
Dynamic Compilation for Functional Programs

vorgelegt von Diplom-Informatiker

Martin Grabmüller

aus München

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Sebastian Möller
Berichter: Prof. Dr. Peter Pepper
Berichter: Prof. Dr. Sabine Glesner

Tag der wissenschaftlichen Aussprache: 21. April 2009

Berlin 2009

D 83

2

Zusammenfassung

Diese Arbeit behandelt die dynamische, zur Laufzeit stattfindende Übersetzung und
Optimierung funktionaler Programme. Ziel der Optimierung ist die erhöhte Laufzeit-
effizient der Programme, die durch die compilergesteuerte Eliminierung von Abstrak-
tionen der Programmiersprache erreicht wird.
Bei der Implementierung objekt-orientierter Programmiersprachen werden bereits seit
mehreren Jahrzehnten Compiler-Techniken zur Laufzeit eingesetzt, um objekt-orien-
tierte Programme effizient ausführen zu können. Spätestens seit der Einführung der
Programmiersprache Java und ihres auf einer abstrakten Maschine basierenden Aus-
führungsmodells hat sich die Praktikabilität dieser Implementierungstechnik gezeigt.
Viele Eigenschaften moderner Programmiersprachen konnten erst durch den Einsatz
dynamischer Transformationstechniken effizient realisiert werden, wie zum Beispiel
das dynamische Nachladen von Programmteilen (auch über Netzwerke), Reflection
sowie verschiedene Sicherheitslösungen (z.B. Sandboxing).
Ziel dieser Arbeit ist zu zeigen, dass rein funktionale Programmiersprachen auf ähn-
liche Weise effizient implementiert werden können, und sogar Vorteile gegenüber den
allgemein eingesetzten objekt-orientierten Sprachen bieten, was die Effizienz, Sicher-
heit und Korrektheit von Programmen angeht.
Um dieses Ziel zu erreichen, werden in dieser Arbeit Implementierungstechniken
entworfen bzw. aus bestehenden Lösungen weiterentwickelt, welche die dynamis-
che Kompilierung und Optimierung funktionaler Programme erlauben: zum einen
präsentieren wir eine Programmzwischendarstellung (getypte dynamische Continua-
tion-Passing-Style-Darstellung), welche sich zur dynamischen Kompilierung und Op-
timierung eignet. Basierend auf dieser Darstellung haben wir eine Erweiterung zur
verzögerten und selektiven Codeerzeugung von Programmteilen entwickelt. Der wich-
tigste Beitrag dieser Arbeit ist die dynamische Spezialisierung zur Eliminierung poly-
morpher Funktionen und Datenstrukturen, welche die Effizienz funktionaler Pro-
gramme deutlich steigern kann. Die präsentierten Ergebnisse experimenteller Messun-
gen eines prototypischen Ausführungssystems belegen, dass funktionale Programme
effizient dynamisch kompiliert werden können.

3

4

Summary

This thesis is about dynamic translation and optimization of functional programs.
The goal of the optimization is increased run-time efficiency, which is obtained by
compiler-directed elimination of programming language abstractions.
Object-oriented programming languages have been implemented for several decades
using run-time compilation techniques. With the introduction of the Java program-
ming language and its virtual machine-based execution model, the practicability of
this implementation method for real-world applications has been proved. Many as-
pects of modern programming languages, such as dynamic loading and linking of
code (even across networks), reflection and security solutions (e.g., sandboxing) can
be realized efficiently only by using dynamic transformation techniques.
The goal of this work is to show that functional programming languages can be effi-
ciently implemented in a similar way, and that these languages even offer advantages
when compared to more common object-oriented languages. Efficiency, security and
correctness of programs is easier to ensure in the functional setting.
Towards this goal, we design and develop implementation techniques to enable dy-
namic compilation and optimization of functional programming languages: we de-
scribe an intermediate representation for functional programs (typed dynamic con-
tinuation-passing style), which is well suited for dynamic compilation. Based on this
representation, we have developed an extension for incremental and selective code
generation. The main contribution of this work shows how dynamic specialization
of polymorphic functions and data structures can increase the run-time efficiency of
functional programs considerably. We present the results of experimental measure-
ments for a prototypical implementation, which prove that functional programs can
efficiently be dynamically compiled.

5

6

Contents

1 Introduction 11
1.1 Motivation . 11

1.1.1 Problem . 12
1.1.2 Thesis . 13

1.2 Contributions . 13
1.3 Outline of this Dissertation . 14

2 Background 15
2.1 Functional Programming . 15
2.2 Dynamic Compilation . 16

2.2.1 Virtual Machines . 17
2.2.2 History of Dynamic Compilation 19
2.2.3 Dynamic Compilation Techniques 20
2.2.4 Dynamic Compilation and Functional Programming 22
2.2.5 Dynamic Compilation in Other Languages 24
2.2.6 Formal Treatment of Dynamic Optimization 26
2.2.7 Applications . 27

2.3 Analysis and Transformation . 28
2.4 Typed Compilation . 30

2.4.1 Use of Type Systems . 30
2.4.2 Continuation-passing Style . 30
2.4.3 Closure Conversion . 31
2.4.4 Data Representation . 32

3 Dynamic Compilation of Functional Programs 35
3.1 Architecture . 35
3.2 Compilation Process . 36

4 Typed Dynamic Continuation-passing Style 39
4.1 Notation . 40
4.2 Running Example . 40
4.3 Source Language . 42

4.3.1 Syntax . 42
4.3.2 Overloaded Numeric Literals and Primitive Operators 45

7

8 CONTENTS

4.3.3 Static Semantics . 45
4.3.4 Dynamic Semantics . 48

4.4 Continuation Language . 48
4.4.1 Abbreviations . 49
4.4.2 Static Semantics . 51
4.4.3 Dynamic Semantics . 53

4.5 CPS Transformation . 53
4.6 Closure Conversion . 59

4.6.1 Type checking Closure-converted Terms 59
4.6.2 Closure Conversion Algorithm 61
4.6.3 Notes on Closure Conversion 62

4.7 Generation of Machine Code . 65

5 Incremental Compilation 69
5.1 Language Extension . 69
5.2 Code Generation for Delay Expressions 70
5.3 Placing of Delay Expressions . 72
5.4 Discussion . 73

6 Run-time Monomorphization 75
6.1 Specialization of Polymorphic Functions 76

6.1.1 Polymorphic Functions . 76
6.1.2 Polymorphic Recursion . 81
6.1.3 Type Classes . 83

6.2 Data Type Specialization . 84
6.2.1 Type-directed Representation Selection 85
6.2.2 Data Layout Algorithm . 87

7 Implementation 89
7.1 Implementation Outline . 89

7.1.1 Front End . 89
7.1.2 Conversion and Optimization 90
7.1.3 Code Generation . 90
7.1.4 Run-time System . 90

7.2 Optimizations . 91

8 Experimental Results 95
8.1 Test Methodology . 95
8.2 Benchmark Programs . 96
8.3 Effect of Implemented Optimizations 98
8.4 Comparison to other Implementations 102
8.5 The Pseudoknot Benchmark . 107
8.6 Effects of Incremental Compilation 112
8.7 Discussion . 114

CONTENTS 9

9 Conclusions and Future Work 115
9.1 Conclusions . 115
9.2 Future Work . 116

9.2.1 Theoretic Model . 117
9.2.2 Open Data Types and Open Functions 117
9.2.3 Type Classes . 118
9.2.4 Better Compiler . 119
9.2.5 Instrumentation and Recompilation 120
9.2.6 Value Specialization . 121

10 CONTENTS

Chapter 1

Introduction

1.1 Motivation

Modern applications and software systems are no longer monolithic pieces of software.
Most systems are designed as a combination of a static core component, and a set of
extensions. The core implements the basic functionality and extension infrastructure
and the extensions provide additional features. Together, the core and the extensions
solve the problems for which the complete system was designed. Examples can be
found in operating systems, where file systems, device drivers and user interfaces are
built on top of an operating system kernel which manages basic hardware devices
like the processor(s) or memory. Text processing systems come with basic editing
functionality and can be extended with formula editors, bibliographical databases or
multiple output and export formats. Web browsers use plug-ins in order to present
multimedia and interactive contents.
There are several advantages in using such an open, extensible system design. The
systems are more configurable, because it is easy to integrate customized components
into an otherwise off-the-shelf system. As only components needed for a particular
task need to be loaded into the system, resource consumption is reduced. Dynamic
loading of portable program representations such as bytecode opens the possibility of
distributed applications without complicated setup procedures on each node of a net-
work. For long-running systems (such as telecommunication switches or databases),
dynamic software updating offers system maintenance without expensive down-times.
The disadvantages of dynamic and open systems lie mainly in their vulnerability (can
components from the network be trusted?) and the lower performance due to the
necessary abstractions, such as encapsulation and the need to conform to standard
interfaces when composing modules. The work presented here is concerned with
the reduction of these overheads. Security issues are not a topic of this thesis and
are not discussed any further except that our work is in the setting of strongly typed
functional languages, which offer some security advantages independently of dynamic
compilation.
Object-oriented languages such as Java or C# do support the characteristic features
of dynamic languages: dynamic loading and linking, portable representations of pro-

11

12 Chapter 1. Introduction

grams and load-time verification for security. The efficiency problem is solved by
run-time compilation (also called just-in-time or JIT compilation). Thus run-time
compilation seems to be a useful technique for realizing dynamic and flexible systems.
In the world of functional languages, only few attempts have been made to create
implementations which are as dynamic and open as their object-oriented counterparts
(see Section 2.2.4 for references). Dynamic compilation has been used, for example,
for saving memory, but the potential of dynamic optimization in functional languages
has not been systematically explored. We plan to go further in that direction.
In the approach we present in this thesis, dynamic compilation is a central implemen-
tation characteristic, and all language features we wish to integrate can rely on its
presence. All aspects of dynamic systems as outlined above are in principle supported
by it.
We advocate an implementation style for functional languages which is heavily influ-
enced by object-oriented implementations. Programs are stored in a portable format.
This format can be an efficient encoding of annotated abstract syntax trees where
security is enforced by type-checking any intermediate code that is loaded into the
system. Programs are therefore easily transferred over networks. The combination
of program parts from different sources is handled by the fast dynamic compiler, as
well as any necessary specialization due to parametric polymorphism or overloading.
Data structures are optimized for efficient memory layout and access, depending on
the cache architecture and instruction set of the executing machine.
Functional languages offer an advantage over established object-oriented languages
because their powerful type systems can be used to ensure that they do not perform
any malicious operations.
Towards our goal, we present in this thesis several techniques for increasing the ef-
ficiency of functional programming languages. The first one is used for eliminating
language abstractions at run-time by applying an aggressive specialization strategy,
which eliminates most of the costs normally associated with these abstractions. Sec-
ondly, incremental compilation reducesthe cost of dynamic compilation by limiting
it to active program parts and spreading it over the life time of the program. Ad-
ditionally, we investigate how established optimizations for functional programming
languages have to be adapted to fit with our specialization approach.
Future work may build on these foundations in order to implement a complete dy-
namic execution environment for functional programs.

1.1.1 Problem

The technical possibilities and problems of implementations of dynamic specialization
methods have been investigated for several functional programming languages (see
Chapter 2 for the relevant literature). Nevertheless, several questions remain open:

− The literature mentions dynamic specialization as a solution to implementa-
tion problems, but it has not been widely used, mostly because it was deemed
impractical. The technological advances over the last decade let us view this

1.2 Contributions 13

problem in a new light, especially since many dynamic compilation problems
have already been solved for object-oriented languages.

− Since there has not been much work on dynamic compilation of functional
programs in general, it is not clear which implementation techniques provide a
good balance between increased execution efficiency and compilation overhead.

− The techniques which have been shown to be useful for static compilation of
functional programs need to be reviewed for their suitability for dynamic com-
pilation.

− Techniques developed for the dynamic compilation of other language paradigms
(imperative, object-oriented) should be examined whether they fit the func-
tional paradigm.

− Implementation techniques have always been influenced by language features
provided by the implemented languages (e.g., laziness, higher-order functions).
We also want to investigate whether programming language design should be
influenced by the implementation possibilities provided by dynamic compila-
tion.

In all of these areas, we provide answers, backed up by experimental evidence.

1.1.2 Thesis

The main thesis of this work is the following:

Functional languages can be efficiently implemented in a dynamically
compiling system.

We lay the foundations for this dynamic approach by describing several techniques,
on which dynamically optimizing implementations of functional languages can be
based. Experiments suggest that our proposed implementation strategy is feasible in
practice.

1.2 Contributions

− The main contribution of this work is the presentation of dynamic optimiza-
tion techniques for functional languages, namely incremental compilation, run-
time specialization of polymorphic functions and data types and typed dynamic
continuation-passing style as a technique for implementing specialization as
well as traditional optimizations. Specialization of polymorphic functions is
the most effective technique developed here.

− Additionally, the ideas developed in the theoretical part of this thesis have been
implemented in a prototypical system for run-time compilation of functional
languages.

− We have measured a performance advantage due to dynamic specialization when
compared with other functional-language implementations.

14 Chapter 1. Introduction

1.3 Outline of this Dissertation

The goal of this dissertation is to present the design and implementation of several
techniques for dynamic compilation of functional programs. We have structured the
thesis as follows: First, Chapter 2 gives the background about functional languages
and their compilation, dynamic (or run-time) compilation, virtual machines, vari-
ous compilation techniques such as analysis and transformation, continuation-passing
style and type-directed compilation. Chapter 3 gives an overview of the design and
implementation of the dynamically optimizing system we have implemented as a
prototype. The following three chapters go into detail with respect to the new imple-
mentation techniques: Chapter 4 presents our approach to dynamic compilation and
optimization of functional programs. We present our intermediate language design
and the transformation into this language. The use of type information in this pro-
gram representation and the transformation algorithms is important for the further
development. Chapter 5 presents our approach to incremental dynamic compilation,
which is based on a small extension to our intermediate representation. Chapter 6
describes the answer to the most important question of this thesis: how can the
specialization of polymorphic functions and polymorphic data types be performed
efficiently at run-time. Chapter 7 describes our prototype system in detail and shows
how classic optimizations have to be adapted for a dynamic system. Chapter 8 gives
experimental results of our prototype implementation of dynamic compilation and
compares it to other language implementations. Chapter 9 summarizes the work,
highlights the main points and describes topics for future work in the area of dynam-
ically compiling functional language implementations.

Chapter 2

Background

In this chapter, we review the basic concepts of dynamic compilation and optimiza-
tion. We first describe the concepts of functional programming and what dynamic
compilation is, give an introduction to virtual machines and give references to related
work in this area. We will investigate the application of dynamic compilation tech-
niques to the implementation of programming languages in general and functional
languages in particular.

2.1 Functional Programming

The roots of functional programming lie in the 1950s in the development of the
programming language Lisp (McCarthy, 1960), which already shared many aspects
with today’s functional languages: Lisp promotes an expression-oriented style of
programming in contrast to the statement-oriented style in imperative languages,
in general, Lisp programs have a more mathematical flavor than other languages of
its era. Early Lisp implementations already included garbage collectors. Building
on these foundations, functional languages like FP (Backus, 1978), Hope (Burstall
et al., 1980), ML (Milner et al., 1997), Opal (Pepper, 2003), Clean (Brus et al., 1987),
Erlang (Armstrong et al., 1996), Gofer (Jones, 1994) and Haskell (Peyton Jones, 2003)
evolved, each developing different and overlapping language features.

The key advantages of functional programming languages are:

Strong typing Many functional languages are strongly typed and provide sophisti-
cated type systems with type inference, polymorphism, uniqueness typing, type
classes, parameterized modules, functors, signatures, etc. These make possible
the encoding of many program invariants in the source code, increasing the
reliability, robustness and maintainability of programs

Modularity Functional programs consist of small, maintainable and isolated func-
tions. Powerful abstraction facilities like functors, parameterized modules or
type classes increase modularity further.

15

16 Chapter 2. Background

Controlled side-effects Purely functional languages strictly separate effect-free ex-
pressions from side-effecting actions, enforcing a disciplined programming style.
Even impure languages, such as Lisp, Standard ML or Erlang encourage an
expression-oriented style by providing syntactic features for the convenient com-
position and application of functions.

Inherent parallelism Functional programs are in theory well suited for parallelism.
The early work in the 1980s on parallel graph reductions has not worked out,
but the recent rise of multi-core architectures has renewed interest in this area.

For a detailed introduction to functional programming, many books and tutorials on
functional programming are available (Bird and Wadler, 1988; Hudak et al., 1999;
Pepper, 2003).

2.2 Dynamic Compilation

A survey on the field of dynamic compilation (or just-in-time compilation, JIT) has
been written by Aycock (2003). Aycock’s article concentrates on dynamic compila-
tion in software for object-oriented languages. The book by Smith and Nair (2005)
on virtual machines also covers many aspects of dynamic compilation as an imple-
mentation technique of these machines, both in hardware and software.

The main characteristic of dynamic compilation is that some translation of a program
takes place while it is executing. The translation process requires some entity which
actually translates the source to the target program. This can be a component
of the executing program (for example, in the program’s run-time system), part
of the operating system or even some program implemented partly or completely in
hardware. Modern complex instruction set computers (CISC) translate machine code
into a reduced instruction set (RISC) prior to execution. These instructions, called
µ-ops in Intel terminology, are held in a special first-level instruction cache (trace
buffer).

The motivation of dynamic compilation is increased performance over interpreted sys-
tems, while providing the dynamic properties of such systems. Additionally, dynamic
compilation may even offer superior performance to statically compiled programs:
precompiled binaries often use the least common denominator of the instruction sets
of the targeted machines. Newer machines in a processor series often have new in-
structions with better performance, but programs are normally compiled for older
version in order to be compatible. Intel’s IA-32 Architecture Optimization Reference
Manual (Intel Corporation, 2005) even recommends to use the cpuid instruction to
determine the processor model and to select code optimized for this model. A dy-
namically compiling system can use this method without the need to deliver several
versions of an algorithm, each optimized for another processor. Other advantages
of dynamic compilation include reduction of memory requirements and energy (Wu
et al., 2005; Unnikrishnan et al., 2002).

2.2 Dynamic Compilation 17

Virtual Machine

Source Program

Run-time System

Tables

Compiler Code Buffer

Operating System

source
code

byte-
code

object
code

P
re

p
ro

ce
ss

in
g

Figure 2.1: Virtual machine

2.2.1 Virtual Machines

A virtual machine, also called an abstract machine, is an idealized model of a ma-
chine. It provides a machine architecture consisting of registers, stacks and memory,
and an instruction set which manipulates the machine state. On the one hand, vir-
tual machines are used to model language semantics and program evaluation, on the
other for the implementation of programming languages on real machines. In some
systems, a virtual machine only exists conceptually, for example in the form of an
intermediate language of a compiler, in others the virtual machine is a piece of soft-
ware or hardware, which is capable of executing programs written in its language,
thus emulating the virtual machine on real hardware. A prominent example of a
software virtual machine is the Java Virtual Machine (JVM) (Lindholm and Yellin,
1999). An example of a hardware virtual machine is the Transmeta Crusoe processor
(Klaiber, 2000). The Crusoe processor is a very long instruction word (VLIW) pro-
cessor capable of executing standard x86 binary code files by translating them into
its VLIW instruction set on the fly.

Virtual machines are used to abstract from certain details of real machines. Software
virtual machines provide a uniform interface to operating system services (indepen-
dent of the operating system the machine runs on) and several other services, such as
garbage collection or concurrent programming primitives. Hardware virtual machines
abstract from the actual hardware implementation by providing an instruction set of
another machine.

In the following, we will concentrate on dynamically compiling virtual machines,
which have the general structure shown in Figure 2.1.

Dynamically compiling virtual machines possess storage areas for an input program

18 Chapter 2. Background

as well as for the actual machine code. The input to such a machine may be source
code, some form of compiled portable bytecode or even actual machine code: either
for the same architecture (for binary optimizers) or some other architecture (for
binary translators). The central component is a dynamic compiler, which translates
fragments of the input program into fragments of the target program. The size of
the fragments varies from system to system, many operate on the size of individual
procedures, others on basic blocks or so-called extended basic blocks (instruction
sequences without in-going control-flow edges, but with one or more out-going edges).
The compiler needs various data structures to support its operation, and often some
dynamic profiling mechanism to keep track of the occurrence of certain events. The
collected information is stored in data structures (called tables), which are also part
of the system. Finally, a run-time system is needed which provides an interface to
the operating system and abstracts from the actual operating system and machine
characteristics. When a program is loaded into the virtual machine, often some form
of non-trivial preprocessing is necessary, such as initialization of data structures,
verification or type-checking of the loaded code. Many virtual machines perform
some kind of translation on the code, for example translation into threaded code
(Bell, 1973; Dewar, 1975).

In contrast to classic compiler design, the frontier between translation time and run
time is not clearly visible in dynamically compiling systems. A dynamically compiling
system behaves similar to an interpreted system, where the program to be executed
is loaded into a running system which initiates the execution of the loaded program
image. In an interpreter, the loaded program is executed one instruction at a time,
whereas a dynamically compiling system translates it into machine language before
executing it, so that it runs without any interpretative overhead directly on the
hardware. This gives a significant performance advantage when compared to an
interpretive system, but it is necessary to take the time required for the translation
into account. Adaptive systems only use expensive optimizing techniques for those
parts of the program which are heavily used (so-called hot spots). The goal is to
invest much translation time and space only into parts which use up the majority
of the program’s actual run time. In order to reach that goal, various heuristics are
used, for example the dynamic measurement of program behavior (profiling). The
program’s execution may be monitored to determine the functions invoked most, or
those taking most of the execution time.

Dynamic systems which allow run-time loading of program parts, possibly from un-
trusted sources, need ways to protect themselves from malicious code. Several tech-
niques have been developed for this task: bytecode verification (as used in Java)
performs type checks and some additional integrity checks on the intermediate code
when it is loaded. This technique requires an intermediate language which is rea-
sonably easy to check. In the typed assembly language (TAL) approach (Morrisett
et al., 1999), concrete machine code is generated and stored in the object code files
together with additional type information, which enables the loader to perform the
verification. Verification of bytecodes or typed assembly language programs requires
building proofs of program safety, whereas in the proof-carrying code approach (Nec-

2.2 Dynamic Compilation 19

ula, 1997), programs are annotated with proofs of their correctness, thereby only
requiring proof checking. Since proof checking is much easier than finding proofs,
this technique simplifies the run-time system considerably. The above safety ap-
proaches are orthogonal to the techniques described in this thesis and we will not
discuss them in the remainder of the thesis.
One aspect not found in statically compiling or pure interpretive systems is the man-
agement of translated code. Normally, only some limited amount of memory is avail-
able for storing compiled code fragments in the so-called code cache. When it fills
up, some compiled fragments must be removed from the cache so that its space can
be re-used. Hazelwood Cettei (2004) investigates several code cache management
strategies and measures their effects. Code cache management is also orthogonal to
the topics discussed in this thesis and is not treated in the remainder of the text.

2.2.2 History of Dynamic Compilation

Dynamic compilation has been used successfully in virtual machines for object-
oriented languages for more than 20 years now.
Smalltalk implementations have used dynamic compilation for the efficient execution
of dynamically typed object-oriented languages (Deutsch and Schiffman, 1984; Ogata
and Doi, 1994). Since in Smalltalk every operation involves a method invocation,
optimization of common operations is very important, and correct implementation
is only possible when it is possible to undo optimizations when the compiled sys-
tem is changed. Implementations of the object-oriented programming language Self
(Chambers and Ungar, 1989; Hölzle, 1994) have continued that tradition and added
many very sophisticated dynamic optimizations, mostly necessary because Self is even
more dynamic than Smalltalk. Java also builds on the techniques developed for Self
(Paleczny et al., 2001) and has become a very successful language, mainly due to the
portability and efficiency which is made possible by using dynamic compilation tech-
niques. Franz (1994) describes another interesting implementation for the Oberon
language (Wirth and Gutknecht, 1998), which uses portable program representations
and load-time compilation.
Dynamic compilation techniques in general have been developed even earlier. Brown
(1976) describes a Basic system which uses so-called “throw-away compilation”, where
each Basic statement is compiled prior to execution and the compiled statements are
cached. When the memory buffer allocated for compiled code gets full, all compiled
code is thrown away, hence the name.
An important – though not widely known or cited – work in the field of dynamic
compilation is the Synthesis operating system kernel, developed by Pu et al. (1988).
All operating system services in Synthesis rely on dynamic code generation. For
example, when a file is opened and this file belongs to a FIFO pipe, special code for
writing to and for reading from pipes is generated, when the file is a disk file, other
device-specific code is generated. Massalin (1992) showed that the performance of
such as system can be an order of magnitude better than other operating systems,
thus enabling new features such as very fine-grained threading.

20 Chapter 2. Background

2.2.3 Dynamic Compilation Techniques

Dynamic compilation can be divided into program transformations performed by soft-
ware, as part of the run-time system of some language implementation, and transfor-
mations performed by hardware, as part of the microcode or support code of some
hardware system. The basic principles of both approaches are similar, but the former
normally employs more powerful transformations, targeted at program optimizations,
whereas the latter concentrates on translation from one instruction set to another,
focusing on binary program portability.
Both the software and hardware approaches constitute virtual machines, on which
the programs are executed, and both include some kind of translation and mapping of
resources from the underlying system to the ones expected by the running programs.
Smith and Nair (2005) describe in their book both virtual machines in software
(called high-level virtual machines) and in hardware (low-level virtual machines).
High-level virtual machines have the advantage that they can be ported more easily
to very different underlying hardware architectures, but low-level virtual machines
offer better performance, because they are implemented directly in hardware. A
survey of adaptive optimization in virtual machines has been written by Arnold et al.
(2005).
We will first discuss the various software systems because they directly relate to the
work presented in this thesis, and then present hardware solutions for completing the
discussion.

Dynamic Compilation in Software

One field in which dynamic code generation has been used since at least the 1960s
is executable data structures. Instead of interpreting a data structure in order to
control the steps of an algorithm, the data structure is translated to code which
performs these steps. This has been done by Thompson (1968) for efficient string
pattern matching with regular expressions. Another example is the translation of
binary search in sorted arrays into nested conditional statements.
Brown (1976) introduced the name throw-away-compiling. He used it to describe his
compilation technique, which allowed both compiled and interpreted code to coexist in
a single program. This mixed code approach (Dakin and Poole, 1973; Dawson, 1973)
was primarily intended to save memory by compiling only those parts of the programs
which are most frequently used. In this early system, the programmer was responsible
for annotating which parts of a program are to be compiled or interpreted. The
compiled parts could be either pre-compiled before the program is run, or compiled
at run-time, where one statement is compiled at a time and placed into a special
memory region. When this region is filled, all compiled code is removed at once
(thrown away), but Brown also suggests that more intelligent decisions should be
made about which code is deleted and which is kept.
Software virtual machines operate on very different input languages. On the one
extreme, in the case of binary translators, the input language is a machine language,
so that the virtual machine has to do the same decoding as a processor. At the other

2.2 Dynamic Compilation 21

end of the language spectrum, the machine translates a source language directly, as
in Brown’s approach mentioned above.

Binary translators work directly on machine language binaries. These are used espe-
cially for porting applications compiled for older architectures to new processor in-
struction sets. The Aries system (Zheng and Thompson, 2000), developed at Hewlett-
Packard, translates PA-RISC code to IA-64 code and is used to execute native PA-
RISC applications on IA-64 processors. Digital FX!32 (Chernoff and Hookway, 1997)
is a software emulator for running IA-32 applications on the Alpha processor. The
IA-32 Execution Layer (Baraz et al., 2003) is a software dynamic translator for run-
ning IA-32 software on Itanium-based (IA-64) systems.

Binary optimizers, where the input language is the same as the output language, are
mostly used for the optimization of already compiled applications. The University of
Queensland Binary Translation Project (UQBT) (Ung and Cifuentes, 2000, 2006) has
developed a machine adaptable binary dynamic translation system. Other successful
dynamic optimization systems are Dynamo (Bala et al., 2000) and its successor Dy-
namoRIO (Bruening et al., 2003; Bruening, 2004), developed in cooperation between
Hewlett-Packard Laboratories and the MIT Laboratory for Computer Science.

Dynamic Compilation in Hardware

Dynamic translation has been used in several hardware designs, mainly to maintain
binary compatibility and to enable the use of new and more efficient hardware imple-
mentations. The idea is that the binary machine code, which has been compiled for
some specific instruction set architecture (ISA) is transparently translated to another
ISA prior to execution. Programs are held in memory in the old binary format and
the translated code is stored in some fast cache memory, so that it can be reused when
the code is executed several times. The granularity of translation is normally in size
of some hardware-dependent measure, for example a memory page, in contrast to
software-based dynamic compilation systems which generally translate one function,
method or module at a time.

The DAISY system (Ebcioglu and Altman, 1996), implemented at IBM, translates
machine code from other architectures to a VLIW architecture. The design supports
different source languages, but the described implementation translates PowerPC
code. Translation is performed by a Virtual Machine Monitor, which is a software
that is stored in read-only memory.

The Transmeta Crusoe processors (Klaiber, 2000) use a dynamic compilation tech-
nique called code morphing, which translates IA-32 code to the machine language of
a VLIW processor. The code morphing software is responsible for translating source
instructions into target instructions (called atoms) and packing them as effectively
as possible into long instruction words (called molecules). Atoms in one molecule are
executed in parallel by different functional units of the processor.

The advantage of these automatic translation systems is that the processor imple-
mentor is free to change the underlying VLIW processor, as long as he adapts the
translator software accordingly.

22 Chapter 2. Background

Hardware dynamic compilation has not yet been used in the particular context of
functional programming, but of course the implementation of parallel graph reducers,
which have been used for functional programs could be combined with dynamic code
generation techniques.

Code Generation Techniques

Dynamic code generation techniques fall mainly into two groups: template-based
techniqes and rule-based techniques.
In template-based approaches, code templates are created prior to execution. These
templates contain holes into which values are inserted when on code generation time
different templates are combined to construct the final machine code. This approach
has been used, for example in DyC (Grant et al., 2000).
Rule-based techniques are closer to common code generation in static compilers.
Starting with an abstract syntax tree of the program to be compiled, rules are ap-
plied in order to tile the syntax tree with instructions. These rules are either specified
in some special declarative language for a code-generator generator (e.g. a bottom-
up rewrite system (BURS)-based system, e.g. (Fraser et al., 1992)) or they are pro-
grammed ad-hoc in the compiler.

