93 research outputs found

    On the Complexity of Spill Everywhere under SSA Form

    Get PDF
    Compilation for embedded processors can be either aggressive (time consuming cross-compilation) or just in time (embedded and usually dynamic). The heuristics used in dynamic compilation are highly constrained by limited resources, time and memory in particular. Recent results on the SSA form open promising directions for the design of new register allocation heuristics for embedded systems and especially for embedded compilation. In particular, heuristics based on tree scan with two separated phases -- one for spilling, then one for coloring/coalescing -- seem good candidates for designing memory-friendly, fast, and competitive register allocators. Still, also because of the side effect on power consumption, the minimization of loads and stores overhead (spilling problem) is an important issue. This paper provides an exhaustive study of the complexity of the ``spill everywhere'' problem in the context of the SSA form. Unfortunately, conversely to our initial hopes, many of the questions we raised lead to NP-completeness results. We identify some polynomial cases but that are impractical in JIT context. Nevertheless, they can give hints to simplify formulations for the design of aggressive allocators.Comment: 10 page

    JITed: A Framework for JIT Education in the Classroom

    Get PDF
    The study of programming languages is a rich field within computer science, incorporating both the abstract theoretical portions of computer science and the platform specific details. Topics studied in programming languages, chiefly compilers or interpreters, are permanent fixtures in programming that students will interact with throughout their career. These systems are, however, considerably complicated, as they must cover a wide range of functionality in order to enable languages to be created and run. The process of educating students thus requires that the demanding workload of creating one of the systems be balanced against the time and resources present in a university classroom setting. Systems building upon these fundamental systems can become out of reach when the number of preceding concepts and thus classes are taken into account. Among these is the study of just-in-time (JIT) compilers, which marry the processes of interpreters and compilers for the purposes of a flexible and fast runtime. The purpose of this thesis is to present JITed, a framework within which JIT compilers can be developed with a time commitment and workload befitting of a classroom setting, specifically one as short as ten weeks. A JIT compiler requires the development of both an interpreter and a compiler. This poses a problem, as classes teaching compilers and interpreters typically feature the construction of one of those systems as their term project. This makes the construction of both within the same time span as is usually allotted for a single system infeasible. To remedy this, JITed features a prebuilt interpreter, that provides the runtime environment necessary for the compiler portion of a JIT compiler to be built. JITed includes an interface for students to provide both their own compiler and the functionality to determine which portions of code should be compiled. The framework allows for important concepts of both compilers in general and JIT compilers to be taught in a reasonable timeframe

    Exploring Dynamic Compilation and Cross-Layer Object Management Policies for Managed Language Applications

    Get PDF
    Recent years have witnessed the widespread adoption of managed programming languages that are designed to execute on virtual machines. Virtual machine architectures provide several powerful software engineering advantages over statically compiled binaries, such as portable program representations, additional safety guarantees, automatic memory and thread management, and dynamic program composition, which have largely driven their success. To support and facilitate the use of these features, virtual machines implement a number of services that adaptively manage and optimize application behavior during execution. Such runtime services often require tradeoffs between efficiency and effectiveness, and different policies can have major implications on the system's performance and energy requirements. In this work, we extensively explore policies for the two runtime services that are most important for achieving performance and energy efficiency: dynamic (or Just-In-Time (JIT)) compilation and memory management. First, we examine the properties of single-tier and multi-tier JIT compilation policies in order to find strategies that realize the best program performance for existing and future machines. Our analysis performs hundreds of experiments with different compiler aggressiveness and optimization levels to evaluate the performance impact of varying if and when methods are compiled. We later investigate the issue of how to optimize program regions to maximize performance in JIT compilation environments. For this study, we conduct a thorough analysis of the behavior of optimization phases in our dynamic compiler, and construct a custom experimental framework to determine the performance limits of phase selection during dynamic compilation. Next, we explore innovative memory management strategies to improve energy efficiency in the memory subsystem. We propose and develop a novel cross-layer approach to memory management that integrates information and analysis in the VM with fine-grained management of memory resources in the operating system. Using custom as well as standard benchmark workloads, we perform detailed evaluation that demonstrates the energy-saving potential of our approach. We implement and evaluate all of our studies using the industry-standard Oracle HotSpot Java Virtual Machine to ensure that our conclusions are supported by widely-used, state-of-the-art runtime technology

    Efficient optimization of memory accesses in parallel programs

    Get PDF
    The power, frequency, and memory wall problems have caused a major shift in mainstream computing by introducing processors that contain multiple low power cores. As multi-core processors are becoming ubiquitous, software trends in both parallel programming languages and dynamic compilation have added new challenges to program compilation for multi-core processors. This thesis proposes a combination of high-level and low-level compiler optimizations to address these challenges. The high-level optimizations introduced in this thesis include new approaches to May-Happen-in-Parallel analysis and Side-Effect analysis for parallel programs and a novel parallelism-aware Scalar Replacement for Load Elimination transformation. A new Isolation Consistency (IC) memory model is described that permits several scalar replacement transformation opportunities compared to many existing memory models. The low-level optimizations include a novel approach to register allocation that retains the compile time and space efficiency of Linear Scan, while delivering runtime performance superior to both Linear Scan and Graph Coloring. The allocation phase is modeled as an optimization problem on a Bipartite Liveness Graph (BLG) data structure. The assignment phase focuses on reducing the number of spill instructions by using register-to-register move and exchange instructions wherever possible. Experimental evaluations of our scalar replacement for load elimination transformation in the Jikes RVM dynamic compiler show decreases in dynamic counts for getfield operations of up to 99.99%, and performance improvements of up to 1.76x on 1 core, and 1.39x on 16 cores, when compared with the load elimination algorithm available in Jikes RVM. A prototype implementation of our BLG register allocator in Jikes RVM demonstrates runtime performance improvements of up to 3.52x relative to Linear Scan on an x86 processor. When compared to Graph Coloring register allocator in the GCC compiler framework, our allocator resulted in an execution time improvement of up to 5.8%, with an average improvement of 2.3% on a POWER5 processor. With the experimental evaluations combined with the foundations presented in this thesis, we believe that the proposed high-level and low-level optimizations are useful in addressing some of the new challenges emerging in the optimization of parallel programs for multi-core architectures

