
RICE UNIVERSITY

Efficient Optimization of Memory Accesses in
Parallel Programs

by
Rajkishore Barik

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE D E G R E E

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Vivek Sarkar, Chair
E.D. Butcher Professor of Computer
Science

Keith Cooper (
L. John and Ann H. Doerr Professor of
Computer Science

assistant Professor
Dept. of Electrical Engineering &
Computer Science

Houston, Texas
October, 2009

UMI Number: 3421163

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI 3421163
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Efficient Optimization of Memory Accesses in Parallel

Programs

by

Rajkishore Barik

The power, frequency, and memory wall problems have caused a major shift in

mainstream computing by introducing processors that contain multiple low power

cores. As multi-core processors are becoming ubiquitous, software trends in both

parallel programming languages and dynamic compilation have added new challenges

to program compilation for multi-core processors. This thesis proposes a combination

of high-level and low-level compiler optimizations to address these challenges.

The high-level optimizations introduced in this thesis include new approaches to

May-Happen-in-Parallel analysis and Side-Effect analysis for parallel programs and

a novel parallelism-aware Scalar Replacement for Load Elimination transformation.

A new Isolation Consistency (IC) memory model is described that permits several

scalar replacement transformation opportunities compared to many existing memory

models.

The low-level optimizations include a novel approach to register allocation that

retains the compile time and space efficiency of Linear Scan, while delivering runtime

performance superior to both Linear Scan and Graph Coloring. The allocation phase

is modeled as an optimization problem on a Bipartite Liveness Graph (BLG) data

structure. The assignment phase focuses on reducing the number of spill instructions

by using register-to-register move and exchange instructions wherever possible.

Experimental evaluations of our scalar replacement for load elimination transfor-

mation in the Jikes RVM dynamic compiler show decreases in dynamic counts for

getfield operations of up to 99.99%, and performance improvements of up to 1.76x

on 1 core, and 1.39 x on 16 cores, when compared with the load elimination algorithm

available in Jikes RVM. A prototype implementation of our BLG register allocator in

Jikes RVM demonstrates runtime performance improvements of up to 3.52 x relative

to Linear Scan on an x86 processor. When compared to Graph Coloring register

allocator in the GCC compiler framework, our allocator resulted in an execution time

improvement of up to 5.8%, with an average improvement of 2.3% on a P0WER5

processor.

With the experimental evaluations combined with the foundations presented in

this thesis, we believe that the proposed high-level and low-level optimizations are

useful in addressing some of the new challenges emerging in the optimization of

parallel programs for multi-core architectures.

Acknowledgments

I would like to express my appreciation to my thesis committee, especially to my

adviser, Prof. Vivek Sarkar, for his patient guidance and support. He is always full

of energy and enthusiasm for attacking research problems and possesses one of the

sharper brains. The door to his office was always open whenever I ran into a trouble

spot in both academically and personally. And during the most difficult times when

writing this thesis, he gave me the moral support and the freedom I needed to move

on. It was an honor to work with him. I owe my deepest gratitude to my thesis

co-chair Prof. Keith D. Cooper for his technical advice during the course work of

COMP 512 that went onto play an important role in my thesis work. I am grateful to

my thesis co-chair Dr. Timothy J. Harvey for his guidance on register allocation and

his useful suggestions and advice that significantly helped improving the presentation

of this thesis. There are several people at Rice University that helped me during

my graduate career including Prof. Lin Zhong, David Peixotto, Jisheng Zhao, Jun

Shirako, Yi Guo, Raghavan Raman, and Prof. John Mellor-Crummey.

I had the privilege to work under Prof. Thomas Gross, my advisor at ETH, Zurich.

His guidance and support has been invaluable during my early graduate school days.

I also recognize the enormous amount of help provided by Dr. Christoph von Praun

on clarifying my innumerable doubts on ERCO infrastructure at ETH.

This thesis would not have been possible without support from my managers at

IBM who allowed me to pursue Ph.D. while being a full-time employee. I would

like to thank my managers at IBM including Dr. Ravi Kothari, Dr. Sugata Ghosal,

Dr. R. K. Shyamasundar, Dr. Calin Cascaval, Dr. Rahul Garg, and Dr. Vijay

Saraswat. It has been enjoyable experience working with them. I would like to thank

V

all members of the X10 team at IBM for valuable discussions and feedback related

to this thesis work, especially Igor Peshansky for discussion of the semantics of Java

final variables. I am thankful to all X10 team members for their contributions to the

X10 software used in this thesis. I gratefully acknowledge the support from an IBM

Open Collaborative Faculty Award. This work was supported in part by the National

Science Foundation under the HECURA program, award number CCF-0833166.

I would like to acknowledge my collaborators Shivali Agarwal and Prof. R. K.

Shyamasundar from TIFR. The work on May-Happens-in-Parallel (MHP) analysis in

Chapter 3 was done with their collaboration. I would also like to thank IBM Summer

intern, Puneet Goyal, for his work on bitwidth-aware packing that led to our work in

Chapter 7.

Finally, I gratefully acknowledge my family's love and encouragement. My beloved

wife, Meena, has been a constant source of inspiration during the rough times of

graduate life. Her patience, love and encouragement have upheld me, particularly

in those many days in which I spent more time with computer than with her. I

dedicate my thesis to her. I owe my deepest gratitude to my IBM colleague and close

friend, Rema Ananthanarayan, for motivating me to come to Rice and for helping me