2.2.4 Dynamic Compilation and Functional Programming

There are fewer uses of dynamic compilation for functional languages than for object-
oriented ones.
Wakeling (1998a) used dynamic compilation for the lazy functional language Haskell
(Peyton Jones, 2003) in order to reduce the memory requirements of compiled code.
In his system, Haskell source code is compiled to a compact intermediate format prior
to execution and a dynamic compiler translates this code to machine code while the
program is running. When the storage reserved for compiled code is exhausted, all
compiled code is discarded and required code is re-generated (similar to Brown’s
throw-away compilation).
A remark by Spinellis (1990) hints at the possibility to use dynamic compilation for
executing Haskell programs, but does not go into detail. Dockins and Guyer (2007)
describe how to perform verification on the bytecode output of their Haskell compiler
by adding type information to the bytecode. The Alice ML dialect is implemented
on a virtual machine which also supports just-in-time compilation and distributed
applications (Rossberg et al., 2006).
Burger (1997) has developed an infrastructure for profile-driven dynamic recompila-
tion of the Scheme programming language (Burger and Dybvig, 1998). This work
differs from the other work on functional programming languages because Scheme is
not purely functional.
Dynamic loading and linking in functional languages has been considered for imple-
menting functional shells (McDonald, 1983; van Weelden and Plasmeijer, 2004), and
more general for dynamic applications which contain a small static core and load

2.2 Dynamic Compilation 23

all other code dynamically (Stewart and Chakravarty, 2005). One major advantage
of using functional languages for such systems is their modularity, especially in lan-
guages which do not allow uncontrolled use of side effects. Rossberg (2006) describes
a dynamic, type-safe linking approach for Alice ML.

One possible route for implementing dynamic functional programs is by compiling
them for the Java Virtual Machine (JVM) (Wakeling, 1998b; Meehan and Joy, 1999).
Unfortunately, the JVM architecture poses severe difficulties on the implementation of
functional languages. Several features, which are key to the efficient implementation
of functional languages (such as efficient memory allocation or cheap tail calls) are
missing on this architecture (Schinz and Odersky, 2001; Shivers, 1996; Perry and
Meijer). Therefore, we will target compilation to real machine code in this thesis.

Among the programming language abstractions which are targeted by our special-
ization techniques are type classes, which have mainly been implemented by passing
additional parameters to overloaded functions (Hall et al., 1996; Augustsson, 1993),
but where also specializing implementations exist (Jones, 1995; Meacham, 2007). An-
other promising language extension are open data types and open functions (Löh and
Hinze, 2006), which allow the modular extension of algebraic data types and functions
which operate on such extensible types. A similar development, but presented for
object-oriented languages are extensible algebraic data types (Zenger and Odersky,
2001). Extensible programming with open case (Blume et al., 2006) solves similar
problems, but with the addition of a case statement which is a first-class language ele-
ment. The applicability of our techniques to these language features will be discussed
as possible future work in Section 9.2.2.

The Fabius system (Leone and Lee, 1998) supports specialization, which is controlled
through the use of curried functions. Earlier parameters to functions are considered
to be more static than later arguments. Leone and Lee give as an example matrix
multiplication using a curried function which takes two matrices. When applied to
the first matrix, specialized code is created which is optimized for this input matrix.
When the first matrix is sparse, execution speed is improved (Leone and Lee, 1994,
1996).

MetaML (Taha and Sheard, 1991; Taha, 1999) is a multi-stage programming language
with explicit stage annotations. MetaML programs can explicitly construct programs
and run them at a later time using language constructs for delaying and running
computations. Currently, MetaML does not have a native implementation which
could use its potential in a dynamic setting.

Dynamic Caml (Lomov and Moscal, 2002) is a library for Objective Caml that imple-
ments dynamic code generation for programs written in Objective Caml. The library
provides a high-level interface which represents dynamically generated code in a form
so that the run-time code generation process can be statically type-checked. It does
not produce real machine code, but interprets the dynamically created Caml code.

Erlang (Armstrong et al., 1996) is a concurrent, dynamically typed, mostly functional
programming language which was designed for programming telecommunication de-
vices. One of its distinguishing features is support for code replacement, which means
that it is possible to replace code modules without stopping the program. In order to

24 Chapter 2. Background

both support code replacement and efficient execution, Erlang distinguishes calls to
fully qualified functions (including a module and a function name) and unqualified
functions (including only a function name). The former are dynamically looked up
whereas references to the latter are resolved at compile time. Dynamically looked
up calls always call the newest version of a compiled module, whereas statically
resolved calls are never changed. It is therefore a recommendation to program long-
running loops as tail calls to fully qualified modules. This is not enforced by the
language definition or the compiler. For Erlang, a native code compiler called HiPE
(High-performance Erlang) (Luna et al., 2005) exists, which also supports just-in-time
compilation.
The Haskell package hs-plugins (Stewart, 2006) provides dynamic loading of Has-
kell modules. It also contains a compilation manager which can be used to compile
Haskell source code into loadable modules prior to dynamically loading them. Since
the compilation manager compiles the source code on a per-module basis, it is different
from other dynamic code-generation libraries.
Leijen (2003) presents the implementation of a foreign function interface which allows
Haskell functions to call functions written in other languages, and also calls from for-
eign functions back into Haskell code. The latter requires small amounts of run-time
code generation for implementing closures which can be called like normal functions
from foreign languages (call-back functions). The Glasgow Haskell compiler (GHC
Developers, 2008) implements its foreign function interface in the same way. In both
implementations, the use of dynamic code generation is hidden from the user.
Dubé (2002) presents an interesting framework for demand-driven type analysis. This
is a version of type analysis for dynamically-typed functional languages, where type
information is inferred during runtime based on estimates of how important it is at
various program points. The idea is to avoid wasting time with costly analysis on
program parts which are rarely or never used.
In all these previous works, several aspects of dynamic compilation and compilation
techniques such as specialization and data type representations have been investi-
gated. What is missing, is the integration of these ideas in a single framework. The
goal of this thesis is to provide the foundations of such a framework.

2.2.5 Dynamic Compilation in Other Languages

Object-oriented languages were the first popular and widely used languages which
supported dynamic features such as dynamic method dispatch that incur perfor-
mance overheads when compared to languages such as Fortran, Pascal or C. Even
though some of the older imperative languages supported a certain degree of dynamic
procedure calls (through function pointers), most of the code was quite static. Newer
object-oriented languages made the use of dynamic methods natural, so means were
sought to improve their performance.
Smalltalk (Goldberg and Robson, 1983) is a class-based object-oriented programming
language which uses an intermediate code. This code is generated from the source
code by a compiler and in some implementations (Deutsch and Schiffman, 1984) it

2.2 Dynamic Compilation 25

is translated further to machine code immediately before execution, eliminating the
interpretation overhead of interpreter implementations. MultithreadSmalltalk (Ogata
and Doi, 1994) also uses dynamic compilation.

Self is a dynamically typed object-oriented, prototype-based programming language
(Ungar and Smith, 1991). The implementation (Chambers and Ungar, 1989) compiles
Self source code to bytecodes which are translated to native machine code on demand
and on a per-method basis. The machine code is held in a cache to be reused when a
method is invoked in the future, and entries from the cache are discarded when the
cache fills up.

The Java programming language (Gosling et al., 2000) was designed to support the
distribution of compiled code and therefore includes the specification of a portable
bytecode format, which is interpreted by the JVM (Lindholm and Yellin, 1999) in
order to be executed. Most versions of the JVM include an option to translate the
bytecode to native code, either on class loading (the dynamic loading method of
Java) or on demand, when a certain method is to be executed which has not yet been
compiled to machine code.

Various dynamically compiling Java virtual machines have been implemented: see for
example Adl-Tabatabai et al. (1998), Adl-Tabatabai et al. (2003), Burke et al. (1999)
and Agesen (1997). These implementations support a wide variety of optimizations,
both conventional optimizations known from static compilation, and new ones which
rely on the presence of a dynamic optimizer and/or instrumentation for profiling.
Detlefs and Agesen (1999) describe inlining of virtual methods

Whaley (1999) has implemented an automatic runtime specialization algorithm for
the use in Java virtual machines, which adapts Java programs to the actual run-time
environment. Whaley’s work is concerned with specialization of methods: either by
inlining the most common method calls and thus specializing the method body to
the context in which it was called, or by creating specialized versions of methods for
commonly occurring parameters. Calls to these methods are then guarded by code
which checks the preconditions, and if they fail, the more general method is called.

The .NET CLI (ECMA International, 2005) (Common Language Interface) specifies
not only a bytecode format like Java (along with a human-readable notation) for .NET
programs, but also explicitly specifies that bytecode modules are to be translated to
machine code before execution. There is no information available on Microsoft’s
implementation of .NET, but several free implementations are available (DotGNU
Project, 2004; Mono Project, 2007). They seem to perform roughly the same set of
optimizations as the Java Virtual Machines mentioned above.

DyC (Grant et al., 2000) is a dynamic compilation system for the programming
language C. DyC requires that the programmer annotates the source code so that the
dynamic optimizer can efficiently specialize the source code for given fixed arguments.
The Calpa system (Mock, 2002) uses value profiling to automatically generate these
annotations, resulting in a fully automatic system.

Dynamo1 (Leone and Dybvig, 1997) is a compiler architecture for dynamic program

1Not to be confused with the Dynamo system of Bala et al. (2000), described in Section 2.2.3.

26 Chapter 2. Background

optimization, based on the notion of staged compilation. Staged compilation divides
the compilation process into several stages: the first stage corresponds basically to
static compilation and performs classic program analysis and transformation tech-
niques. Additionally, it collects information used in the second stage during run-time
optimization. This setup allows to reduce the time and space requirements of all
transformations happening at run-time while enabling beneficial optimization.

2.2.6 Formal Treatment of Dynamic Optimization

Even though the focus of this thesis is on practical matters, we give a short survey
on the formal work on dynamic optimization.
There are two directions of research in this area. The first is mainly theoretic and
builds on very abstract models of what computation means. The second aims at
formalizing aspects of real dynamic compilation and optimization systems. While
the former is very ambitious, it is very far away from practice, and the latter lacks
theoretical sophistication, but is much more closer to what is implementable today.
In the first category, dynamic compilation has a close relationship to partial eval-
uation (Consel and Danvy, 1993), which dates back to the 1970s at least (see, for
example, Ershov (1977), who called it a “partial computation principle”). Partial
evaluation aims at separating static from dynamic evaluations, in order to perform
static evaluation as early as possible, hopefully at compile time. Partial evaluation
employs binding-time analysis to determine when all operands to an operation are
available. The latest operand determines when evaluation can take place. Up to
now, partial evaluation was used in static compilers, but its use in dynamic systems
gives the possibility to perform certain evaluations at load-time or even later during
run-time, when some execution parameters are fixed (for example, the machine archi-
tecture or the instruction set). Sperber and Thiemann (1997) use partial evaluation
to improve the output of a Scheme compiler.
Balat and Danvy (1998) have used run-time code generation to produce bytecode
for the Ocaml virtual machine. Their goal was to perform type-directed partial
evaluation of ML programs.
The author has been developing a framework for generic dynamic optimization, which
captures aspects such as profiling and incremental, adaptive dynamic compilation and
optimization (Grabmüller, 2007). The work presented in this thesis is not directly
connected to the earlier paper, and a connection of the theoretical and practical work
is a topic for future work.
Modal-ML (Wickline et al., 1998) is a variant of the ML language which supports
explicit code generation during run-time, allowing programmers to specify the stages
of computation in a program. The different stages are reflected in the types assigned
to program expressions.
In the more practical direction, formal treatment mostly involved the development
of heuristics and cost models for tuning dynamic optimization.
Arnold et al. (2004) propose a model-driven policy for detecting recompilation op-
portunities which is used in the Jikes Research Virtual Machine (Burke et al., 1999;

2.2 Dynamic Compilation 27

Suganuma et al., 2000). They model both expected recompilation costs and the
expected benefits of running optimized code, basing their heuristics on the compile
times and profile data collected up to that point in execution. This seems to be the
only published attempt to capture aspects of dynamic optimization systems formally.
Not directly related to dynamic compilation techniques, but possibly applicable to it
are efforts to model the run-time behavior (such as time or space requirements) of
programs. Using so-called cost semantics, Sands (1990) investigated the behavior of
first-order and higher-order functional programs. Hope and Hutton (2005) derive step
counting functions from function definitions. The techniques used in both approaches
could be used to estimate the effects of optimizing functions.
In the TIL (typed intermediate language) project, type passing is used as an im-
plementation technique (Morrisett, 1995; Tarditi, 1996; Tarditi et al., 1996). This
implementation is based on the theory of intensional type analysis (Harper and Mor-
risett, 1995).
Gries and Gehani (1977) give an early discussion on type passing. They propose a
limited form of polymorphic procedure declarations, where types in the parameter
list can be marked so that they depend on the type at the call site. The body of a
procedure can use the name of such a type, which essentially is a type parameter.

2.2.7 Applications

Modern programming language features such as reflection and aspect-oriented pro-
gramming make high demands on the techniques used for implementation. The dy-
namic nature of such language features requires dynamic compilation in order to
avoid excessive slowdowns. Ogel et al. (2005) present a system which dynamically
weaves and compiles code in order to avoid the overheads of static monolithic aspect
weaving.
Security is another important topic. When using networked machines, often con-
nected over the Internet, it is important to make sure that programs received over
the network have not been compromised. Several approaches, such as proof-carrying
code or typed assembly language aim at supporting efficient verification of code be-
fore it is executed. Hornof and Jim (1999) examined how program certification and
run-time code generation could be combined.
An interesting application of dynamic loading is dynamic software updating (Hicks,
2001; Stoyle et al., 2005; Bierman et al., 2003), which deals with the modification of
running software systems. Dynamic software updating allows parts of a program to
be replaced by corrected or extended code. Besides the modification and addition
of code this involves the conversion of data in the running system when data type
definitions are changed. This feature is crucial in systems which cannot tolerate any
downtime. Hicks (2001) explores this application and describes how he developed and
maintained a web server. He updated the web server’s code several times without
shutting it down. He did not use dynamic compilation techniques but worked with
precompiled binaries instead.
Another application of dynamic compilation techniques is reduced power consump-

28 Chapter 2. Background

tion in embedded systems. Wu et al. (2005) use dynamic compilation for managing
dynamic voltage and frequency scaling of the CPU, which results in significant re-
duction in power while maintaining high performance. Unnikrishnan et al. (2002)
present a dynamic recompilation and linking framework which optimizes the energy
behavior of a given application at run time.
A recurring pattern in all these applications is that they could be implemented using
simple interpretation. The only reason for using dynamic compilation is to improve
performance, even more so for dynamic optimization.

2.3 Analysis and Transformation

The process of compilation always consists of analysis and transformation. Analysis
in this context is the calculation of program properties which are implicit in the
program examined. Transformation is some meaning-preserving modification of the
program which normally has the goal to improve it. Transformation normally makes
use of the information gathered in the analysis phase in order to determine whether
certain transformations are valid and will probably increase the program’s efficiency.
Some transformations are strictly local and can be based on the syntax of certain
programming constructs, others require non-local or even global knowledge about
the program. In the context of dynamic compilation, it is important to use very
fast analysis and transformation algorithms, because their run time contributes to
the total run time of the program under translation. This requires that sometimes
algorithms must be used which are sub-optimal when compared to static compilers.
Examples include linear register allocation (Poletto and Sarkar, 1999) in contrast to
graph-coloring based algorithms (Chaitin, 1982) or first-order control flow analysis
where a higher-order analysis could be used in static systems.
In summary, we can assume that static compilation has more resources at its disposal
and is thus able to employ more complicated analysis and to use more aggressive
transformations. On the other hand, a static scheme has less knowledge about the
actual use of the program and must therefore either heuristically guess, or make
limiting assumptions, such as closed-world compilation, where the complete source
code of a program is available for analysis.
Dynamic compilers operate in more restricted environments, both time- and space-
wise, but can make use of actual input values of programs and the actual machine
configuration on which it runs.
We can see that dynamic compilation offers advantages in the following cases:

Selective elimination of abstractions Dynamic analyses and transformations do
not need to take the complete source program into account. Compared to static
specializers, dynamic specialization or cloning does not need the same amount
of code space, because it can work selectively.

Exploiting dynamic information Since the dynamic compiler has access to all
information dynamically available, such as input data or machine configuration,

2.3 Analysis and Transformation 29

it can make better decisions when optimizing code.

Enabling dynamic language constructs Run-time compilation makes the whole
system more dynamic, because it eases programming of distributed systems
sharing programs by dynamic loading.

Among the disadvantages of the dynamic approach are the management overhead,
resulting from code buffer management, compiler data structure management, and
profiling. Additionally, it may be necessary to maintain information for selectively
“undoing” certain optimization when assumptions on which these optimizations are
based are invalidated – for example by loading new or updated code into the program.

The main difficulty in implementing dynamic compilers is in the tradeoff between
fast execution times of the translated program and compilation time. In this thesis
we aim at providing some particular effective and efficient optimization techniques.

Program Analysis

The analysis of programs has a long history, dating back to the invention of the first
higher-level programming languages in the 1950’s and 1960’s. Even the first commer-
cial Fortran compiler performed a limited program analysis in order to optimize the
compilation of indexing instructions in loops (Backus et al., 1957).

Program analysis consists of static (mostly compile-time) and dynamic analysis. The
goal of static program analysis is to determine an approximation of the possible be-
havior of a program, without actually running it. Dynamic analysis tries to achieve
more precise information by actually running a program for typical input data, gath-
ering information for tailoring the compilation results to these data (profiling and
feedback-directed compilation).

A detailed introduction to the field of program analysis is given by Nielson et al.
(1999). Two important instances of program analysis are data-flow analysis and
control-flow analysis. The first aims at determining the set of values which can
possibly be held by the program variables during any program run, whereas the
second tries to find out which functions, procedures or methods might be called
in any call expression in the program. The two analyses are closely interrelated,
because for example, the value of a boolean variable may control which alternative of
a conditional expression is evaluated, thus resulting in different sets of functions to be
called. In higher-order languages, where function parameters and local variables may
be bound to functions and functions may be included in arbitrary data structures,
the set of values contained in a variable determines the set of called functions when
the variable is applied to an argument.

The advantage of static (or off-line) analysis is that it is allowed to spend more
resources on the analysis, thus allowing better but more expensive algorithms to
be used. On the other hand, the lack of actual input data restricts this kind of
analysis because it must be overly conservative by considering any possible program
run. Dynamic (or on-line) analysis is restricted to more efficient algorithms (which

30 Chapter 2. Background

normally have to be of linear time and space complexity), but has access to the input
and profiling data of real program runs.
A combination of static and dynamic analysis has several advantages: it is possible
to combine costly algorithms (run at compile time) with less costly, but also less
powerful algorithms (run at run-time). The static analysis can remove overly general
constructs from a program which are provably not needed for the specific application
at hand, and the dynamic analysis can refine the compile-time optimizations by
tailoring the program to the actual input data.

2.4 Typed Compilation

Typed compilation is an approach to programming language implementation which
emphasizes the importance of strong typing at all levels of abstraction during the
compilation process. The goal is to maintain accurate type information during all
compilation phases. Types are transformed together with expressions when trans-
lating from one level of intermediate language to the next one. Finally, during code
generation, type information can be used to support register allocation, data struc-
ture optimizations and tagless garbage collection (Tarditi et al., 1996; Tarditi, 1996;
Morrisett, 1995) or type-based operations (Crary et al., 1998), such as polymorphic
equality.
We will now summarize work in the area of typed compilation, and show the appli-
cations of types and type systems in compilers.

2.4.1 Use of Type Systems

Type systems have been used in a number of ways besides just checking the type-
correctness of input programs. Hannan (1995) developed a type system for performing
closure conversion. Hannan and Hicks (2000) give a type system for higher-order
uncurrying and for arity raising (flattening argument tuples) (Hannan and Hicks,
1998). All these system use the type system to identify places for applying the
respective transformation, where syntactic criteria do not suffice. The elimination of
useless variables – for example, variables which are passed around recursive functions
without contributing to the final result – using type systems has been investigated
by Kobayashi (2001) and Fischbach and Hannan (2001).
Agat (1997) uses types for the register-assignment phase of a compiler. By annotat-
ing function types with the registers where input and output values are stored, the
consistency of calling protocols can be ensured.

2.4.2 Continuation-passing Style

Many compilers for functional languages use some form of intermediate program
representation which is based on the λ-calculus. These representations are often
restricted versions, which require the programs to be in some normal form: A-
normal form (ANF) (Flanagan et al., 1993), monadic normal form (Boquist, 1999) or

2.4 Typed Compilation 31

continuation-passing style (CPS) (Appel, 1992). Kennedy compares these languages
for various properties (Kennedy, 2007).
Early work on CPS based program transformation can be found in Wand (1980).
In continuation-passing style, “every aspect of control flow and data flow [is made]
explicit” (Appel, 1992, p. 2). By transforming the input program into a form where
each function call is a tail-call, and each function is passed a function which performs
the “rest of the computation” (the continuation function), the resulting program has
made order of evaluation explicit and each intermediate result is named. Also, all
call and return points are made explicit – calls to user-defined functions represent
calls and calls to continuations represent returns. Most importantly, certain program
transformations such as full β-reduction (function inlining), which are not generally
sound in a call-by-value setting, are sound in CPS (Kennedy, 2007).
Our work is mainly inspired by the work of Appel (1992) and Kennedy (2007). Ap-
pel’s algorithm is untyped, whereas Kennedy supports types, but does not handle
polymorphic types.
Harper and Lillibridge (1993) describe a typed CPS conversion which supports poly-
morphic types.
Flanagan et al. (1993) show that CPS and A-normal form (ANF) are equivalent. In
our view (and others, see Kennedy (2007)), CPS is better suited to optimization from
a practical point of view, though.
Reppy (2001) uses CPS conversion in a limited way for optimizing loops in an oth-
erwise direct-style compiler. He shows that one must not necessarily commit to one
style or the other in one compiler.
Kelsey (1993) notes that CPS and static single-assignment (SSA) form as used in
most modern optimizing compilers for imperative and object-oriented compilers are
closely related and can be converted from one to the other quite easily. Appel (1998)
has also investigated this topic.

2.4.3 Closure Conversion

General-purpose computers do not natively support higher-order functions, which
access free variables (except for top-level bindings) and may be returned as results
or stored in data structures. Therefore, one important part in the compilation of
functional languages is the conversion of all functions to closed forms. This is normally
performed by representing functions as heap-allocated records, with one reference to
the code implementing the function, and several slots for storing the values of, or
references to, its free variables.

Untyped closure conversion Shao and Appel (2000) and Appel (1992) describe
untyped closure representations and conversion algorithms. We have extended the
basic versions of these algorithms to our typed setting.

Typed closure conversion Minamide et al. (1996) describe a typed closure con-
version algorithm. It uses existential and recursive types to type closures. We have

32 Chapter 2. Background

decided to stick to a simpler type system which is described in Section 4.4.2. As
already mentioned above, Hannan (1995) uses types for closure conversion. Mor-
risett et al. (1999) describe the complete translation of terms in the second-order
lambda-calculus (System F) to typed assembler language. The translation consists
of several typed intermediate languages. Guillemette and Monnier (2007) present
a type-preserving closure-conversion algorithm written in Haskell. Tolmach (1997)
combines closure conversion with a type closure analysis algorithm. His goal is to
represent closure-converted terms in the source language, so he uses algebraic data
types to model closures and introduces the necessary creation of data records and
selections.
The compiler described by Shao (1994) also uses a typed intermediate language and
incorporates typed closure conversion. Morrisett (1995) has similar goals, but uses an
intensional type analysis approach (Harper and Lillibridge, 1993). In this approach,
the language supports a typecase construct, which allows the program to analyze the
types of values and to make decisions based on types.

Run-time closure conversion Feeley and Lapalme (1992) use run-time compi-
lation for the implementation of closures. A closure is represented as a short code
fragment which pushes the values of free variables onto the stack and then invokes
the code of the closure. On closure creation time, this code fragment is written to a
freshly allocated region of memory.
Grabmüller (2006) has extended this approach so that the complete code of a function
is generated at closure creation time, instead of generating a stub which calls a
precompiled function.

General Other approaches use data and control flow analysis in order to optimize
the creation and representation of closures. Cejtin et al. (2000) present a closure-
conversion algorithm which makes use of data and control flow analyses in order to
determine closure layout
Steckler and Wand (1997) introduces lightweight closure conversion, where several
analyses are used to avoid redundant saving of variables to closures or passing unused
closures to functions, thereby allowing multiple procedure-calling conventions in the
same program. Siskind (1999) presents a similar closure conversion algorithm for a
Scheme compiler in considerable detail.

2.4.4 Data Representation

Data representation and specializing representations for specific machine-supported
data types have also been investigated. Type-directed unboxing (Leroy, 1997, 1992)
and unboxed values as first-class citizens (Peyton Jones and Launchbury, 1991) have
been proposed for efficiently implementing operations on native machine data types,
for example in numerically intensive computations. When specializing all polymor-
phic functions, each value can be represented in its natural form, avoiding any over-
head associated with repeated boxing and unboxing. A similar approach, called

2.4 Typed Compilation 33

record unboxing, has been proposed by Nguyen and Ohori (2007). Morrisett (1995)
uses the type information passed at run time to polymorphic functions to perform
type-dependent operations on different representations.
Morrison et al. (1991) have suggested to pass type information together with uni-
formly represented parameters, and to perform type-specific operations by inspecting
the type information parameters. They also suggested the use of dynamic special-
ization on each call to a polymorphic function, or to optimize this by caching spe-
cializations. They state that “Neither of the above two implementation techniques is
practical for reasons of space and time overhead, respectively” (Morrison et al., 1991,
p. 349). We think that nowadays a typical personal computer or server has enough
space and time at its disposal to make it practical.
Static specialization, where type-specific versions of functions are generated by the
compiler at static compile time, have been successfully used in the Ada and C++
programming languages (Bray, 1983; Stroustrup, 1986). Ada supports generic mod-
ules, which are instantiated by importing them with concrete types. C++ supports
templates, which are used to implement parametrized classes and functions.

34 Chapter 2. Background

Chapter 3

Dynamic Compilation of
Functional Programs

This chapter proposes a design of a dynamic compilation system for functional pro-
gramming languages. Based on this design, we have implemented a dynamically
compiling virtual machine called Kafka1. The Kafka system executes programs writ-
ten in a strict purely functional language (called the Kafka language) by incrementally
compiling them to machine code. This implementation has been used for testing the
design and for performing experiments in language design and execution performance.
Even though we describe a specific system here, the general concepts described in
this and later chapters are applicable to other systems as well.
We will first discuss the general architecture. Then we will have a look at the various
phases of the compiler and the intermediate languages it uses. Details of the interme-
diate languages on which the compiler is based, the incremental compilation technique
and the implementation are then discussed in detail in the following chapters.

3.1 Architecture

The architecture of the Kafka system is illustrated in Figure 3.1, which is a more
detailed instance of the virtual machine schema described in Chapter 2. The Kafka
system can read both source code written in its input language and compressed
abstract syntax trees produced by a separate compiler.
The data space of the run-time compiler now has a distinguished component, called
the specialization cache. This cache records for which types functions in the code
buffer have been specialized, so that at most one compiled version exists for each
instantiated function. In our prototype, this mapping between source function and
specialized code is maintained only for polymorphic functions, but it could be used
in general for all kinds of specialization.
The preprocessing applied to code loaded into the system depends on the kind of in-
put. For source code the complete compiler front end (see the next section for details)

1For no particular reason.

35

36 Chapter 3. Dynamic Compilation of Functional Programs

Virtual Machine

Source Program

Run-time System

Specialization
Cache

Tables

Compiler Code Buffer

Operating System

src

ast

P
re

p
ro

ce
ss

in
g

Figure 3.1: Dynamic specialization system architecture

is invoked, whereas for compressed abstract syntax input files only decompression and
conversion to the internal representation is needed. The result of the preprocessing
step is put into the memory area labelled Source Program. When the program is run,
the run-time compiler takes the abstract syntax from the source buffer and generates
machine code.
The code buffer holds machine code and is allocated as a fixed sized memory region.
More sophisticated code buffer management is possible, but has not been implemented
in the current version.
The run-time system provides services to the compiled program, such as garbage col-
lection and an interface to operating-system services, for example input and output.
Additionally, the run-time system writes profiling data to disk files when the program
is terminating.
The tables are used for recording profiling information and statistics. Profiling can
be selectively enabled and leads to the generation of instrumented machine code.
Statistics are collected for several events: the number of code generations and garbage
collections, the time spent in the code generator and the garbage collector as well as
the actual running time of the code. Currently, profiling data is used for controlling
incremental compilation. For more information on possible uses, the reader is referred
to Section 9.2.5.

3.2 Compilation Process

The compilation process of our dynamically optimizing execution environment is
illustrated in Figure 3.2.

3.2 Compilation Process 37

Kafka Language

Abstract Syntax

Typed Abstract Syntax

CPS Language

CPS Language

Closure-converted CPS

Closure-converted CPS

Machine Language

parsing

type inference

CPS conversion

high-level optimization

closure conversion

high-level optimization

code generation, specialization,
low-level optimization

Figure 3.2: Compiler phases and intermediate languages

The Kafka language is semantically close to Standard ML (being a strict language),
but has a syntax similar to Haskell. Kafka is a purely functional language which has
no implicit side effects. Input and output are handled with continuation-passing func-
tions and exceptions via an exception-handling mechanism similar to Standard ML.

The front end and the middle end of the Kafka system are conventional. A parser
reads in the source code, checks its basic context-free syntax and converts it into an
abstract syntax tree. This abstract syntax tree corresponds very closely to the source
code, so that the type checker can generate helpful error messages.