    Where Quantum Complexity Helps Classical Complexity

    Full text link
    Scientists have demonstrated that quantum computing has presented novel approaches to address computational challenges, each varying in complexity. Adapting problem-solving strategies is crucial to harness the full potential of quantum computing. Nonetheless, there are defined boundaries to the capabilities of quantum computing. This paper concentrates on aggregating prior research efforts dedicated to solving intricate classical computational problems through quantum computing. The objective is to systematically compile an exhaustive inventory of these solutions and categorize a collection of demanding problems that await further exploration

    Integrating compile-time and runtime parallelism management through revocable thread serialization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 125-128).by Gino K. Maa.Ph.D

    Dynamic Compilation for Functional Programs

    Get PDF
    Diese Arbeit behandelt die dynamische, zur Laufzeit stattfindende Übersetzung und Optimierung funktionaler Programme. Ziel der Optimierung ist die erhöhte Laufzeiteffizient der Programme, die durch die compilergesteuerte Eliminierung von Abstraktionen der Programmiersprache erreicht wird. Bei der Implementierung objekt-orientierter Programmiersprachen werden bereits seit mehreren Jahrzehnten Compiler-Techniken zur Laufzeit eingesetzt, um objekt-orientierte Programme effizient ausfĂŒhren zu können. SpĂ€testens seit der EinfĂŒhrung der Programmiersprache Java und ihres auf einer abstrakten Maschine basierenden AusfĂŒhrungsmodells hat sich die PraktikabilitĂ€t dieser Implementierungstechnik gezeigt. Viele Eigenschaften moderner Programmiersprachen konnten erst durch den Einsatz dynamischer Transformationstechniken effizient realisiert werden, wie zum Beispiel das dynamische Nachladen von Programmteilen (auch ĂŒber Netzwerke), Reflection sowie verschiedene Sicherheitslösungen (z.B. Sandboxing). Ziel dieser Arbeit ist zu zeigen, dass rein funktionale Programmiersprachen auf Ă€hnliche Weise effizient implementiert werden können, und sogar Vorteile gegenĂŒber den allgemein eingesetzten objekt-orientierten Sprachen bieten, was die Effizienz, Sicherheit und Korrektheit von Programmen angeht. Um dieses Ziel zu erreichen, werden in dieser Arbeit Implementierungstechniken entworfen bzw. aus bestehenden Lösungen weiterentwickelt, welche die dynamische Kompilierung und Optimierung funktionaler Programme erlauben: zum einen prĂ€sentieren wir eine Programmzwischendarstellung (getypte dynamische Continuation-Passing-Style-Darstellung), welche sich zur dynamischen Kompilierung und Optimierung eignet. Basierend auf dieser Darstellung haben wir eine Erweiterung zur verzögerten und selektiven Codeerzeugung von Programmteilen entwickelt. Der wichtigste Beitrag dieser Arbeit ist die dynamische Spezialisierung zur Eliminierung polymorpher Funktionen und Datenstrukturen, welche die Effizienz funktionaler Programme deutlich steigern kann. Die prĂ€sentierten Ergebnisse experimenteller Messungen eines prototypischen AusfĂŒhrungssystems belegen, dass funktionale Programme effizient dynamisch kompiliert werden können.This thesis is about dynamic translation and optimization of functional programs. The goal of the optimization is increased run-time efficiency, which is obtained by compiler-directed elimination of programming language abstractions. Object-oriented programming languages have been implemented for several decades using run-time compilation techniques. With the introduction of the Java programming language and its virtual machine-based execution model, the practicability of this implementation method for real-world applications has been proved. Many aspects of modern programming languages, such as dynamic loading and linking of code (even across networks), reflection and security solutions (e.g., sandboxing) can be realized efficiently only by using dynamic transformation techniques. The goal of this work is to show that functional programming languages can be efficiently implemented in a similar way, and that these languages even offer advantages when compared to more common object-oriented languages. Efficiency, security and correctness of programs is easier to ensure in the functional setting. Towards this goal, we design and develop implementation techniques to enable dynamic compilation and optimization of functional programming languages: we describe an intermediate representation for functional programs (typed dynamic continuation-passing style), which is well suited for dynamic compilation. Based on this representation, we have developed an extension for incremental and selective code generation. The main contribution of this work shows how dynamic specialization of polymorphic functions and data structures can increase the run-time efficiency of functional programs considerably. We present the results of experimental measurements for a prototypical implementation, which prove that functional programs can efficiently be dynamically compiled
    • 

    corecore