personally.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations xi

List of Tables xv

1 Introduction 1
1.1 Research Contributions 4

1.2 Thesis Organization 6

2 Background 7
2.1 Basics of a Compiler 7

2.2 The HJ Parallel Programming Language 11

2.2.1 Single Place HJ Language Constructs 12

2.2.2 Multi-Place Programming in HJ 16

2.2.2.1 Remote Asyncs 18

2.3 Code Optimization Framework 19

2.4 May-Happen-in-Parallel (MHP) Analysis 21

2.4.1 MHP Analysis for Java Programs 23

2.5 Side-Effect Analysis 27

2.6 Scalar Replacement Transformation for Load Elimination 31

2.6.1 Unified Modeling of Arrays and Objects 33

2.6.2 Extended Array SSA form 34

2.6.3 Load Elimination Algorithm 34

2.7 Register Allocation 36

vii

2.7.1 Terminology 37

2.7.1.1 Liveness, Live-ranges and Interference Graph 37

2.7.1.2 Spilling 38

2.7.1.3 Coalescing 38

2.7.1.4 Live-range splitting 39

2.7.1.5 Architectural Considerations 39

2.7.2 Register Allocation Techniques 40

2.7.2.1 Graph Coloring Register Allocation 40

2.7.2.2 Linear Scan Register Allocation 43

2.7.2.3 SSA-based Register Allocation 50

2.8 Bitwidth-aware Register Allocation 52

2.8.1 Bitwidth Analysis 55

2.8.2 Variable Packing 56

2.8.3 Move Insertion 58

2.8.4 Register Allocation 59

3 May-Happen-in-Parallel (MHP) Analysis 60
3.1 Introduction 60

3.2 Steps for MHP analysis of HJ programs 61

3.3 Program Structure Tree (PST) Representation 62

3.3.1 Example 63

3.4 Never-Execute-in-Parallel Analysis 65

3.4.1 Comparison with MHP Analysis of Java programs 67

3.4.2 Complexity 74

3.4.3 Example 74

3.5 Place Equivalence Analysis 76

3.5.1 Complexity 81

3.5.2 Example 81

3.6 MHP Analysis using Isolated Sections 81

3.6.1 Complexity 83

3.6.2 Example 83

3.7 Summary 84

4 Side-Effect Analysis for Parallel Programs 85
4.1 Side-Effect Analysis of Method Calls 86

4.1.1 Heap Array Representation 88

4.1.2 Method Level Side-effect 88

4.1.3 Complexity 91

4.1.4 Discussion 92

4.2 Extended Side-effect Analysis for Parallel Constructs 92

4.2.1 Side-Effects for Finish Scopes 94

4.2.2 Side-Effects for Methods with Escaping Asyncs 95

4.2.3 Side-Effects for Isolated Blocks 96

4.3 Parallelism-aware Side-Effect Analysis Algorithm 98

4.3.1 Discussion 101

4.4 Summary 103

5 Isolation Consistency Memory Model and its Impact on

Scalar Replacement 105
5.1 Program Transformation and Memory Model 105

5.2 Isolation Consistency Memory Model 108

5.2.1 Abstraction 109

5.2.2 State-Update rules for L 110

5.2.3 State Observability for L 112

5.2.4 Example Scenarios 113

5.3 Scalar Replacement for Load Elimination 115

ix

5.3.1 Example 117

5.4 Summary 117

6 Space-Efficient Register Allocation 120
6.1 Notions Revisited 121

6.2 Example 123

6.3 Overall Approach 126

6.4 Allocation using Bipartite Liveness Graphs 129

6.4.1 Eager Heuristic 132

6.5 Assignment using Register Moves and Exchanges 134

6.5.1 Spill-Free Assignment 134

6.5.2 Example 138

6.5.3 Assignment with Move Coalescing and Register Moves 140

6.6 Allocation and Assignment with Register Classes 143

6.6.1 Constrained Allocation using BLG 145

6.6.2 Constrained Assignment 145

6.7 Extended Linear Scan (ELS) 149

6.8 Summary 150

7 Bitwidth-aware Register Allocation 152
7.1 Overall Bitwidth-aware register allocation 153

7.2 Limit Study 153

7.3 Enhanced Bitwidth Analysis 156

7.4 Enhanced Packing 160

7.4.1 Improved EMIW estimates 164

7.5 Summary 164

8 Performance Results 166
8.1 Side-Effect Analysis and Load Elimination 166

X

8.1.1 Experimental setup 166

8.1.2 Experimental results 168

8.2 Space-Efficient Register Allocation 176

8.2.1 GCC Evaluation 176

8.2.1.1 Experimental setup 176

8.2.1.2 Experimental results 178

8.2.2 Jikes RVM evaluation 179

8.2.2.1 Experimental setup 179

8.2.2.2 Experimental results 180

8.3 Bitwidth-Aware Register Allocation 182

8.3.1 Experimental setup 182

8.3.2 Experimental results 183

8.4 Summary 185

9 Conclusions and Future Work 187
9.1 Future Work 189

Illustrations

2.1 Example control flow graph (CFG) 8

2.2 HJ's Multi-Place Execution Model 17

2.3 Static and Dynamic Optimization Framework 19

2.4 CFG structures for depicting various side-effects 28

2.5 Termination of Side-effect analysis 31

2.6 Examples of scalar replacement for load elimination transformation . 32

2.7 Load elimination algorithm 35

2.8 Chaitin's Register Allocator 42

2.9 Linear Scan register allocation algorithm 47

2.10 Demonstration of intervals in Linear Scan register allocation 48

2.11 Examples of ehordal and non-chordal graphs 51

2.12 SSA-based register allocation 52

2.13 Example code fragment demonstrating bitwidth-aware register

allocation 54

2.14 Bitwidth-aware register allocation framework 54

2.15 Scenarios for precise variable packing using MIW 57

2.16 Scenario for variable packing using EMIW 58

3.1 Example HJ program to demonstrate the computation of MHP(S1, S2). 64

3.2 PST for example program in Figure 3.1 64

3.3 Algorithm for computing Never-Execute-in-Parallel (NEP) relations . 66

3.4 Java example program to illustrate MHP algorithm 67

xii

3.5 HJ example program to illustrate NEP algorithm 68

3.6 PST for example program in Fig 3.5 68

3.7 Java code example that demonstrates that NEP(S1, S2) is not just a

binary relation 70

3.8 HJ code example that demonstrates that NEP(S 1, S2) is not just a

binary relation 71

3.9 Algorithm for computing refined Never-Execute-in-Parallel (NEP)

relations 73

3.10 (BLOCK, *) distribution of array A[p,p] that uses p places 79

3.11 Algorithm for computing Place Equivalence (PE) relations 80

3.12 Algorithm for computing May-Happen-in-Parallel (MHP) relation

using place equivalence and isolated sections in HJ 82

4.1 Side-effect analysis enables more opportunities for scalar replacement 87

4.2 Lattice for heap array GMOD and GREF sets 89

4.3 Fast Side-effect analysis for a given method m 90

4.4 Side-effect analysis can improve the analysis by reasoning about

object references 92

4.5 Example HJ program for side-effect analysis in the presence of

parallel constructs 93

4.6 Call graph for example program in Figure 4.5 94

4.7 ParallelSideEffectAnalysis(m): Side-effect analysis in the

presence of HJ parallel constructs for method m 99

4.8 Additional function to handle method calls for

Paral le lSideEffeetAnalysis (m) 100

4.9 Additional functions to handle async calls and normal method calls

for ParallelSideEf fectAnalysis(m) 102

4.10 Improving the precision of global isolated side-effects 104

xiii

5.1 Example program illustrating violation of Sequential Consistency due

to reordering within a thread 107

5.2 Four parallel code fragments that demonstrate scalar replacement for

load elimination opportunities in the presence of parallel constructs. . 114

5.3 Parallelism-aware scalar replacement for load elimination

transformation 116

5.4 Example HJ program for parallelism-aware scalar replacement

transformation 118

5.5 Transformed program after scalar replacement for program shown in

Figure 5.4 119

6.1 Example program for illustrating space-efficient register allocation . . 123

6.2 Example program for illustrating Space-efficient register allocation . . 127

6.3 Overall Space Efficient Register Allocator using BLG 127

6.4 SSA based Register Allocation. This figure is adapted from [22], . . . 128

6.5 Greedy heuristic to perform allocation using max-min strategy 131

6.6 Eager heuristic to perform allocation 133

6.7 Assignment using register move and exchange instructions 135

6.8 Algorithm to insert register move and exchange instructions on

control flow edges 137

6.9 Anti-dependence graph (D) for the example program in Figure 6.1 . . 138

6.10 Greedy heuristic to choose a physical register for a basic interval that

maximizes copy removal 142

6.11 Register classes in the Intel x86 architecture 143

6.12 Example program demonstrating problems associated with register

assignment using register classes 143

6.13 Example demonstrating problems in coalescing due to register classes 144

6.14 Heuristic o perform assignment in the presence of register classes . . . 147

xiv

6.15 Heuristic to choose a physical register that maximizes copy removal. . 148

6.16 Overview of Extended Linear Scan algorithm (ELS) with

all-or-nothing approach 151

7.1 Overall Bitwidth-aware register allocation framework 152

7.2 GCC modification for Limit Study 154

7.3 Recurrence analysis for bitwidth analysis 158

7.4 Code fragment from BITWISE adpcm benchmark 159

7.5 Code fragment from BITWISE bubblesort benchmark 159

7.6 Example program for demonstrating imprecision in Tallam-Gupta

packing 161

7.7 Interference Graph for the example program shown in Figure 7.6 . . . 161

7.8 Bitwidth aware register allocation in a graph coloring scenario 163

8.1 Performance improvement using the scalar replacement algorithm

presented in Figure 5.3 174

8.2 Scaling of JGF Section 3 MolDyn Size B benchmark 175

8.3 Scaling of NPB CG Size A benchmark 175

8.4 SPEC rates for Graph Coloring and ELS register Allocator described

in Section 6.7 177

8.5 Speedup of BLG with register classes relative to LS 181

8.6 GCC modification for register allocation 184

Tables

4.1 Side-effect results of parallel constructs and method calls for example

program shown in Figure 4.5 103

5.1 Comparison of SC and JMM for compile reordering transformation . 108

7.1 Comparison of compile-time and profile-driven bitwidth analysis . . . 155

7.2 Comparison of Active Compression Factor (ACF) across static and

profile-driven bitwidth analysis 156

7.3 New EMIW estimates for variable packing using NODEMAX 165

8.1 Static count of parallel constructs in various benchmarks 168

8.2 Compilation time in milliseconds of various benchmarks for NO

LOADELIM, FKS LOADELIM, and FKS+TRANS LOADELIM cases. 170

8.3 Compilation times in milliseconds of various benchmarks for PAR

LOADELIM and PAR+TRANS LOADELIM cases 171

8.4 Dynamic counts of GETFIELD operations using FKS LOADELIM

and FKS+TRANS LOADELIM cases 172

8.5 Dynamic counts of GETFIELD operations using PAR and

PAR+TRANS LOADELIM cases 172

8.6 Compile-time overheads for functions with the largest interference

graphs in SPECint2000 benchmarks 177

xvi

8.7 Benchmarks for which register-to-register move and register exchange

instructions were generated 180

8.8 Compile-time comparison of ELS with LS in Jikes RVM 182

8.9 Comparison of number of packed node-pairs for the number of

physical registers=8 184

8.10 Comparison of dynamic spill load/store instructions 185

1

Chapter 1

Introduction

The computer industry is at a major inflection point in its hardware roadmap due to

the end of a decades-long trend of exponentially increasing clock frequencies. Unlike

previous generations of hardware evolution, the shift towards multicore and manycore

computing will have a profound impact on software — not only will future applications

need to be deployed with sufficient parallelism for manycore processors, but the

parallelism must also be energy-efficient. For decades, caches have helped bridge the

memory wall for programs with high spatial and temporal locality. Unfortunately,

caches come with an energy cost that limits their use as on-chip memory in future

manycore processors. It is therefore desirable for programs to use more energy-

efficient storage structures such as registers and local memories (scratchpads) instead

of caches, as far as possible.

Energy-efficient storage structures offer lower latencies and are faster to access.

However, they are smaller in size and number due to architectural complications

involved in their design. For example, the Intel x86 architecture offers only 8 fixed reg-

isters for integer valued data items. A compiler that converts a higher-level program

into an optimized machine level instruction sequence performs several optimizations in

order to improve the execution performance of a program. One such optimization that

focuses on improving memory accesses in the program is memory-access optimization.

The goal of a memory-access optimization is to promote frequently executed data

values from memory (with higher latency of access) to more efficient structures like

registers and local memories in order to take advantage of their lower latencies and

faster accesses. Several compiler optimizations have been proposed in the literature

2

that address optimization for memory accesses such as scalar replacement [33, 34],

load elimination [52, 75, 102], redundant memory operation analysis [45], and register

promotion [83], The compiler community has studied these techniques extensively

over three decades and have shown benefits of performing them inside a compiler.

Gordon Moore predicted in 1965 that the number of transistors on a machine

would double every eighteen months. This trend has been observed for a long period

of time. In the past, this increase in the number of transistors (and decrease in

transistor sizes) has led to a corresponding increase in clock frequency. However,

recently, the power wall has caused a trend shift from serial to parallel computing by

introducing more and more low power cores in a processor. All hardware vendors now

ship systems with multi-core processors. The performance gain by the introduction

of multi-core processors is strongly dependent on the software algorithms and their

implementation. For example, in order to achieve speedup on a quad-core machine, it

is necessary to exploit the four cores in software. Hence, new programming languages

like MPI [109], UPC [51], OpenMP [95], Cilk [18], X10 [38], a n d Titanium [63] have

been developed to expose the available parallelism on a multi-core processor to the

application programmer. Along with new programming languages for parallelism,

there is a need for new compiler techniques to analyze the parallel constructs of

the language and optimize programs keeping parallelism in mind. Currently, most

compilers make conservative assumptions for parallel constructs and hence, miss

several opportunities for code optimization including memory-access optimization.

For example, the Jikes RVM [66] prevents code motion around parallel constructs.

Parallelism poses another challenge to compiler transformations in the form of

interferences among shared data accesses of multiple cores. The legality of a compiler

transformation in the presence of interferences is typically dictated by the underlying

memory model. A memory model determines the set of possible observable behaviors

of the program. A compiler transformation is said to be correct if the set of possible

observable behaviors of the transformed program is a subset of the possible observable

3

behaviors of the original programs. All memory models have the same semantics for a

data-race-free program. However, without prior knowledge, a compile does not know

if the input program is data-race free or not. Hence, it is desirable to define a memory

model for parallel programs that is both programmer and compiler friendly and at the

same time allows for more opportunities for compiler optimizations, which is critical

for program performance. Note that memory-access compiler optimizations are often

viewed as a variant of code reordering transformations, because they can result in a

reordering of load and store instructions, and hence, are correct to perform under a

given memory model.

In conjunction with the hardware trend shift from serial computing to parallel

computing, in dynamic compilation, program execution and compilation can be in-

terleaved. Dynamic compilation is also referred to as Just-In-Time (JIT) compilation

and runtime compilation. For example, the platform-independent bytecodes of a

Java program are usually compiled and executed by a virtual machine that invokes a

JIT compiler. A dynamic compiler shares the common goal of producing optimized

code with that of an offline/static compiler. However, a key difference is that in a

dynamic compiler the compilation time overhead adds to the runtime performance.

The optimizations performed in a dynamic compiler must strike a balance between

performing deeper analysis (with higher complexity) and runtime benefits achieved

from them. In practice, the optimizations must be performed as close to linear time

and space as possible. For example, the Linear Scan register allocation algorithm

proposed by Poletto and Sarkar [100] is performed by many Java virtual machine JIT

compilers due to its linear time and space complexity instead of the Graph Coloring

register allocation approach [25, 28, 35] used in static compilation. However, Linear

Scan is known to lag in runtime performance compared to Graph Coloring approaches.

Thesis Statement: Recent trends in hardware with multi-core processors as

well as software with parallel languages and dynamic compilation have added new

challenges to the Memory Wall problem. Our thesis is that a combination of high-level

4

and low-level compiler optimizations can be effective in addressing these challenges.

The high-level optimizations introduced in this thesis include new approaches to May-

Happen-in-Parallel analysis, Side-Effect analysis, and Scalar Replacement for Load

Elimination transformation for explicitly parallel programs. The low-level dynamic

optimizations include a Space-efficient register allocation algorithm that incurs an

order-of-magnitude smaller compile-time and space overhead than Graph Coloring,

while delivering run-time performance that matches or surpasses that of Graph Col-

oring.

1.1 Research Contributions

This dissertation highlights the challenges in memory-access optimization for parallel

programs, using X10 as an example parallel programming language. The X10 vl.5 lan-

guage [38] builds on a subset of Java language constructs and adds new constructs like

async, f in i sh , atomic, places, region, distribution, and distributed arrays

for supporting fine-grained locality, parallelism and synchronization. Since, version

1.7, X10 has adopted a Scala-like syntax for source code and has introduced new

advances in the type system relative to Java. The Habanero-Java (HJ) programming

language that is being developed in the Habanero Multicore Software Research project

at Rice University focuses on addressing the implementation challenges for the core

constructs of X10 vl.5 language on multi-core processors, with programming model

extensions as needed (such as phasers and i so lated blocks). A significant part of

the research results presented in this thesis were obtained for HJ programs.

The dissertation makes the following contributions:

1. a novel May-Happen-in-Parallel (MHP) algorithm for HJ programs that iden-

tifies pairs of execution instances of statements that may execute in parallel.

Compared to past work for other concurrent languages like Java and Ada, we

introduce a more precise definition of the MHP by adding condition vectors

that distinguishes execution instances of statements for which the MHP holds,

5

instead of just returning a single true/false value for all pairs of executing

instances. The availability of basic concurrency control constructs such as

async, f in i sh , i so la ted and places in HJ enables the use of more efficient

and precise analysis algorithms based on simple path traversals in a Program

Structure Tree.