The type checker implements a Damas-Milner type inferencing algorithm (Damas
and Milner, 1982) for a let-polymorphic type system with modest extensions, such as
overloaded arithmetic operators, type annotations and recursive algebraic data types.
The output of the type checker is a type-annotated abstract syntax tree where some
language constructs are desugared into more basic constructs. For example, equation-
style function definitions are converted to let expressions which bind variables to λ-
abstractions. The type checker also converts type abstractions and instantiations,
which are implicit in the source code, into explicit type abstractions (λ-abstractions
whose bound variables have the special type ?) and type applications (applications

38 Chapter 3. Dynamic Compilation of Functional Programs

to values of type ?).
In the rest of this thesis, the parser, the type checker and the untyped abstract syntax
will not be discussed any further. They are quite conventional and are not affected by
the dynamic code generation and optimization techniques applied in the other parts
of the compiler.
The typed abstract syntax is fed into the continuation-passing style (CPS) transfor-
mation, which will be discussed in detail in Chapter 4. The resulting program in
continuation-passing style is optimized and then converted into closure-passing style
by the closure conversion. The closure-passing language (also discussed in Chapter 4)
is a subset of the CPS language where functions and continuations are not allowed
to have free variables. This representation is then again optimized.
The last step is the generation of machine code from the optimized, closure-converted
representation. Since this representation is already fairly low-level, code generation
is relatively easy and mainly consists of instruction selection, register and stack slot
assignment and instruction generation.
Control can loop back from the machine language to the code generator when in-
cremental compilation or run-time monomorphization occurs. In this case, closure-
converted code (which is embedded in the machine code) is passed to machine code
generation, and then control is passed to the newly generated code. This is indicated
by the dashed arrow in the figure.
The dynamic compilation framework allows to delay code generation until a particular
function or other part of the program is actually executed. This is used in two
ways: functions (or parts of functions) can be compiled when first executed, thereby
reducing the amount of code generation to those places where it is needed during
an execution. Additionally, specialization of polymorphic functions is delayed until
they are called with specific type parameters. Incremental compilation is discussed
in Chapter 5, specialization of polymorphic functions in Chapter 6.
The compiler phases up to and including the optimization of closure-converted code
are independent of our dynamic specialization technique. It can therefore be done
ahead-of-time in a separate compiler, similar to the Java system, where the compiler
produces bytecode off-line and the virtual machine generates machine code on-line.
We have implemented this in our prototype system: a separate compiler can produce
compressed abstract syntax files of closure-converted code which can be read into the
virtual machine. This has the same effect as directly loading source code files, but
avoids the overhead of parsing, type inference, CPS and closure conversion as well as
high-level optimization.
More details on the implementation of our dynamically compiling architecture are
given in Chapter 7.

Chapter 4

Typed Dynamic
Continuation-passing Style

One goal of this work is to explore the possibilities of using continuation-passing style
intermediate representations in the context of dynamic compilation. CPS is known
to be well suited for data and control-flow analysis (Shivers, 1991), optimizations
(Appel, 1992) and data representation optimizations (Shao, 1994; Shao and Appel,
1995).
The following question, which has not been addressed until now, is:

How are CPS representations suited for performing dynamic optimiza-
tions, and especially, how can dynamic optimizations benefit from type-
directed compilation in the setting of pure functional languages?

A novel compilation technique, called typed dynamic continuation-passing style, is
described in this chapter. It offers the following features:

− Type-directed specialization of polymorphic functions and compile-time resolu-
tion of overloaded operators

− Type-directed data representation and layout optimizations.

When designing an intermediate compiler language, it is necessary to consider the
level of abstraction that should be supported by the language. One possibility is
to use a very high-level language, which is suited to analyses and transformations
which rely on the high-level structure of the source program. At the other end of
the spectrum, a low-level representation (such as quads or three-address instructions)
allows machine-specific modifications of the program.
As an example, consider the combination of data representation optimization and the
closure conversion phase of the compiler. The data representation optimization may
decide (guided by type information) to put certain values into unboxed floating-point
variables, which the code generator should eventually put into floating-point registers.
Other values, unboxed integers or pointers will end up in general-purpose registers.
During the closure-conversion phase, non-escaping functions are normally modified to

39

40 Chapter 4. Typed Dynamic Continuation-passing Style

take their free variables as additional parameters, and all call sites of such functions
are changed to pass these variables. Unfortunately, unless closure conversion knows
about the representation of all variables, it is not possible to efficiently pass free
variables to functions.
Therefore, we require that the uncompiled program fragments are stored in a fairly
abstract form until they are compiled to machine code. It is one goal of this the-
sis to identify which transformations can be performed before type information is
exploited (e.g., before type specialization and representation selection), and which
transformations must be deferred until such decisions are made.
The rest of this chapter is organized as follows: we first introduce some notation
and then present both the source and the target language of our typed continuation-
passing transformation. The transformation between the explicitly typed source lan-
guage and the CPS language requires both transformations on expressions and on
types. Following that, we describe the closure conversion transformation which re-
moves higher-order functions from the program. Finally we will sketch how machine-
code can be generated from the closure-converted CPS code, and we describe the
conversions performed on a small example program.

4.1 Notation

The following notational conventions are used in the following description of the
source and CPS languages.
A superscripted type xτ declares the x to be of type τ .
Overline notation is used for sequences. For example, x denotes a sequence of zero
or more x entities.

4.2 Running Example

The transformations described in this chapter are numerous and complicated. In
order to illustrate the effect of the transformations, we have prepared an example
program which will be transformed step by step along with the descriptions and
definitions of the transformation.
Figure 4.1 shows a complete program in the syntax of our prototype implementation.
The program defines a list data type and a function for computing the sum of all
elements of a list. The program also defines a two-element list of floating-point
numbers and prints the sum of the list elements, calculated by the sum function,
to the terminal. (The type annotation on list l1 is necessary, because polymorphic
values are not allowed.)
The fully typed program shown in Figure 4.2 is the result of type inference. This
typed version of the language is the actual source language of the transformations
described in this chapter, and standard type inference methods can be used to convert
the input program from Figure 4.1 into the typed source program in Figure 4.2. The
function sum is now a type function which expects the type of list elements and returns

4.2 Running Example 41

data List a = Nil

| Cons a (List a)

let

sum l = case l of

Nil -> 0

Cons x xs -> x + sum xs

in

let val l1 = Cons 2.3 (Cons 1.0 Nil) :: List Prelude.Float

in Prelude.putf (sum l1) (\ v -> v)

Figure 4.1: Running example: input program

let fun sum:

forall $15: *. ((List $15) -> $15) =

(\ $15:

* ->

(\ l:

(List $15) ->

case l of

Nil -> 0

Cons x : $15 xs : (List $15) -> (((add $15) x)

((sum $15) xs)))) in

let val l1: (List Float) = (Cons Float

2.3

(Cons Float 1.0 (Nil Float))) in

((putf ((sum Float) l1))

(\ v: () -> v))

Figure 4.2: Running example: type-checked

42 Chapter 4. Typed Dynamic Continuation-passing Style

a function for calculating the sum of lists of that type. Note that all applications
of polymorphic functions and operators (add is the primitive polymorphic addition
operator) are converted to explicit type applications (e.g., sum Float or add $15,
where $15 is a type variable).

The versions of the example program in the following sections are slightly edited for
readability, but otherwise correspond directly to the transformation results of the
compiler. Note that the examples use the concrete syntax of the compiler, whereas
the formal definitions below use a more mathematical style, to improve readability.

4.3 Source Language

Our CPS transformation converts a typed language based on the λ-calculus into a
continuation-passing language.

The source language of the transformation described here is not intended to be writ-
ten by programmers, but is the output of some front-end, which annotates the original
program text with type annotations. In our prototype implementation, the type in-
ference mechanism transforms a Haskell-like language with optional type annotations
into the language described here.

The source language provides polymorphic algebraic datatype definitions, polymor-
phic function definitions, value definitions, tuples and projections, value constructor
applications and case expressions, λ abstractions, function application and numeric
literals and primitive operations. Since the source language is a variant of the second-
order λ calculus (also called System F (Barendregt, 1992)), it provides means for ex-
plicit type abstraction and application. Type and value abstractions or applications
can be distinguished by the types of the formal or actual parameters, respectively.
Type variables and type constants have type ? (pronounced “type”).

Type constants are the names of predefined types, for example integer, float, or user-
defined types, which are declared with data definitions.

4.3.1 Syntax

The source language syntax is given in Figures 4.3 (types) and 4.4 (expressions).
Source language types can be type variables, universally quantified types, the type
of types (?), tuples, type constructors applied to types and function types. Note
that we require type constructors to be saturated: we do not support types of higher
kinds. While in principle this should pose no problems, we have decided for a simpler
system. Type constructors are derived from data type declarations and several type
constructors are predefined: the unit type, booleans, exceptions, integer and floating-
point types.

Source expressions can be variables, integer or floating-point constants, value con-
structor applications (which are required to be saturated), type or value function ap-
plication, type or value abstraction, tupling, projections and the unit value. Integer
literals are annotated with types, because they can be implicitly cast to floating-point

4.3 Source Language 43

(value types) Type 3 τ ::= α type variable
| ∀α. τ universal quantification
| ? type of types
| (τ, . . . , τ) tuple type
| TC τ . . . τ applied type constructor
| τ → τ function type

(type constants) TC ::= unit unit type
| bool boolean type
| exn exception type
| integer integer type
| float floating-point type
| T user-defined data type

Figure 4.3: Source language of CPS transformation (types)

values (see Section 4.3.2 for details). A projection #i#je selects the ith field from
the j-tuple e. The more complex expressions are non-recursive value let bindings, re-
cursive function let bindings, case expressions and the exception handling constructs
raise (which raises an expression) and handle, which evaluates expression e1 and re-
turns its value if no exception was raised, and otherwise evaluates e2 with variable x
bound to the raised exception object and returns the resulting value.

Case alternatives consist of value constructors applied to variables and an expression
on the right-hand side. When an alternative is matched against a value, the variables
are bound to the respective fields of the constructed value and the right-hand side is
evaluated with these bindings in scope.

Primitive operators are predefined constants, which are also mentioned in Figure 4.4.
These appear simply as variables in the source program. Primitives are numeric
arithmetic and comparison operators. Predefined constants also include the boolean
constants false and true. More on primitive operators and numeric literals below in
Section 4.3.2.

The source language is slightly unusual because most language constructs have type
annotations. The reason is that the continuation-passing transformation discussed
below needs to assign types to continuations and continuation parameters. Without
explicit types in the source language, the continuation transformation would need to
perform limited type inference. As we require a compiler front-end which produces
the source language to do some kind of type checking or inference anyway, we simply
require the semantic analysis to produce fully annotated programs. In the source
syntax presented here, some type information is omitted when it can be inferred
from the immediate context. This reduces notational clutter and makes programs
much easier to read.

44 Chapter 4. Typed Dynamic Continuation-passing Style

(expressions) Exp 3 e ::= x variable
| nτ integer literal
| g floating-point literal
| () unit value

| (C eτii)τ constructor application
| (e1 e2)

τ application
| λxτ . eτ abstraction
| (e1, . . . , en)τ tuple
| #i#j eτ projection
| let xτ = e1 in e2 let (non-recursive)
| let Fun in e2 function definition (recursive)

| (case eτ of Alt)τ case expression
| raise e raise exception
| eτ1 handle x→ e2 handle exception

(alternative) Alt ::= C xτ → eτ

(integer literals) n ::= 0 | 1 | . . .
(float literals) g ::= 0 | −1.1 | . . .
(function def.) FunDef 3 Fun ::= f τ = e

(datatype def.) DataDef 3 Data ::= data T α = C τ
(program) Prog 3 P ::= Data e

(constants) CS ::= false falsity
| true truth
| add addition
| sub subtraction
| mul multiplication
| div division
| eq =
| neq 6=
| less <
| greater >

Figure 4.4: Source language of CPS transformation (expressions)

4.3 Source Language 45

4.3.2 Overloaded Numeric Literals and Primitive Operators

We want to exploit the opportunities which specialization gives for different numeric
types, but we also try to keep the type system of the source and intermediate lan-
guages as simple as possible. Therefore, we have decided against implementing a
full-blown type class system like that used in Haskell, and instead used a simpler
alternative. Numeric integer literals are assigned the polymorphic type ∀α.α by the
type checker, so that they can be used both in integer and floating-point contexts.
Similarly, primitive numeric operators have polymorphic types like ∀α.α → α → α
or ∀α.α → α → bool. Of course, these types are not precise enough, as the opera-
tions should only be allowed in numeric contexts: addition of two non-numeric types
should not be allowed. Typing problems of this kind are found and reported during
the specialization phase.

When specialization of polymorphic functions is performed, all type variables are
replaced by concrete types before code is generated, so that the code generator has to
deal with monomorphic code only. The code generator can then detect any wrongly-
typed uses of numeric operations. The obvious drawback of this solution is that
type errors are possibly found late in the compilation, at code generation time. Since
code generation is interleaved with program execution, this may be really late. We
emphasize that programs are type safe in the sense that no type incorrect operations
are performed by the generated code.

In a production system, a type class or similar system should be used instead, but
for our experiments, this solution proved to be sufficient. See Section 9.2.3.

One typing problem remains with this method: free type variables outside of any
polymorphic functions are never replaced by types, because no specialization occurs
on the top-level term. Therefore, before a program is evaluated, all free type variables
of the program must be replaced by the type integer. It must be the integer type
because these free variables can only stand for numeric types1, and because integer
literals are the only constructs which are assigned type ∀α.α .

4.3.3 Static Semantics

The type system of the source language given in Figure 4.5 and Figure 4.6 is an
adaptation of the type system for System F in Pierce (2002).

Term variable contexts Γ keep track of which type and term variables are in scope and
give the types of term variables. Datatype contexts ∆ record the type constructors
of the predefined type constants and the user-defined data types. The type variables
are included in a datatype context as well in order to check whether type constructor
applications are saturated during the well-formedness check on types. Initially, Γ
contains the bindings of all built-in constants (see Figure 4.7) and all data construc-
tors from data type declarations with their declared types. Similarly, ∆ contains all

1More precisely, an exception-raising program is assigned type α. This special treatment when
the type of the complete program is polymorphic, is handled by our implementation properly.

46 Chapter 4. Typed Dynamic Continuation-passing Style

Ctxt 3 Γ ::= ∅ empty context
| Γ, x : τ term variable binding
| Γ, α type variable binding

DCtxt 3 ∆ ::= ∅ empty context
| ∆, T α1 . . . αn datatype binding
| ∆, α type variable binding

Γ; ∆ ` e : τ

(var)
x : τ ∈ Γ

Γ; ∆ ` x : τ
(liti)

α ∈ ∆
Γ; ∆ ` nα : α

(litf)
Γ; ∆ ` g : float

(unit)
Γ; ∆ ` () : unit

(capp)
C : τ1 → · · · → τn → τ ∈ Γ (Γ; ∆ ` ei : τi)ni=1

Γ; ∆ ` (C eτii)τ : τ

(tuple)
(Γ; ∆ ` ei : τi)ni=1

Γ; ∆ ` (e1, . . . en)(τ1,...,τn) : (τ1, . . . , τn)
(proj)

Γ; ∆ ` e : (τ1, . . . , τj)

Γ; ∆ ` #i#j e(τ1,...,τj) : τi

(abs)
Γ, x : τ1; ∆ ` e : τ2

Γ; ∆ ` λxτ1 .eτ2 : τ1 → τ2
(app)

Γ; ∆ ` e1 : τ1 → τ2 Γ; ∆ ` e2 : τ1
Γ; ∆ ` (e1 e2)

τ2 : τ2

(tabs)
Γ, α; ∆, α ` e : τ2

Γ; ∆ ` λα?.eτ2 : ∀α.τ2
(tapp)

Γ; ∆ ` e1 : ∀α.τ2 ∆ ` e2 : ?

Γ; ∆ ` (e1 e2)
τ2 : τ2

(let)
Γ; ∆ ` e1 : τ1 Γ, x : τ1; ∆ ` e2 : τ2

Γ; ∆ ` let xτ1 = e1 in e2 : τ2

(letfun)
Γ; ∆ ` Fun : Γ′ Γ ∪ Γ′; ∆ ` e2 : τ2

Γ; ∆ ` let Fun in e2 : τ2

(case)
Γ; ∆ ` e : τs Γ; ∆ ` Alt : τ

Γ; ∆ ` case eτs of Alt : τ

(raise)
Γ; ∆ ` e : exn

Γ; ∆ ` raise e : τ
(handle)

Γ; ∆ ` e1 : τ Γ, x : exn; ∆ ` e2 : τ

Γ; ∆ ` eτ1 handle x→ e2 :

Figure 4.5: Source language type system (part 1)

4.3 Source Language 47

Γ; ∆ ` Fun : Γ′

(funs)
Γ′ = (fi : τi)

n
i=1 Γ ∪ Γ′; ∆ ` (ei : τi)

n
i=1

Γ; ∆ ` (f τii = ei)
n
i=1 : Γ′

Γ; ∆ ` Alt : τ

(alts)
(Ci : τi1 → · · · → τini

→ τs ∈ Γ Γ, xi1 : τi1, . . . , xini
: τini

: ei ` τ)ni=1

Γ; ∆ ` (Ci x
τi1
i1 . . . x

τini
ini
→ eτi)

n

i=1
: τ

∆ ` τ : ?

(tcon)
T α1 . . . , αn ∈ ∆ (∆ ` τi : ?)ni=1

∆ ` T τ1 . . . , τn : ?
(tvar)

α ∈ ∆
∆ ` α : ?

(ttuple)
(∆ ` τi : ?)ni=1

∆ ` (τ1, . . . , τn) : ?
(tforall)

∆, α ` τ : ?

∆ ` ∀α.τ : ?

(tfun)
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 : ?

Figure 4.6: Source language type system (part 2)

pre-defined type constructors (all constants of type ? from Figure 4.7) as well as the
user-defined data types with their type parameters.

The judgement Γ; ∆ ` e : τ specifies that in term variable context Γ and datatype
context ∆, expression e has type τ . In order to keep the rules readable, we have not
explicitly mentioned that all types appearing in the rules must be well-formed, as
defined by the rules for judgement ∆ ` τ : ? in Figure 4.6.

The rules (var), (litf) and (unit) are conventional, rule (liti) assigns a polymorphic
type to integer constants, as already mentioned in Section 4.3.2. Rule (capp) applies
to constructor application, rules (abs) and (app) to value abstraction and application,
respectively; similar for (tabs) and (tapp) for type abstraction and application. Note
that for (tapp), the type parameter must be well-formed, which we explicitly check
for. The let expressions are conventional, rule (letfun) uses the auxiliary judgement
Γ; ∆ ` Fun : Γ′ from Figure 4.6 which checks whether a sequence of mutually recursive
functions is well-typed and returns the bindings of the defined functions to their types
in Γ′. Case expressions are checked using rule (case), which again uses an auxiliary
judgement Γ; ∆ ` Alt : τ from Figure 4.6, which checks the typing of case alternatives.
The exception raising statement in rule (raise) matches any type τ , because it aborts
execution. Rule (handle) checks exception handling.

48 Chapter 4. Typed Dynamic Continuation-passing Style

add : ∀α.α→ α→ α
sub : ∀α.α→ α→ α
mul : ∀α.α→ α→ α
div : ∀α.α→ α→ α
eq : ∀α.α→ α→ bool

neq : ∀α.α→ α→ bool
less : ∀α.α→ α→ bool

greater : ∀α.α→ α→ bool
false : bool
true : bool

unit : ?
exn : ?

integer : ?
float : ?
bool : ?

Figure 4.7: Types of built-in constants

4.3.4 Dynamic Semantics

The dynamic semantics of the source language are standard (see, for example Pierce
(2002)). Note that when using a semantics which uses substitution for type applica-
tions, all type variables disappear from subterms before they are evaluated. There-
fore, a primitive operation will never encounter a type variable as an argument, but
only proper types. It is still possible, though, that a type error happens because of
our handling of polymorphic numeric literals. See Section 4.3.2 above for details.

4.4 Continuation Language

We use an adapted and extended version of the continuation-passing language de-
scribed by Kennedy (2007). In contrast to the CPS language used in Appel’s book
(Appel, 1992), this version is typed and represents exception handling by explicitly
passing a failure continuation to each user function. The translation of the source
language handle and raise constructs makes use of these failure continuations. In
all other cases, the failure continuation is simply passed through to all called func-
tions. In an implementation, the parameter which holds the failure continuation can
be targeted to a particular register or memory location, so that passing it to called
functions will avoid any copying overhead.
The syntax of the CPS language is given in Figures 4.8 (types) and 4.9 (terms). The
language has been extended from Kennedy’s with the following language constructs:

− n-ary tuples (n > 1) and projections

− parametric polymorphism

− support for the definition of polymorphic, recursive algebraic data types

− means for constructing and taking apart values of algebraic data types by case-
expressions

− multi-argument continuations and functions (continuations also may take no
arguments)

4.4 Continuation Language 49

(value types) CType 3 τ ::= α type variable
| ∀α.τ universal quantification
| ⊥ bottom type
| ? type of types
| (τ, . . . , τ) tuple type
| T τ . . . τ data type
| τ → τ function type
| (#τ, . . . , τ#) unboxed tuple type

(type constants) ::= unit unit type
| bool boolean type
| exn exception type
| integer integer type
| float floating-point type

Figure 4.8: CPS language (types)

− support for integer and floating-point literals

− primitive operations for performing integer and floating-point arithmetic and
comparison

The types of the CPS language are an extension of source language types. The
bottom type ⊥ is used as the return type of functions and continuations in the CPS
language, because they never return. Instead of returning to its caller, each function
calls one of its continuations parameters or other functions. The main program is
initially passed a special continuation which terminates the whole program.
Unboxed tuples are used for argument types of functions and are conceptional tuples.
They model that functions can receive and return (as arguments to their continuation)
multiple values, but unlike normal tuples, they cannot be stored into data structures.
The idea of using (as well as the name and the syntax with (# . . .#) brackets of)
unboxed tuples for this application is taken from Peyton Jones and Launchbury
(1991).
The type of types ? is used for type parameters. These need to be represented in the
type system because polymorphic functions are represented as functions from types
to functions.

4.4.1 Abbreviations

Types of CPS converted terms become very unwieldy because of explicit represen-
tation of success and failure continuations, and because unboxed tuples are used to
represent multiple arguments. Therefore, the following abbreviations are defined for
the sake of readability:

50 Chapter 4. Typed Dynamic Continuation-passing Style

(variables) FVar ::= f function name
CVar ::= k continuation name
VVar ::= x value name

(values) Val ::= () unit value
| nτ integer literal
| g floating-point literal
| (x1, . . . , xn) tuple value
| Cτ x1 . . . xn constructor application

(terms) Term 3 K ::= let xτ = V in K value binding
| let xτ = πi x in K projection
| let xτ = x1 ⊕ x2 in K primitive operation
| letcont Cont in K continuation binding
| letfun Fun in K function binding
| k x continuation call
| f x function call

| case x of Alt case expression

(alternatives) Alt ::= C → k
(primitives) Prim 3 ⊕ ::= + | − | × | /

| = | 6= | < | >
(integer literals) n ::= 0 | 1 | . . .

(float literals) g ::= 0 | −1.1 | . . .
(function def.) FDef 3 Fun ::= f τx = K
(contin. def.) CDef 3 Cont ::= kτx = K

(datatype def.) DDef 3 Data ::= data T α = C τ
(program) Prog 3 P ::= Data K

Figure 4.9: CPS language (expressions)

4.4 Continuation Language 51

Γ ` V : τ

(val-unit)
Γ ` () : unit

(val-int)
Γ ` nτ : τ

(val-float)
Γ ` g : float

(val-tuple)
(Γ ` xi : τi)∀ni=1

Γ ` (x1, . . . , xn) : (τ1, . . . , τn)

(val-con)
(Γ ` xi : τi)∀ni=1 C : τ1 → · · · → τn → τ ∈ Γ

Γ ` Cτ x1 . . . xn : τ

Figure 4.10: CPS language type system (values)

τ1 ⇒ τ2 ≡ (#τ1, (#τ2#)→ ⊥, (#exn#)→ ⊥#)→ ⊥ (function)
¬τ ≡ (#τ#)→ ⊥ (continuation)

The first abbreviation stands for functions with exactly one parameter and one return
value. All functions produced by the CPS transformation have this form, but later
processing (such as optimizations like uncurrying or closure conversion) may later
add arguments to functions and continuations. The second abbreviation uses the
common notation of “not” for functions which do not return.

4.4.2 Static Semantics

The type system of the typed CPS language is shown in Figure 4.11. Rules of the
form Γ ` K ok mean that term K is well-typed in context Γ. The type system is
also based on the rules in Figure 4.10, which specify the well-typedness of values.
The type rules make use of the operator τ ≤ τ ′, which means that type τ is an
instantiation of type τ ′.

The typing rules for values are simple. The only uncommon feature, overloaded
literals, require that the type of an integer literal is taken from its annotation. Again,
we assume that all data constructor types are included in the environment Γ.

The value binding construct simply checks that the value is well-typed and that the
type annotation on the bound variable is correct. The projection binding checks that
the variable from which a value is projected is a tuple type of valid arity. Primitive op-
erator bindings are checked for correct typing of arguments and result. Function and
continuation applications require that the actual argument types match the function
or continuation parameter types. For case expressions, the types of the mentioned
continuations are checked against the fields of the corresponding constructor field
types. The right-hand sides of function and continuation bindings are checked with
the types of the defined functions/continuations in scope, to allow mutually recursive
definitions.

52 Chapter 4. Typed Dynamic Continuation-passing Style

Γ ` K ok

(letval)
Γ ` V : τ Γ, x : τ ` K ok

Γ ` let xτ = V in K ok

(letproj)
x : (τ1, . . . , τn) ∈ Γ Γ, x : τi ` K ok

Γ ` let xτ = πi x in K ok

(letprim)

x1 : τ1 ∈ Γ x2 : τ2 ∈ Γ
⊕ : τ⊕ ∈ Γ τ1 → τ2 → τ ≤ τ⊕ Γ, x : τ ` K ok

Γ ` let xτ = x1 ⊕ x2 in K ok

(funapp)
f : τ f ∈ Γ (#τ1, . . . , τn#)→ ⊥ ≤ τ f (Γ ` xi : τi)∀ni=1

Γ ` f x1 . . . xn ok

(contapp)
k : τ k ∈ Γ (#τ1, . . . , τn#)→ ⊥ ≤ τ k (Γ ` xi : τi)∀ni=1

Γ ` k x1 . . . xn ok

(case)

x : τ ∈ Γ
(ki : τ ki ∈ Γ (#τi1, . . . , τini

#)→ ⊥ ≤ τ ki)∀ni=1

(Ci : τCi ∈ Γ τi1 → . . . τini
→ τ ≤ τCi)∀ni=1

Γ ` case x of C1 → k1 . . . Cn → kn ok

(letfun)

Γ, f1 : τ1, . . . , fn : τn ` K ok
(Γ, f1 : τ1, . . . , fn : τn, xi1 : τi1, . . . , xini

: τini
` Ki ok

τi = (#τi1, . . . , τini
#)→ ⊥)∀ni=1

Γ ` let f τ11 x11 . . . x1n1 = K1 . . . f
τn
n xn1 . . . x1nn = Kn in K ok

(letcont)

Γ, k1 : τ1, . . . , kn : τn ` K ok
(Γ, k1 : τ1, . . . , kn : τn, xi1 : τi1, . . . , xini

: τini
` Ki ok

τi = (#τi1, . . . , τini
#)→ ⊥)∀ni=1

Γ ` let kτ11 x11 . . . x1n1 = K1 . . . k
τn
n xn1 . . . x1nn = Kn in K ok

Figure 4.11: CPS language type system (terms)

4.5 CPS Transformation 53

4.4.3 Dynamic Semantics

The dynamic semantics of the CPS language is defined by a standard, call-by-value
evaluation strategy. The only extension to textbook semantics is that on application
of type functions to type values, these type values must be substituted both at the
term level and at the type level. Type variables may appear as term variables, for
example in other type applications, and as type variables in type annotations.

4.5 CPS Transformation

The CPS transformation for translating source programs into CPS programs is shown
in Figures 4.12 and 4.13. It is a variant of the higher-order one-pass call-by-value
transformation of Danvy and Filinski (1992) which we have adapted from the pre-
sentation of Kennedy (2007, Fig. 8).

The transformation of expressions to CPS terms is performed mainly by two mutu-
ally recursive functions called [[·]] and (| · |). Both are very similar, and translate an
expression of the source language (first argument) into a term of the continuation
language. The second argument is the name of the current exception continuation.
The third argument is either a meta-level continuation which is called directly, or
the name of an object-level continuation, for which an object-level continuation call
has to be constructed. The reason for duplicating the transformation in two differ-
ent contexts is that the algorithm avoids the generation of so-called administrative
reducible expressions (redexes), that is, statically reducible β redexes. Older trans-
formations such as Appel (1992) rely on optimization transformations to eliminate
these redexes. The transformation of Danvy and Filinski (1992) avoids their creation
during construction of the CPS term and therefore does not need these optimizations
(although other opportunities for optimizations remain, of course, depending on the
input program).

In order to distinguish the meta and object levels, the following conventions are used
(Kennedy, 2007):

− Bold lambdas λ are used to denote meta-level abstractions, normal lambdas λ
for object-level abstractions.

− Meta-level applications are written with parenthesis κ(x), object-level applica-
tions with juxtaposition k x.

There are three helper transformations: the first transforms source function defini-
tions to CPS function definitions (Figure 4.15), the second transforms source types
to CPS types (Figure 4.14) and the third transforms names of primitive operations
to their operators (Figure 4.16). The transformation for functions simply invokes the
(| · |) transformation on the function right-hand side, passing the two new continua-
tion arguments of the transformed function. Conversion of source to CPS types only
affects the types of functions, which are converted to multi-argument function types

54 Chapter 4. Typed Dynamic Continuation-passing Style

[[·]] : Exp→ Var→ (Var→ Term)→ Term
[[x]] h κ = κ(x)

[[(prim τ1 e1 e2)
τ] h κ = [[e1]] h

(λx1. [[e2]] h
(λx2. let x[[τ]] = x1 [[prim]]x2 in κ(x)))

[[(e1 e2)
τ] h κ = [[e1]] h

(λx1. [[e2]] h
(λx2. letcont k¬[[τ]] x = κ(x) in x1 x2 k h))

[[λxτ1 . eτ2]] h κ = letfun f [[τ1→τ2]] x k h′ = (|e|) h′ k in κ(f)
[[(e1, . . . , en)(τ1,...,τn)]] h κ = [[e1, . . . , en]] h

(λx1, . . . , xn.
let x[[(τ1,...,τn)]] = (x1, . . . , xn) in
κ(x))

[[()]] h κ = let xunit = () in κ(x)
[[nτ]] h κ = let x[[τ]] = n in κ(x)
[[g]] h κ = let xfloat = g in κ(x)

[[(C e1 . . . en)τ]] h κ = [[e1, . . . , en]] h
(λx1, . . . , xn. let x[[τ]] = C x1 . . . xn in κ(x))

[[#i#j e(τ1,...,τj)]] h κ = [[e]] h (λz. let x[[τi]] = πi z in κ(x))
[[let xτ = e1 in e2 end]] h κ = letcont j¬[[τ]] x = [[e2]] h κ in (|e1|) h j

[[let d in e end]] h κ = letfun [[d]] in [[e]] h κ
[[raise e]] h κ = [[e]] h (λz. h z)

[[eτ1 handle x→ e2]] h κ = letcont j¬[[τ]] x = κ(x) in
letcont h′¬exn x = (|e2|) h j in (|e1|) h′ j

[[(case eτs of
C1 xτ11 → e1
. . .
Cn xτnn → en)τr]] h κ = [[e]] h

(λz.
letcont j¬[[τr]] x = κ(x) in

letcont k
¬(#[[τ1]]#)
1 x1 = (|e1|) h j
. . .

k
¬(#[[τn]]#)
n xn = (|en|) h j in
case z of C1 → k1| . . . |Cn → kn

Figure 4.12: CPS transformation (part 1)

4.5 CPS Transformation 55

(| · |) : Exp→ Var→ Var→ Term
(|x|) h k = k x

(|(prim τ1 e1 e2)
τ |) h k = [[e1]] h

(λx1. [[e2]] h
(λx2. let x[[τ]] = x1 [[prim]]x2 in k x))

(|(e1 e2)τ |) h k = [[e1]] h
(λx1. [[e2]] h

(λx2. x1 x2 k h))
(|λxτ1 . eτ2 |) h k = letfun f [[τ1→τ2]] x k′ h′ = (|e|) h′ k′ in k f

(|(e1, . . . , en)(τ1,...,τn)|) h k = [[e1, . . . , en]] h
(λx1, . . . , xn.

let x[[(τ1,...,τn)]] = (x1, . . . , xn) in k x) . . .)
(|()|) h k = let xunit = () in k x
(|nτ |) h k = let x[[τ]] = n in k x
(|g|) h k = let xfloat = g in k x

(|(C e1 . . . en)τ |) h k = [[e1, . . . , en]] h
(λx1, . . . , xn.

let x[[τ]] = C x1 . . . xnin k x)
(|#i#j e(τ1,...,τj)|) h k = [[e]] h (λz. let x[[τi]] = πi z in k x)

(|let xτ = e1 in e2 end|) h k = letcont j¬[[τ]] x = (|e2|) h k in (|e1|) h j
(|let fun d in e end|) h k = letfun [[d]] in (|e|) h k

(|raise e|) h k = [[e]] h (λz. h z)
(|eτ1 handle x⇒ e2|) h k = letcont h′¬exn x = (|e2|) h k in (|e1|) h′ k

[[(case eτs of
C1 xτ11 → e1
. . .
Cn xτnn → en)τr]] h k = [[e]] h

(λz.

letcont k
¬(#[[τ1]]#)
1 x1 = (|e1|) h k
. . .

k
¬(#[[τn]]#)
n xn = (|en|) h k in
case z of C1 → k1| . . . |Cn → kn

Figure 4.13: CPS transformation (part 2)

56 Chapter 4. Typed Dynamic Continuation-passing Style

[[·]] : Type→ CType
[[α]] = α
[[?]] = ?

