bandwidth with minimal pulse distortion. The stand-alone prototype system is based on tracking a target using 4-6 base stations and utilizing a triangulation scheme to find its location in space. Advanced signal processing algorithms based on first peak and leading edge detection have been developed and extensively evaluated to achieve high accuracy 3-D localization. 1D, 2D and 3D experiments have been carried out and validated using an optical reference system which provides better than 0.3 mm 3-D accuracy. Such a high accuracy wireless localization system should have a great impact on the operating room of the future

    Transmit Signal Design for MIMO Radar and Massive MIMO Channel Estimation

    Get PDF
    The widespread availability of antenna arrays and the capability to independently control signal emissions from each antenna make transmit signal design increasingly important for radar and wireless communication systems. In the rst part of this work, we develop the framework for a MIMO radar transmit scheme which trades o waveform diversity for beampattern directivity. Time-division beamforming consists of a linear precoder that provides direct control of the transmit beampattern and is able to form multiple transmit beams in a single pulse. The MIMO receive ambiguity function, which incorporates the receiver structure, reveals a space and delay-Doppler separability that emphasizes the importance of the transmit-receive beampattern and single-input single-output (SISO) ambiguity function. The second part of this work focuses on channel estimation for massive MIMO systems. As the size of arrays increase, conventional channel estimation techniques no longer remain practical. In current systems, training sequences probe wireless channels in orthogonal directions to obtain channel state information for block fading channels. The training overhead becomes signicant as the number of transmit antennas increases, thereby creating a need for alternative channel estimation techniques. In this work, we relax the orthogonal restriction on the sounding vectors and introduce a feedback channel to enable closed-loop sounding vector design. A probability of misalignment framework is introduced, which provides a measure to sequentially design sounding vectors

    Crowd-Centric Counting via Unsupervised Learning

    Get PDF
    Counting targets (people or things) within a moni-tored area is an important task in emerging wireless applications,including those for smart environments, safety, and security.Conventional device-free radio-based systems for counting targetsrely on localization and data association (i.e., individual-centric information) to infer the number of targets present in an area(i.e., crowd-centric information). However, many applications(e.g., affluence analytics) require only crowd-centric rather than individual-centric information. Moreover, individual-centric approaches may be inadequate due to the complexity of data association. This paper proposes a new technique for crowd-centric counting of device-free targets based on unsupervised learning, where the number of targets is inferred directly from a low-dimensional representation of the received waveforms. The proposed technique is validated via experimentation using an ultra-wideband sensor radar in an indoor environment.RYC-2016-1938

    Moving Target Parameters Estimation in Non-Coherent MIMO Radar Systems

    Full text link
    The problem of estimating the parameters of a moving target in multiple-input multiple-output (MIMO) radar is considered and a new approach for estimating the moving target parameters by making use of the phase information associated with each transmit-receive path is introduced. It is required for this technique that different receive antennas have the same time reference, but no synchronization of initial phases of the receive antennas is needed and, therefore, the estimation process is non-coherent. We model the target motion within a certain processing interval as a polynomial of general order. The first three coefficients of such a polynomial correspond to the initial location, velocity, and acceleration of the target, respectively. A new maximum likelihood (ML) technique for estimating the target motion coefficients is developed. It is shown that the considered ML problem can be interpreted as the classic "overdetermined" nonlinear least-squares problem. The proposed ML estimator requires multi-dimensional search over the unknown polynomial coefficients. The Cram\'er-Rao Bound (CRB) for the proposed parameter estimation problem is derived. The performance of the proposed estimator is validated by simulation results and is shown to achieve the CRB.Comment: 17 pages, 4 figures, Submitted to the IEEE Trans. Signal Processing in Aug. 201
    • …
    corecore