2. a side-effect analysis for the core parallel constructs of HJ. The side-effect anal-

ysis is designed for dynamically compiling HJ programs and hence, is compile-

time efficient.

3. a novel parallelism-aware scalar replacement transformation for memory load

elimination. The legality of the transformation is established by a new Isolation

Consistency (IC) memory model. Like many relaxed memory models, the

IC memory model provides sequentially consistent behavior for data-race-free

programs. At the same time, IC allows many compiler transformations via

weak-atomicity for programs with data-races.

4. a space-efficient register allocation algorithm that bridges the performance gap

between Linear Scan and Graph Coloring register allocation algorithms while

maintaining the compile-time efficiency of Linear Scan. We model the allocation

phase of a register allocation algorithm as an optimization problem on Bipar-

tite Liveness Graphs (BLG's), a new data structure introduced in this thesis.

The assignment phase focuses on reducing the number of spill instructions by

using register-to-register move and exchange instructions wherever possible to

maximize the use of registers. The register assignment that includes register-

to-register moves, exchanges, coalescing as well as register class constraints is

modeled as another optimization problem, and we provide a heuristic solution

to this problem as well.

5. an enhanced bitwidth-aware register allocation algorithm that packs several narrow-

width data items onto the same physical register to reduce register pressure of

6

the program. We present an enhanced bitwidth analysis that performs more

detailed scalar analysis and array analysis than past work. We describe an

enhanced packing algorithm that includes more accurate packing and performs

less conservative (more aggressive) coalescing than past work.

1.2 Thesis Organization

• Chapter 2 introduces necessary backgrounds, definitions and notations used in

the thesis. The overall code optimization framework used in the thesis is also

described in this chapter.

• Chapter 3 describes the May-Happens-in-Parallel algorithm for HJ programs.

• Chapter 4 presents the Side-Effect Analysis for parallel constructs and function

calls.

• Chapter 5 describes the Isolation Consistency (IC) memory model and scalar

replacement for load elimination transformation for parallel programs.

• Chapter 6 describes the space-efficient register allocation algorithm and com-

pares it with the graph coloring register allocation.

• Chapter 7 presents our enhancements to bitwidth-aware register allocation al-

gorithm.

• Chapter 8 presents our experimental results.

• Chapter 9 concludes the thesis with a summary and future directions.

7

Chapter 2

Background

In this chapter, we introduce notations and terminologies used in the rest of the

dissertation. First, we describe some basic compiler terminologies. Next, we describe

the HJ parallel programming language. Next, we present our overall code optimization

framework for parallel programs. Finally, we describe the background, foundations

and notations for each of the analyses and optimizations described in our code

optimization framework.

2.1 Basics of a Compiler

A compiler (static or dynamic) typically consists of two components: a, front-end and

a back-end. In the front-end, the input program is parsed, represented as an inter-

mediate representation (IR), and transformed. Typical transformations performed in

the front-end are deadcode elimination, constant propagation, copy propagation, and

inlining. After the front-end pass is complete, the back-end component performs

additional transformations that are specific to the target architecture. Typical trans-

formations performed in the back-end are register allocation, instruction scheduling,

and instruction selection. Sometimes compilers add a middle-end that consists of the

transformations of the front-end.

An IR captures the compiler's knowledge of the input program. It consists of a

set of instructions that correspond to the original input program.

Definition 2.1.1 An instruction defines an operation that possibly reads some vari-

ables and possibly writes some other variables. The variables that are read at an

8

1 a = . . .

2 b = true

3 f o r (i = 2 ; i c a - 1 ; i + +) {

4 c = a % i

s i f (c = = 0) {

e b = false
7 b r e a k

s }
9 }

Figure 2.1 : An example control flow graph. The code snippet is shown on the left.
The corresponding control flow graph is shown in the right. Note that, the special
basic blocks START and END are added to demarcate entry and exit to the procedure.

instruction are referred to as used variables and those that are written are referred to

as defined variables.

An IR can be represented in various ways. Some dominant IR representations

are: 1) a linear IR consisting of a linear ordering of instructions, e.g., Java byte-

code; 2) a structural IR consisting of graphical representations of instructions, e.g.,

abstract syntax trees; 3) linear-{-structural IR consisting of a combination of graphical

representation and linear ordering, e.g., control flow graph (CFG). A CFG-based

representation is widely used for compiler analyses and transformations.

Definition 2.1.2 A control flow graph is a graph, G = (V,E), where V consists of

basic blocks and E consists of possible execution paths. A basic block is a maximal

sequence of instructions where the execution enters at the first instruction and exits

at the last instruction of the sequence, i.e., there exists no intermediate instruction in

a basic block where an execution can enter or exit. Two special basic blocks START and

END are added to a CFG to indicate the unique entry and unique exit of a procedure.

9

Consider the example program shown in Figure 2.1. The example program com-

putes if a is a prime number or not. The control flow graph (CFG) is shown on the

right. It consists of seven basic blocks, i.e., BO-6, including two special entry and exit

basic blocks BO and B6, respectively. The basic block B3 consists of two instructions

c = a%i and c = = 0. For instruction c = a%i, variables a and i are used whereas c is

defined.

Often it is useful to define dom, idom, and postdom relationships between two

nodes of a CFG.

Definition 2.1.3 Given a CFG, a node x is said to dominate fdomj another node

y if every path from START to y passes through x. Similarly, node x is said to post-

dominate (postdom,) node y if every path from y to EXIT passes through x. A node x

is the immediate dominator (idom) of another node y if x dominates y and there is

no intervening node p such that x dom p and p dom y. The idom relation forms a

dominator tree.

For precision, it is often necessary to represent information in between two in-

structions. For example, the liveness of a variable needs to be defined at a program

point rather than at an instruction level.

Definition 2.1.4 A program point is a point between two consecutive instructions.

Definition 2.1.5 A variable v is live at a program point p if 3 a path in the CFG

(indicating a possible execution) fromp to some use of v along which v is not defined

again. As we will discuss in Definition 2.7.5, sometimes it is desired to split a program

point into two sub-program points.

A popular intermediate representation used in the literature is static single as-

signment (SSA) form [47]. In SSA form representation, each variable is defined in

exactly one place in the code. New 4> instructions are inserted in the CFG to ensure

that each use of a variable sees exactly one definition. An IR is converted into SSA

10

form using two simple steps: (1) </>-insertion phase: 0 statements are inserted at the

iterated dominance frontiers of assignment statements [48]; (2) renaming phase: the

renaming phase assigns unique names using version ids to each variable definition.

Several efficient transformations have been proposed in literature that exploit the

single-assignment property of SSA form such as sparse-conditional constant prop-

agation [122], strength reduction [46], partial redundancy elimination [41] and SSA

based register allocation [29, 59]. We will describe SSA based register allocation in

Section 2.7.2.3.

A common compiler transformation is to find redundant expressions in a program.

An expression a + b is said to be redundant at a program point p if it has already

been computed in every path starting from the START block to p, and no intervening

operation kills either a or b. If the compiler can find such redundant expressions, it

can save the value in a scalar variable at the previous computation and replace any

subsequent computations with the scalar variable. The classic approach to accomplish

this is to use Value Numbering [6]. Value numbering assigns distinct numbers to each

value computed during run time. Two expressions, e\ and e2, have same value number

iff they always compute the same value. We denote the value number of an expression

e as V(e). If the value numbers of two expressions are same, then they are redundant.

An ordering-based compiler transformation such as redundant expression elimina-

tion is said to be correct if it does not violate any dependences. A control dependence

arises from the control flow in the program, where as a data dependence arises from

the flow of values between statements in the program.

Definition 2.1.6 The following types of data dependences exist:

1. Statements Si and 52 wz said to have a flow dependence between them (denoted

as SiSfS2) if S2 uses the value written at S\.

2. Statements Si and S2 are said to have an anti dependence between them (de-

noted as SiS~1S2) if Si uses a value from a location to which S2 writes.

11

3. Statements Si and S2 are said to have an output dependence between them

(denoted as SI5°S2) if both Si and S2 write to the same location.

4. Statements S1 and S2 are said to have an input dependence between them

(denoted as Si^S^J if both Si and S2 use a value from the same location.

A succinct way of capturing dependences for statements inside a loop is to use

distance and direction vectors.

Definition 2.1.7 Given a dependence from, statement Si on iteration i to statement

5*2 on iteration j of a common loop nest I, the direction vector V(i,j) is defined as a

vector of length I such that,

I < if ik - ik > 0

= if jk ~ik = 0 (2-1)

> if jk ~ik< 0

Various dependences between the statements in a program are represented using

a program dependence graph (PDG). PDGs are used as the foundation for many

compiler reordering transformations such as vectorization, scalar replacement, and

scheduling.

2.2 The HJ Parallel Programming Language

The HJ programming language offers several constructs to improve programmability

in high-performance computing for parallel systems that includes multi-core proces-

sors, symmetric shared-memory multiprocessors (SMPs), commodity clusters, high-

end supercomputers like BlueGene [1], and even embedded processors like Cell [99].

The key features of HJ include:

• Lightweight activities embodied in async, future, foreach, and ateach con-

structs which subsume communication and multithreading operations.

12

• A f i n i s h construct for termination detection and rooted exception handling of

descendant activities.

• Support for lock-free synchronization with i so lated blocks.

• Explicit reification of locality in the form of places, with support for a parti-

tioned global address space (PGAS) across places.

• Support for collective and point-to-point communication using phaser con-

structs.

HJ uses a serial subset of the Java vl.4 language as its foundation, but replaces the

Java language's current support for concurrency by new constructs that are motivated

by high-productivity high-performance parallel programming. For further details, the

reader is referred to "An overview o/XlO vl.5" [38]. The scope of this dissertation

focuses on four core constructs: async, f in i sh , isolated, and places. Extensions

for the foreach, ateach, and future constructs follow naturally from the approach

described in this thesis, and have been omitted for simplicity. An important safety

result in HJ is that any program written with async, f in i sh , and i so lated can never

deadlock.

2.2.1 Single Place HJ Language Constructs

In a single-place HJ program, all activities execute within the same logical place

and have uniform read and write access to all shared data, as in multithreaded Java

programs where all threads operate on a single shared heap.

async (stmt): Async is the HJ construct for creating or forking a new asyn-

chronous activity. The statement, async (stmt), causes the parent activity to create a

new child activity to execute {stmt). Execution of the async statement returns imme-

diately i.e., the parent activity can proceed immediately to the statement following

the async.

13

Consider the following HJ code example of an async construct. The goal of this

example is to use two activities to compute in parallel the sums of f(i) for odd and

even values of i in the range 1 . . . n. This is accomplished by having the main program

activity use the async for-i statement to create a child activity to execute the for-i

loop and print oddSurn, while the parent (main program) activity proceeds in parallel

to execute the for-j loop and print evenSum1.

public static void main(String[] args) {

final int n = 10000;

async { / / Compute oddSum in child activity

double oddSum = 0;

for (int i=l ; i<=n ; i+=2) oddSum += f(i);

System.out.println("oddSum = " + oddSum);

}
// Compute evenSum in parent activity

double evenSum = 0;

for (int j=2 ; j<=n ; j+=2) evenSum += f(j);

S y s t e m . o u t . p r i n t l n (" e v e n S u m = " + evenSum);

l // main ()

HJ permits the use of async to create multiple nested activities in-line in a single

method, unlike Java threads where the body of the thread must be specified out-of-

line in a separate Runnable class. Also, note that the child activity uses the value of

local variable n from the parent activity, without the programmer having to pass it

explicitly as a parameter. HJ provides this sharing of local variables for convenience,

but requires that any local variables in the parent activity that are accessed by a child

activity must be defined as final (constant) in the parent activity so as to ensure that

no data races can occur on local variables.

finish (stmt): The HJ statement, finish (stmt), causes the parent activity to exe-

cute (stmt) and then wait till all sub-activities created within (stmt) have terminated

1Function / is assumed to be a pure function of its input i, and to involve sufficient computation
granularity to ensure that the async overhead is insignificant in these examples.