[[(τ1, . . . , τn)]] = ([[τ1]], . . . , [[τn]])
[[T τ1 . . . τn]] = T [[e1]] . . . [[τn]]
[[(τ1 → τ2)]] = (#[[τ1]],¬[[τ2]],¬exn#)→ ⊥

Figure 4.14: CPS transformation of types

which receive the (transformed) argument type and the success and failure contin-
uation as arguments. The success continuation takes the original return type as its
argument.

We will now discuss in detail the transformation [[·]] on source expressions. (The
rules for (| · |) are analogous.) Variables are simply passed to the continuation of the
transformations. Applications of primitive functions are transformed into the spe-
cial binding for primitive operators, which applies an operator to two variables (the
arguments) and binds the result to a variable. See Figure 4.16 for the translation
of primitive operators. Applications are translated by translating both the function
and the argument and by creating a return continuation to be passed to the called
function. Abstractions are transformed to a function binding for one (newly named)
function. Tuples use the natural extension of the [[·]] transformation to lists of ex-
pressions, which lets us bind several variables at once. The arguments of the tuple
constructor are then bound using the value binding construct. The translation of the
unit value, floating-point literals and integer literals is straightforward, except for the
fact that the type annotation for integer literals must be included in the target value
binding.

Constructor applications are handled similarly to tuples. Projections are translated
into projection bindings. Source let-bindings are translated by first translating the
bound expression, which is passed into a fresh continuation which then evaluates
the let body. Function bindings are translated using the auxiliary transformation in
Figure 4.15. The raise and handle constructs are the only expressions which affect the
failure continuations. Both constructs do not have a corresponding term in the target
language; instead, the translation of raise simply invokes the failure continuation,
whereas handle constructs a new continuation which is the translation of the handler
clause and passes this continuation as the failure continuation to the translation of
the first expression.

The definition of the non-tail-recursive transformation (| · |) is very similar to the
tail-recursive one, except that some continuation creations can be avoided because
the passed-in continuation is on the object level and can therefore be used directly
in translated terms.

The treatment of user functions requires some more explanation, because these func-
tions are possibly type functions as introduced by the type checker. It is necessary
not to separate type parameters from each other. To see why, consider the function

4.5 CPS Transformation 57

[[·]] : FunDef→ FDef
[[f = λ x : τ.e]] = f x k h = (|e|) h k

where τ 6= ?
[[f = λ x1 : ?. . . . λ xn : ?. λ x : τx. e]] = f x1 . . . xn k h = (|λ x : τx. e|) h k

where τx 6= ?

Figure 4.15: CPS transformation of functions

[[·]] : Var→ Prim
[[add]] = +
[[sub]] = −
[[mul]] = ×
[[div]] = /
[[eq]] = =

[[neq]] = 6=
[[less]] = <

[[greater]] = >

Figure 4.16: CPS transformation of primitive functions

map with the following type:

∀a.∀b.(a→ b)→ List a→ List b

If this function were translated into curried type functions, the outer function applied
to the first type a would have the type

∀b.(a→ b)→ List a→ List b

but it could not be compiled because the specialized version for type a does not know
anything about the representation of type b. Therefore, our CPS transformation
always translates type functions so that all type parameters (whose representation is
fixed) are passed together, and separately from value parameters. This is reflected in
the rules for the transformation of functions in Figure 4.15.

Running Example

The result of CPS conversion on the running example program is shown in Figure 4.17.
To keep the example small, we have deleted type annotations on functions and con-
tinuations. Also, note that the alternatives of the case expression have expressions
on the right-hand side of the arrow, not only continuation names. For readability,
the continuations have been inlined in these cases, which can be enabled as an op-
timization in the CPS converter of our implementation (independently of the other
optimizations described in Chapter 7).

58 Chapter 4. Typed Dynamic Continuation-passing Style

letfun
sum($15: *, k0: ~((List $15) => $15), h1: ~Exn) =
letfun

lam2(l: (List $15), k3: ~$15, h4: ~Exn) =
case l of

Nil ->
letval lit7: $15 = 0 in
k3 lit7

Cons x xs ->
letval ty8: * = $15 in
letcont k9(x10: ((List $15) => $15)) =

letcont k11 (x12: $15) =
let x13: $15 = x p+ x12 in
k3 x13 in

x10 xs k11 h4 in
sum ty8 k9 h4

in
k0 lam2

in
letcont k14 (l1: (List Float)) =

letval ty15: * = Float in
letcont k16 (x17: ((List Float) => Float)) =

letcont k18 (x19: Float) =
letfun
lam20 (v: (), k21: ~(), h22: ~Exn) =

k21 v
in
let x23: () = Prelude.putf (x19) in
lam20 x23 :.halt :.fail in

x17 l1 k18 :.fail in
sum ty15 k16 :.fail in

letval ty24: * = Float in
letval lit25: Float = 2.3 in
letval ty26: * = Float in
letval lit27: Float = 1.0 in
letval ty28: * = Float in
letval Nil29: (List Float) = Nil ty28 in
letval Cons30: (List Float) = Cons ty26

lit27
Nil29 in

letval Cons31: (List Float) = Cons ty24
lit25
Cons30 in k14 Cons31

Figure 4.17: Running example: CPS converted

4.6 Closure Conversion 59

(value types) CType 3 τ ::= . . .
| {τ, τ, . . . } closure type
| pτq closure-converted function

(terms) Term 3 K,L ::= . . .

| letclos Clos in K closure binding

(closure def.) ClDef 3 Clos ::= xτ = [x1, . . . , xn]

CC Context CCCtxt 3 Γ ::= ∅ empty context
| Γ, x : τ term variable binding

Figure 4.18: Extensions for closure-converted CPS code

4.6 Closure Conversion

The CPS language which results from the transformation in the previous section is
already a low-level representation of the source program where evaluation order is
made explicit, and where all intermediate values and control flow points are named.
In order to compile the program to machine code, functions and continuations must
be closed, by making accesses to free variables explicit. Therefore, we introduce
closures for all defined functions, which contain the name of the function (a code
pointer in the implementation) and the values of its free parameters.

This transformation is made by the closure conversion phase which is the subject of
this section.

Figure 4.18 contains the extensions of the CPS language required for closure-convert-
ed code. Closure types are assigned to closures. The type contained in the closure
type is the type of the function which is represented by that closure.

The second additional type is the type of closure-converted functions pτq. The type
τ must be a function type, and the markers over the type indicate that it is the
type of functions of type τ , but in closure-converted form. That means that the
functions expect an additional first argument, which is a closure for that function.
Using this syntactic construct for marking closure-converted functions, we are able to
avoid including recursive and/or existential types in our language, but still are able
to type check closure-converted code.

4.6.1 Type checking Closure-converted Terms

The type system of closure-converted terms (Figure 4.19) is similar to the CPS type
system shown above (Figure 4.11). New rules are required for the closure creation
form letclos, for projection, for function and continuation application and for case
expressions. All rules not mentioned here are the same as for the former type system.

Type checking of closure-converted code is more difficult than the original CPS code,

60 Chapter 4. Typed Dynamic Continuation-passing Style

Γ ` K ok

(letproj)
x : {τ1, . . . , τn} ∈ Γ Γ, x : τi ` K ok

Γ ` let xτ = πi x in K ok

(funapp)

f : τ f ∈ Γ p(#τ1, . . . , τn#)→ ⊥q ≤ τ f (Γ ` xi : τi)∀ni=1

f ′ : τ f
′ ∈ Γ {p(#τ1, . . . , τn#)→ ⊥q} ≤ τ f

′

Γ ` f f ′ x1 . . . xn ok

(contapp)

k : τ k ∈ Γ p(#τ1, . . . , τn#)→ ⊥q ≤ τ k (Γ ` xi : τi)∀ni=1

k′ : τ k
′ ∈ Γ {p(#τ1, . . . , τn#)→ ⊥q} ≤ τ k

′

Γ ` k k′ x1 . . . xn ok

(case)

x : τ ∈ Γ
(ki : τ ki ∈ Γ {p(#τi1, . . . , τini

#)→ ⊥q} ≤ τ ki)∀ni=1 ∈ Γ
(Ci : τCi ∈ Γ τi1 → . . . τini

→ τ ≤ τCi)∀ni=1

Γ ` case x of C1 → k1 . . . Cn → kn ok

(letfun)

Γ, f1 : τ1, . . . , fn : τn ` K ok
(Γ, f1 : τ1, . . . , fn : τn, xi1 : τi1, . . . , xini

: τini
` Ki ok

τi = (#τi1, . . . , τini
#)→ τ⊥)∀ni=1

Γ ` letfun f τ11 x11 . . . x1n1 = K1 . . . f
τn
n xn1 . . . x1nn = Kn in K ok

(letcont)

Γ, k1 : τ1, . . . , kn : τn ` K ok
(Γ, k1 : τ1, . . . , kn : τn, xi1 : τi1, . . . , xini

: τini
` Ki ok

τi = (#τi1, . . . , τini
#)→ ⊥)∀ni=1

Γ ` letcont kτ11 x11 . . . x1n1 = K1 . . . k
τn
n xn1 . . . x1nn = Kn in K ok

(letclos)

Γ, c1 : τ1, . . . , cn : τn ` K ok
((xij : τij ∈ Γ)∀ki

j=1 τi = {τi1, . . . , τiki
})∀ni=1

Γ ` letclos cτ11 = [x11, . . . , x1k1] . . . c
τn
n = [xn1, . . . , xnkn] in K ok

Figure 4.19: Type system extensions for closure-converted terms

4.6 Closure Conversion 61

because functions of the same type, but with different free variables get assigned
different types when closures are implemented as simple tuples. Therefore, we have
introduced a special closure type, denoted by curly brackets: {τ → τ ′} is the type
of a closure for a function from τ to τ ′. More elaborate type systems for closure
conversion (Minamide et al., 1996; Hannan, 1995) have to rely on existential types
to hide the types of free variables, or even have to add recursive types in order to
express that a closure contains a pointer to a function which expects a closure of
itself as an argument. We have side-stepped these issues in order to have a simpler
type system. Closure types can have two forms: either only the function type of the
function closed over is given between the curly brackets, or the function type and the
type of all free variables are given. The first form is introduced at places where the
types of the free variables are not known (for parameters of higher-order function, for
example). At other occurrences, for example when a closure is created or when fields
other than the first are projected from the closure, all types are given. This allows
us to type check all uses of closures without the need for existential types.
A second problem is that closure-converted functions receive their closure as an ad-
ditional parameter. This leads to recursive types, as the closure type again contains
the type of the function. Using iso- or equi-recursive types, this can be reflected in
the type system, but unfortunately this either complicates the type checker (which
must unroll and roll types as required) or the intermediate language (which must
contain constructs for unrolling and rolling types, to be inserted by the closure con-
version phase). We have again decided to use a simpler type system: we introduce
the special type pτ1 → τ2q, which represents a closure-converted function type. A
closure of this type is then written {pτ1 → τ2q}. When type-checking applications
of closure-converted functions to their parameters, the first parameter is interpreted
specially: it must be a closure of the function type, and the other parameters must
match the argument type of the function. Thus we can achieve type-safety without a
more complicated type system and with an even simpler implementation for the type
checker. The drawback of our representation is that closures always must be the first
parameters of their respective closure-converted functions.

4.6.2 Closure Conversion Algorithm

The closure conversion code is shown in Figures 4.20 to 4.22. This conversion algo-
rithm requires types, so the algorithm has an extra parameter, the variable context,
which records the type of each bound variable while processing nested terms.
Most rules simply recurse on their nested term, binding variables to their annotated
types. The rules for function and continuation bindings are converted to introduce
closures, whereas function and continuation calls are modified so that they extract
the code pointer from a closure before applying the respective function or closure.
On closure construction, all functions and continuations are renamed and closures
with the original names are introduced. Each closure has its corresponding function
pointer as the first element, and the free variables of the function form the remain-
ing elements. In the function and continuation bodies, the free variables are then

62 Chapter 4. Typed Dynamic Continuation-passing Style

{| · |} : Term→ CCCtxt→ Term
{|let xτ = V in K|} Γ = let xτ = V in {|K|} (Γ, x : τ)
{|let xτ = πi y in K|} Γ = let xτ = πi y in {|K|} (Γ, x : τi)

where y : (τ1, . . . , τn) ∈ Γ
{|let xτ = x1 ⊕ x2 in K|} Γ = let xτ = x1 ⊕ x2 in {|K|} (Γ, x : τ)

{|f x1 . . . xn|} Γ = let gτ = π1 f in g f x1 . . . xn
where f : {τ} ∈ Γ, g fresh

{|k x1 . . . xn|} Γ = let lτ = π1 k in l k x1 . . . xn
where k : {τ} ∈ Γ, l fresh

{|case x of C1 → k1 . . . Cn → kn|} Γ = let l1 = π1k1 . . . ln = π1kn in
case x of
C1 → l1
. . .
Cn → ln

Figure 4.20: Closure conversion (part 1)

extracted from the closure argument and bound to their original names, so that the
rest of the body can refer to the names.
The function fvs, which is used for function and continuation bindings, returns a
sequence of free variables of the argument. This function is applied to the bodies of
the functions and continuations and the result (after removing the parameters with
the \ operator) are the variables to close over.
Similar to the continuation-passing transformation, closure conversion requires con-
version of the types involved in the converted terms. The rules for converting types
are shown in Figure 4.23. The types are simply converted recursively, except for the
function type: converted function types are marked as closures over closure-converted
functions. The {| · |}→ transformation on types returns the closure-converted type of
a function, without the closure braces.
The only operations which are allowed on closure types are the creation of closures
(via letclos terms) and projections, where the projection of the first element is always
allowed (it yields the function pointer) and projection of the other fields is only
allowed in the body of closure-converted functions, where the closure type contains
the types of the function and of its free variables.
The closure conversion algorithm is very simple and there exist many variants to this
so-called basic algorithm. Refer to Chapter 2 for relevant literature.

4.6.3 Notes on Closure Conversion

There is a big difference between our closure conversion algorithm and the algorithms
found in literature. Other approaches normally consist of two phases: the first intro-
duces closures by modifying function definitions and applications and the creation of
explicit closure structures (introduction phase). The second phase lifts all functions

4.6 Closure Conversion 63

{|letcont
kτ11 x11 . . . x1k1 = K1

. . .
kτnn xn1 . . . xnkn = Kn in K|} Γ =

letcont l
{|τ1|}→
1 k1 x11 . . . x1k1 = K ′1
. . .

l
{|τn|}→
n kn xn1 . . . xnkn = K ′n in

letclos kτ
k1

1 = [l1, y11, . . . , y1m1]
. . .

kτ
kn

n = [ln, yn1, . . . , ynm1]
{|K|} Γ2

where Γ2 = Γ, k1 : {|τ1|}, . . . , kn : {|τn|},
l1 : {|τ1|}→, . . . , ln : {|τn|}→

K ′1 = {|let y11 = π2k1 in . . .
let y1m1 = πm1k1 in K ′1|}
Γ2, x11 : {|τ11|}, . . . , x1k1 : {|τ1k1 |}

. . .
K ′n = {|let y11 = π2kn in . . .

let ynmn = πmn+1kn in K ′n|}
Γ2, xn1 : {|τn1|}, . . . , xnkn : {|τnkn|}

y11, . . . , y1m1 = fvs(K1)\{x11, . . . , x1k1}
. . .
yn1, . . . , ynmn = fvs(Kn)\{xn1, . . . , xnkn}
τ k1 = {{|τ1|}→, {|Γ(y11)|}, . . . , {|Γ(y1m1)|}}
. . .
τ kn = {{|τn|}→, {|Γ(yn1)|}, . . . , {|Γ(ynm1)|}}

Figure 4.21: Closure conversion (part 2)

64 Chapter 4. Typed Dynamic Continuation-passing Style

{|letfun
f τ11 x11 . . . x1k1 = K1

. . .
f τnn xn1 . . . xnkn = Kn in K|} Γ =

letfun g
{|τ1|}→
1 f1 x11 . . . x1k1 = K ′1
. . .

g
{|τn|}→
n fn xn1 . . . xnkn = K ′n in

letclos f τ
f1

1 = [l1, y11, . . . , y1m1]
. . .

f τ
fn

n = [ln, yn1, . . . , ynm1]
{|K|} Γ2

where Γ2 = Γ, f1 : {|τ1|}, . . . , fn : {|τn|},
g1 : {|τ1|}→, . . . , gn : {|τn|}→

K ′1 = {|let y11 = π2f1 in . . .
let y1m1 = πm1f1 in K ′1|}
Γ2, x11 : {|τ11|}, . . . , x1k1 : {|τ1k1|}

. . .
K ′n = {|let y11 = π2fn in . . .

let ynmn = πmn+1fn in K ′n|}
Γ2, xn1 : {|τn1|}, . . . , xnkn : {|τnkn|}

y11, . . . , y1m1 = fvs(K1)\{x11, . . . , x1k1}
. . .
yn1, . . . , ynmn = fvs(Kn)\{xn1, . . . , xnkn}
τ f1 = {{|τ1|}→, {|Γ(y11)|}, . . . , {|Γ(y1m1)|}}
. . .
τ fn = {{|τn|}→, {|Γ(yn1)|}, . . . , {|Γ(ynm1)|}}

Figure 4.22: Closure conversion (part 3)

{| · |} : CType→ CType
{|α|} = α
{|⊥|} = ⊥
{| ? |} = ?

{|(τ1, . . . , τn)|} = ({|τ1|}, . . . , {|τn|})
{|(#τ1, . . . , τn#)|} = (#{|τ1|}, . . . , {|τn|}#)

{|T τ1 . . . τn|} = T {|e1|} . . . {|τn|}
{|τ1 → τ2|} = {{|τ1|} → {|τ2|}}

{| · |}→ : CType→ CType
{|τ |}→ = τ ′ where {τ ′} = {|τ |}

Figure 4.23: Closure conversion of types

4.7 Generation of Machine Code 65

(which are now closed and therefore independent of lexical scoping) to the top level
(hoisting phase). We only perform the first phase, for the following reason: we cannot
perform hoisting, because we do not close over free type variables. The reason is that
type variables are not present in the code which is passed to the code generator, they
are eliminated by the specialization algorithm described in Section 6. It is possible
(and normal) for function and continuation definitions to have free type variables.
The practical advantage when avoiding the hoisting phase, which brings all functions
to the same lexical level, is that the scope of a type function (which is specialized
en bloc) contains all internal function and continuation definitions, which need to
be specialized anyway. So a single invocation of the specializer generates more code,
thus reducing the overhead of the specializer as it needs to be invoked more rarely.

Running Example

Figure 4.24 shows the closure-converted running example. All functions are extended
to receive their closures as the first arguments. Function applications are preceded by
projections from closures, and closures are explicitly constructed using letclos terms.
In order to save space, we only included the definition of the sum function and its
closure.
When this resulting program is executed, the specialization mechanism for polymor-
phic functions presented in Chapter 6 will compile the summation loop into code
which passes results in floating-point registers to continuations and uses floating-
point instructions built into the processor. The list data type is also specialized to
floating-point values, making efficient use of storage and aligning floating-point val-
ues so that fast access is possible. This monomorphization process of functions and
polymorphic data types is discussed in detail in Chapter 6.

4.7 Generation of Machine Code

The generation of machine code from closure-converted CPS terms is straightforward,
since the program is already in a low-level form. Many constructs of the CPS language
correspond to just one machine-level concept. We will only briefly describe our code
generator, because our focus is on the intermediate representation here.
The code generation function receives several parameters: a mapping from variable
names to locations, a stack depth, a heap pointer (which records how many heap
allocations have taken place since the start of a function) and the term to be trans-
lated. Locations are for example registers, stack slots, addresses relative to the heap
pointer, absolute addresses or integer or floating-point literals. The mapping is called
compile-time environment.
The various language constructs are translated as follows:

let expressions Value bindings either add a binding to the compile-time environ-
ment (for simple values), or are translated to the construction of a heap record
(for tuples and constructed values). Bound variables are then represented as

66 Chapter 4. Typed Dynamic Continuation-passing Style

letfun
sum.8’ (sum.0: {* ==> {(List $15) ==> $15}}, $15: *,

k0.1: {~{(List $15) ==> $15}}, h1.2: {~Exn}) =
letfun

lam2.6’ (lam2.3: {(List $15) ==> $15}, l.4: (List $15),
k3.5: {~$15}, h4.6: {~Exn}) =

let sum.0 = proj2,2 lam2.3 in
case l.4 of

Nil -> letval lit7.8 = 0 in
let k3.0’ = proj1, k3.5 in k3.0’ k3.5 lit7.8

Cons x.9 xs.10 ->
letval ty8.12 = $15 in
letcont k9.4’ (k9.13: {~{(List $15) ==> $15}},

x10.14: {(List $15) ==> $15}) =
let h4.6 = proj2,5 k9.13 in
let k3.5 = proj3,5 k9.13 in
let x.9 = proj4,5 k9.13 in
let xs.10 = proj5,5 k9.13 in
letcont k11.2’ (k11.15: {~$15}, x12.16: $15) =

let k3.5 = proj2,3 k11.15 in
let x.9 = proj3,3 k11.15 in
let x13.17 = x.9 p+ x12.16 in
let k3.1’ = proj1, k3.5 in
k3.1’ k3.5 x13.17 in

letclos k11.15 = [k11.2’, k3.5, x.9] in
let x10.3’ = proj1, x10.14 in
x10.3’ x10.14 xs.10 k11.15 h4.6 in

letclos k9.13 = [k9.4’, h4.6, k3.5, x.9, xs.10] in
let sum.5’ = proj1, sum.0 in
sum.5’ sum.0 ty8.12 k9.13 h4.6

in letclos lam2.3 = [lam2.6’, sum.0] in
let k0.7’ = proj1, k0.1 in k0.7’ k0.1 lam2.3

in letclos sum.0 = [sum.8’] in ...

Figure 4.24: Running example: closure converted

4.7 Generation of Machine Code 67

pointers on the stack, and the stack slot binding is added to the compile-time
environment.

projections Projections are translated to loads from memory.

function and continuation bindings The bodies of functions and continuations
are translated and the addresses of the resulting code sequences are added to
the compile-time environment.

function and continuation calls Calls are translated into a code sequence which
loads the parameters into their correct argument positions, followed by a jump
instruction.

case expressions These are translated into a load of the scrutinized variable and
a sequence of tests, which determine the constructor of the value, followed by
conditional tests.

closures, tuples and constructed values These are created on the heap.

primitive operations These are translated to their respective machine instructions,
depending on their actual type (e.g., integer or floating-point addition).

Our extensive use of the compile-time environment allows us to load constants lazily,
and even to delay operations such as projections: when a projection of a value, which
is currently held in a register, is compiled, it can be translated to a register-indirect
reference with constant offset. Using this technique, we make extensive use of the
processor’s addressing modes in order to avoid superfluous instructions and wasted
registers.
Since arguments are passed in registers and stack slots, the algorithm for placing
arguments in their correct locations must build an interference graph before emit-
ting any move instructions. Otherwise, parameters which are needed later could be
overwritten by earlier parameters.
We also use a special parameter assignment scheme to avoid move instructions on
function/continuation calls. For example, continuation closures are passed to user
functions in register edx. Continuations expect their closure argument in the same
register, so on a continuation call, the closure pointer does not need to be moved at all.
This optimization is possible, because continuation parameters can be recognized by
their type. Other types of parameters with special argument locations are integers,
floating-point registers or failure continuations. For integers, the first argument is
passed in register ecx and others are passed on the stack, for floating-point values,
six parameters are passed in registers xmm2 to xmm7 and the rest on the stack. Failure
continuations are passed in memory, because they are infrequently accessed.

Running Example

We do not present the complete machine code for the running example, because it is
very long. Instead, we have picked out a few small fragments of machine code and

68 Chapter 4. Typed Dynamic Continuation-passing Style

relate it to the closure-converted version of the program in Figure 4.24.
The function sum.0, which is a type function in the closure-converted program, is
translated to the following code which calls the polymorphic specializer. Details of
this process are described in Chapter 6.

sum.0:

pushad ; save registers

push dword ptr [esp+32] ; push type parameter

push esp ; push additional parameters

push 1H ; ...

push 1aH

push 1bH

push 0f0f0f0f0H

push 11H

push 1H

call [0b7b7101cH] ; call code generator

add esp,20H

popad ; restore variables

mov eax,dword ptr [esi+24] ; fetch address of

jmpn eax ; compiled code and jump

When the specializer has created the floating-point version of the sum function, the
core of the summation loop looks as follows:

k11.24:

movsd xmm7,dqword ptr [edx+8] ; fetch operand from closure

addsd xmm7,xmm2 ; add parameter

mov eax,dword ptr [edx+16] ; load continuation

push dword ptr [eax+4] ; from closure

mov edx,dword ptr [edx+16] ; move parameters

movsd xmm2,xmm7 ; to correct locations

mov eax,dword ptr [esp]

add esp,4H

jmpn eax ; jump to continuation

We can see that the compiler has created machine code with floating-point instruc-
tions, because the sum function has been used in a floating-point context.

Chapter 5

Incremental Compilation

One property of dynamic compilers is that it is not necessary to compile the complete
program on each run. Only the parts of the program which are reached during
a particular program run need to be translated. For large programs with a small
working set (that is, a small set of functions which are evaluated on a “typical” run),
this feature can save a lot of time, since no time is spent on generating code for
unused functions. Additionally, code buffer space is saved.

The idea is to delay the generation of code until it is certain that the code will be
executed—this is similar to lazy evaluation, where computation is delayed until a
result is required, for example for output. This process of delayed code generation is
called incremental compilation (Johnston, 1979).

In this chapter we describe the necessary extension to the intermediate CPS language
from Chapter 4, we show how code is generated for delayed expressions, and the
heuristics used to decide which expressions to delay selectively.

5.1 Language Extension

We have realized incremental compilation by adding a special syntactic construct
to the intermediate language: delay expressions. A delay expression wraps a CPS
term. The extension to the CPS language is modest and is shown in Figure 5.1. The
syntax is extended with delay expressions, and the extension to the type system is
also shown.

The dynamic semantics would not be changed when represented as a big-step se-
mantics, because the meaning of delay expressions is the same as the meaning of
their subexpressions. Delay expressions only have an effect on code generation, so a
low-level operational semantics which realizes the dynamic translation would have to
model the delayed generation of target code.

69

70 Chapter 5. Incremental Compilation

Syntax extension:

(terms) Term 3 K,L ::= . . .
| delay K delay expression

Type system extension:

(delay)
Γ; ∆ ` K ok

Γ; ∆ ` delay K ok

Figure 5.1: CPS language extension for incremental compilation

5.2 Code Generation for Delay Expressions

When the code generator encounters a delay expression, it does not generate the code
for the wrapped term, but instead generates a call to the run-time code generator.
In order to access the free variables of the delayed expression, the call is preceded by
a sequence of instructions which pushes the values of all free variables to the stack
and by extending the compile-time environment to record these new mappings for
the variables. The parameters for the call to the code generator are:

− The number of words on the run-time stack.

− The current compile-time environment, which records the mapping from vari-
able names to locations.

− The term which is wrapped in the delay expression.

− A pointer to the current state of the run-time compiler.

− A machine code label for the first parameter-pushing instruction in this sequence
(needed for patching later).

After this code sequence, instructions are generated for loading the result value of
the call into a register and for jumping to the returned address.

The instruction sequence generated for the delay expression is quite short (about a
dozen instructions), so code generation is finished quickly.

When later during the execution of the program the call to the code generator is
reached, control is transferred to the run-time compiler. It proceeds by (a) placing
new delay expressions in the body term (if any, see below), (b) generating code for
that body, (c) patching the calling instruction stream with a jump to the freshly
generated code, and (d) returning the address to the calling code.

The following pseudo-machine code demonstrates the compilation of delay expres-
sions. Suppose we have a term

t = delay (k x)

which represents a delayed continuation call. The following code will be generated:

5.2 Code Generation for Delay Expressions 71

push <k> ; push the values of free variables

push <x>

L0: ; address to patch later

push <stack-depth>

push <compile-time-env>

push <term>

push <execution-state>

push L0

call <generator> ; initiate code generation

pop-arguments ; remove all parameters from the stack

jmp <return-value> ; invoke newly-generated code

When the code is executed, the free variables k and x will be pushed to the stack and
the code generator is called with its arguments. It will then generate code similar
to the following (ignoring closure pointers for clarity), which loads x from its stack
location to its correct parameter location and k into a register and then jumping to
the continuation through the eax register.