14

globally. There is an implicit finish statement, surrounding the main program in an

HJ application. If async is viewed as a fork construct, then finish can be viewed as

a join construct. However, the async-finish model is more general than the fork-join

model [38].

HJ distinguishes between local termination and global termination of a statement.

The execution of a statement by an activity is said to terminate locally when the

activity has completed all the computation related to that statement. For example,

the creation of an asynchronous activity terminates locally when the activity has been

created. A statement is said to terminate globally when it has terminated locally and

all activities that it may have spawned (if any) have, recursively, terminated globally.

Consider a variant of the previous example in which the main program waits for its

child activity to finish so that it can print the total sum obtained by adding oddSurn

and evenSum:

public static void main(String [] args) {

final int n = 10000;

final BoxedDouble oddSum=new BoxedDouble();

double evenSum = 0;

finish {

async { / / Compute oddSum in child activity

for (int i=l ; i<=n ; i+=2)

oddSum.val += f(i);

>
// Compute evenSum in parent activity

for (int i=2 ; i<=n ; i+=2)

evenSum += f(i);

> // finish

S y s t e m . o u t . p r i n t l n (" S u m = " +

(oddSum.val+evenSum));

} // main ()

The finish statement guarantees that the child activity terminates before the print

statement is executed. Note that the result of the child activity is communicated to

15

the parent in a shared object, oddSum, since HJ does not permit a child activity to

update a local variable in its parent activity.

In addition to waiting for global termination, the finish statement plays an impor-

tant role with regard to exception semantics. An HJ activity may terminate normally

or abruptly. A statement terminates abruptly when it throws an exception that is

not handled within its scope; otherwise it terminates normally. While it may seem

that an obvious solution is to propagate exceptions from a child activity to a parent

activity, doing so is problematic when the parent activity terminates prior to the child

activity. Since we want to permit child activities to outlive parent activities in HJ, the

finish construct is a more natural collection point for exceptions thrown by descendant

activities. HJ requires that if statement S or an activity spawned by S terminates

abruptly, and all activities spawned by S terminate, then finish S terminates abruptly

and throws a single exception formed from the collection of all exceptions thrown by

S or its descendant activities. Exceptions thrown by this statement are caught by the

runtime system and result in an error message printed on the console. This provides

more robust exception handling support for multithreaded programs compared to the

Java model in which an exception is simply propagated from a thread to the top-level

console instead of propagation to an appropriate handler in an ancestor thread.

isolated (stmt), isolated (method-decl): An isolated block is executed by an

activity as if in a single step during which all other concurrent activities within the

same place are suspended. The isolated construct is our renaming of XlO's atomic

construct. As stated in [38], an atomic block in X10 is intended to be "executed by an

activity as if in a single step during which all other concurrent activities in the same

place are suspended". This definition implies a strong atomicity semantics for the

atomic construct. However, all X10 implementations that we are aware of (including

the one used in this paper) use a single lock per place to enforce mutual exclusion

of atomic blocks. This approach supports weak atomicity, since no mutual exclusion

guarantees are enforced between computations within and outside an atomic block.

16

As advocated in [73], we use the isolated keyword instead of atomic to make explicit

the fact that the construct supports weak isolation rather than strong atomicity. An

isolated block may include method calls, conditionals, and other forms of sequential

control flow. Parallel constructs such as async and finish are not permitted in an

isolated block. Isolated blocks may be nested and the isolated modifier on method

definitions are permitted as a shorthand for enclosing the body of the method in

an isolated block. The isolated construct is semantically equivalent to XlO's atomic

construct.

Consider the following example in which each iteration of a loop executes in

parallel and accumulates its result in a shared location, Sum.val:

public static void main(String[] args) {

final int n = 10000;

final BoxedDouble Sum = n e w BoxedDouble();

fi nish

for (int i = 1 ; i <= n ; i++)

async { / / Compute oddSum in child activity

double result = f(i);

isolated Sum.val += result;

>
S y s t e m . o u t . p r i n t l n (" S u m = " + Sum.val);

)- // main ()

In the previous example, the finish construct was used to ensure that shared

location oddSum. val was computed by the child activity before it was read by the

parent activity. In this example, the shared location Sum.val can be updated in

parallel by multiple activities, and the isolated block is used to ensure that the read-

modify-write operations are performed in a consistent manner.

2.2.2 Multi-Place Programming in HJ

Current programming models use two separate levels of abstraction for shared-memory

thread-level parallelism (e.g., Java threads, OpenMP, pthreads) and distributed-memory

17

Immutable Data - final variables

Partitioned Global Address Space

Activities
Within
Place

Locally
Synchronous

Remote Async

Globally Asynchronous

Activities
Within
Place

Place 0 Place MAX_PLACES-1

Figure 2.2 : HJ's Multi-Place Execution Model

communication (e.g., Java messaging, RMI, MPI, UPC) resulting in significant com-

plexity when trying to combine the two. The three core HJ constructs introduced

earlier can be extended to multiple places, as illustrated in Figure 2.2. A place is

a collection of resident (non-migrating) mutable data objects and the activities that

operate on the data. Every HJ activity runs in a place; the activity may obtain a

reference to this place by evaluating the constant here.

HJ takes the conservative decision that the number of places (MAXJPLACES) is fixed

at the time an HJ program is launched. Thus, there is no construct to create new

places. This is consistent with current programming models, such as MPI, UPC, and

OpenMP, that require the number of processes to be specified when an application is

launched.

Places are virtual — the mapping of places to physical locations is performed by

a deployment step that is separate from the HJ program [37, 125]. Though objects

and activities do not migrate across places in an HJ program, an HJ deployment is

free to migrate places across physical locations based on affinity and load balance

considerations. While an activity executes at the same place throughout its lifetime,

it may dynamically spawn activities in remote places.

HJ supports a partitioned global address space (PGAS) that is partitioned across

places. Each mutable location and each activity is associated with exactly one place,

18

and places do not overlap. A scalar object in HJ is allocated completely at a single

place. In contrast, the elements of an array, may be distributed across multiple places.

We now discuss how the async and finish constructs discussed earlier in a single-place

context, extend directly to the multi-place case.

2.2.2.1 Remote Asyncs

The statement, async ((place-expr)) (stmt), causes the parent activity to create a

new child activity to execute (stmt) at the place designated by (place-expr). The async

is local if the destination place is same as the place where the parent is executing,

and remote if the destination is different. Local async's are like lightweight threads,

as discussed earlier in the single-place scenario. A remote async can be viewed as

an active message, since it involves communication of input values as well as remote

execution of the computation specified by (stmt). The semantics of the HJ finish

operator is identical for local and remote async's viz., to ensure global termination of

all asyncs created in the scope of the finish.

HJ supports a Globally Asynchronous Locally Synchronous (GALS) semantics for

reads/writes to mutable locations. We say that a mutable variable is local for an

activity if it is located in the same place as the activity; otherwise it is remote. An

activity may read/write only local variables (this is called the Locality Rule, and it

may do so synchronously. Any attempt by an activity to read/write a remote mutable

variable results in a BadPlaceException. As mentioned earlier, isolated blocks are

used to ensure atomicity of groups of read/write operations among multiple activities

located in the same place. However, an activity may read/write remote variables only

by spawning activities at their place. Thus a place serves as a coherence boundary in

which all writes to the same datum are observed in the same order by all activities in

the same place. In contrast, inter-place data accesses to remote variables have weak

ordering semantics. The programmer may explicitly enforce stronger guarantees by

using sequencing constructs such as finish.

19

Static
Optimization

Dynamic
Optimization

Figure 2.3 : Static and Dynamic Optimization Framework

2.3 Code Optimization Framework

Figure 2.3 depicts the overall compiler analysis and optimization framework assumed

in this thesis. The overall compiler infrastructure consists of a static optimization

component and a dynamic optimization component. The input parallel programming

language considered is HJ, however the techniques described in this thesis can be

applied to other parallel programming languages as well. The input parallel program

is parsed by the front-end of the static optimizer and is translated into a parallel

intermediate representation (PIR). PIR is an intermediate representation in which

the parallel constructs such as async, and f i n i s h are explicitly represented in a

hierarchical manner. Like other intermediate representations, several analyses and

transformations are performed at the PIR level.

One of the key foundations of analyzing parallel programs is to determine state-

ment instances that may execute in parallel with each other. This is known as

May-Happen-in-Parallel (MHP) analysis. The MHP information can be used in

other compiler analysis and optimization of parallel programs e.g., the constant

Habanero Java (HJ)

20

propagation described in [77] using concurrent-SSA form representation needs to know

the interfering data values and these can be determined using the MHP analysis. In

this thesis, we present a precise definition of MHP using condition vectors that identify

execution instances of statements for which the MHP holds, instead of just returning

a single true/false value for all pairs of executing statement instances. Based on

this definition, we present an efficient algorithm for computing MHP information

for HJ parallel programs. Compared to the MHP analysis of other languages, our

approach [2] is based on a simple walk over the program structure tree which is an

abstraction of the abstract syntax tree. The MHP analysis analyzes async, f in ish,

isolated, and places constructs of HJ.

Traditionally, procedure calls hinder the precision of compiler transformations in

the absence of interprocedural analysis. Side-effect analysis is an interprocedural

analysis that summarizes the modified and referenced data items for each procedure.

For parallel programs, the parallel constructs themselves embed inherent side-effects.

To enable PIR transformations across procedure boundaries and parallel constructs,

we present a unified side-effect analysis in this thesis that summarizes side-effects of

procedure calls in the presence of parallel constructs. The side-effect analysis [12]

uses a heap-array representation for faster side-effect computation. It computes side-

effects for unique features of HJ programs like global termination using f i n i s h and

escaping-async. The side-effects can be used by other code reordering transformations

such as code motion.

After PIR analysis is performed, several PIR transformations are performed. One

such PIR transformation is scalar replacement for load elimination that replaces

memory load operations of object references by scalar variables, thereby enabling

the back-end to generate register accesses instead of load instructions. In this thesis,

we describe a parallelism-aware scalar replacement transformation for eliminating

memory load operations. The legality of such a transformation in parallel programs is

strongly dependent on the underlying memory model supported by the programming

21

language. We describe an Isolation Consistency (IC) memory model [12] for HJ

parallel programs. IC is a weak memory model that allows more opportunities

for code reordering than other existing weaker memory models described in past

work [21, 53, 64, 84], After transformations are applied at the PIR level, platform-

independent bytecode is produced for the input HJ parallel program.

The other component in our optimization framework is the dynamic optimizer.

The bytecodes produced in the static optimizer are subsequently processed within the

dynamic optimizer framework. Additional higher level and low-level optimizations

are performed at the bytecode level within the dynamic optimizer framework. A

key low-level optimization is register allocation. This thesis makes a contribution

to register allocation optimization by providing an space-efficient register allocation

algorithm [105] that is compile-time efficient and produces comparable executable

code quality as a Graph Coloring based register allocation. The space-efficient register

allocation builds on the notion of intervals with holes used in Linear Scan register

allocation.