L1:

mov eax, [esp+4] ; load continuation address

mov ebx, [esp] ; move parameter to correct location

mov [esp+4], ebx

add esp,4 ; adjust stack pointer

jmp eax ; invoke continuation

After this code is generated, we need to update the original instruction stream to
avoid another code generation for the delayed expression when it is executed again.
So the code sequence for the delay expression above will be modified in memory to
read:

push <k> ; old code

push <x>

L0:

jmp L1 ; <--- new instruction

<garbage> ; old code, partly overwritten

push <term>

push <compile-time-env>

push <execution-state>

push L0

call <generator>

pop-arguments

jmp <return-value>

The instructions after the jmp L1 are now unreachable and could be re-used by
a sophisticated code buffer manager. Note that writing the jump instruction into

72 Chapter 5. Incremental Compilation

memory will probably partly overwrite old instructions, which are no longer well-
formed instructions. Since they will never be executed, this is no problem, though.

On the second execution of the delayed expression, the only inefficiency left is the
pushing of the free variables and the patched jump instruction.

5.3 Placing of Delay Expressions

Of course, wrapping a delay expression around every subterm of a program is inef-
ficient, because the call of the code generator and code generation take some time.
We need to selectively add delay expressions to subterms, and this decision can be
based on measurements, static heuristics, or both.

In our implementation we have experimented with the following heuristics: delay
expressions are only wrapped around bodies of user functions, because these tend to
be the places where code generation for large expressions can be avoided by inserting a
single delay expression. Other expressions, which represent straight-line code (value
bindings, primitive operations, projections, etc.) do not gain from being delayed,
because code can be generated quickly for these. The other language construct where
we add delay expressions is in the branches of case expressions, because some branches
of case expressions will never be executed on a successful program run, for example
tests for error conditions and their handling. Other branches will only seldomly be
executed, so we hope to save time for the majority of program runs. The drawback of
this scheme is that some branches will be executed on all program runs, so delaying
them wastes time.

Therefore, in addition to static heuristic measures, we have added some profiling
support. For all functions, continuations and branches of case expressions, the system
can be instructed to generate instrumentation code. The instrumentation instructions
count how many times during a program run a particular function, continuation or
case alternative is executed. When the program halts, these counters are written
to disk, and on the next run, the counters are read in again and made available to
the code generator. The algorithm for placing delay expressions can now consult the
counters to decide whether to delay the body of a particular function, continuation
or branch, or not. In the simplest case, only code which has not been executed in the
last run will be delayed. More static or dynamic measures could of course be taken
into account, but we have not yet investigated this topic any further.

Additionally, we can apply the simple rule that bodies of polymorphic functions are
never delayed, since their code is generated on demand when they are applied anyway
(see Chapter 6 on Run-time Monomorphization). Code generation for polymorphic
functions is thus always incremental, so delaying them would not save on code gen-
eration time or code size, but would instead incur overheads because two calls to the
code generator would be made in sequence.

Incremental compilation is initiated by wrapping a delay expression around the com-
plete program. Since code generation for delay expressions triggers additional place-
ment of delay expressions on subterms, the complete program will eventually be

5.4 Discussion 73

selectively delayed.

5.4 Discussion

Note the close relationship of the implementation of delay expressions to lazy evalu-
ation and closure representations. Similar to lazy evaluation, work is deferred until
it is needed. In our case, code generation is avoided, in lazy evaluation computation
is avoided. When the code is eventually needed, we generate it and update the in-
struction stream to jump to the newly created code. This is similar to updates of
heap nodes in implementations of lazy evaluation, where indirection nodes are used in
some implementations (for example the Spineless tagless G-Machine, (Jones, 1992)).
Similar to closure representation, the code generated for a delay expression closes
the abstract syntax tree of the wrapped expression with respect to its free variables
(by pushing them on the stack and recording their locations) and the compile-time
environment (which is stored in the instruction stream and used later for code gen-
eration).
In order to gather some experimental results on the effectiveness of delayed compila-
tion, we have performed some experiments which are presented in Chapter 8.

74 Chapter 5. Incremental Compilation

Chapter 6

Run-time Monomorphization

Based on the intermediate program representation defined in Chapter 4, we now
develop a dynamic specialization strategy which eliminates polymorphism from func-
tional programs at run-time. Specialization of polymorphic programs with respect
to types is called monomorphization, because it results in monomorphic programs
(Boquist, 1999; MLton Developers, 2006).

Monomorphization is a simple but effective method for reducing the run-time cost
of language abstractions. In functional languages, abstractions such as functions,
polymorphism, type classes and parameterized modules are used very frequently, and
their efficient implementation is the key to the usability of such languages.

Except for the treatment of type classes in Section 6.1.3, the techniques in this thesis
should be applicable to any polymorphic functional languages with algebraic data
types and higher-order functions.

The main goal of our dynamic compilation system is the reduction of unnecessary
indirections due to abstractions. Polymorphic data types and functions require either
a uniform representation of data and functions, or specialized versions of all used
functions for the data types actually occurring in a program. In an open system,
such specialization at static compile time is not possible, because the compiler cannot
know which data types may be used in any possible program run. Therefore, in our
approach, code and data specialization is deferred until run-time, where all needed
data types are known and monomorphic code for all polymorphic functions can be
produced.

The basic idea is that polymorphic functions are translated to code generators, and
that calls to polymorphic functions pass types for which the target function should
be specialized. Each call to a polymorphic function therefore generates new machine
code, specialized to the given types. Caching techniques are used to avoid too many
specialized variants of a polymorphic function.

Decompilation and deoptimization techniques (Kotzmann and Mössenböck, 2005)
can be used once a violation of the assumptions of the specializer is detected and the
needed invariants can be reestablished by recompiling the code.

Our specialization implements several language features, which are all useful in their
own right, but can be combined for best effect: run-time monomorphization creates

75

76 Chapter 6. Run-time Monomorphization

monomorphic instances of polymorphic functions for all usages. Monomorphization
can also be used for specializing polymorphic data types. Dynamic type class res-
olution is an implementation technique for type classes which is different from the
dictionary-based implementations normally used (Hall et al., 1996; Augustsson, 1993).
This kind of type class resolution can be compared to the work of Jones (1995), but
since we do monomorphization of (parametric) polymorphic functions anyway, dis-
covering method invocations and the identification of overloaded functions is much
simpler and can be done in parallel to the monomorphization.

In earlier work, all these abstractions required different implementation techniques.
In the following sections, we will show that our approach subsumes them in a fairly
simple specialization model.

In our prototype implementation, we have implemented specialization of polymorphic
functions, resolution of overloaded literals and arithmetic operations and specializa-
tion of polymorphic data types, including data representation and layout optimiza-
tions.

Other possible applications of dynamic specialization can be found in Section 9.2.2.

6.1 Specialization of Polymorphic Functions

Polymorphism in functional languages means one of two language features: paramet-
ric polymorphism, which allows the definition of functions over unknown types, and
ad-hoc polymorphism or overloading, which refers to the possibility of giving the same
name to different entities. The run-time specialization approach in this section can
eliminate all overhead which may result from both of these abstraction constructs.

6.1.1 Polymorphic Functions

Polymorphic functions are functions defined over values of unknown types. Consider
for example the classic map function, which applies a function to all elements of a
list. This function has the type:

map : ∀αβ.(α→ β)→ List α→ List β

The universally quantified type variables α and β are arbitrary, but fixed in the type.
Polymorphism is a very powerful abstraction mechanism. It allows the programmer
to write very general functions, which can be partly oblivious to the types of the
values they operate on. The disadvantage is that it is difficult to generate a machine
code sequence which realizes the algorithm of such a function. Since the type of
the function does not have any information on the machine representation of the
parameters, an implementation must compromise: either a uniform representation
is chosen for all data types, or separate versions of the function must be created,
each for a different type. In the former case, the representation of values cannot be
exploited by using special instructions or calling conventions which may be provided

6.1 Specialization of Polymorphic Functions 77

by the machine for particular data types, in the latter, many nearly identical versions
of code must be generated.
Our first use of specialization is used to remove parametric polymorphism from the
program code actually executed. The idea is simple: when a polymorphic function
is instantiated (that is, applied to a type parameter), the actual type parameter is
substituted for the formal parameter in the body of the function, and this body is
then passed to the code generator. Since the code generation is based on the special-
ized instances of the function definitions, the code generator can take advantage of
the fact that all type information is present. It can therefore use the most efficient
machine representations and calling conventions for a given data type for the ma-
chine executing the program. For example, integer values can be passed in different
registers than floating-point values, and different machine instructions can be used
for the addition, comparison, etc. of machine representations. These specializations
are already done in many static whole-program compilers, but in dynamic compilers,
the approach is much more flexible.

The Specialization Mechanism

The specialization mechanism is invoked when a type function is called. This can
only take place after some code has already been executed, because programs are
required to be monomorphic at the top level, and only embedded function definitions
can be polymorphic. This is the mechanism for function monomorphization:

1. All functions which receive any type parameters are compiled specially by the
code generator. They are always functions which return functions (this is guar-
anteed by the CPS conversion), so their body always consists of local function
definitions, closure creations for the defined function and a call to the success
continuation which passes one of the closures. Instead of directly generating
code for the function body, a call to the run-time specializer is generated. This
call sequence consists of pushing the arguments for the specializer onto the
stack, calling the code generator which generates specialized code and then
jumping to the freshly generated code. The parameters for the code genera-
tor include: all actual type parameters, the current compile time environment
(mapping variable names to locations), a pointer to the AST of the function
itself, the current execution state of the virtual machine, and the current stack
depth. The compile time environment and the stack depth are required so that
the code generation for the specialized function body can access the parameters.
This is important, because the function body will call its success continuation.

2. The code generator takes the list of actual type parameters from the run-time
stack and the list of formal type parameters from the function AST, and then
substitutes the former for the latter in the AST. The resulting AST is monomor-
phic,1 and the code generator is called on it, returning the start address of the

1Actually, the resulting code may contain polymorphic functions, but before any of them could
be executed, it would be monomorphized recursively.

78 Chapter 6. Run-time Monomorphization

let id x = x

in id id ()

Figure 6.1: Identity function example

newly generated code block. This address is passed back to the code generated
in step 1, which jumps to it.

The specializer avoids the generation of duplicate code by maintaining a mapping
from function definition/type list-pairs to addresses of compiled code. When it is
applied to a concrete list of types and a function definition to specialize, it looks up
the pair in the mapping and returns the address of already generated code if possible;
otherwise, the code is generated and its address is stored in the mapping.
Another optimization, described in more detail in Section 7.2, is inline caching. De-
pending on a command line option, the code generator generates a series of com-
parisons before the call to the specializer. These comparisons compare the actual
type parameters against values stored in the machine code, which are written to the
instruction stream after each specialization. In the common case where a function
is repeatedly called with the same type parameters, these checks succeed and jump
around the specializer call, loading a constant address to jump to instead, which
also has been placed by the specializer. This sequence of checks is much faster than
a call to the specializer. For similar reasons, inline caching has been used for the
implementation of object-oriented languages (Detlefs and Agesen, 1999).

Specialization Example

Consider the small example program in Figure 6.1. The polymorphic identity function
id is defined, and it is first applied to itself, and then the result is applied to the
value () (which denotes the single element of the unit type).
Figure 6.2 lists the code which is produced for this example by the code generator.
The register edi is used as the heap pointer, registers edx and ecx are used for
passing parameters.
Lines 1–8 of the machine code create closures for the identity function and a continu-
ation, which is not of interest here. The continuation definitions have been omitted.
Heap overflow checks and calls to the garbage collector have also been deleted to save
space, and the code was compiled with inline caching switched off. The first few la-
bels refer to continuation code which will be ignored here, but note the code starting
at label id.0 (line 22). The push instructions and the call invoke the specializer, and
after it returns, the address of the generated code is loaded into register eax and then
jumped to.
The code which is generated on the first call to the identity function in the example
program (id id) results in the code shown in Figure 6.3. The lines up to the first
label construct a closure for the monomorphized identity function which starts at
label lam2.4 (line 8). This closure is then passed to the success continuation (lines
4–7).

6.1 Specialization of Polymorphic Functions 79

1 add edi,8H ; allocate heap memory
2 mov dword ptr [edi-4],0b7a0215cH; initialize closure
3 mov dword ptr [edi-8],13H
4 add edi,10H
5 lea ebx,[edi-24] ; allocate heap memory
6 mov dword ptr [edi-8],ebx ; initialize closure
7 mov dword ptr [edi-12],0b7a02088H
8 mov dword ptr [edi-16],15H
9 sub esp,4H ; set up arguments

10 mov ebx,dword ptr [esi+12]
11 mov dword ptr [esi+16],ebx
12 lea edx,[edi-16] ; load success continuation
13 mov dword ptr [esp],14H
14 lea ecx,[edi-24]
15 jmp [0b7a0215cH] ; jump to function
16 k6.14: [b7a02088]
17 ...
18 k9.19: [b7a020ec]
19 ...
20 k11.23: [b7a02144]
21 ...
22 id.0: [b7a0215c]
23 pushad ; save registers
24 push 0b7a0215fH ; push arguments
25 push dword ptr [esp+36]
26 push esp
27 push 1H
28 push 19H
29 push 1aH
30 push 0b7a0216aH
31 push 12H
32 push 1H
33 call [0b7c6701cH] ; call specializer
34 add esp,24H
35 popad ; restore registers
36 mov eax,dword ptr [esi+24] ; load address of generated
37 jmpn eax ; code and jump

Figure 6.2: Assembler code for identity example

80 Chapter 6. Run-time Monomorphization

1 add edi,8H
2 mov dword ptr [edi-4],0b7a0226bH
3 mov dword ptr [edi-8],13H
4 lea ecx,[edi-8]
5 mov eax,dword ptr [edx+4]
6 add esp,4H
7 jmpn eax
8 lam2.4: [b7a0226b] ; code for identity function
9 mov ecx,dword ptr [esp] ; load argument for

10 mov eax,dword ptr [edx+4] ; success continuation
11 add esp,4H
12 jmpn eax ; jump to continuation

Figure 6.3: Assembler code for identity example: integer version

1 add edi,8H
2 mov dword ptr [edi-4],0b7a021c6H
3 mov dword ptr [edi-8],13H
4 lea ecx,[edi-8]
5 mov eax,dword ptr [edx+4]
6 add esp,4H
7 jmpn eax
8 lam2.1’: [b7a021c6] ; floating-point version
9 mov eax,dword ptr [edx+4] ; no argument moving necessary

10 jmpn eax

Figure 6.4: Assembler code for identity example: floating-point version

In our example, the second invocation of the identity function specializes the function
for the unit type, which results in exactly the same code because the unit type and
closures are both represented as 32-bit machine words.

Figure 6.4 shows the code which would result if the identity function was specialized
for the type float. The code for building the closure and returning remains unchanged,
because it is independent of the type parameter in this case. The monomorphized
identity function (which starts at label lam2.1’ in the example) is different from the
integer version: it does not even need to copy its input, because the first floating
point parameter for both functions and continuations is always passed in the same
register.

We can see in these examples how all generated code is independent of the types
insofar as no tag handling or type passing is required for monomorphized code.

6.1 Specialization of Polymorphic Functions 81

1 data Tree a = Leaf a

2 | Node (Tree (a, a)) (Tree (a, a))

3 let size t :: Tree a -> Integer =

4 case t of

5 Leaf x -> 1

6 Node l r -> size l * 2 + size r * 2

7 in

8 let val t1 = Node (Leaf (1, 2))

9 (Node

10 (Leaf ((3, 4), (5, 6)))

11 (Leaf ((7, 8), (9, 0)))) :: Tree Integer

12 in

13 puti (size t1) (\ v -> v)

Figure 6.5: Polymorphic recursive example program

6.1.2 Polymorphic Recursion

One complication of our dynamic monomorphization approach arises in the presence
of polymorphic recursion. Polymorphic recursion means that a recursive function calls
itself (or other recursive functions in the same group of mutually recursive functions)
with different types than those with which it was called. As an example, see the
program in Figure 6.5, which defines both a polymorphic recursive data type Tree a

(lines 1–2) and a polymorphic recursive function size (lines 3–6), which calculates
the number of data elements in the tree. The program defines a tree (lines 8–11) and
writes the tree’s size (10 in the example) to the output (line 13).
The function size has the type annotation Tree a -> Integer, because our pro-
totype implementation can only infer polymorphic recursive types in the presence
of type annotations. This is similar to Haskell, which also supports polymorphic
recursion for type-annotated functions.
The data type definition means that a value of type Tree a is either a leaf, which
carries a value of type a, or an internal node with two children of type Tree (a, a).
That means that the leafs on each level have the same number of data elements, and
that a leaf at level n + 1 has twice as many data elements as a leaf at level n. The
tree constructed in the example program in Figure 6.5 is shown in Figure 6.6.
Polymorphic recursive data types similar to the one presented here can be used to
type balanced and/or complete binary trees, for example.
When our monomorphization technique from the previous section is used for spe-
cializing polymorphic recursive functions, the following problem occurs: for each
recursive call, which is a type application of a new type, a new specialized version
of the function is created. The example program above would lead to three spe-
cializations for the size function: for the types Integer, (Integer, Integer) and
((Integer, Integer), (Integer, Integer)). Of these types, the latter two have
the same machine representation, which is a pointer to a heap allocated structure (a

82 Chapter 6. Run-time Monomorphization

(1,2)

((3,4),(5,6)) ((7,8),(9,0))

Figure 6.6: Polymorphic recursive example tree

tuple). Same machine representations lead to the same machine code, so code buffer
space is wasted. The first type is represented as an unboxed integer value. Therefore,
it should suffice to generate two specialized versions, one for unboxed integers and
one for tuples.

We have solved this problem by grouping types with the same machine representation
into equivalence classes. The specializer only creates new versions of polymorphic
functions for new types when no specialization for the equivalence class of that type
has been generated. The example program in Figure 6.5 then leads to the desired
two specializations.

We currently distinguish three equivalence classes:

32-bit word Unboxed 32-bit value. Members of this class are not interpreted by the
garbage collector. The built-in integer type and function pointers are in this
class.

64-bit floating-point Floating-point values have special register passing conven-
tions. Otherwise, they are also not interpreted by the garbage collector.

32-bit pointer Pointer to a heap-allocated record. These are traced by the garbage
collector and must point to a header which defines the record layout.

When needed, this set of classes can easily extended, e.g. with 32-bit floating-point
or 64-bit or 128-bit integer values.

Polymorphic recursive data types like the type Tree a above are handled in the same
way by distinguishing members of the given equivalence classes (see Section 6.2).

Note that because of our support for polymorphic recursion, call sites of polymorphic
functions can not be patched to jump to the monomorphic code like we have done
for incremental compilation in the previous chapter. The problem is that one call
site can possibly refer to calls with different concrete type parameters, so that the
code which is generated for each call may expect different calling conventions and
data layout. Therefore, no patching is done for monomorphized code and we rely on
inline-caching for efficiency.

6.1 Specialization of Polymorphic Functions 83

6.1.3 Type Classes

Type classes in Haskell (Hall et al., 1996) have originally been developed in order to
tackle the problem of ad-hoc polymorphism (also called overloading) in a statically-
typed language with type inference in a systematic way. The idea is to define classes
of types by specifying a set of functions on these types, and then to add types to the
classes by giving specific instances of these functions (also called methods). As an
example, consider the class Eq a, which is the class of all types a that define equality.
By giving instances, such as the instance Eq Integer for the integers, the type class
gets populated. Note that in order to define an instance, a type-specific equality
function (in the example for integer numbers) needs to be written.
In Haskell, the (simplified) definition of the Eq class looks similar to the following:2

class Eq a where

eq :: a -> a -> Bool

neq :: a -> a -> Bool

neq x y = not (eq x y)

The type signatures for eq and neq declare them as methods, and the last line provides
a default method for neq. Because of this default method, it is not necessary for all
instances of Eq to provide a definition of this function, as it can be taken from the
class. An instance for type Bool is given next:

instance Eq Bool where

eq True True = True

eq False False = True

eq _ _ = False

Here, the method eq for type Bool is defined by pattern matching over the construc-
tors False and True. When the function neq is used with boolean arguments, it will
use the definition from the type class above, wich in turns calls the eq function for
Bool and negates its result.
In our language, user-defined type classes are not supported. Some operators which
can be found in the Haskell type classes Num (+, −, ×, /, negation) and Ord (<, >,
=, 6=, ≥, ≤) are instead built into the compiler, as described in Section 4.3.2.
Most of the machinery for overload resolution is already provided by function special-
ization: when type values are substituted for type variables, the type annotations on
overloaded integer literals and polymorphic primitive operators are instantiated with
concrete types. The code generator is therefore given fully type-annotated monomor-
phic code. Integer literals which are annotated with the type float, for example can
then be coerced to float literals during code generation, without any costly run-time
type conversions.
The only drawback of this approach is that error messages are delayed: some type
errors cannot be found at type inferencing time, but only later, when a polymorphic
function is called at a particular type and its code is generated for the first time.

2Haskell uses infix operators instead of eq and neq.

84 Chapter 6. Run-time Monomorphization

Extension of our intermediate language and type system to support type classes
is a topic of future work (Section 9.2.3). Combining type passing, cases on type
constructors, optimization and dynamic specialization would lead to elimination of
all overhead related to type classes.

6.2 Data Type Specialization

Similar to the specialization of polymorphic functions in the previous section, poly-
morphic algebraic data types can also be made monomorphic at run-time. The spe-
cialization algorithm from Section 6.1.1 only substitutes types for type variables, it
does not state anything about the representation of constructor terms. When compil-
ing for a real machine, these representation decisions have to be made. In traditional
implementations of polymorphism, polymorphic values are represented in a standard
form, normally as pointers to memory blocks which have the correct size to hold
values of the used type. When functions are monomorphized, there is no need for a
common representation, instead the representation can be tailored to the data type
under consideration. The advantages are similar to the case for functions: individual
data values can make better usage of machine-specific representations and access time
to data elements can be reduced.
One disadvantage for using this technique in lazy functional languages is that it must
be combined with strictness analysis or programmer-supplied strictness annotations
in order to discover opportunities for optimization. Without strictness information,
the optimizer has to assume that each element of an algebraic type has the additional
value ⊥, so that unboxing cannot be performed without changing the behavior of the
program.
Kafka, as a strict language, does not suffer from this problem, but further investiga-
tion of dynamic specialization and laziness is also a topic for future work.
Modern processors are very sensitive to the layout of compound data in memory and
to access patterns to these data elements. Large, but slow memories and multiple
layers of cache memory of limited size require optimization of storage layout for the
cache architecture of the machine on which a program is running. With a dynamically
compiling system, data structures can be optimized for the executing machine when
a program is run.
Of course, not all such optimizations can be expressed in our high-level description,
but only in a low-level language for expressing data layouts. Our implementation
handles the ordering of data fields on the level of the CPS language, but alignment
is done by the code generator on the fly.
Since performance of programs on modern processors depends greatly on the ability
to make use of data and instruction caches, we focus on this aspect of data represen-
tation. While most optimizations on programs target instruction cache locality, data
representations affect the locality of the data caches.
When specializing data structures, we need to take several aspects into account:

− Data structure elements should use their native encoding, to avoid any boxing

6.2 Data Type Specialization 85

and unboxing or tagging and untagging overhead.

− Values should be aligned for optimal access times. On some platforms, it may
even be necessary to align them, e.g. on SPARC (Weaver and Germond, 1994),
which raises a hardware exception for unaligned accesses.

− Data structure elements should be grouped together so that cache locality can
be exploited. Often used elements should be put together, less frequently used
elements can be put out-of-line. This is an optimization for future work (see
Section 9.2.4).

6.2.1 Type-directed Representation Selection

First of all, we have to decide how to represent the different types of the source
language.

− Values of the predefined integer type are represented as 32-bit signed words.

− Values of the predefined floating-point type are represented as 64-bit IEEE
floating-point numbers.

− The predefined Boolean type is represented as if it were declared as the algebraic
data type

data Bool = False | True

in the source program.

− The predefined unit type is represented as the integer 0. Theoretically, values of
this type would never need to be explicitly represented, but doing so simplified
our implementation.

− Closures are represented as pointers to heap records, where the first field is a
header, the second a function pointer and the free variables are represented as
if they were members of a user-defined constructor (see below).

− User-defined algebraic types are in principle represented as pointers to heap-
allocated records (for exceptions, see below). The first field is a header, the
second a small integer representing the variant (also called the tag). All other
fields are represented as described in this section (recursively) and layed out as
described in the next section.

− Tuples are also represented like user-defined product types, but without the
need for a variant tag.

We have additionally implemented the following type-directed data representation
optimization for algebraic types:

− Data types where no variants contains fields (enumerations) are represented as
consecutive small integer values. This allows efficient dispatch on the construc-
tors.

86 Chapter 6. Run-time Monomorphization

− Data types which have both constructors with and without fields use both
unboxed and boxed representations: constructors without fields use unboxed
small integer values, constructors with fields use pointers to allocated heap
records. When a case distinction is made on values of this type, the unboxed
variants are tested first, when the value does not correspond to an unboxed
variant, it is safe to load the first word from the heap object the value points
to. Dispatch then proceeds on the constructor tag stored in the heap-allocated
record.

Heap pointers can always be distinguished from unboxed constructors because the
latter are small integers which are different from valid heap addresses on most ma-
chines. On machines without unused ranges in the address space, data types with at
least one variant with a field, all values of these types would need to be boxed.
The propagation of type information to the code generator allows to represent in-
teger values as full machine words, without any need for tagging (as was used in
the SML/NJ compiler, for example (Appel, 1992)). Using the type information, the
code generator can construct precise tables describing which registers and stack slots
contain possible pointers to heap cells and which do not.
The second step in choosing a representation is the layout of individual fields, which
is described below. Fields of different sizes should be grouped such that there are no
unnecessary gaps due to alignment. This requirement can be fulfilled using only size
information of individual fields.

Examples

The boolean type

data Bool = False | True

is represented by the integers 0 and 1.
The list type

data ListInt = Nil | Cons Integer ListInt

(which results from specializing the type List a for type Integer) is represented by
the integer 0 for the Nil variant and a tagged pointer to a heap-allocated record of
3 words: a tag, the integer field and a pointer to the rest of the list. Note that the
tag for this data type is not really necessary, because there is only one boxed variant,
but our implementation does not currently do this optimization. The type Maybe a

= Nothing | Just a can be represented similarly.
Figure 6.7 shows possible data representations for values of type List Integer and
List Float. In both cases, the constructor Nil can be represented by the integer
0. The Cons constructors should have different layouts for the Integer and Float

instantiations. The List Integer object (arbitrarily) has the data value in the
second slot (after the constructor tag), whereas for the List Float object, the data

6.2 Data Type Specialization 87

(a)

(b)

hdr cons 2

hdr cons 3.1459

Figure 6.7: Possible data representations for (a) List Integer and (b) List Float

cons

double 3.1459

Figure 6.8: Common data representation for List Float

field occupies two words. Since the header and the tag are eight bytes long, the
floating-point field follows directly, as it is 8-byte-aligned.
Consider the representation which is used in most existing functional language im-
plementations, shown in Figure 6.8. (The header field is omitted.) Here, the double
value is boxed to achieve a uniform layout of heap objects. The overheads are in-
creased memory requirements (thus increased allocation and garbage collection time)
and additional indirections to access the data.

6.2.2 Data Layout Algorithm

We have designed and implemented a simple data layout algorithm for structures
allocated on the heap. The goal of the algorithm is to determine good layouts for
algebraic data types, tuples and closures. The results should enable the following:

− Fields should be aligned at the boundaries required for their machine types.

− Cache locality should be improved by reducing memory requirements.

The algorithm proceeds in three steps:

1. For each field, its original index in the record, its size and alignment is calcu-
lated.

2. The fields are sorted by decreasing size (using a stable sort).

3. When a field is not aligned now at its natural alignment boundary, dummy
fields of word size are inserted before the field until it is aligned properly. Rhis
step is performed for all fields from first to last.

88 Chapter 6. Run-time Monomorphization

This information is used for the following tasks. The sizes of the fields and their
alignment must be known, because when creating a constructed value, a tuple or a
closure, the size to be allocated is the sum of the aligned sizes of all fields. The original
field indices are then required to map the fields in the intermediate representation to
the memory locations in the optimized layout. Similarly, on projections from tuples
and closures, the projection index must be mapped to an offset in the heap record.
Case expressions, which are used to extract fields from algebraic data types, also have
to fetch the fields in order to move them to the stack or to registers.
The resulting code is very efficient, because all references to fields are mapped to
constant offsets in the machine codes. Due to the specialization of polymorphic data
types, the implementation is free to choose any memory layout it wants. In our
prototype implementation, the optimized memory layout can be switched off using a
command line option, in order to measure its performance impact and to experiment
with alternative layout algorithms.
In Section 9.2.4, we propose some improvements to this basic layout strategy, for
example grouping of fields which are often used together.

Chapter 7

Implementation

The concepts and techniques presented in the previous chapters have been imple-
mented as a prototype system called Kafka. In this chapter, we give details on
several aspects of the implementation and discuss the optimizations used for improv-
ing the intermediate code. Most of the optimizations are adaptations of classical
transformations for functional languages adapted to our intermediate language and
specialization techniques. We also give a concrete description of the implementation,
about its size, its implementation language and used libraries.

7.1 Implementation Outline

The prototype system was implemented in Haskell (Peyton Jones, 2003) and de-
veloped using the Glasgow Haskell Compiler (GHC) (GHC Developers, 2008). The
project consists of about 10 300 lines of Haskell code, including the parser, type
checker, optimizer, code generator, virtual machine and stand-alone compiler.
The system runs on IA-32 (or x86 architecture) computers as described in Intel’s
developer manual (Intel Corporation, 2006). It has so far only been tested on
GNU/Linux systems.
Some of the timing results in Chapter 8 have been gathered using the rdtsc instruc-
tion of the Pentium processor. This instruction was accessed using the small Haskell
library rdtsc (Grabmüller, 2008), which is a small wrapper around a C function which
invokes the rdtsc instruction using inline assembler.
Except for the rdtsc library, the complete prototype system is written in pure Haskell.
We emphasize this fact because it shows that Haskell is well-suited for both writing
system-level programs (such as the code generator or garbage collector) and express-
ing high-level algorithms, such as Milner-Damas-style type inference and complicated
program transformations.

7.1.1 Front End

The parser was implemented using the Parsec parser combinator library (Leijen and
Meijer, 2001).

89

90 Chapter 7. Implementation

The type checker implements Milner-Damas-style type inference and uses an exten-
sion of algorithm M (Lee and Yi, 1998), which includes a dependency resolution al-
gorithm for identifying mutually recursive functions. The output of the type checker
is the fully typed language which is described in Chapter 4 as the “source language”.

7.1.2 Conversion and Optimization

The result of typechecking is the input to the CPS conversion described in Chap-
ter 4. CPS terms are optimized using several optimizations described below, then
closure-converted (see also Chapter 4), optimized again and fed to the code generator.
The reason for two rounds of optimization is that the closure conversion introduces
opportunities for optimization which are not present before this phase, for example
projections from known closures.

7.1.3 Code Generation

Machine code generation is performed using the Haskell library Harpy (Grabmüller
and Kleeblatt, 2007). This library allows the generation of machine code directly into
a memory buffer and provides label management, patching of forward references,
checking for code buffer overflow and a disassembler. It also defines a convenient
domain-specific language for assembler programming in Haskell, using type classes
for supporting various addressing modes. The Harpy library has about 7 600 lines of
Haskell source code (including the disassembler, which alone amounts to 2 700 lines).

7.1.4 Run-time System

The run-time code generator is part of the run-time system. Whenever a delay
expression is executed or a polymorphic function is called, the code generator is
invoked. Its main purpose is to generate monomorphic code and to place new delay
expressions, but in theory it could do any useful transformation on the program it is
to process. We have not exploited this possibility yet.

The garbage collector is a simple two-space copying collector (Cheney, 1970). At
the beginning of each function, a check for heap overflow is generated. When the
check fails, the values of all registers are saved to the stack and two bitmaps are
passed to the collector: one specifies which registers hold live pointers into the heap,
and the other specifies the live pointers on the stack. The collector than copies the
objects pointed to by these pointers (and some globally known pointers) into an
empty memory area. Then all live pointers recursively contained in these objects are
copied, until the complete live object graph is in the new memory area. The old area
can then be reused in the next collection cycle. In order to correctly interpret the
fields of heap objects, the first word of each object is a pointer to a descriptor, which
also contains a bitmap identifying pointer fields.

7.2 Optimizations 91

7.2 Optimizations

Our prototype system implements a number of standard optimizations, because oth-
erwise the results of measuring specialization effects cannot be compared to other
language implementations, which all contain optimizations similar to the ones we
describe here.
We will only briefly describe the optimizations, but when specialization or dynamic
compilation has an effect on some optimization, we mention it below in their descrip-
tions.
In this section, we will use example programs in the source language instead of the
CPS language, in order to maintain readability.
The following optimizations are performed during compilation:

Function inlining User functions used only once are inlined at their call sites.
Inlining of user functions is also important in implementing other optimizations, for
example uncurrying (see below). Therefore, functions introduced by other optimiza-
tions can be marked for inlining, so that they are forced to be inlined even when
called more than once. Inlining is a standard (but important) optimization for all
optimizing compilers, but especially for functional languages, where most functions
are small and function calls are frequent.
Inlining is affected by our specialization technique. Polymorphic functions are trans-
lated to functions which receive types as parameters. When such a function is inlined,
the actual parameters (which are type variables) must be substituted in terms as well
as in types. This is necessary because all intermediate terms are annotated with types,
and types can appear at the term level for applications of type functions.

Continuation inlining Continuations used only once are inlined at their call sites.
This is especially important for the continuations which are generated for the alterna-
tives of a case expression, because these are always called once. Continuation inlining
must includespecial handling of type parameters for the same reason as function in-
lining.

Case idiom recognition Case expressions often scrutinize boolean variables which
are the result of some primitive comparison operator. These are converted to a special
form of primitive conditional expressions. The reason is that most instruction sets
allow conditional jumps only on the result of some comparison instruction – this does
not work well with comparisons on algebraic data types representing boolean values,
because the boolean results must be represented in order to perform a case analysis
on them. This optimization has also been described by Appel (1992, p. 75).

Uncurrying Curried functions (that is, nested λ abstractions in the source lan-
guage) are inefficient when applied to several arguments at once, because for each
abstraction, an intermediate closure is created which is immediately called. There-
fore, the uncurrying optimization extends nested function definitions into functions

92 Chapter 7. Implementation

which take several arguments at once, and adjusts the call sites to provide all ac-
tual arguments together. We use the uncurrying method described by Appel (1992,
p. 76), which converts curried functions to uncurried ones and adds curried wrapper
functions. These wrappers are then inlined at their call sites, effectively uncurrying
the function call.
As mentioned by Tarditi (1996), Appel’s transformation is underspecified and does
not necessarily result in uncurrying of functions with more than two arguments. Like
Tarditi, we have fixed this problem by applying the uncurrying optimization in the
order from outer to inner expressions.
Uncurrying is affected by the specialization on polymorphic functions, because we
cannot merge a type abstraction with a value abstraction when the type of the latter
depends on the former parameter. Consider the following example:

let id = \ a: *. \ x: a. x

in ...

If we uncurry this definition, we get the following function:

let id = \ (a: *, x: a). x

in ...

The problem is that when generating machine code for such a definition, we do not
know the representation of the type a, so cannot correctly calculate whether the value
of x will be placed in an integer register, a floating-point register or on the stack.
Therefore, our implementation avoids uncurrying in this manner and all functions
receive either type or value parameters. Independent type and value parameters
could be uncurried together, but in our test cases these functions were extremely
rare, so this is probably not worth the effort.

Common subexpression elimination (CSE) The common subexpression elim-
ination phase replaces values which are calculated several times by the variables to
which the values have already bound. Our CSE is flow-insensitive, as it does not take
control flow around loops into account. Thus, it only eliminates common subexpres-
sions when one lexically dominates the other.

Dead variable elimination Unused bindings of values, projections, continuations,
functions and closures are removed from the program. The results of primitive op-
erations are only removed when the operation cannot have any side effect (such as
raising an exception).

Constant folding Primitive operations on constants are calculated at compile
time, except when the operation would cause an exception at run time (for example,
division by zero). Constant folding often enables dead variable elimination for the
operands.

7.2 Optimizations 93

Projection elimination Projections from known tuples or closures are performed
at compile time. In some cases, when the projection is the only use of a tuple
or closure value, the construction of the respective object can be removed by dead
variable elimination (see above).

Case elimination Cases on known values are reduced at compile time. This opti-
mization is important because inlining often creates case expressions which scrutinize
known values, so this optimization not only saves run-time (by eliminating a test and
a branch instruction), but also removes unreachable code. This can improve compile
times significantly, which is always a concern in dynamically compiling systems.

Floating-point register assignment Since the IA-32 architecture provides so few
integer registers, where most of them are used to hold the virtual machine state in our
implementation, and others have fixed uses for parameter passing, there is not much
point in sophisticated register allocation for these registers. Floating-point registers,
on the other hand, are plenty, so we have implemented a simple register assignment
scheme which tries to hold as many floating-point intermediate results as possible in
registers.

Inline caching Specialization of polymorphic functions requires that each call to a
polymorphic function checks whether a specialization for the actual type parameters
already exists. Since this check is rather expensive (in our implementation, it is writ-
ten in Haskell, and the transition from JIT-compiled code to Haskell code is costly1),
we have implemented an optimization called inline caching. In object-oriented sys-
tems, this optimization is used to avoid method lookups (Detlefs and Agesen, 1999).
The idea is to generate a short instruction sequence which tests whether the actual
type parameters are equal to the ones given the last time the function has been
called. If they match, the code from the last specialization can be used, otherwise,
the specializer is invoked. After specialization, the values tested in the code sequence
are overwritten by the specializer by modifying the testing code: constants in the
instruction stream which refer to types are overwritten with the new types, and the
jump instruction at the end of the inline code is overwritten to jump to the newly
generated code. Since the short in-line sequence of code is very fast, the overall
execution time is reduced significantly.

Recursion optimization Without any precautions, self-recursive calls of polymor-
phic functions always go through the specializer (or at least through the inline caching
mechanism). In addition to the overhead caused by checking whether a specialized

1Transitions from Haskell code to compiled code and vice versa go through Haskell’s Foreign
Function Interface (FFI), which involves checking for interrupts and whether garbage collection is
necessary, marshalling and unmarshalling of arguments and results, etc. This has non-negligible
overheads.

94 Chapter 7. Implementation

version exists, the type parameters have to be passed and this results in curried func-
tions (see above in the description of uncurrying on page 91). Recursion optimization
modifies polymorphic recursive functions so that the function body is changed into a
let expression which binds a new local function to the old function body. The body
of the let calls the local function. Since the local function is monomorphic, no spe-
cialization overhead occurs. As an example, consider the following recursive function,
which calculates the length of a list:

let len = \ a:* -> \ l: List a -> case l of

Nil -> 0

Cons x xs -> len a xs + 1

It is converted to the following:

let len = \ a:* -> \ l: List a ->

let len’ = \ l: List a -> case l of

Nil -> 0

Cons x xs -> len’ xs + 1

in len’ l

The local function can be compiled to a loop without any specialization overhead.
This optimization has been called “Loop headers in λ-calculus or CPS” by Appel
(1994), because it is related to loop header introduction in the compilation of loops
for imperative languages.
For polymorphic recursive functions, this optimization is not valid, because it assumes
that data representations for recursive calls at one call site are always the same.
Therefore, we do not apply this optimization for polymorphic recursive functions.

Data layout optimization The fields of tuples, closures and constructed values
of algebraic data types are rearranged in order to align them properly. For example,
64-bit floating-point fields are always aligned at an 8-byte boundary. Our data layout
algorithm is defined in Section 6.2.

Data alignment optimization When the virtual machine is run, the alignment
of allocated heap data (tuples, closures and constructor applications) can be specified
on the command line. The decision of an optimal alignment could also been based
on the executing processor and its memory organization, but this has not been inves-
tigated for our prototype. In contrast to the previous optimization, this one refers to
alignment of heap objects in memory, not to the alignment of individual fields in one
object.

Code alignment optimization When the virtual machine is run, the alignment
of jump targets in the generated machine code can be specified on the command line.
Intel Corporation (2005) recommends to align jump targets at 16-byte boundaries,
but for the programs we tested, this option did not affect run-time at all, probably
because our benchmark programs can be kept completely in the first-level cache.

Chapter 8

Experimental Results

In order to establish the practicability of our approach, we have conducted a num-
ber of experiments for measuring and comparing the performance of our prototype
implementation. The experiments investigate the impact of compiler optimizations,
the performance of the produced code relative to other implementations of functional
programming languages and the compile times of our dynamically compiling system.
This chapter describes the test methods, the hardware used, the benchmark programs
and presents the measured results.
The results show that our prototype has competitive performance on several small
benchmarks, when compared to mature statically compiling implementations. For
one program of realistic size, performance is within a factor of ten when compared to
an optimizing Haskell implementation, but only requiring half of the time to compile
the program.

8.1 Test Methodology

We have first measured the performance of our prototype implementation in order
to test the effect of the implemented optimizations. All benchmarks were performed
multiple times: first with all optimizations switched on, then with all optimizations
switched off. After that, we have tested the effect of twelve optimizations by individ-
ually switching them off.
In a second set of measurements, we have written the benchmark programs in vari-
ous other languages (functional, imperative and object-oriented) and compared the
performance of our prototype to other language implementations.
The third experiment consisted of porting a larger benchmark program from the
literature to our prototype and comparing it to several other languages.
All benchmarks were done on a Intel Pentium 4 CPU, running at 2.4 GHz with
512 MB of RAM and a second-level cache of 512 KB. The operating system used was
Debian GNU/Linux 4.0 with a Linux kernel version 2.6.18.
Each benchmark program was run three times, and the best result was used. Timings
were obtained using the time built-in command of the bash shell, and user times are
reported.

95

96 Chapter 8. Experimental Results

Name Description
nfib nfib function (integer version)
rfib nfib function (floating-point version)
pfib nfib function (both integer and floating-point version)
nlenrev construct a list of integers, reverse it, calculate length
rlenrev construct a list of floating-point values, reverse it, calculate length

Table 8.1: Common benchmark programs

The benchmarks in the different languages have been written in a way to maximize
their performance. For example, when special operators are available for small in-
tegers, these have been used, and we use built-in list functions when available. In
several cases, we have also measured other program variants, so that the comparison
between different languages is easier.

8.2 Benchmark Programs

In order to compare the performance of our prototype implementation to other lan-
guage implementations, we have written a suite of small benchmark programs. The
benchmarks can be put into three different groups:

− Function-call intensive programs with a high amount of basic arithmetic oper-
ations.

− Data-structure intensive programs which create large dynamic data structures
and traverse them.

− A realistic benchmark program.

In the first category, called fib, we have implemented several versions of the nfib pro-
gram from the nofib benchmark suite for Haskell (Partain, 1993). The nfib function
counts the number of function calls required to calculate the Fibonacci number of
the input n. In the second group we have implemented the lists benchmarks, which
work on linked lists. And finally, the trees benchmark constructs and searches binary
search trees. The last group contains only one program: the floating-point intensive,
realistic, Pseudoknot benchmark.
Table 8.1 summarizes the common benchmarks, which have been implemented in all
languages, whereas the special benchmarks in Table 8.2 have only been written for
languages which support them, or in order to get additional insight into the actual
benchmark results.

fib The programs in this group are aimed at testing function call efficiency and the
implementation of basic arithmetic operations. The first version of the fib bench-
mark is called nfib and works with native machine integers. We have made sure (by

8.2 Benchmark Programs 97

Name Description
ffib 32-bit floating-point version of rfib
nfibmod modular version of nfib
pfibmod modular version of pfib
nlenrevnogc nlenrev without garbage collection
rlenrevnogc rlenrev without garbage collection
tree search tree construction and searching
pseudoknot float-intensive realistic benchmark

Table 8.2: Special benchmark programs

using type annotations or special arithmetic instructions when necessary), that all
implementations work on integers not larger than a machine word, so that we can ex-
pect the best possible performance for each implementation. The rfib version works
with floating-point numbers, which are implemented as 64-bit IEEE floating-point
numbers in all implementations. The pfib benchmark calculates both with integer
and with floating-point numbers, and uses the same, polymorphic implementation for
both uses. This version tests the efficiency of polymorphic functions and overloaded
arithmetic.

Additionally, in order to evaluate several aspects of some implementations, we have
written three special versions of the fib theme: pfibmod is the same as pfib, but with
the polymorphic function in a separate compilation unit. Nfibmod is the same for the
integer version. The ffib program works on 32-bit floating-point numbers instead of
64-bit values.

lists The nlenrev and rlenrev benchmarks are data structure intensive programs
which each construct a list of one million elements, reverse the list and then take the
length of the result. Similar to the fib benchmarks, nlenrev works on integer lists and
rlenrev on lists containing floating-point values.

Since garbage collection is a weak spot in our implementation, we have made addi-
tional experiments where the heap size allocated on startup is large enough to that no
garbage collection has to take place during the benchmark run. These benchmarks
are called nlenrevnogc and rlenrevnogc.

trees The tree benchmark creates two unbalanced binary search trees, one small
tree with mixed contents and one created by repeatedly inserting elements of a sorted
10 000-element list. The trees are searched for values which are in the trees and for
one value which is not. The tree test program also belongs to the data structure
intensive benchmarks.

pseudoknot This is a floating-point intensive realistic program which solves a prob-
lem from molecular biology. It is described in detail in Section 8.5 below.

98 Chapter 8. Experimental Results

Code Optimization Description
ci Case idioms Recognize cases on comparison results
if Inline funs Inline user functions
ic Inline conts Inline continuations
il Inline Inline both functions and continuations
uc Uncurrying Uncurry functions and continuations
cs CSE Common subexpression elimination
dv Dead Vars Remove unused bindings
cf Const Folding Folding of operators, projections etc.
ly Layout Data structure layout
fp FP Regs Optimize floating-point register assignment
rc Recursion Create local versions for recursive functions
ca Inline Cache Inline caching for polymorphic code

Table 8.3: Measured optimizations

8.3 Effect of Implemented Optimizations

The effect of optimizations is quite difficult to predict, mainly because different op-
timizations interact in complicated ways. Additionally, optimizing transformations
are in general not commutative, so the order in which they are carried out can affect
the performance of the resulting program significantly.

So in order to measure the effects of our implemented optimizations, we have com-
piled and run the benchmark programs with various optimizations switched off, and
compared the running times with the times for a run with all optimizations switched
on and without any optimizations, respectively. In Table 8.3, the optimizations mea-
sured and their abbreviations (to be used in the result tables) are summarized. All
optimizations are described in detail in Section 7.2.

Results

Tables 8.4 and 8.5 summarize the results. The “O0” lines reports the run times when
all optimizations are switched off (command line option -O0), whereas the “O2” lines
denote the results for fully optimized programs (command line option -O2). Both
lines are highlighted in the tables for better readability. All other lines are showing
the results for the benchmarks when one particular optimization is turned off (the
abbreviations for the optimizations are given in Table 8.3). The second column gives
the absolute run time in seconds and the third column gives the run time relative to
the “O2” line. The names of the benchmarks are the names from Tables 8.1 and 8.2,
but with the suffix “opt”.

Longer run times for a disabled optimization mean that the optimization is good,
because switching it on reduces run times.

The run times include parsing, type checking and various transformations and opti-

8.3 Effect of Implemented Optimizations 99

mizations, such as CPS conversion, closure conversion, all optimizations not switched
off, and machine code generation. Since the benchmark programs measured in this
section are small, most of the run time is used up by running the code, not by
compiling it.

For the benchmark pfibopt, we cannot report results for optimization level -O0, be-
cause the benchmark allocates too much memory to successfully terminate. For some
other benchmarks, the heap size had to be increased in order to run them successfully.
In the case of nlenrev and rlenrev (O0), 400 MB of heap were allocated, for the other
list benchmarks 70 MB. All tree benchmarks were performed with 200 MB of heap.
The nfib benchmarks ran with the default heap size of 1 MB.

General Remarks

The completely unoptimized programs are 2.7–12 times slower than the fully opti-
mized programs.

nfib For the floating-point version, the difference between the unoptimized and the
fully optimized program is less than for the integer version. This is probably due to
more memory traffic in the floating-point code. Switching off individual optimizations
can improve run times by up to 3%.

lists The difference between integer and floating-point code is similar to the nfib
benchmarks.

trees For this benchmark, we have set the input size to 4000, because the unopti-
mized programs use more memory than is available in the test machine.

The tree benchmark seems to contain functions for which uncurrying has a negative
effect. Therefore, switching off uncurrying or function inlining (which is required by
uncurrying) makes the program run much faster, up to 40%.

Remarks on Individual Optimizations

The case idiom optimization (ci) has an effect of about 1–2%, and sometimes it slows
down the program.

Switching off inlining functions (if) changes run times by a few percent (both up and
down), and has more significant effects for the lists (slower by about 100%) and tree
benchmark (faster by about 40%). This makes it very difficult to recommend it.

Inlining continuations (ic) is very important for our implementation, because many
continuations are introduced which can be removed when e.g. functions are inlined.
Therefore, switching this optimization off gravely affects performance.

Switching off inlining (il) in general (both user functions and continuations) has
similar effects than inlining of continuations, which stresses that continuation inlining
is more important than function inlining.

100 Chapter 8. Experimental Results

nfibopt 40
impl time rel

cs 8.405 0.98
cf 8.437 0.99
if 8.465 0.99
ca 8.477 0.99
fp 8.489 0.99
uc 8.505 1.00
ly 8.529 1.00
O2 8.545 1.00
rc 8.565 1.00
ci 8.705 1.02
dv 8.705 1.02
ic 25.418 2.97
il 25.434 2.98
O0 25.806 3.02

rfibopt 40
impl time rel

cf 11.725 0.97
cs 11.773 0.98
if 11.865 0.98
ca 11.901 0.99
ly 11.937 0.99
ci 11.953 0.99
rc 12.025 1.00
dv 12.033 1.00
O2 12.073 1.00
fp 12.085 1.00
uc 12.089 1.00
ic 32.162 2.66
il 32.878 2.72
O0 32.898 2.72

pfibopt 40 40
impl time rel

O2 20.229 1.00
cs 20.253 1.00
ly 20.325 1.00
cf 20.425 1.01
if 20.541 1.02
fp 20.561 1.02
ca 20.593 1.02
ci 20.665 1.02
uc 20.801 1.03
dv 20.817 1.03
il 58.504 2.89
rc 58.504 2.89
ic 58.536 2.89

Table 8.4: Benchmark results: effects of various optimizations (part 1), benchmark
pfibopt: measurements for “O0” missing (see text)

8.3 Effect of Implemented Optimizations 101

nlenrevopt 1000000
impl time rel

cf 1.372 0.99
fp 1.380 0.99
O2 1.392 1.00
ly 1.396 1.00
cs 1.404 1.01
ca 1.440 1.03
ci 1.444 1.04
dv 2.084 1.50
uc 2.660 1.91
if 2.708 1.95
il 7.052 5.07
ic 7.156 5.14
rc 8.129 5.84
O0 10.025 7.20

rlenrevopt 1000000
impl time rel

O2 3.576 1.00
ci 3.672 1.03
cf 3.676 1.03
cs 3.692 1.03
ca 3.720 1.04
ly 3.720 1.04
fp 3.744 1.05
dv 4.424 1.24
uc 7.324 2.05
if 7.440 2.08
O0 9.521 2.66
ic 14.025 3.92
il 14.161 3.96
rc 15.653 4.38

treeopt 4000
impl time rel

if 1.164 0.60
uc 1.304 0.68
O2 1.924 1.00
dv 1.928 1.00
ca 1.932 1.00
ly 1.940 1.01
ci 1.948 1.01
cf 1.956 1.02
cs 1.968 1.02
fp 1.984 1.03
ic 2.656 1.38
il 2.668 1.39
rc 2.788 1.45
O0 23.233 12.08

Table 8.5: Benchmark results: of effects various optimizations (part 2)

102 Chapter 8. Experimental Results

The uncurrying optimization (uc) is sometimes an advantage, sometimes a disadvan-
tage. For the fib benchmarks, which only have functions of one value argument, there
is no opportunity for uncurrying, so the compile-time effort is wasted. As mentioned
above, uncurrying gives very bad results for the tree benchmark.
Common subexpression elimination (cs) affects run time by up to 3%, but for most
benchmark there is no effect at all or even a slow down due to compile time costs.
Dead variable elimination (dv) does not give problems for these benchmarks and can
affect run time by up to 50% for the nlenrevopt benchmark.
Constant folding (cf) makes a difference of a few percent, in both directions.
Layout optimization (ly) has mostly an effect of 4% for rlenrevopt, since this bench-
marks has data structures (lists of floating-point values) which benefit most from this
optimization which aligns these values on 8-byte boundaries.
Optimization of floating-point registers (fp) has a small impact of 1–2% for most
benchmarks. For some benchmarks, run times improve when this optimization is
switched off. This is probably due to reduced compilation times, since several of the
benchmarks do not use floating-point values at all.
Recursion optimization (rc) is the most effective single optimization. The reason is
that, for polymorphic functions, it avoids a lookup in the specialization cache on each
recursive invocation.
The effect of switching off inline caching (ca) does not have much effects for the
benchmarks except for nlenrevopt and treeopt. The reason is that for the nfib bench-
mark, the recursive calls are monomorphic because of recursion optimization, so that
the inline cache is not used much.

8.4 Comparison to other Implementations

The common benchmark programs have been written in Kafka, Haskell (Peyton
Jones, 2003), Standard ML (Milner et al., 1997), C/C++ (Kernighan and Ritchie,
1988; Stroustrup, 1986), Scheme (Kelsey et al., 1998), Java (Gosling et al., 2000) and
Opal (Pepper, 2003).
The special benchmarks have not been implemented in all languages, see below for
details.
We have used the Glasgow Haskell Compiler (GHC Developers, 2008) for the Haskell
programs, MLton (MLton Developers, 2006) for the Standard ML programs, Bigloo
(Serrano and Weis, 1995; Bigloo Developers, 2008) for the Scheme programs, the
Opal Compilation System (Opal Group, 2004) for the Opal programs, the GNU
compiler collection C and C++ compilers (GCC Developers, 2008) and the Sun Java
development Kit (Sun, Inc., 2008) compiler and virtual machine for Java. The Kafka
programs are of course run by our prototype implementation.
Table 8.6 lists the versions of the language implementations.
All compilers have been used with optimizations enabled, the actual command line
arguments are listed in Table 8.7.
One important fact to keep in mind when interpreting the results in the next section

8.4 Comparison to other Implementations 103

Language Implementation Version
Kafka Kafka prototype system 0.1
Haskell Glasgow Haskell Compiler (GHC) 6.8.2
Scheme Bigloo 2.8c
Standard ML MLton 20061107
Opal Opal Compilation System (ocs) 2.3k
C/C++ GNU Compiler Collection (gcc) 4.1.2
Java Sun Java Development Kit 1.5.0

Table 8.6: Implementation versions

Implementation Optimization options
Kafka —
GHC -O2

Bigloo -O6

MLton —
Opal opt=full

C/C++ -O4

Java —

Table 8.7: Command line options for optimization

is that the various language implementations are not completely equivalent. For
example, some languages (such as Standard ML and Opal) perform overflow checking
on arithmetic, whereas the others do not. This is a disadvantage for the former
implementations. Also note that the Haskell implementations are lazy, and all other
implementations are call-by-value. Nevertheless, we think that even if it is a kind
of apple-to-oranges comparison, the numbers presented next are an indication of the
implementations’ performance in “real life”.

Results

Tables 8.8 to 8.10 give the results of our experiments. In each table, the first line
gives the name of the benchmark together with the input size. For example, the pfib
benchmark in Table 8.8 has been run with an input of 40 for the integer function,
and an input of 40 for the floating-point function as well.

Of course, since all benchmarks described here are small benchmarks which at best
correspond to small kernels of real applications, the results do not generalize to real
programs, they merely give an intuition of the performance under varying circum-
stances.

We will now discuss the results in detail.

104 Chapter 8. Experimental Results

nfib 40
impl time rel

bigloo 1.024 1.00
gcc 1.036 1.01
ghc 2.772 2.71
java 3.120 3.05
mlton 3.192 3.12
kafka 8.429 8.23
opal 10.349 10.11

rfib 40
impl time rel

gcc 2.756 1.00
java 4.676 1.70
mlton 8.329 3.02
kafka 11.805 4.28
ghc 18.653 6.77
bigloo 30.378 11.02
opal 55.071 19.98

pfib 40 40
impl time rel

gcc 3.848 1.00
mlton 11.057 2.87
kafka 20.337 5.29
ghc 22.325 5.80
bigloo 31.666 8.23
opal 122.944 31.95

pfibmod 40 40
impl time rel

ghc 140.817 1.00

ffib 40
impl time rel

opal 18.441 1.00

nfibmod 40
impl time rel

gcc 1.024 1.00

Table 8.8: Benchmark results: nfib

8.4 Comparison to other Implementations 105

nlenrev 1000000
impl time rel

mlton 0.040 1.00
opal 0.104 2.60
ghc 0.200 5.00
bigloo 0.208 5.20
java 1.184 29.60
kafka 1.452 36.30

nlenrev 1000000 nogc
impl time rel

bigloo 0.052 1.00
ghc 0.068 1.31
kafka 0.096 1.85
gcc 0.156 3.00
java 0.460 8.85

rlenrev 1000000
impl time rel

mlton 0.056 1.00
ghc 0.188 3.36
bigloo 0.208 3.71
opal 0.208 3.71
java 2.548 45.50
kafka 3.644 65.07

rlenrev 1000000 nogc
impl time rel

bigloo 0.060 1.00
kafka 0.092 1.53
ghc 0.100 1.67
gcc 0.144 2.40
java 1.040 17.33

Table 8.9: Benchmark results: lists

tree 10000
impl time rel

mlton 1.764 1.00
kafka 3.204 1.82
ghc 4.764 2.70
bigloo 9.369 5.31

Table 8.10: Benchmark results: trees

106 Chapter 8. Experimental Results

Results for nfib

nfib For the integer version of the nfib function, it is remarkable that the Scheme
version compiled by Bigloo is fastest. The main reason is that for the Bigloo version,
we used explicit fixnum arithmetic. Nevertheless, the fact that Bigloo is faster than
the C version is quite impressive, as Bigloo compiles to C and then invokes the C
compiler. The GHC version also comes out quite fast, because the strictness analyzer
detects that all computations can be performed strictly. GHC also performs special-
ization for the nfib function. Kafka is slower than most of the other implementations,
but note that parsing, type checking, optimization and code generation are included
in the timings for Kafka. Opal does not optimize function calls and simple arithmetic
well, apparently.

rfib For rfib, the results are quire different than for the last benchmark. GHC and
Bigloo apparently generate worse code for floating-point intensive programs. Even
though GHC again performs specialization, its floating-point code performs worse
then the integer code. MLton is a specializing whole-program compiler anyway, and
seems to generate good floating-point code, too. Bigloo takes a performance hit
because the implementation cannot use the faster fixnum arithmetic here. Kafka’s
handling of floating-point code by specialization pays off here, so we get good results.
The Java results show how good just-in-time compilation can perform.

pfib For the polymorphic version, Kafka performs especially well because of the
run-time specialization. The floating-point version of the polymorphic nfib function
runs just as fast as for the rfib benchmarks. For most implementations, the times of
the pfib benchmarks are approximately the sum of the nfib and rfib runs; only Opal
is much slower, because it lacks function polymorphism: all overloaded functions and
constants must be given as module parameters. For Java, we have no pfib imple-
mentation, because it lacks both polymorphic functions over primitive types and an
efficient means for simulating them.

pfibmod We have made another version of the pfib benchmark for Haskell, in order
to see how strictness analysis and type classes affect performance. In the pfibmod
program, the nfib function is placed in a separately compiled module. The effect is
dramatic: the modular version is about six times slower than the monolithic, because
no automatic specialization is done. Without specialization and strictness analysis,
laziness and the overhead of type classes cannot be avoided.

ffib Because of the bad performance of Opal for rfib, we have additionally measured
its performance when using 32-bit floating-point values instead of 64-bit values. The
run-time for ffib is roughly one-third of that for rfib, because 32-bit floating-point
values are represented more efficiently in the Opal run-time system.

8.5 The Pseudoknot Benchmark 107

nfibmod As a small additional check, we have made a modular version of the
nfib program for the C compiler, in order to see what effect modularity has for this
implementation. Interestingly, the modular variant is faster than the non-modular.
We think the reason is somehow improved memory layout for the separately compiled
version, which helps the cache system.