One approach to moderate register pressure in a program is to pack several narrow

width data variables into the same physical register. A register allocation algorithm

that is aware of the bitwidth information and performs such a packing is known as

a Bitwidth-aware register allocation algorithm. This thesis makes contributions to

bitwidth-aware register allocation by proposing several enhancements to the compu-

tation of bitwidth information and variable packing heuristic [11],

Finally, the bytecodes are converted to the machine code within the dynamic

optimizer and executed on the target machine.

2.4 May-Happen-in-Parallel {MHP) Analysis

Parallel programming languages offer many high level parallel constructs to create,

synchronize, communicate, and join parallel tasks. All these parallel constructs

indicate the relative progress and interactions of parallel tasks during execution.

22

Further, the interactions among parallel tasks indicate their possible ordering of

execution. For example, the end of a f i n i s h scope in HJ ensures the completion

of any parallel task, i.e., async, created within its scope. This implies any async

created after this f i n i s h scope will never synchronize/communicate with the asyncs

created with the f i n i s h scope.

Knowledge of the possible ordering of parallel tasks has a variety of uses in

the compilation and debugging of parallel programs. These uses include program

debugging tools, data-flow analysis, detecting synchronization anomalies like data-

races and deadlocks [32]. The possible ordering among tasks leads to a problem of

determining the actions that can occur in parallel. This is known in the literature

by several different terms: Concurrency analysis [50, 86], B4 analysis [32], and May-

Happen-in-Parallel analysis [90, 92], In this thesis, we will use the May-Happen-in-

Parallel (MHP) term. Note that, MHP analysis determines actions that may happen

during execution, i.e., it is may information rather than must information, hence any

query for MHP information can conservatively return true.

Definition 2.4.1 May-Happen-in-Parallel (MHP) analysis statically determines if

it is possible for execution instances of two statements (or the same statement) to

execute in parallel.

The complexity of MHP analysis is highly dependent on the underlying parallel

constructs supported by the programming language. For example, let us consider the

asynchronous parallel loop constructs consisting of para l le l DO, paral le l case,

POST, and WAIT constructs (described in [68]). Callahan and Sublok [32] have shown

that for a program using the above constructs and without any loop construct, the

MHP computation is NP-hard. Similar complexity results have been proved for Ada's

rendezvous model of synchronization [118], which is similar to Java's wait-notify model

of synchronization.

In general, it is safe for a compiler to compute a conservative approximation of

MHP information. For example, Callahan and Sublok [32] proposed a data flow

23

algorithm to compute a conservative approximation of the sets of statements that,

must be executed before a given statement (B4 analysis). Most recently, Naumovich

et al. [92] proposed a similar data-flow based algorithm for concurrent Java programs.

2.4.1 MHP Analysis for Java Programs

Java offers parallelism in the form of explicit creation, synchronization, and termina-

tion of threads. Threads can be created using start() method call. Similarly, threads

can be terminated using j oin(), which is a blocking method call that blocks the parent

thread until the child thread terminates. Interaction among threads can also occur via

synchronized blocks and methods that allow exclusive access to a thread. Monitors

are represented at, a higher level using synchronized blocks and are implemented

using locks. Execution inside monitor sections can be interrupted using low-level

synchronization primitives such as wait, noti fy , and not i fyAll .

As discussed in the previous section, MHP analysis of Java programs is NP-hard.

A conservative approximation of MHP analysis for Java programs is provided by

Naumovich et al. [92]. Their approach is based on a data-flow analysis framework

over an interprocedural Parallel Execution Graph (PEG). Below, we summarize their

data flow analysis algorithm.

Definition 2.4.2 A Parallel Execution Graph (PEGj, G = {N,£), where N con-

sists of the set of nodes and £ = £Controi U £ thread. U £Sync• £control consists of the

interprocedural control flow edges. £ thread consists of the thread creation edges. £sync

consists of the synchronization edges.

Let O denote the set of objects in the program and T denote the set of threads

in the program. Nt comprises of the set of nodes belonging to a thread t 6 T. A4(n)

denotes the MHP information for a n £ M, i.e., the set of nodes that may execute

in parallel with n 6 M. Further, each node n 6 J\f has an associated node type, i.e.,

C(n) = {FORK, START, END, JOIN, LOCK, UNLOCK, WAIT, NOTIFY}, tsucc(n)

24

denote the thread creation edge of n, i.e., it comprises of the thread START node

(for the first CFG node of a run method) corresponding to a thread FORK node

(for a thread s tar t node). The edges from FORK nodes to START nodes constitute

Sthread- nsucc(n) denotes all the synchronization successors of a NOTIFY node. Note

that a no t i fyAl l construct in Java is translated into a NOTIFY node with multiple

successors. These edges constitute £ notify VV(o) stands for the set of WAIT nodes

corresponding to an object o G O. Inodes(o) denotes the set of nodes n G M such that

n gets executed under a lock on o G O. notifies(n) for a NOTIFY node n G M consists

of the object to which n notifies, e.g., for a node "riio.notifyO", o G notifies(n).

thread(n) returns the current thread corresponding to n.

Unlike traditional data-flow analysis at a basic block level, the MHP information

is computed at a node/statement level. The basic data flow equations for GEN and

KILL for a node n are defined as follows:

tsucc(n) if C(n) = FORK

GEN(n) = < nsucc(n) if C(n) = NOTIFY

V otherwise

' A f t if C{n) = JOIN A n joins t

lnodes(o) if C(n) = LOCK An locks o

KILL(n) = < lnodes(o) if Bp, p G npred(n) A o G notifies(p)

W(o) if C(n) = NOTIFY A o G notifies(n)

0 otherwise

(2.2)

(2.3)

New nodes are added to the GEN set of a node n that correspond to thread start

and notify nodes (as shown in the Equation 2.2). If a thread joins, it removes all the

nodes of the joined thread from the data flow analysis (shown in the first condition

of the Equation 2.3). For entering a new monitor section on o, KILL removes all the

nodes under the same monitor from the data flow equations since monitors provide

25

exclusive access. Similarly, the statements following a WAIT node can not execute in

parallel with any other node under the same monitor on o. Also, none of the WAIT

nodes execute in parallel with any NOTIFY node for the same monitor on o. All

these conditions are shown in Equation 2.3.

Once the GEN and KILL information for all the nodes are computed, the MHP

information is obtained using the following two equations for M and OUT.

OUT(n) = (M{n) U GEN(n)) — KILL(n) (2.4)

M(n) = M (n) (J (2.5)

upepred(n)OUT(p) - Nt if C{n) = START

At £ thread(n)

Upenpred(n)(OUT(p)n if 3p,p 6 npred(n)

OUT(pred(n)) U {m}) A m € nsucc(p)

A m ^ n

Upenpred(n){OUT(p)r) if 3p,p e npred(n)

OUT(pred(n)))

upepred(n)OUT(p) otherwise

The JV[computation for n consists of several conditions as shown in Equation 2.5.

The first condition states that if n is a START node for thread t, then all the nodes for

t, i.e., Aft, are removed from the predecessor's OUT set, i.e., nodes of the same thread

can not execute in parallel with the first node of the thread. The second condition

states the case that two successors of a NOTIFY node may execute in parallel with

respect to each other. The third condition states that if n is a successor of a NOTIFY

node, then the successor of the NOTIFY node will propagate M. information that

is coming from both NOTIFY node and the WAIT node. The fourth condition

propagates MHP information along normal control flow edges. Finally, OUT of a

node n (as shown in Equation 2.4) is computed by adding and removing appropriating

26

information from A4 based on GEN and KILL.

Theorem 2.4.3 The data flow equations for M. terminates.

Proof: Refer to [92],•

Theorem 2.4.4 The worst-case time complexity of computing A4 sets for all nodes

in the program is 0(Af3) where N denotes the set of nodes in the PEG.

Proof: Refer to [92],•

A practical implementation of the above data flow equations is provided in [81].

Even though the data flow equations are an elegant way of solving the MHP problem,

it has several efficiency and precision problems in the context of Java: 1) the analysis

is closely dependent on an interprocedural alias analysis for thread objects, lock

objects and virtual method calls; 2) the analysis needs explicit enumeration of runtime

threads during compilation time to precisely compute 8 s y n c ; 3) the analysis has

0(Af3) complexity. If we closely look at the limitation (1), the interprocedural alias

analysis can also benefit from MHP information by eliminating aliases arising from

statements that do not execute in parallel with each other. This causes a cyclic

dependency between MHP analysis and alias analysis. A solution to break the cyclic

dependency may require an incremental analysis between the two causing the overall

complexity to increase and become less practical to perform. To overcome limitation

(2), an abstraction of runtime threads is needed that is aware of runtime threads

created within loops and recursion. This is presented in [10]. Since MHP analysis

involves propagating information at parallel construct boundaries, it's complexity can

be reduced by computing MHP information at multiple levels, e.g., thread-level and

node-level. Using this approach, a quadratic MHP algorithm is presented in [10].

Chapter 3 of this thesis focuses on MHP analysis for HJ programs. We provide a

precise definition of MHP for statements executed in loops and recursions. Using the

high-level constructs of HJ like f in i sh , async, places, and isolated, an efficient

27

MHP algorithm [2] is described that is linear in complexity and does not involve any

interprocedural alias analysis.

2.5 Side-Effect Analysis

Subroutines (also known as methods, functions and procedures) are a key program-

ming tool in today's programming languages. They offer several software engineering

benefits including the reduced cost of development and maintenance. For example,

the object-oriented programming in Java consists of two core constructs: objects

and methods. Typically a method consists of a set of parameters, a body, and an

optional return value. When one procedure (the caller) calls another procedure (the

callee), following actions take place in order: 1) binding between formal and actual

parameters; 2) execution of the body of the callee; 3) binding of the return value;

4) return of control to the caller after callee executes. The effect of the callee is

visible to the caller after the call. Side-Effect analysis is a compiler analysis that

determines the effects of a procedure call in an attempt to enhance the opportunities

for optimization. For example, an expression inside a loop containing procedure call

can only be identified as loop-invariant if we knew the side-effects of the procedure

call.

The side effect of a callee consists of the side effect of each statement in the

body of the callee. The term "side effect" was introduced by Spillman [113] for PL/I

programming language. Later on Banning [9] formalized the notion of side-effects for

statements and procedures. We summarize Banning's side-effect analysis for method

calls as follows.

For a statement s, there are four common types of side effects:

1. MOD(s) consists of the set of variables whose value may be modified by exe-

cuting s.

2. REF(s) consists of the set of variables whose value may be inspected or refer-

28

Figure 2.4 : Control flow graph structures depicting distinction between four kinds
of side effects MOD, REF, USE, and DEF

enced by executing s.

3. USE(s) consists of the set of variables whose value may be inspected or refer-

enced by executing s before being defined by s again.

4. DEF(s) consists of the set of variables whose value must be defined by executing

s.

The difference between "modified" and "defined" is that "defined" refers to com-

plete overwriting of values where as "modifies" refers to partial overwriting of values

like modifying an element of a structure.

Figure 2.4 shows two control flow graph structures Gi and G2. The side effects

for G\ and C2 are as follows:

29

MOD(Gi) - MOD(G2) = MOD(Si) U MOD{S2)

REF(G{) = REF{G2) = REF(Si) U REF{S2)

USE{G{) = USE{S!) U (USE{S 2) - DEF(Si))

USE{G2) = USE(Si) U USE(S2)

DEF(Gi) = DEFiSi) U DEF(S2)

DEF(G2) = DEF(Si) A DEF(S2)

As can be seen from the above equations, MOD and REF are flow-insensitive

problems since they only use the union (U) operation. However, USE and REF

are flow-sensitive since they use the meet (A) operation. For a statement s inside

procedure p that invokes another procedure q, the MOD and REF for involves

analyzing q, all of its subsequent callee, and binding the formal and actual parameters

at s. Let DMOD(s) for a call site s be the set of variables directly modified by invoking

the callee at s. Let ALIAS(p,v) denote the set of aliases of v on entry to p. The

set of aliases for v indicate the set of memory locations that v can point to. We can

formally define MOD and DMOD of a call site s as follows:

MOD(s) = DMOD(S)Uv€DMOD(S) ALIAS(p,V) (2.6)

DMOD(s) = invokes p, for b £ GMOD(p),v bindsto b} (2.7)

As shown above, the DMOD of a call site is defined in terms of the GMOD of

the called procedure and the parameter bindings at the call site. GMOD(p) of a

procedure p denotes the generalized modification set for p irrespective of the call

sites for p. Since DMOD includes the parameter binding, GMOD(p) analyzes each

30

individual statement in the procedure body using IMOD and each call site in p using

DMOD (recursively). IMOD(p) denotes the set of variables immediately modified

by p (without analyzing the call sites) and is an initial approximation to GMOD.

Formally,

GMOD(p) = IMOD(p) U (J DMOD(s) (2.8)
s invokes q from p

The equation for GMOD is solved using the reverse call graph of the whole program

until a fixed point is reached. Reverse call graph edges emanate from the callee and

are connected to the caller. Note that if a callee is invoked multiple times from a

caller, multiple edges are added for each invocation of the callee since the parameter

binding in DMOD computation might vary for each invocation of the callee. Each

recursive call path in the program must belong to a strongly connected component

(SCC) in the reverse call graph which can be detected using Tarjan's depth-first search

algorithm [117]. The SCC is iterated until a fixed point is reached.

The complexity of solving the above data-flow equations for GMOD is 0(NEa(E, N)),

where E is the number of call sites in the program, N is the number of procedures

in the program and a represents the inverse Ackermann's function. The complexity

holds true for all reducible call graphs. The intuition behind the Ackermann's function

is that the size of the GMOD set grows linearly with respect to the size of the program.

The side-effect computation is a monotonic data flow framework as the GMOD

and GREF sets grow monotonically. According to Kam and Ullman's theory for

reducible flow graphs [67], the complexity of side-effect computation should have

been bounded by the loop connectedness of the reverse call graph. However, Cooper

and Kennedy [43] observed that for a single recursive procedure program where the

first parameter is modified before the recursive call with rest of the parameters (as

shown in Figure 2.5), the complexity of the side-effect computation is bounded by

31

void foo (int xl , int x2 , ..., int xn) {
int y ;

xl = . . . ;

foo (x2 , x3 , . . . , xn, y) ;
>

Figure 2.5 : Termination of Side-effect analysis

the number of parameters. They proposed a decomposed method for computing

side-effects using the binding multi-graph.

In Chapter 4 of this thesis, we present a fast side-effect analysis for programs

under dynamic compilation environment that builds on the foundations of GMOD and

GREF. Further, it demonstrates how to compute side effects for parallel constructs

and present a combined side-effect analysis [12] of procedure calls and parallel con-

structs for H J programs. Note that, there exists a natural interplay between procedure

calls and parallel constructs, especially when parallel constructs are translated to low-

level runtime procedure calls as in common practice.

2.6 Scalar Replacement Transformation for Load Elimina-

tion

To ameliorate the Memory Wall problem in recent computer systems, compilers need

to perform transformations that promote values from memory to lower levels of the

memory hierarchy, i.e., registers or scratchpads. For example, for scientific programs

in Fortran, scalar replacement transformation [33] is used to convert array references

in the program to scalar references so that the scalar references can be allocated in

machine registers. Additional transformations like unroll-jam, loop unrolling, and loop

fusion are proposed to expand opportunities for scalar replacement of array references.

Modern programming models such as Java primarily focus on objects. Objects

32

Original program:

1 p := n e w Typel
2 q := n e w Typel
3 .

4 p . x : = ...
5 q . x : = ...
6 ... : = p . x

After redundant load elimination:

Original program:

14 p := n e w Typel
is q := n e w Typel
16 .

17 . . . : = p . x
is q . x : = ...
19 . . . : = p . x

After redundant load elimination:

7 p

s q
9 .

10 T1 : =
n p . x :
12 q . x :
13 . . .

:= n e w Typel
:= n e w Typel

T1

21 p

22 q
23 .

24 T2
25 . .

:= n e w Typel
:= n e w Typel

: = p . x

:= T2

T1
26 q . x : = ...
27 . . . := T2

(a) (b)

Figure 2.6 : Examples of scalar replacement for load elimination transformation

are allocated dynamically and are indirectly accessed through references. Objects

can point to other objects via indirect memory load operations (also known as path

expressions), such as o . f . These kinds of indirection using path expressions is a

common practice in Java. Inspired by the principle of scalar replacement for arrays,

the memory operations on objects can also be promoted to lower level of memory

hierarchy to address the Memory Wall problem. This approach of eliminating memory

load operations of array and object references via scalar replacement is known as Load

Elimination transformation. Load elimination is increasing in importance for multi-

core and many-core architectures as it reduces the gap between memory and cpu

speed.

Figures 2.6(a) and Figures 2.6(b) demonstrate the load elimination transformation

for object fields. For the original program in figure 2.6(a), introducing a scalar

temporary T1 for the store (def) of p .x can enable the load (use) of p.x to be

eliminated, i.e., to be replaced by a use of Tl. Figure 2.6(b) contains an example in

33

which a scalar temporary (T2) is introduced for the first load of p.x, thus enabling

the second load of p.x to be eliminated, i.e., replaced by T2. The load elimination

transformations in Figures 2.6(a) and 2.6(b) are correct because p and q have different

values thus ensuring that the store of q.x does not interfere with p.x.

Scalar replacement [33] studied in the context of register reuse leads to load

elimination as the two scenarios described above are exactly same as the reuse due

to flow and input dependencies that a scalar replacement addresses. However, load

elimination needs additional mechanisms for disambiguating object references that

scalar replacement did not address.

There has been much past work on load elimination via scalar replacement in-

cluding [19, 20, 33, 45, 52, 75, 82, 83, 102]. We now summarize the load elimination

algorithm presented by Fink et al. [52] as it is assumed as a baseline for our work on

load elimination in parallel programs.

2.6.1 Unified Modeling of Arrays and Objects

As described in Fink et al. [52], accesses to object fields and array elements in the

program can be represented using hypothetical heap arrays that are compile-time

abstractions of the runtime heap. Each object field x in the program is abstracted by

a distinct heap array, 7 i x . Hx represents all the instances of field x in the heap. A use

of a.x is represented as a use of element Tix\a\, and a definition of b.x is represented

as a def of element 7i.x[b]. The use of heap arrays ensures that field x is considered

to be the same across instances of two different static types 7\ and T2, if (say) 7\ is

a subtype of T2. It also ensures disambiguation of memory accesses to distinct fields,

since they will be converted to accesses to distinct heap arrays.

Likewise, each array is abstracted as a two dimensional heap array with one

dimension representing object reference and the second dimension represented by the

subscript. We use the notation to denote a heap array whose dimensionality

(rank) is 1Z and element type is T . Note that distinct heap arrays are created for

34

each distinct array type in the source program, e.g., represents integer arrays.

2.6.2 Extended Array SSA form

The arrays and object references in the IR can be renamed with the heap array

representation described above to build an extended version of Array SSA form [69].

This involves inserting two specialized <j) functions for use and def of heap arrays apart

from the standard SSA form based (f) functions. Each definition of a heap variable

is replaced with a definition 4> (d<fi) that indicates a merge function to merge the old

values with the partial modification in the current definition statement. For example,

for a[i] = ..., only %-th element is modified keeping other elements of array a intact.

Similarly, each use of a heap variable is replaced with a use (f> (u<j)) to link multiple

loads for the same heap array in control flow order. For each dcf) and ucj) instructions

that are added to the IR, new 0 instructions are added at their respective iterated

dominance frontier to keep the program in SSA form.

2.6.3 Load Elimination Algorithm

For eliminating redundant loads, we need a way of distinguishing heap variables

7ix[a] for a.x and Hx[b] for b.x. This is described using the definitely-same and

definitely-different relations.

Definition 2.6.1 Hx[a] and W'[b] are definitely same (DS) if a and b have same

values at all program points that are dominated by the definition of a and dominated

by the definitions of b. This information can be obtained using value number's of a

and b, i.e., V(a) =• V{b), where V(a) represents the value number associated with a.

Note that VS is a transitive relation.

Definition 2.6.2 Hx[a] and 7ix[b] are definitely different (W) if a and b have

distinct values at all program points that are dominated by the definition of a and

dominated by the definitions of b. Note that T>T> is not a transitive relation.

35

While VS can be computed using a global value numbering pass, W can be com-

puted using alias information or can be conservatively approximated using allocation

sites and a reaching definition analysis.

The complete algorithm for load elimination [52] is provided in Algorithm 2.7. To

compute if a load instruction is redundant, we need to propagate the heap variables

and their associated value numbers in the extended array SSA IR. The propagation

essentially performs a def-use chaining of heap variables tha t indicate which value

numbers are already available from previous instructions and hence are redundant

at the use. This is performed using an index propagation system that consists of a

lattice over the value number set for heap variables. The details of the lattice and its

operations are provided in [52], The core idea of the algorithm is to propagate the

value numbers over extended array SSA form until a fixed point is reached. Finally,

the load operations are replaced with scalar temporaries based on the availability of

their value numbers and the code is transformed using the scalars.

1 function LoadElim()
Input : Method m and its IR
Output : Transformed IR after load elimination

2 Construct extended array SSA form for each heap operand access;
3 Perform global value numbering to compute definitely-same(DS) and

definitely-different(D D) relations;
4 Perform da t a flow analysis to propagate uses to defs;
5 Create da ta flow equations for (f>, d(f), and u<p nodes;
6 I terate over the da ta flow equations until a fixed point is reached;
7 Perform load elimination;
8 For a load of a heap operand, if the value number of the associated heap

operand is available, then replace the load instruction;

Figure 2.7 : Load elimination algorithm

Even if the target processor has a limited number of registers, replacing a general

heap load access by a read of a compiler-generated temporary can be profitable

in future many-core processors because it enables the use of more energy-efficient

36

and scalable storages like registers and local memories (scratchpads). Performing

such scalar replacement for load elimination in parallel programming languages for

multi/many-core processors pose additional challenges in the form of interferences

among shared data accesses across parallel tasks. These interferences are commonly

known as data races. Analyzing programs with or without data races is strongly

tied to the underlying memory model supported by the language. Chapter 5 of

this dissertation describes a parallelism-aware scalar replacement algorithm for load

elimination transformation [12] whose legality is provided using a new weak memory

model called Isolation Consistency (IC).

2.7 Register Allocation

The Register file is the most critical storage resource in a computer's processing unit.

It contains a limited number of physical machine registers and provides faster access

to operands than any other storage resource in a computer. For example, the x86

architecture provides 8 fixed machine registers and multiple of these registers can be

accessed in one cycle. Hence, it is important from an optimizing compiler's perspective

that the utilization of the register file be controlled. Register Allocation is a compiler

back-end phase that maps operands to physical registers at various program points.

Operands are either program variables or compiler generated temporaries. We use

variables, symbolic registers, and operands, interchangeably. Since the number of

physical registers is usually smaller than the number of simultaneously live variables,

it is almost always the case that some of the operands need to be spilled, i.e., allocated

in other resources like cache, memory, or scratchpads.

Given k physical registers, a register allocation problem can be formally stated as

follows:

Definition 2.7.1 Given a set of variables V and k physical registers, determine if it

is possible to assign each variable v G V to a physical register at each program point

where v is live. If so, rewrite the code using physical registers. Otherwise, rewrite the

37

code using spill code.