Results for lists

nlenrev For the nlenrev and the rlenrev benchmarks, Kafka is the slowest imple-
mentation. The reason is the slow garbage collector, and we have run these bench-
marks again with enough heap so that the programs do not have to perform any
garbage collection during the program run.1 The C version has been added to the
nogc results, because it does not free the memory allocated. The bad performance
of the C program is probably due to an inefficient memory manager: we used the C
library function malloc() for allocating list cells. For Java, we have used the class
LinkedList from the standard library and used automatic boxing conversions to put
integers and floating-point values into lists. As can be seen with these results, boxing
and unboxing in Java affects performance very much. The functional implementa-
tions, for which boxing is a very common problem, optimize it much better. Opal
performs very well on the list benchmarks, because the lists are used in a single-
threaded way, and Opal contains special code to dynamically reuse single-threaded
heap objects. This reduces memory allocation significantly and thus results in fast
execution. Without garbage collection, Kafka performs quite well.

rlenrev The results for rlenrev are similar to those for nlenrev, with a few ex-
ceptions. All implementations are slower, because more memory is allocated. Opal
performs worse because of inefficient handling of floating-point values. For the nogc
version, Kafka is better than in the integer list benchmark, because the specialized
representation of list cells containing floating-point values. Better floating-point code
when compared to other implementations could also have a small effect.

Results for trees

tree For the tree benchmark, we had to increase the heap size for the Kafka mea-
surements, because the created tree is larger than the default heap size. Given enough
room, Kafka performs quite well. We can draw the conclusion that data structure
handling also performs quite well in our implementation.

8.5 The Pseudoknot Benchmark

The Pseudoknot benchmark is a realistic program from the field of molecular biology.
It has been used in an experiment where 25 language implementations have been

1The machine on which the tests were performed has not enough physical memory to avoid
garbage collection for Java, but we have been able to reduce garbage collection to two invocations.

108 Chapter 8. Experimental Results

tested on the same problem (Hartel et al., 1996). The focus of this experiment was
on compile and execution times for all implementations. The program calculates the
three-dimensional structure of a molecule, based on several constraints on its atoms.
It requires a lot of operations on three-dimensional points and uses backtracking
search to find all solutions. The result of the program is the distance of the most
distant atom of all solutions, which has to be printed with six digits accuracy.

We have ported the Haskell version of the Pseudoknot benchmark to Kafka, which
resulted in a program of 3404 lines of code. This is by far the largest program which
has been written in Kafka and been tested using our prototype.

For this benchmark, we had to adapt the measuring techniques, because some parts
of our prototype system are not mature enough. In particular, we run the benchmark
in our prototype without optimization, because the optimizer is too slow and the run
time of the actual program too short to give meaningful results. Additionally, we
ran the benchmark with 100 MB of heap space in order to reduce invocations of our
rather slow garbage collector. We think this is fair, because the C version has no
garbage collector at all and the garbage collectors of the other implementations are
highly tuned.

We have compared our system to the C, Haskell, ML and Opal versions of the Pseu-
doknot benchmark. The C and ML versions work with 64-bit floating point numbers,
the original Haskell and Opal versions with 32-bit floating-point numbers (this was
allowed in the original benchmark, too). We have additionally measured the perfor-
mance of 64-bit floating-point Haskell and Opal versions in order to compare them
to the Kafka version. The C, Haskell and Opal version worked without modification.
The ML version had to be slightly modified because the original was written for the
Standard ML of New Jersey (SML/NJ) (Appel and MacQueen, 1987) compiler and
we were using the MLton compiler. Only changes caused by different ML libraries
were required.

Since one reason for a dynamically compiling implementation is to achieve the kind
of flexibility offered by an interpreter, we have also measured the run and compile
times for running the Pseudoknot program in the GHC interpreter ghci. This is a
non-optimizing bytecode interpreter, which otherwise shares its implementation with
GHC.

We measured the following setups:

− The run time of the C, Haskell, ML and Opal versions, with full optimization
switched on.

− The run time of the C and Haskell version, without optimization.

− The run time of the Kafka version (which includes parsing, type checking, con-
versions and code generation).

− The run time of the interpreted Haskell version.

− The compile times for the C, Haskell, ML and Opal version with optimization.

− The compile times for the C and Haskell version without optimization.

8.5 The Pseudoknot Benchmark 109

Impl Run (s) Comp (s) Run+Comp (s) Size (bytes)
C opt 0.035 6.649 6.684 154424
C 0.047 1.197 1.244 126296
Hs opt 0.282 7.837 8.119 460028
Hs 0.691 9.744 10.435 926396
Hs int ? 5.912 ? 4.536 10.448 —
Hs opt 64 0.294 7.824 8.118 476860
Hs 64 0.719 9.119 9.838 953180
Hs int 64 ? 6.113 ? 4.559 10.672 —
ML 0.061 8.410 8.471 276268
Opal 0.174 113.554 113.728 782400
Opal 64 0.760 39.616 40.376 491392
Kafka ? 3.586 ? 3.366 6.952 490474

? derived from Run+Comp (see text)

Table 8.11: Pseudoknot results

− The amount of generated code for each configuration (except for the interpreted
Haskell version).

− The Haskell and Opal versions were tested both with 32 and 64-bit floating-
point numbers

The optimized C version was compiled with optimization option -O4, the Haskell
version with option -O2. The ML version was compiled without compiler options.
The Opal versions were compiled with the options opt=full debug=no. The Kafka
version was run with options -O0 and -H100M.
Table 8.11 gives the results, some of which are graphically shown in Figures 8.1
and 8.2. In the first column, the name of the measured configuration is shown. “C
opt” is optimized C code, “C” is unoptimized C code, similar for Haskell (code “Hs”).
“ML” is the MLton version. “Opal” is the 32-bit floating-point version. All 64-bit
floating-point versions for Haskell and Opal are indicated with “64”. “Run” is the
run time in seconds reported by the time command, “Comp” is the compile time
in seconds for compiling the configuration. “Run+Comp” is simply the sum of run
and compile times. In the last column, the amount of generated code is shown. For
the C, Haskell, Opal and ML version, this is the size of the executable file without
any debugging information and symbols (as produced by strip), for Kafka, it is
the precise amount of machine code. For interpreted Haskell, no machine code is
generated, and the size of the generated byte code cannot be determined, therefore,
the last column is empty in these cases.
Since compile and run time are difficult to separate in the Kafka system, where
compilation and execution is interleaved, we have made the following approximation:
We have measured the complete run time of the program using the time stamp
counter register of the Pentium processor. This gives the precise number of machine

110 Chapter 8. Experimental Results

seconds

0

1

2

3

4

5

6

7
run time

C opt
C

Hs opt
Hs

Hs int
Hs opt 64

Hs 64
Hs int 64

ML
Opal

Opal 64
Kafka

Figure 8.1: Pseudoknot: run times

cycles elapsed. Additionally, we measured the time spent in the code generator using
the same technique (excluding the time spent in the context switch to the Haskell
environment, but this is hard to measure). The difference of complete time and
code generation time is called “useful time”, and includes both the running program
and the garbage collector. The percentage of useful time has then been applied to
the run time of the program as measured with the time command, resulting in the
values in Table 8.11. For interpreted Haskell, we have a similar problem: we cannot
measure the precise compile and run times. The numbers in the table result from
loading the Haskell program in the interpreter and immediately running it (command
line time ghci -XCPP Nuc.hs -e "main") and loading it and immediately quitting
the interpreter (command line time ghci -XCPP Nuc.hs -e ":q"). The run time
reported is then the difference between both times.

We have visualized the run times in Figure 8.1 and the combined run and compile
times are shown in figure 8.2. The bars for Opal in Figure 8.2 have been clipped and
annotated with the combined run and compile time because they are much larger
than for the other implementations.

Even though the Kafka implementation is much slower than the other compiled ver-
sions, this benchmark proves that efficient code generation is possible for high-level
languages at run time. Code is generated at a rate of approximately 142 KB per
second. Since our code generator is written in Haskell and not tuned for speed, we
think that is a satisfactory result. Our implementation produces code which is an
order of magnitude slower, but the run time and the compile time together are lower

8.5 The Pseudoknot Benchmark 111

seconds

0
1
2
3
4
5
6
7
8
9

10
11

run time

compile time

C opt
C

Hs opt
Hs

Hs int
Hs opt 64

Hs 64
Hs int 64

ML

113.728

Opal

40.376

Opal 64
Kafka

Figure 8.2: Pseudoknot: run and compile times combined

than the compile times of the other implementations, except for the unoptimized C
version. The amount of code generated is similar to that produced by the Glasgow
Haskell and Opal compilers.

The Opal versions are very fast, where the 64-bit floating-point version is slower
than the 32-bit version. This is similar to the results for the rfib/ffib benchmarks.
For Haskell, there is not much difference for both floating-point sizes. The Opal
compilation times are very large, but note that much of the compilation time is spent
in the C compiler, since Opal compiles to C. Interestingly, the compile time for the
64-bit floating-point version and the code size are lower than the 32-bit version, even
though it is slower. The reasons for this anomaly are unclear, maybe there is some
difference in inlining opportunities which could explain this. The compile times for
MLton are not much larger than for GHC. This is probably due to the fact that the
Pseudoknot program consist of very large static data structures, which MLton seems
to handle efficiently.

The Kafka version runs by a factor of about 10 slower than the compiled Haskell or
Opal version. We think that careful tuning of the optimizer, so that it can run on
programs of this size, will reduce this factor so that results similar to the ones of the
small benchmarks presented in the previous section can be achieved. Compared to
interpreted Haskell, our implementation is much faster, even though the incremental
dynamic compilation method provides in principle the same degree of flexibility.

112 Chapter 8. Experimental Results

Line Incremental Input Tot.Run (MCy) Codegen (MCy) # Gen Size
1 No 0 7868 3642 1 495082
2 No 1 10321 4079 11 508764
3 Yes 0 5192 ?0.66 868 ?0.23 3 811
4 Yes 1 9530 ??0.92 3158 ??0.77 134 391034

with profiling
5 Yes (1st) 0 5104 ?0.65 930 ?0.26 3 881
6 Yes (2nd) 0 6122 ?0.78 713 ?0.20 2 780
7 Yes (1st) 1 11217 ??1.09 3293 ??0.81 131 413485
8 Yes (2nd) 1 12164 ??1.18 4456 ??1.09 12 534867

? relative to line 1, ?? relative to line 2

Table 8.12: Results for incremental compilation

8.6 Effects of Incremental Compilation

The incremental compilation feature described in Chapter 5 affects run time in two
directions: first, compilation time is reduced because less code needs to be generated.
Second, when all code in the program is executed, compilation time is increased be-
cause the placement of delay expressions, the generation of calls to the code generator,
the invocation of the generation, patching code and accessing free variables from the
stack induce run time overheads.
In order to quantify these effects, and to see whether the technique of incremen-
tal compilation we have developed has any advantages, we have performed another
experiment.
We have taken the Pseudoknot benchmark described in the previous section and have
modified it so that the complete program is contained in a function. Additionally,
the main program asks the user for a number: when a 1 is given, the benchmark is
run, otherwise it is not run.
Because loading, type checking and converting takes so long with our prototype
implementation, we report different numbers in this section than the ones in the
previous section. For all program runs, we report the time spent in execution and code
generation as measured by the Kafka virtual machine using the rdtsc instruction. All
times reported in this section are measured in million machine cycles (megacycles ≡
MCy). The time needed for parsing, type checking, CPS- and closure-converting are
not included in the reported numbers. Optimizations were turned off again, as in the
previous section.

Results for Incremental Compilation

The results are shown in Table 8.12. The first column contains the line number to
be referred to later, column two tells whether the Pseudoknot program was executed
with incremental compilation switched on (“Yes”) or off (“No”). The third column

8.6 Effects of Incremental Compilation 113

gives the input to the program (1: run the benchmark, 0: do not run the benchmark).
The fourth column gives the number of megacycles spent executing the program (this
includes code generation and garbage collection time). The fifth column report the
number of megacycles spent in the code generator, and the sixth column tells how
often the code generator was invoked. The last column gives the amount of generated
code. The second numbers in the columns labelled “Tot.Run” and “Codegen” for the
incrementally compiled versions are the total run times or code generation times,
respectively, relative to the numbers in line 1 (for input 0) and 2 (for input 1).

Lines 1 and 2 are the results when incremental compilation is switched off. Lines 3
and 4 show them when incremental compilation is enabled, but when profiling feed-
back is switched off, and lines 5 to 8 give the numbers when both features are enabled.
The lines labelled “1st” correspond to a run where no previous profiling information
is available, the lines labelled “2nd” give the numbers when a previous profiled run
has already completed and profiling data is available.

When the input to the benchmark program is 0, that is, when the expensive back-
tracking search is not invoked, execution time is of course lower than when the search
is performed. In the case that incremental compilation is switched off (lines 1 and 2),
running the complete program (input 1) causes 11 code generations and about 10 KB
more code to be generated than for input 0. This is due to the fact that some func-
tions are polymorphic and are thus compiled when they are first called even when
incremental compilation is not enabled.

Line 3 shows that incremental compilation can reduce the amount of code which is
generated dramatically (of course, our benchmark is artificial, for real programs the
differences are probably less pronounced). Even though the number of code generator
invocation increases, the time spent in code generation and in total run time is also
reduced: code generation time is reduced by 77%, run time by 34%.

When the complete program is executed and incremental compilation is enabled
(line 4), we also see that the amount of code, the code generation time and the total
run time is less than for the non-incrementally compiled version. Even though code
generation is performed more than 10 times as often, total run time is reduced by 8%.
This effect is due to the fact that code generation is performed more quickly. Our
investigation of this astonishing fact revealed that this is probably an artifact of our
implementation: the placement of delay expression in the syntax tree speeds up some
analysis in the code generator. For example, the code which calculates how much heap
space is allocated in a function stops as soon as a delay expression is encountered,
because the deferred compilation of the body expressions will have their own heap
check instructions emitted when they are generated later. This means that for more
efficient or different analysis and code generation techniques, the incremental version
will probably not be faster than the non-incremental, because the additional code
which is generated for invoking the code generator will slow down the programs.

In lines 5–8 we can see that our heuristic of not delaying functions which have been
used in the last program run indeed reduces the number of delay expressions in the
syntax tree and thus reduces the invocations of the code generator. The amount
of code generated increases because instrumentation code is generated to count how

114 Chapter 8. Experimental Results

often functions/continuations and branch alternatives are executed. Additionally, the
algorithm for placing delay expressions needs to consult the tables of the previous run
in order to decide where to place them. This also costs time. But note that in line 6,
we can see that code generation time is reduced when compared to line 3, where no
profiling information is used. This encourages more research of the practicability of
profiling-based feedback in our setting.

8.7 Discussion

There are several interesting facts to be discussed:

− The Kafka implementation is able to reach a factor of two of the run times of
very mature and efficient language implementations for Standard ML, Haskell
and Scheme. For some benchmarks, Kafka is even faster than other implemen-
tations.

− The garbage collector currently implemented in our prototype is very slow. So
it is to be expected that the performance of our prototype underestimates the
performance of our approach in general.

− Modular programming in Haskell in the form of laziness, type classes and sep-
arate compilation has its price. Our approach could be used to overcome the
performance problems due to abstraction and type classes. Whether it is also
suitable for lazy languages remains an open research problem.

− The run times for Java prove that dynamically compiling system can offer very
good performance.

− The very good performance of the programs compiled by MLton can be seen as
an upper bound of our approach: MLton performs specialization and defunc-
tionalization, so the code actually executed is monomorphic as in our case. The
drawback of MLton is the restriction to whole-program compilation and slower
compilation. Our approach could again be a solution, but a more complete
implementation is needed to prove that expectation.

− When comparing the Pseudoknot results for interpreted Haskell and Kafka, we
draw the conclusion that it is possible to implement a functional language so
that it is as flexible as an interpreter, but with performance close to a statically
compiled implementation.

− Incremental compilation has the ability to reduce both code generation time and
overall run time for dynamically compiled functional programs. The usefulness
of profiling-based feedback needs further investigation.

In conclusion, the results presented in this chapter prove that it is possible to effi-
ciently produce high-quality machine code for a high-level language at run time.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, we have presented several techniques for the implementation of a run-
time compiler for functional programming languages. Our specialization methods
have the potential to eliminate the overheads of many language constructs heavily
used in modern functional programming languages: polymorphic functions, polymor-
phic data types and type classes, as well as proposed extensions: open functions and
data types, and parameterized modules. The ideas have been implemented in a pro-
totype system, which can perform monomorphization of polymorphic functions and
data types and additionally carries out a number of standard optimizations, of which
some had to be modified to play nicely with the dynamic compilation approach. The
basic idea of using run-time specialization for the implementation of functional lan-
guages looks promising: our experiments show that both generation of efficient code
and fast compile times are possible for functional programming languages.
With respect to the problems identified in Section 1.1.1, we give the following answers:

Feasibility of dynamic compilation for functional programs We have shown
that dynamic compilation of functional languages can be performed efficiently. The
compilation times reported in Chapter 8 are already encouraging, and we expect that
with some engineering effort they can be reduced further.

Balance of compilation and execution time The typed dynamic CPS repre-
sentation we have developed enables fast code generation as well as sophisticated
optimizations, both prior to execution and at run-time. The low-level nature of
closure-converted CPS terms allows efficient code generation, while also providing a
well-studied semantics and a wide variety of proven optimization techniques.

Suitability of classic optimizations We have implemented several optimizations
known from static functional compilers and have measured their effect on compile and
run time.

115

116 Chapter 9. Conclusions and Future Work

Techniques from other dynamic language implementations We have taken
the inline caching optimization from the implementation of object-oriented programs
and have shown its usefulness for functional languages. The incremental compila-
tion and delayed compilation of polymorphic functions is reminiscent of lazy method
compilation on object-oriented virtual machines.

Influence on dynamic language constructs We have shown how our specializa-
tion technique can eliminate the overheads of parametric polymorphic functions and
data types. We have also shown that ad-hoc polymorphism in the form overloaded
operators and literals is supported as well. The extension to other, more dynamic lan-
guage features should be relatively straightforward (see also below in Section 9.2.2).
This success encourages experimentation with other dynamic language features.

Summary of Contributions

We have made contributions in the following fields:

Compiler Design We have designed a typed continuation-passing style intermedi-
ate representation, which is well suited for type-based dynamic optimizations.
The language supports many language features required for a modern func-
tional language, such as type inference, polymorphic functions and algebraic
data types.

Optimization Techniques We have designed two techniques for dynamic special-
ization: first, a monomorphization algorithm for polymorphic functions and
overloaded operators. Second, a data type representation and layout analysis,
which is also based on dynamic specialization.

Language Implementation The techniques have been implemented in a working
prototype, which is able to run programs of realistic size. The implementation
is highly configurable: all optimizations can be switched on or off independently
and various parameters of the optimizer and code generator can be dynamically
modified. This gives a good test bed for experimenting with optimizations and
heuristics.

Experimental Results The performance of the generated code as well as the time
consumed by the dynamic compiler have been quantified. We have also com-
pared the performance against other functional language implementations, none
of which supports dynamic code generation comparable to ours.

9.2 Future Work

We see possibilities for future work both in theoretical and in practical directions.

9.2 Future Work 117

9.2.1 Theoretic Model

A complete theoretical model, possibly in some kind of specialization calculus, could
improve the understanding of the dynamic interaction in a dynamically specializing
system, especially in the presence of dynamic optimization. The field of partial
evaluation could be a good starting point.

9.2.2 Open Data Types and Open Functions

Functional programming languages normally impose a closed-world assumption: all
parts of a program are available at compile time, at least in the form of precompiled
libraries or interface files. This view precludes usage of modern techniques like plug-
ins or extensions, which can be loaded into a program when requested. Object-
oriented languages feature inheritance and subtyping for compiling and type checking
separately developed program parts (classes and interfaces), and therefore support
the development of such plug-ins. Algebraic data types, on the other hand, do not
support extension, and are therefore less suited for developing dynamic applications.
Type classes as in Haskell are open, but are less suited for modeling many problems
for which algebraic data types are normally used. As a solution, open data types
and open functions have been proposed. Löh and Hinze (2006) describe a language
with open data types and open functions and give a translation into normal Haskell,
but under the above-mentioned closed-world assumption. We could make use of
our existing machinery for run-time compilation in order to allow extension of both
algebraic data types and functions at run-time.
As an example, consider an algebraic data type in Haskell, which represents the
abstract syntax of lambda calculus terms:

data E = Var String | App E E | Abs String E

and the fragments of an evaluator for these terms (the syntax open eval declares
eval as an open function):

open eval

eval (Var x) = ...

eval (App e1 e2) = ...

eval (Abs s e) = ...

In the open data type and open function approach, it is possible to define additional
constructors for the data type and additional cases for the function, for example:

data E = ... | Const Int

eval (Const i) = ...

Open data types and open functions fit nicely into our framework: open data types
dynamically extend the defined constants (both at type and term level), and open
functions simply extend given function definitions. For this to work, imagine an input

118 Chapter 9. Conclusions and Future Work

language which provides the definition of functions by equations. This language can
be translated to a language with case statements easily (Wadler, 1987).

For the evaluator example above, the first data declaration and the first set of function
definition gives the following program:

data E = Var String

| App E E

| Abs String E

eval (Var x) = ...

eval (App e1 e2) = ...

eval (Abs s e) = ...

When the second set of definitions is loaded, the program is extended to the following:

data E = Var String

| App E E

| Abs String E

| Const Int

eval (Var x) = ...

eval (App e1 e2) = ...

eval (Abs s e) = ...

eval (Const i) = ...

The dynamic specialization mechanism will automatically use the new set of defini-
tions for the rest of the program evaluation.

When dynamically extending a set of functions, it is of course necessary to ensure
the correct ordering of functions. Again, a sorting algorithm which takes a certain
order relation on function definitions into account can be used.

A necessary extension of our dynamic compiler would be the possibility to invalidate
compiled code when new program fragments are loaded, as these may render earlier
compilations incorrect.

9.2.3 Type Classes

In our framework, type classes and instances could be implemented by adding type-
specific case expressions (or in the extension from the previous section: type-specific
function equations) to the syntax. Returning to our example of the type class Eq

from Chapter 6, we would simply add specific equality functions for all types which
should be instances:

eq (Int: *) (x: Int) (y: Int) = intEq x y

eq (Bool: *) (True: Bool) (True: Bool) = True

eq (Bool: *) (False: Bool) (False: Bool) = True

eq (Bool: *) (x: Bool) (y: Bool) = False

9.2 Future Work 119

Note how the more specific equations for the equality function for Bool come first,
and the last equation (using variables as parameters) denotes the default case.
The default method declarations in Haskell type classes, which allow to define meth-
ods in the body of a class declaration, can also be defined in our system. We can add
the following definition to our functions:

neq (a: *) (x: a) (y: a) = not (eq a x y)

Since this function will be automatically specialized for all types for which it is used,
the effect is the same as for default methods.
Jones (1995) has also investigated the effect of specialization for implementing type
classes. In contrast to the usual dictionary-passing implementations, Jones specializes
programs at compile-time and resolves all applications of overloaded functions. This
technique also relies on a closed-world assumption, and our system results in the
same degree of specialization, but in an open dynamic framework. Interestingly,
Jones reports that the specialization of type classes actually reduces the amount of
binary code, instead of the expected code growth. This is a very encouraging result.

9.2.4 Better Compiler

The current system design has been implemented as a working prototype which can
execute small to medium-sized programs efficiently. The logical next step in the
development is to complete the implementation and to make it more robust and
portable. The addition of more optimizations should be possible, but might require
more information about the program to be derived by additional analyzers. Several
important issues for a practical system have not yet been implemented. Proper code
buffer management is not yet realized in the prototype.
The applicability of the technique presented in this thesis to language abstractions
present in the ML family of languages, e.g. functors, has also not yet been under
investigation.
The design and implementation of specialization strategies, as well as an empirical
study of their effectiveness should be carried out. Another interesting avenue for
future work is the automatic (for example profiling-based) generation of application-
specific strategies.
The runtime compiler and the runtime system could and should be improved in
several ways. It needs a better register allocator, a better garbage collector etc.
Several specific topics for improvement are the following:

Overflow Checking A reliable programming language should support checks on
overflow for arithmetic operations. Standard ML and Opal, for example, check all
arithmetic operations and raise exceptions (or abort the program) if an overflow
happens. The MLton compiler shows that overflow checking does not necessarily
cause a significant slowdown for arithmetic-intensive programs, as can be seen from
the results in Chapter 8.

120 Chapter 9. Conclusions and Future Work

Type System The type system of the current implementation is very basic. It
should be extended to type classes and probably other modern type system features
which have proven useful in practice.

Improved Data Representation Our data representation does not yet exploit
all possibilities of type based representation analysis. For example, algebraic data
types which have only one variant with one field are “transparent”, and directly use
the representation of the field. When a data type has only one variant with fields
(which means, only one boxed variant), a constructor tag could be omitted. This
saves memory and speeds up case distinctions because it removes a redundant test.
Pointers to heap cells could also be tagged with special values in the low bits in order
to speed up case expressions. For data types with few boxed variants, the constructor
tag could be stored in unused bits in the pointer instead of bits in the header word of
the heap-allocated record. The use of tagged pointers has a performance benefit on
modern machines which normally have relatively precise branch prediction and high
clock rates (Marlow et al., 2007).
Additionally record fields which are used together should be placed near to each
other. This arrangement either needs profiling data to determine the “hottest” fields
or some heuristic which captures the real behavior of the system. In addition, it may
be useful to pack fields in such a way that unboxed values are separate from point-
ers, because this simplifies the descriptors needed for garbage collection. Currently,
our implementation uses bitmaps to indicate which words of a record may contain
pointers.
Other useful data representation optimizations include splitting arrays of pairs into
pairs of arrays. This also increases locality and avoids gaps due to alignment restric-
tions.

Graph-based Intermediate Language The prototype is based on tree-shaped
intermediate languages, which naturally arise from the use of algebraic data types
in functional languages. Unfortunately, it turns out that several transformations are
quite slow (for example dead variable elimination), because most of the intermediate
program must be copied even if relatively few modifications to the tree happen. An
alternative is to use a graph-based intermediate representation, such as the one used
by Kennedy (2007). The program graph contains links between variable definitions
and occurrences, so that substituting a variable for another can be performed in
constant time, and operations such as finding all uses of a variable is very efficient.
Another alternative would be to use a zipper (Huet, 1997) data structure, in the form
of control-flow graphs based on a zipper-like structure (Ramsey and Dias, 2005).

9.2.5 Instrumentation and Recompilation

Just-in-time compiling virtual machines for Java and other object-oriented program-
ming languages support instrumentation and recompilation. When a program is
executed, the bytecode is first either interpreted or compiled using a simple, but

9.2 Future Work 121

fast compiler. The interpreter or the code generated by the simple compiler counts
events, such as method invocations. When these counters indicate (by some heuristic
measure) that an event has occurred often enough, the code for the method is either
compiled (for the interpreter) or recompiled at a higher optimization level (for the
compiled version). The goal is to adapt the generated code to the dynamic behavior
of the program under execution.
Integration of a recompilation mechanism into our prototype would be desirable, as
it is necessary for advanced research in dynamic compilation and optimization. We
have implemented a basic instrumentation infrastructure, but it is currently only used
for controlling the placement of delay expressions when incremental compilation is
enabled.

9.2.6 Value Specialization

It would be possible to reuse the specialization mechanism for value specialization by
changing the heuristics which inserts calls to the run-time specializer. Currently, the
specializer is only called for type parameters in order to remove polymorphism, but
changing that would allow the code to be specialized for run-time parameters such
as the underlying system or tuning parameters. Similarly to the approach taken in
the Fabius system by Leone and Lee (1998) one could implement a sort of staging for
functions, based on currying; or we could request annotations from the programmer,
as in staged languages such as MetaML (Taha and Sheard, 2000). Whaley (1999)
has investigated value specialization for Java.

122 Chapter 9. Conclusions and Future Work

List of Figures

2.1 Virtual machine . 17

3.1 Dynamic specialization system architecture 36
3.2 Compiler phases and intermediate languages 37

4.1 Running example: input program . 41
4.2 Running example: type-checked . 41
4.3 Source language of CPS transformation (types) 43
4.4 Source language of CPS transformation (expressions) 44
4.5 Source language type system (part 1) 46
4.6 Source language type system (part 2) 47
4.7 Types of built-in constants . 48
4.8 CPS language (types) . 49
4.9 CPS language (expressions) . 50
4.10 CPS language type system (values) 51
4.11 CPS language type system (terms) 52
4.12 CPS transformation (part 1) . 54
4.13 CPS transformation (part 2) . 55
4.14 CPS transformation of types . 56
4.15 CPS transformation of functions . 57
4.16 CPS transformation of primitive functions 57
4.17 Running example: CPS converted . 58
4.18 Extensions for closure-converted CPS code 59
4.19 Type system extensions for closure-converted terms 60
4.20 Closure conversion (part 1) . 62
4.21 Closure conversion (part 2) . 63
4.22 Closure conversion (part 3) . 64
4.23 Closure conversion of types . 64
4.24 Running example: closure converted 66

5.1 CPS language extension for incremental compilation 70

6.1 Identity function example . 78
6.2 Assembler code for identity example 79
6.3 Assembler code for identity example: integer version 80

123

124 LIST OF FIGURES

6.4 Assembler code for identity example: floating-point version 80
6.5 Polymorphic recursive example program 81
6.6 Polymorphic recursive example tree 82
6.7 Possible data representations for (a) List Integer and (b) List Float 87
6.8 Common data representation for List Float 87

8.1 Pseudoknot: run times . 110
8.2 Pseudoknot: run and compile times combined 111

List of Tables

8.1 Common benchmark programs . 96
8.2 Special benchmark programs . 97
8.3 Measured optimizations . 98
8.4 Benchmark results: effects of various optimizations (part 1), bench-

mark pfibopt: measurements for “O0” missing (see text) 100
8.5 Benchmark results: of effects various optimizations (part 2) 101
8.6 Implementation versions . 103
8.7 Command line options for optimization 103
8.8 Benchmark results: nfib . 104
8.9 Benchmark results: lists . 105
8.10 Benchmark results: trees . 105
8.11 Pseudoknot results . 109
8.12 Results for incremental compilation 112

125

126 LIST OF TABLES

Bibliography

A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. M. Stichnoth.
Fast, effective code generation in a just-in-time Java compiler. In PLDI ’98: Pro-
ceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design
and Implementation, pages 280–290. ACM Press, 1998.

A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum, V. Menon, B. Murphy,
M. Serrano, and T. Shpeisman. The StarJIT compiler: A dynamic compiler for
managed runtime environments. Intel Technology Journal, 7(1), Feb. 2003.

J. Agat. Types for register allocation. In Proceedings of IFL’97, volume 1467 of
Lecture Notes in Computer Science, 1997.

O. Agesen. The Design and Implementation of Pep, A JavaTM Just-In-Time Trans-
lator. Theory and Practice of Object Systems, 3(2):127–155, 1997.

A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

A. W. Appel. Loop Headers in Lambda-Calculus or CPS. Technical Report TR-460-
94, Princeton University, 1994.

A. W. Appel. SSA is Functional Programming. ACM SIGPLAN Notices, 33(4):
17–20, 1998.

A. W. Appel and D. B. MacQueen. A Standard ML Compiler. In Proceedings of
the Conference on Functional Programming Languages and Computer Architec-
ture, volume 274, pages 301–324, Portland, Oregon, USA, September 14–16, 1987.
Springer, Berlin.