Typically, a register allocator consists of two tasks: allocation and assignment.

Allocation determines which operands should be held in physical machine registers

at various program points and which operands should be "spilled". Assignment

identifies which specific machine registers of the target machine should be used at

different program points to hold which operands. While allocation ensures that no

more than k variables are residing in registers at any program point (where k is

the total number of physical registers available in the target machine), assignment

produces the actual register names required in the executable code. Both these tasks

are equally difficult, i.e., NP-hard to perform at all levels of compilations including

local (basic block level), global (procedure level) and interprocedural (whole-program

level)2. Modern architectural innovations like register classes, register aliasing, and

register pairs further complicate the register allocation problem.

In the rest of the section, we first summarize common terminology used in register

allocation and describe several existing techniques for register allocation.

2.7.1 Terminology

2.7.1.1 Liveness, Live-ranges and Interference Graph

For register allocation, it is necessary to know which variables can be allocated to

the same physical register and which can not. This information is usually abstracted

away in the form of live-ranges and interference. Based on the notion of liveness and

program point described in Section 2.1, we can define the live-range of a variable and

the interference of two variables as follows:

Definition 2.7.2 The live-range of a variable v denoted as lr(v) is the set of program

points where v is live.

2It is possible to perform optimal allocation for a single basic block [14, 44, 88]

38

Definition 2.7.3 Two variables a and b are said to be interfering (or conflicting)

with each other if lr(a) D lr{b) ^ </>.

The live-ranges in a program can be computed using the algorithms presented

in [8, 24], The interference among all program variables can be represented using an

undirected graph known as the interference graph.

Definition 2.7.4 The interference graph (IG) is a graph, G = (V, E), where V con-

sists of variables and E consists of edges between variables arising from interference,

i.e., two interfering variables a and b will have an edge between them.

The IG serves as the main data structure of all register allocation algorithms based

on graph coloring. Hence it is critical to represent an interference graph efficiently.

Usually IG is implemented using two representations: 1) bit matrix: that supports

constant time implementation of determining interference between two variables; 2)

adjacency list: consists of a list of adjacent neighbors for every node in IG and

supports fast iteration over the neighbors. The worst-case space complexity of an IG

is 0(n2), where n is the total number of variables in the IR.

2.7.1.2 Spilling

Spilled variables incur the additional cost of load and store memory operations

for transferring values between registers and memory. These memory operations

constitute spill code and are usually expensive. Hence, a register allocator should

always aim to keep the frequently-used values in registers to minimize the impact of

spill code.

2.7.1.3 Coalescing

The IR undergoes several front-end transformations before back-end register alloca-

tion pass of the compiler. One particular instruction that occurs frequently in the IR

after compiler transformation is a move instruction of the form udest = src" as move

39

src, dest. Prom a register allocation perspective, if src and dest are assigned to the same

physical register (also known as coalesced), then the move instruction can be removed

from the IR. However, when the live-ranges of src and dest interfere with each other,

it may not be possible to assign src and dest the same physical register. Since the

ultimate goal of register allocation is to produce efficient code, a register allocation

algorithm needs to optimize away as many move IR instructions as possible. Several

coalescing techniques have been proposed in the literature: aggressive coalescing [35],

conservative coalescing [28], optimistic coalescing [96], and iterated coalescing [57].

Recently, [23] have shown that all the above coalescing techniques are NP-hard.

2.7.1.4 Live-range splitting

Sometimes it may be beneficial to split the live-range of a variable into two or more

smaller live-ranges. The smaller live-ranges can be separately allocated to memory or

physical registers after variable renaming. This is helpful especially when a live-range

can be assigned a physical register in some program points instead of the whole live-

range. The down-side of live-range splitting is that it incurs extra cost of inserting

move and load/store instructions among smaller live-ranges.

2.7.1.5 Architectural Considerations

Register Classes: Typically, a register allocation problem is stated using a set of

k uniform physical registers. These k registers are assumed to be independent and

interchangeable. Independent means that modifying one physical register does not

modify another and interchangeable means that they can be exchanged with each

other in a particular context. However, modern systems come with physical registers

which may not necessarily be interchangeable. For example, the Intel x86 architecture

provides eight integer physical registers, of which six are usable by the compiler. These

six physical registers are further divided into four high level register classes based on

calling conventions and 8-bit operand accesses. Similarly, for most architectures the

40

physical registers in a floating point register class can not be interchanged with the

physical registers of the integer register class. If the register classes were disjoint, then

we can state the register allocation problem independently for each class and solve

them independently. However, the register classes are not necessarily disjoint. For

example, the four integer register classes of x86 architecture overlap with each other.

To produce high quality machine code, a register allocator must take into account

these register classes.

Register Aliases: The independence assumption between physical registers is

violated using register aliases. Aliasing indicates that modifying one physical register

can affect another. An example demonstrated in [26] is to use two single precision

floating point registers for one double-precision register. Similarly the integer physical

registers of x86 architecture can be accessed as 8-bit operands using AL, BL, CL and

DL registers and the same is aliased with 16-bit operands using AX, BX, CX, and DX.

A register allocation algorithm must consider these features to produce reasonable

machine code.

2.7.2 Register Allocation Techniques

2.7.2.1 Graph Coloring Register Allocation

Starting with the seminal paper by Chaitin [35], the dominant approaches for global

register allocation have been based on the idea of building the IG for variables, and

employing Graph Coloring (GC) heuristics to perform the allocation. If the machine

has k physical registers, Graph Coloring looks for a k-coloring of IG, i.e., k colors are

assigned to the node of IG such that neighboring nodes always have different colors.

Graph Coloring is shown to be NP-complete [54]. Chaitin presents a heuristic to find

the &;-coloring of an IG. If a ^'-coloring is not found, some variables are spilled onto

memory.

Figure 2.8 illustrates Chaitin's register allocator. It consists of the following

phases:

41

1. Renumber renames live ranges. It creates a new live range for each definition of

a variable. At each use of a variable, it combines the live ranges that reach the

use.

2. Build constructs the IG.

3. Coalesce combines two non-interfering live ranges that are part of a move

instruction. When two live ranges are coalesced, new live ranges are created

and hence, IG is updated. Chaitin's coalescing approach did not consider the

decrease/increase of the colorability of IG after coalescing. Hence, Chaitin's

coalescing is commonly referred to as aggressive coalescing [35].

4. Spillcost computes the compiler's estimation of run-time cost of a live range

when the live range is spilled onto memory.

5. Simplify removes nodes from the IG and creates an ordering of the nodes using a

stack. If the degree of a node is less than k, the node and its edges are removed

from IG and pushed onto the stack. If there are no nodes in the IG that have

degree less than k, then a node is chosen for spilling. After all the nodes are

removed from the IG, spill code is added for the spilled nodes and the register

allocation process is repeated from the beginning.

6. Spill code inserts appropriate load and store memory operations for spilled live

ranges.

7. Select assigns colors to the nodes in the order specified by the stack in Simplify

pass.

The above heuristic leverages the observation that when a node with degree less

than k is removed from the IG, the ^-colorability of IG is not changed. Nodes with

degree greater than or equal to k are spilled. The node selection for spilling is based

on the smallest ratio of spill cost divided by the degree.

42

Figure 2.8 : Chaitin's Register Allocator

Briggs et al. [25, 28] showed that Chaitin's heuristic does not always find a k-

coloring even if one exists. For example, a diamond interference graph has a 2-coloring

that can not be recognized by Chaitin's heuristic. They proposed a modification to

the Simplify phase that repeatedly removes nodes of smallest current degree in the

IG and pushes them onto the stack. Actual spill decisions are taken in the Select

phase. Apart from this modification, they proposed a conservative coalescing scheme

that coalesces nodes in the IG such that the colorability of the resulting IG after

coalescing is not increased.

Since the inception of Graph Coloring register allocation, significant advances have

been achieved over these years through the introduction of new coloring, spilling,

and coalescing heuristics based on the IG, e.g., [30, 31, 40, 57, 96, 104, 110].

However, a key limitation that underlies all register allocation algorithms based on

Graph Coloring is that the number of variables that can be processed by the register

allocation phase in an optimizing compiler is limited by the size of the IG. The number

of edges in the IG can be quadratic in the number of nodes in the worst case, and is

usually observed to be super-linear in practice. Though it is used widely in practice,

Coloring-based Register Allocation is usually the scalability bottleneck phase in an

optimizing back-end. Recently, a study by Cooper and Dasgupta [42] to investigate

the most expensive component of Graph Coloring register allocator reported that

the Build phase consumes almost 72% of the total allocator time. This non-linear

complexity in space and time of Graph Coloring limits the code size that can be

43

optimized and thereby has a damping effect on aggressive use of code transformations

that can potentially increase opportunities for register allocation, such as variable

renaming, loop unrolling and procedure inlining, but which also have the side effect of

increasing the size of the IG. Finally, the non-linear complexity makes it prohibitive

to use Graph Coloring for register allocation in just-in-time and dynamic compilers,

where compile-time overhead contributes directly to runtime.

2.7.2.2 Linear Scan Register Allocation

Just-in-Time (JIT) compilation performed by dynamic compilers aim at compiling

codes on the fly, i.e., compilation happens while the code executes. This adds extra

constraints in terms of time and space than static compilation. Past work by [100, 101]

introduce a new register allocation algorithm, the "linear scan" register allocation.

Their proposed algorithm is fast as it makes a single pass over the IR instructions and

requires very little space since it does not build the interference graph explicitly. Due

to its lightweight nature, Linear Scan has been used in many state-of-the-art Virtual

Machines such as HotSpot Client Compiler [70], LLVM [74], and Jikes RVM [66].

Linear scan assumes a linear ordering of the IR instructions. The choice of ordering

affects the quality of allocation but not the correctness. There are several possible

orderings, such as the original order in which instructions appear in IR (linear order)

and a depth-first ordering over the control flow graph. It has been observed by Poletto

and Sarkar [100] that both linear and depth-first order produce similar code. In the

rest of the thesis, we will consider depth-first ordering.

Definition 2.7.5 Each program point i is represented with i~ and i+, where i~

consists of the variables that are read at i and i+ consists of the variables that are

written at i. i~ and i+ are represented in integer numbers based on the order of the

IR instructions.

Like live ranges in graph coloring register allocation, the central data structure in

44

linear scan is the notion of a live interval. According to the original notion described

in [100], a live interval is defined as follows:

Definition 2.7.6 An integer range [x, y] is a live interval for a variable v i f f $ p , such

that

1. p < x and v is live at p, or,

2. p > y, v is live at p.

For [x, y], x is referred to as the unique start point (denoted as Lo(v)) andy is referred

to as the unique end point (denoted as Hi(v)).

The above definition permits a live interval to include program points where a

variable v may not be live. The sub-interval during which a variable is not live is

known as a life-time hole [119]. It is important to consider life-time holes in linear

scan as it is possible that two overlapping intervals (according to the above definition

of live intervals) can be allocated to the same physical register if both of them are

not live simultaneously. To distinguish between live intervals and live intervals with

holes, let us define basic interval (BI) and compound interval (CI).

Definition 2.7.7 [x,y] is a basic interval (BI) for variable v i f f V p , x <p <y, v is

live at p. Note that a BI does not allow any life-time hole. Lo(b) and Hi(b) denote

the unique start and end points of interval b, respectively.

Definition 2.7.8 A compound interval (CI) for a variable v consists of a set of

disjoint basic intervals for v. Note that, a CI permits life-time holes.

From a register allocation perspective, it is required to decide those Bis that

need to be in physical registers and those CIs that need to be spilled3. Register

3SpiUing at a compound interval level permits all-or-nothing or spill everywhere approach. In the
rest of the dissertation, we will focus on this approach instead of partial spills.