J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming
in Erlang. Prentice-Hall, second edition, 1996.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Architecture and policy for
adaptive optimization in virtual machines. Research Report 23429, IBM Research,
Nov. 2004.

M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey of adaptive
optimization in virtual machines. Proceedings of the IEEE, 93(2):449–466, Feb.
2005.

127

128 BIBLIOGRAPHY

L. Augustsson. Implementing Haskell overloading. In FPCA ’93: Proceedings of
the Conference on Functional Programming Languages and Computer Architecture,
pages 65–73, New York, NY, USA, 1993. ACM Press.

J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113,
2003.

J. Backus. Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs. Communications of the ACM, 21(8):613–641,
Aug. 1978.

J. Backus, R. Beeber, S. Best, R. Goldberg, L. Haibt, H. Herrick, R. Nelson, D. Sayre,
P. Sheridan, H. Stern, I. Ziller, R. Hughes, and R. Nutt. The FORTRAN automatic
coding system. In Proceedings Western Joint Computer Conference, pages 188–198,
Los Angeles, California, Feb. 1957.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimiza-
tion system. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, pages 1–12, New York, NY,
USA, 2000. ACM.

V. Balat and O. Danvy. Strong normalization by type-directed partial evaluation
and run-time code generation. In TIC ’98: Proceedings of the Second International
Workshop on Types in Compilation, pages 240–252, London, UK, 1998. Springer-
Verlag.

L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and Y. Zemach.
IA-32 Execution Layer: a two-phase dynamic translator designed to support IA-
32 applications on ItaniumTM-based systems. In MICRO 36: Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture, page 191,
Washington, DC, USA, 2003. IEEE Computer Society.

H. Barendregt. Lambda calculi with types. In Abramsky, Gabbay, and Maibaum, ed-
itors, Handbook of Logic in Computer Science, (Background: Computational Struc-
tures), volume 2. Oxford University Press, 1992.

J. R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, 1973.

G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software
updating (extended abstract). In Proceedings of Workshop on Unexpected Software
Evolution (USE’03), Apr. 2003.

Bigloo Developers. Bigloo Homepage. Available from: http://www-sop.inria.fr/

mimosa/fp/Bigloo/, 2008. Last visited: 2008-10-07.

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall, 1988.

http://www-sop.inria.fr/mimosa/fp/Bigloo/
http://www-sop.inria.fr/mimosa/fp/Bigloo/

BIBLIOGRAPHY 129

M. Blume, U. A. Acar, and W. Chae. Extensible programming with first-class cases.
In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN International Conference
on Functional Programming, pages 239–250, New York, NY, USA, 2006. ACM
Press.

U. Boquist. Code Optimisation Techniques for Lazy Functional Languages. PhD
thesis, Chalmers University of Technology, Gothenburg, Apr. 1999.

G. Bray. Implementation implications of Ada generics. Ada Letters, III(2):62–71,
1983.

P. J. Brown. Throw-away compiling. Software Practice and Experience, 6(4):423–434,
1976.

D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dy-
namic optimization. In CGO ’03: Proceedings of the International Symposium on
Code Generation and Optimization, pages 265–275. IEEE Computer Society, 2003.

D. L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manipu-
lation. PhD thesis, Massachusetts Institute of Technology, Sept. 2004.

T. Brus, M. C. J. D. van Eekelen, M. van Leer, M. J. Plasmeijer, and H. Barendregt.
Clean - a language for functional graph rewriting. In Kahn, editor, Proc. of Con-
ference on Functional Programming Languages and Computer Architecture (FPCA
’87), Portland, Oregon, USA, number 274 in Lecture Notes in Computer Science,
pages 364–384. Springer-Verlag, 1987.

R. G. Burger. Efficient Compilation and Profile-Driven Dynamic Recompilation in
Scheme. PhD thesis, Indiana University Computer Science Department, Mar. 1997.

R. G. Burger and R. K. Dybvig. An infrastructure for profile-driven dynamic recom-
pilation. In IEEE Computer Society 1998 International Conference on Computer
Languages, May 1998.

M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano, V. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño dynamic optimizing compiler for Java.
In Proceedings ACM 1999 Java Grande Conference, pages 129–141, San Francisco,
CA, United States, June 1999. ACM Press.

R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An Experimental
Applicative Language. In Conference Record of the 1980 LISP Conference, pages
136–143, Stanford University, Stanford, California, Aug. 1980. ACM Press.

H. Cejtin, S. Jagannathan, and S. Weeks. Flow-directed closure conversion for typed
languages. In European Symposium on Programming, pages 56–71, Mar. 2000.

G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN ’82:
Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, pages
98–105, New York, NY, USA, 1982. ACM Press.

130 BIBLIOGRAPHY

C. Chambers and D. Ungar. Customization: optimizing compiler technology for
Self, a dynamically-typed object-oriented programming language. In Proceedings
of the ACM SIGPLAN 1989 Conference on Programming Language Design and
Implementation, pages 146–160. ACM Press, 1989.

C. J. Cheney. A non-recursive list compaction algorithm. Communications of the
ACM, 13(11):677–678, Nov. 1970.

A. Chernoff and R. Hookway. Digital FX!32 – Running 32-Bit x86 Applications
on Alpha NT. In Proceedings of the USENIX Windows NT Workshop, Seattle,
Washington, Aug. 1997.

C. Consel and O. Danvy. Partial evaluation: Principles and perspectives. In Proceed-
ings of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, Jan. 1993.

K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in type-erasure
semantics. In ICFP ’98: Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming, pages 301–312, New York, NY, USA, 1998.
ACM Press.

R. J. Dakin and P. C. Poole. A mixed code approach. Computer Journal, 16(3):
219–222, 1973.

L. Damas and R. Milner. Principal type schemes for functional programs. In Pro-
ceedings 9’th ACM Symposium on Principles of Programming Languages, pages
207–212, Albuquerque, N.M, Jan. 1982. ACM Press.

O. Danvy and A. Filinski. Representing control: A study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

J. L. Dawson. Combining interpretive code with machine code. Computer Journal,
16(3):216–219, 1973.

D. Detlefs and O. Agesen. Inlining of virtual methods. In ECOOP ’99: Proceedings
of the 13th European Conference on Object-Oriented Programming, pages 258–278.
Springer-Verlag, 1999.

L. P. Deutsch and A. M. Schiffman. Efficient implementation of the Smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 297–302. ACM Press, 1984.

R. B. K. Dewar. Indirect threaded code. Communications of the ACM, 18(6):330–331,
1975.

R. Dockins and S. Z. Guyer. Bytecode verification for Haskell. Technical report,
Tufts University, Feb. 2007.

BIBLIOGRAPHY 131

DotGNU Project. DotGNU Project/Portable.NET. Available from: http://dotgnu.
org, 2004. Last visited: 2008-10-07.

D. Dubé. Demand-Driven Type Analysis for Dynamically-Typed Functional Lan-
guages. PhD thesis, Université de Montréal, Aug. 2002.

K. Ebcioglu and E. R. Altman. DAISY: Dynamic Compilation for 100% Architectural
Compatibility. Technical Report 8502, IBM, 1996.

ECMA International. Standard ECMA-334: Common Language Infrastructure
(CLI). 3rd edition, June 2005.

A. Ershov. On the partial computation principle. Information Processing Letters, 6
(2):38–41, 1977.

M. Feeley and G. Lapalme. Closure generation based on viewing lambda as epsilon
plus compile. Journal of Computer Languages, 17(4), 1992.

A. Fischbach and J. Hannan. Type systems for useless-variable elimination. In PADO
’01: Proceedings of the Second Symposium on Programs as Data Objects, pages 25–
38, London, UK, 2001. Springer-Verlag.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In Proceedings ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, PLDI’93, Albuquerque, NM, USA, 23–25
June 1993, volume 28(6), pages 237–247. ACM Press, New York, 1993.

M. S. O. Franz. Code-Generation On-the-fly: A Key to Portable Software. PhD
thesis, ETH Zürich, 1994.

C. W. Fraser, R. R. Henry, and T. A. Proebsting. Burg: fast optimal instruction
selection and tree parsing. SIGPLAN Notices, 27(4):68–76, 1992.

GCC Developers. GNU Compiler Collection Homepage. Available from: http:

//gcc.gnu.org, 2008. Last visited: 2008-10-07.

GHC Developers. Glasgow Haskell Compiler Homepage. Available from: http:

//www.haskell.org/ghc, 2008. Last visited: 2008-10-07.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTM Language Specification. Addison-
Wesley, 2nd edition, June 2000.

M. Grabmüller. Implementing Closures using Run-time Code Generation. Research
report 2006-02 in Forschungsberichte Fakultät IV – Elektrotechnik und Informatik,
Technische Universität Berlin, Feb. 2006.

http://dotgnu.org
http://dotgnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://www.haskell.org/ghc
http://www.haskell.org/ghc

132 BIBLIOGRAPHY

M. Grabmüller. A model of functional programming with dynamic compilation and
optimization. In H. Nilsson, editor, Trends in Functional Programming, volume 7.
Intellect, Apr. 2007.

M. Grabmüller. rdtsc – binding for the rdtsc machine instruction. Available on
the World Wide Web: http://uebb.cs.tu-berlin.de/~magr/projects/rdtsc/
doc/, June 2008. Last visited: 2008-10-07.

M. Grabmüller and D. Kleeblatt. Harpy: Run-time code generation in Haskell. In
Haskell Workshop 2007. ACM Press, Sept. 2007.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. DyC: An expressive
annotation-directed dynamic compiler for C. Theoretical Computer Science, 248
(1–2):147–199, Oct. 2000.

D. Gries and N. Gehani. Some ideas on data types in high-level languages. Commu-
nications of the ACM, 20(6):414–420, 1977.

L.-J. Guillemette and S. Monnier. A type-preserving closure conversion in Haskell.
In Haskell Workshop 2007, 2007.

C. V. Hall, K. Hammond, S. L. P. Jones, and P. L. Wadler. Type classes in Haskell.
ACM Transactions on Programming Languages and Systems, 18(2):109–138, Mar.
1996.

J. Hannan. Type systems for closure conversions. In H. R. Nielson and K. L. Solberg,
editors, Proceedings of Workshop on Types for Program Analysis, number PB-493
in Daimi Reports, pages 48–62, 1995.

J. Hannan and P. Hicks. Higher-order arity raising. In Proceedings of 3rd ACM SIG-
PLAN International Conference on Functional Programming, pages 27–38, Balti-
more, MD, Sept. 1998.

J. Hannan and P. Hicks. Higher-order uncurrying. Journal of Higher Order and
Symbolic Computation, 13(3):179–216, 2000.

R. Harper and M. Lillibridge. Polymorphic type assignment and CPS conversion.
Lisp and Symbolic Computation, 6(3–4):361–379, Nov. 1993.

R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis.
In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 130–141, New York, NY, USA, 1995.
ACM Press.

P. H. Hartel, M. Feeley, M. Alt, L. Augustson, P. Baumann, M. Beemster, E. Chail-
loux, C. H. Flood, W. Grieskamp, J. H. G. van Groningen, K. Hammond, B. Haus-
man, M. Y. Ivory, R. E. Jones, J. Kamperman, P. Lee, X. Leroy, R. D. Lins,
S. Loosemore, N. Röjemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas,

http://uebb.cs.tu-berlin.de/~magr/projects/rdtsc/doc/
http://uebb.cs.tu-berlin.de/~magr/projects/rdtsc/doc/

BIBLIOGRAPHY 133

P. Walters, P. Weis, and P. Wentworth. Benchmarking implementations of func-
tional languages with “pseudoknot”, a float-intensive benchmark. Journal of Func-
tional Programming, 6(4):621–655, 1996.

K. Hazelwood Cettei. Code Cache Management in Dynamic Optimization Systems.
PhD thesis, Harvard University, May 2004.

M. Hicks. Dynamic Software Updating. PhD thesis, Computer and Information
Science Department, the University of Pennsylvania, Aug. 2001.

U. Hölzle. Adaptive optimization for Self: Reconciling High Performance with Ex-
ploratory Programming. PhD thesis, Computer Science Department, Stanford Uni-
versity, 1994.

C. Hope and G. Hutton. Accurate step counting. In Proceedings of the 17th Inter-
national Workshop on Implementation and Application of Functional Languages,
Dublin, Ireland, 2005.

L. Hornof and T. Jim. Certifying compilation and run-time code generation. Higher-
Order and Symbolic Computation, 12(4):337–375, Dec. 1999.

P. Hudak, J. Peterson, and J. H. Fasel. A gentle introduction to Haskell. World Wide
Web, 1999.

G. Huet. Function Pearl: The Zipper. Journal of Functional Programming, 7(5):
549–554, Sept. 1997.

Intel Corporation. IA-32 Intel Architecture Optimization Reference Man-
ual, June 2005. Available from: http://www.intel.com/design/Pentium4/

documentation.htm.

Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual Volumes
1, 2A, 2B, 3A, 3B, Jan. 2006. Available from: http://www.intel.com/design/

Pentium4/documentation.htm.

R. L. Johnston. The dynamic incremental compiler of APL\3000. In APL ’79:
Proceedings of the International Conference on APL: part 1, pages 82–87, New
York, NY, USA, 1979. ACM Press.

M. P. Jones. The implementation of the Gofer functional programming system. Re-
search report YALEU/DCS/RR-1030, Yale University, New Haven, Connecticut,
USA, May 1994.

M. P. Jones. Dictionary-free overloading by partial evaluation. In Proceedings of
PEPM’95, 1995.

S. L. P. Jones. Implementing lazy functional languages on stock hardware: The
spineless tagless g-machine. Journal of Functional Programming, 2(2):127–202,
1992.

http://www.intel.com/design/Pentium4/documentation.htm
http://www.intel.com/design/Pentium4/documentation.htm
http://www.intel.com/design/Pentium4/documentation.htm
http://www.intel.com/design/Pentium4/documentation.htm

134 BIBLIOGRAPHY

R. Kelsey, W. Clinger, J. Rees, et al. Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(6):26–76, Sept. 1998.

R. A. Kelsey. A correspondence between continuation passing style and static single
assignment form. SIGPLAN Notices, 30(3):13–22, 1993.

A. Kennedy. Compiling with continuations, continued. In ICFP ’07: Proceedings of
the 12th ACM SIGPLAN International Conference on Functional Programming,
pages 177–190, New York, NY, USA, 2007. ACM.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
2nd edition, 1988.

A. Klaiber. The technology behind Crusoe processors. Available from: http://

www.charmed.com/PDF/CrusoeTechnologyWhitePaper_1-19-00.pdf, 2000. Last
visited: 2008-10-07.

N. Kobayashi. Type-based useless-variable elimination. Higher-Order and Symbolic
Computation, 14(2-3):221–260, 2001.

T. Kotzmann and H. Mössenböck. Escape analysis in the context of dynamic com-
pilation and deoptimization. In VEE ’05: Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, pages 111–120, New
York, NY, USA, 2005. ACM Press.

O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference algorithm.
ACM Transactions on Programming Languages and Systems, 20(4):707–723, July
1998.

D. Leijen. The λ Abroad – A Functional Approach to Software Components. PhD
thesis, Utrecht University, Nov. 2003.

D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators for the
real world. Technical Report UU-CS-2001-27, Department of Computer Science,
Universiteit Utrecht, 2001.

M. Leone and R. K. Dybvig. Dynamo: A staged compiler architecture for dynamic
program optimization. Technical Report 490, Indiana University Computer Science
Department, Sept. 1997.

M. Leone and P. Lee. Lightweight run-time code generation. In Proceedings of the
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, pages 97–106, June 1994.

M. Leone and P. Lee. A declarative appoach to run-time code generation. In Work-
shop on Compiler Support for System Software (WCSSS), 1996.

M. Leone and P. Lee. Dynamic specialization in the fabius system. ACM Computing
Surveys, 30(3es):23, 1998.

http://www.charmed.com/PDF/CrusoeTechnologyWhitePaper_1-19-00.pdf
http://www.charmed.com/PDF/CrusoeTechnologyWhitePaper_1-19-00.pdf

BIBLIOGRAPHY 135

X. Leroy. Unboxed objects and polymorphic typing. In POPL ’92: Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 177–188, New York, NY, USA, 1992. ACM Press.

X. Leroy. The effectiveness of type-based unboxing. In Workshop on Types in Com-
pilation, Amsterdam, The Netherlands, June 1997. ACM SIGPLAN. Published as
Boston College Computer Science Dept. Technical Report BCCS-97-03.

T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Sun Microsys-
tems, 2nd edition, 1999.

A. Löh and R. Hinze. Open data types and open functions. In M. Maher, editor,
Eighth ACM-SIGPLAN International Symposium on Principles and Practice of
Declarative Programming (PPDP’06), Venice, Italy, July 2006. ACM Press.

D. Lomov and A. Moscal. Dynamic Caml – Run-Time Code Generation Library for
Objective Caml. Available on the World Wide Web at http://oops.tepkom.ru/
dml/, last visited: 2008-10–7, May 2002.

D. Luna, M. Pettersson, and K. Sagonas. Efficiently compiling a functional language
on amd64: The hipe experience. In 7th ACM SIGPLAN International Symposium
on Principles and Practice of Declarative Programming (PPDP 2005), 2005.

S. Marlow, A. R. Yakushev, and S. Peyton Jones. Faster laziness using dynamic
pointer tagging. In ICFP 2007, 2007.

H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating Sys-
tem Services. PhD thesis, Columbia University, 1992.

J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine, Part I. Communications of the ACM, 3(4):184–195, 1960.

C. S. McDonald. fsh – a functional unix command interpreter. Software Practice and
Experience, 17(10):685–700, Oct. 1983.

J. Meacham. jhc. Available from: http://repetae.net/john/computer/jhc/, 2007.
Last visited: 2008-10-07.

G. Meehan and M. Joy. Compiling lazy functional programs to Java bytecode. Soft-
ware Practice and Experience, 29(7):617–645, 1999.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML.
MIT Press, 1997. Revised edition.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In In Proc. 23rd
Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
pages 271–283. ACM Press, 1996.

http://oops.tepkom.ru/dml/
http://oops.tepkom.ru/dml/
http://repetae.net/john/computer/jhc/

136 BIBLIOGRAPHY

MLton Developers. MLton Standard ML Compiler Homepage. Available from: http:
//mlton.org, 2006. Last visited: 2008-10-07.

M. Mock. Automating Selective Dynamic Compilation. PhD thesis, University of
Washington, Aug. 2002.

Mono Project. Mono. Available from: http://www.mono-project.com, 2007. Last
visited: 2008-10-07.

G. Morrisett. Compiling with Types. PhD thesis, School of Computer Science,
Carnegie Mellon University, Dec. 1995. Published as CMU Technical Report CMU-
CS-95-226.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528–
569, May 1999.

R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the
implementation of polymorphism. ACM Transactions on Programming Languages
and Systems, 13(3):342–371, 1991.

G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 106–119.
ACM Press, 1997.

H.-D. Nguyen and A. Ohori. Record unboxing. World Wide Web: http://www.

pllab.riec.tohoku.ac.jp/~ohori/research/RecordUnboxing.pdf, May 2007.
Last visited: 2008-10-07.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag, 1999.

K. Ogata and N. Doi. Object allocation and dynamic compilation in MultithreadS-
malltalk. In SAC ’94: Proceedings of the 1994 ACM Symposium on Applied Com-
puting, pages 452–456, New York, NY, USA, 1994. ACM Press.

F. Ogel, G. Thomas, and B. Folliot. Supporting efficient dynamic aspects through
reflection and dynamic compilation. In SAC ’05: Proceedings of the 2005 ACM
Symposium on Applied Computing, pages 1351–1356, New York, NY, USA, 2005.
ACM Press.

Opal Group. Opal Project Homepage. Available from: http://uebb.cs.tu-berlin.
de/~opal, 2004. Last visited: 2008-10-07.

M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM Server Compiler. In
Proceedings of the JavaTM Virtual Machine Research and Technology Symposium
(JVM ’01). USENIX Association, Apr. 2001.

http://mlton.org
http://mlton.org
http://www.mono-project.com
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/RecordUnboxing.pdf
http://www.pllab.riec.tohoku.ac.jp/~ohori/research/RecordUnboxing.pdf
http://uebb.cs.tu-berlin.de/~opal
http://uebb.cs.tu-berlin.de/~opal

BIBLIOGRAPHY 137

W. Partain. The nofib benchmark suite of haskell programs. In Proceedings of the
1992 Glasgow Workshop on Functional Programming, pages 195–202, London, UK,
1993. Springer-Verlag.

P. Pepper. Funktionale Programmierung in OPAL, ML, HASKELL und GOFER.
Springer-Verlag, 2nd edition, 2003.

N. Perry and E. Meijer. Implementing functional languages on object-oriented virtual
machines. Microsoft White Paper.

S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Re-
port. Cambridge University Press, Apr. 2003. Also available from: http:

//www.haskell.org/haskellwiki/Definition, last visited: 2008-10-07.

S. L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a non-
strict functional language. In J. Hughes, editor, Proceedings of the Conference on
Functional Programming and Computer Architecture, pages 636–666, Cambridge,
Massachussets, USA, 26–28 August 1991. Springer-Verlag LNCS523.

B. C. Pierce. Types and Programming Languages. MIT Press, Cambridge, Mas-
sachusettes, 2002.

M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Program.
Lang. Syst., 21(5):895–913, 1999.

C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing Systems, 1
(1):11–32, Winter 1988.

N. Ramsey and J. Dias. An applicative control-flow graph based on huet’s zipper. In
ACM SIGPLAN Workshop on ML, pages 101–122, Sept. 2005.

J. Reppy. Local CPS conversion in a direct-style compiler. In Proceedings of the
Third ACM SIGPLAN Workshop on Continuations (CW’01), pages 13–22, 2001.

A. Rossberg. The missing link: dynamic components for ML. In ICFP ’06: Pro-
ceedings of the eleventh ACM SIGPLAN International Conference on Functional
Programming, pages 99–110, New York, NY, USA, 2006. ACM Press.

A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice through
the looking glass. In Trends in Functional Programming, volume 5, pages 79–96.
Intellect, 2006.

D. Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, Department
of Computing, Imperial College, University of London, September 1990.

M. Schinz and M. Odersky. Tail call elimination on the Java virtual machine. In
N. Benton and A. Kennedy, editors, Electronic Notes in Theoretical Computer
Science, volume 59. Elsevier, 2001.

http://www.haskell.org/haskellwiki/Definition
http://www.haskell.org/haskellwiki/Definition

138 BIBLIOGRAPHY

M. Serrano and P. Weis. Bigloo: A portable and optimizing compiler for strict
functional languages. In Static Analysis Symposium, pages 366–381, 1995.

Z. Shao. Compiling Standard ML for Efficient Execution on Modern Machines. PhD
thesis, Princeton University, Nov. 1994.

Z. Shao and A. W. Appel. A type-based compiler for standard ml. In PLDI ’95:
Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, pages 116–129, New York, NY, USA, 1995. ACM
Press.

Z. Shao and A. W. Appel. Efficient and safe-for-space closure conversion. ACM
Transactions on Programming Languages and Systems, 22(1):129–161, Jan. 2000.

O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1991.

O. Shivers. Supporting dynamic languages on the Java virtual machine. Technical
Report AIM-1576, MIT AI Laboratory, 1996.

J. M. Siskind. Flow-directed lightweight closure conversion. Technical Report 99-
190R, NEC Research Institute, Dec. 1999.

J. E. Smith and R. Nair. Virtual Machines – Versatile Platforms for Systems and
Processes. Morgan Kaufman, 2005.

M. Sperber and P. Thiemann. Two for the price of one: Composing partial evaluation
and compilation. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 215–225, 1997.

D. Spinellis. An implementation of the Haskell language. Master’s thesis, Imperial
College, June 1990.

P. A. Steckler and M. Wand. Lightweight closure conversion. ACM Trans. Program.
Lang. Syst., 19(1):48–86, 1997.

D. Stewart. hs-plugins – Dynamically Loaded Haskell Modules. World Wide
Web: http://www.cse.unsw.edu.au/~dons/hs-plugins/, Feb. 2006. Last vis-
ited: 2008-10-07.

D. Stewart and M. M. T. Chakravarty. Dynamic applications from the ground up. In
Proceedings of the ACM SIGPLAN Workshop on Haskell. ACM Press, Sept. 2005.

G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis mutandis: safe
and predictable dynamic software updating. In POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 183–194, New York, NY, USA, 2005. ACM Press.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, New York, 1986.

http://www.cse.unsw.edu.au/~dons/hs-plugins/

BIBLIOGRAPHY 139

T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler.
IBM Systems Journal, 39(1):175–193, 2000.

Sun, Inc. Java SE Downloads - Previous Release - J2SE 5.0. Available from: http:

//java.sun.com/javase/downloads/index_jdk5.jsp, 2008. Last visited: 2008-
10-07.

W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Ore-
gon Graduate Institute of Science and Technology, Nov. 1999.

W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In
PEPM, 1991.

W. Taha and T. Sheard. MetaML and multi-stage programming with explicit anno-
tations. Theoretical Computer Science, 248(1–2):211–242, Oct. 2000.

D. Tarditi. Design and Implementation of Code Optimiziations for a Type-Directed
Compiler for Standard ML. PhD thesis, School of Computer Science, Carnegie
Mellon University, Dec. 1996. Available as Technical Report CMU-CS-97-108.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. Til: A type-
directed compiler for ml. In ACM SIGPLAN Conf. Programming Language Design
and Implementation, pages 181–192, New York, 1996. ACM Press.

K. Thompson. Programming techniques: Regular expression search algorithm. Com-
munications of the ACM, 11(6):419–422, 1968.

A. Tolmach. Combining closure conversion with closure analysis using algebraic types.
In Types in Compilation workshop, June 1997.

D. Ung and C. Cifuentes. Machine-adaptable dynamic binary translation. In DY-
NAMO ’00: Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adap-
tive Compilation and Optimization, pages 41–51, New York, NY, USA, 2000. ACM
Press.

D. Ung and C. Cifuentes. Dynamic binary translation using run-time feedbacks.
Science of Computer Programming, 60(2):189–204, Apr. 2006.

D. Ungar and R. B. Smith. Self: The power of simplicity. Lisp and Symbolic Com-
putation, 4(3), 1991.

P. Unnikrishnan, G. Chen, M. Kandemir, and D. R. Mudgett. Dynamic compilation
for energy adaptation. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM In-
ternational Conference on Computer-aided Design, pages 158–163, New York, NY,
USA, 2002. ACM Press.

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp

140 BIBLIOGRAPHY

A. van Weelden and R. Plasmeijer. A functional shell that dynamically combines
compiled code. In Proceedings of the 15th International Workshop on the Imple-
mentation of Functional Languages, IFL 2003, volume 3145 of Lecture Notes in
Computer Science, Scotland, 2004. Springer-Verlag.

P. Wadler. The Implementation of Functional Programming Languages, chapter Ef-
ficient compilation of pattern matching, pages 78–103. Prentice-Hall, 1987.

D. Wakeling. The dynamic compilation of lazy functional programs. Journal of
Functional Programming, 8(1):61–81, Jan. 1998a.

D. Wakeling. Mobile Haskell: Compiling lazy functional programs for the Java vir-
tual machine. In Proceedings of the 1998 Conference on Programming Languages,
Implementations, Logics and Programs (PLILP’98), volume 1490 of Lecture Notes
in Computer Science, pages 335–352, Sept. 1998b.

M. Wand. Continuation-based program transformation strategies. Journal of the
ACM, 27(1):164–180, 1980.

D. L. Weaver and T. Germond, editors. The SPARC Architecture Manual. PTR
Prentice Hall, 1994.

J. Whaley. Dynamic optimization through the use of automatic runtime specializa-
tion. Master’s thesis, Massachusetts Institute of Technology, May 1999.

P. Wickline, P. Lee, and F. Pfenning. Run-time code generation and modal-ml. In
K. D. Cooper, editor, Proceedings of the Conference on Programming Language
Design and Implementation (PLDI’98), pages 224–235, Montreal, Canada, June
1998. ACM Press.

N. Wirth and J. Gutknecht. Project Oberon – The Design of an Operating System
and Compiler. Addison-Wesley, 1998.

Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee, and
D. Brooks. A dynamic compilation framework for controlling microprocessor energy
and performance. In MICRO 38: Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture, pages 271–282, Washington, DC,
USA, 2005. IEEE Computer Society.

M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults. In ICFP
’01: Proceedings of the sixth ACM SIGPLAN International Conference on Func-
tional Programming, pages 241–252, New York, NY, USA, 2001. ACM Press.

C. Zheng and C. Thompson. PA-RISC to IA-64: Transparent Execution, no Recom-
pilation. IEEE Computer, 33(3):47–52, Mar. 2000.

	Introduction
	Motivation
	Problem
	Thesis

	Contributions
	Outline of this Dissertation

	Background
	Functional Programming
	Dynamic Compilation
	Virtual Machines
	History of Dynamic Compilation
	Dynamic Compilation Techniques
	Dynamic Compilation and Functional Programming
	Dynamic Compilation in Other Languages
	Formal Treatment of Dynamic Optimization
	Applications

	Analysis and Transformation
	Typed Compilation
	Use of Type Systems
	Continuation-passing Style
	Closure Conversion
	Data Representation

	Dynamic Compilation of Functional Programs
	Architecture
	Compilation Process

	Typed Dynamic Continuation-passing Style
	Notation
	Running Example
	Source Language
	Syntax
	Overloaded Numeric Literals and Primitive Operators
	Static Semantics
	Dynamic Semantics

	Continuation Language
	Abbreviations
	Static Semantics
	Dynamic Semantics

	CPS Transformation
	Closure Conversion
	Type checking Closure-converted Terms
	Closure Conversion Algorithm
	Notes on Closure Conversion

	Generation of Machine Code

	Incremental Compilation
	Language Extension
	Code Generation for Delay Expressions
	Placing of Delay Expressions
	Discussion

	Run-time Monomorphization
	Specialization of Polymorphic Functions
	Polymorphic Functions
	Polymorphic Recursion
	Type Classes

	Data Type Specialization
	Type-directed Representation Selection
	Data Layout Algorithm

	Implementation
	Implementation Outline
	Front End
	Conversion and Optimization
	Code Generation
	Run-time System

	Optimizations

	Experimental Results
	Test Methodology
	Benchmark Programs
	Effect of Implemented Optimizations
	Comparison to other Implementations
	The Pseudoknot Benchmark
	Effects of Incremental Compilation
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work
	Theoretic Model
	Open Data Types and Open Functions
	Type Classes
	Better Compiler
	Instrumentation and Recompilation
	Value Specialization