45

assignment decides the exact mapping of BI to physical registers. Given that each

BI is represented using a unique start and end point, the register allocation problem

can be viewed as an interval graph coloring problem. Formally,

Definition 2.7.9 An interval graph is a graph, G = (V,E), where V consists of the

set of Bis and E consists of the intersecting Bis.

Definition 2.7.10 Two Bis, [x\ ,y\) and [x2,y2], are said to be intersecting if one of

the the following holds:

1. x2 > x\ and x2 < y\

y2 > xi and y2 < yx

Theorem 2.7.11 An interval graph G = (V,E) can be colored optimally in linear

time.

Proof: Refer to [88, 94],•

The optimal interval graph coloring described in [94] consists of the following steps:

1) find an ordering of the intervals based on increasing Hi values4; 2) Assign color

to an interval by looking at the already colored adjacent nodes (or neighbors) in the

interval graph. Readers are encouraged to see [88, 94] for more details.

Linear Scan register allocation [100] follows the basic theme of interval graph

coloring described above. However, it brings important implementation efficiencies to

ensure smaller time and space requirements. Like interval graph coloring, linear scan

sorts the basic intervals in increasing order of Lo. Instead of building the interval

graph explicitly, it maintains an active list of basic intervals that orders the basic

intervals in increasing order of Hi. Note that, the active list plays the role of already

colored adjacent nodes (or neighbors) in interval graph coloring. The reason the

active list is sorted in increasing order of end points is two fold: 1) For efficiency

4One particular order either increasing or decreasing should be considered

46

reasons, linear scan performs allocation and assignment in a single pass over the

interval start points. Hence, it is necessary to decide spilled intervals while allocation

is being performed. Using the farthest-use approach of Belady [14], linear scan decides

intervals that have largest end point in active list for spilling; 2) While basic intervals

expire (create life-time holes), they are removed from active list. The scan to remove

basic intervals from active list stops as soon as the current intervals start point is

reached.

The complete linear scan algorithm is presented in Algorithm 2.9. Step 2 builds

a sorted set of Bis based on increasing start points. Step 3 initializes the active list

Active Set to 0. Step 4 iterates over sorted basic intervals and at each BI's start

point, it makes the allocation and assignment decisions. In Step 5, the function

Expire removes basic intervals from ActiveSet whose end points (i.e., Hi) are less

than the current BI's start point. If at any point the size of the ActiveSet is equal to

the number of physical registers (k), then a spill candidate is chosen based on interval

end points (this is shown in Step 6). Step 9 assigns the specific physical register to

an interval. Finally, the current BI is added to the ActiveSet.

Now let us discuss about the complexity of Algorithm 2.9. The overall complexity

is bounded by the following steps: 1) Step 4; 2) the time to add an interval to

ActiveSet; 3) Step 13. Let us assume that there are \BI\ number of basic intervals

that arise from V variables. Let there be k number of physical registers. Further,

let the ActiveSet be implemented using a binary search tree, i.e., the time to add an

interval to ActiveSet is logk. Step 4 takes 0(\BI\) time. Step 13 takes 0{k) time.

So the overall complexity is 0(\BI\ * (A; + log A;)).

Let us consider the example program shown in Figure 2.10. Variable a is initialized

before the if-else construct and is used inside both the branches but not after the merge

point. This gives rise to two contiguous basic intervals for a when the code is ordered

in the sequence shown on the left, i.e., CI(a) = {[1+, 4~], [8~, 11"]}. Note that, CI(a)

includes hole in between the basic, intervals. The compound intervals of b and c consist

47

1 f u n c t i o n LinearScan()
2 IntervalSet=sorted set of Bis in increasing start points i.e., Lo(v);
3 ActiveSet = <f>;
4 foreach b G Interval Set do

Exp i r e (b);
if \ActiveSet\ == k t h e n

L S p i l l (b) ;

8 else
9 Assign an available color to b;

10 ActiveSet = ActiveSet U {b};

n f u n c t i o n Exp i r e (b)
12 foreach b' in ActiveSet do

if Hi(b') > Lo(b) t h e n
return;

15 Remove b' from ActiveSet;
16 Make the physical register of b' available;

17 func t ion Sp i l l (b)
is SpillCandidate = last basic interval in ActiveSet;
19 if Hi(SpillCandidate) > Hi(b) t h e n
20 Assign the physical register of SpillCandidate to b;
21 Spill SpillCandidate and remove it from ActiveSet;
22 ActiveSet = ActiveSet U {b};

23 else
24 Spill b;

13
14

Figure 2.9 : Linear Scan register allocation algorithm

48

1 a =...
2 c =...

Cl(a) CI(b) CI(c)

3 if(...){
4 ... = a
5 b = ...
6 ... = b
7 }
8 else{

I 9 ... = C
11 ...=a
12}
13 ... = C

Figure 2.10 : Example program demonstrating linear scan register allocation. The
source code is shown on the left. The corresponding compound intervals are shown
on the right. We can observe that CI (a) Pi CI (b) = Hence a and b can be assigned
in the same physical register.

of a single basic interval, i.e., CI(b) = {[5+,6~]} and CI(c) = {[2+,13-]}. The hole

created by CI (a) is large enough to contain the entire compound interval of CI (b)

thereby ensuring CI (a) fl CI (b) = 4>. Hence, CI (a) and CI (b) can be assigned to the

same physical register. Cl(c) needs a separate physical register as it intersects with

both CI (a) and CI (6).

Both register assignment and spilling decisions in Poletto and Sarkar [100] are

performed at a compound interval level, i.e., a compound interval is either assigned

the same physical register throughout the entire program or is spilled throughout the

entire program. In other words, all the basic intervals of the same compound intervals

are either assigned the same physical register or spilled. There is no notion of partial

spills or live-interval splitting. Additionally, in [100], a separate code rewrite pass after

register assignment is introduced to rewrite physical register names and generate spill

codes.

A variant of linear scan proposed by Traub et al. [119] known as second-chance bin

packing addresses the above concerns to some extent. Specifically: 1) it combines allo-

cation, assignment and code rewrite in a single pass; 2) allows compound intervals be

49

split multiple times (i.e., a CI can be assigned to a physical register in some program

points and be assigned to a memory location in some other program points, giving

it a second chance for allocation). Their algorithm walks over the IR instructions

in a linear order. When a new CI is encountered, it rewrites the output code with

an available physical register. If no such physical register is available, it spills a CI

based on a next-use distance metric [14] and inserts spill code appropriately. When a

spilled CI is encountered later on, it tries to give a second chance to the CI by finding

an available physical register at the current program point. If an available physical

register is found and the current reference of CI is a read, a memory load instruction is

added. If the current reference is a write, then no memory store instruction is added

until some other CI evicts the physical register. Further memory store instructions

can be avoided during eviction of a CI that is held in a physical register r, if the value

held in r matches that of the memory location of CI5. Since CIs can be allocated

in multiple physical registers at various program points, control flow needs to be

accounted, i.e., appropriate load, store, and move instructions are added on control

flow edges for generating correct code. For example, if the same CI was spilled at the

source end of a control flow edge and was in a physical register at the destination end

of a control flow edges, then a memory load instruction is added along the control

flow edge.

As can be seen above, the second-chance binpacking algorithm [119] spends more

time in compilation as it makes repetitive decisions of spill or register assignment

at every reference of an interval. In comparison, Poletto and Sarkar [100] make

decisions of spill or register assignment at interval start points and it does not offer

opportunities for second-chance.

Like second chance binpacking, more recently Wimmer and Mossenbock [123]

present a linear scan algorithm for x86 architectures that allows splitting of live

5 This requires a data-flow analysis to determine memory consistency and is performed before
register allocation.

50

intervals by allowing some part of the CI to be in a register and some other part be

in memory. Like memory store optimizations of [119], they allow split positions be

placed in low-frequency basic blocks.

One of the key observations made while comparing Linear Scan with Graph

Coloring is that Linear Scan should be used when compile-time space and time

overhead is at a premium (as in dynamic compilation), but an algorithm based on

graph coloring should be used when the best runtime performance is desired. Let us

discuss some of the key reasons why this is the case. One of the limitations of current

linear scan is that it combines allocation and assignment in a single pass for improved

compilation time. This leads to local decisions for allocations and assignments at a

given instruction or at an interval start point based on active list. Instead, the spilling

decisions of a graph coloring is global because the spilling decisions are made based on

the interference graph that represents a global view of program. The global decisions

usually yield improved spilling and register assignment.

Chapter 6 of this dissertation addresses the limitations of current linear scan

register allocation algorithms and presents a space-efficient register allocation algo-

rithm [105] that retains the compile-time efficiency of linear scan while delivering

performance that can match or surpass that of Graph Coloring. The proposed register

allocation algorithm performs allocation and assignment in a compile-time efficient

manner in two separate passes.

2.7.2.3 SSA-based Register Allocation

Recently, much of the attention in register allocation has shifted to performing register

allocation in SSA representation. The key property of a SSA program is that every

variable is defined exactly once. This leads to the fact that an interference graph

built from the live ranges of a SSA program is a chordal graph [22, 29, 59]. A graph

is chordal if every cycle with four or more edges has a chord, that is, an edge which is

not part of the cycle but which connects two vertices on the cycle. For example, the

51

(a) (b)

Figure 2.11 : Examples of chordal and non-chordal graphs; Case(a) is a chordal graph
and Case(b) is not a chordal graph.

graph in Figure 2.11(a) is chordal as the edge (vi, t>3) is a chord in the cycle comprising

of vi, t>2, v3, and V4. In contrast, the graph in Figure 2.11(b) is not chordal as it does

not have a chord for the cycle comprising of v2, and V4.

Chordal graphs have the property that they can be colored in polynomial time [55].

Optimal coloring of a chordal graph G = (V, E) can be performed in 0(1-^1 + |V|)

time.

A SSA based register allocation follows the same basic theme of a register alloca-

tion using Graph Coloring. The overall SSA register allocation framework is depicted

in Figure 2.12. Given an input SSA IR, live ranges and the interference graph is built

in the Build phase. Using the interference graph, spill candidates are chosen so as

to reduce the register pressure of the program to the available physical registers k.

MCS order phase finds a node ordering of the interference graph that can be colored

optimally using Maximum\ Cardinality Search algorithm [16]. Potential Select phase

assigns colors to live ranges. Coalesce phase recolors the live ranges (using Actual

Select) so as to get rid of the move instructions in the IR. Note that Actual Select

and Coalesce phases are repeated until all the nodes are assigned a color and most

of the frequently executed move instructions are removed from the IR. The SSA

program is then translated out of SSA form and spill code is added. The advantage

52

Figure 2.12 : Overall phases of SSA based register allocator. The input intermediate
representation is assumed to be in SSA form.

of SSA based register allocation is that the Spill phase does not need to be in a loop

with the Coalesce phase like Graph Coloring approach as the spill decisions are taken

independently. Once spilled variables are determined in Spill phase, there is no need to

spill any further variables during Coalesce or Select phase. This simplifies the register

allocation process compared to Graph Coloring approach. However, as we will see

in Chapter 6 of this thesis, the recoloring during Coalesce phase and the out-of-SSA

translation makes the allocator less attractive than other register allocators.

2.8 Bitwidth-aware Register Allocation

Registers are few but provide fastest access to a computer system. They must be

allocated efficiently to achieve maximum benefits. Several techniques like coalescing

and live-range splitting (as described in preceding section) are used to reduce register

pressure in a program. Another recent approach of reducing register pressure in a

program is to pack multiple conflicting narrow sized variables onto the same physical

register which otherwise would have occupied more than one physical register. For

example, two 16 bit conflicting variables can be co-located in a single physical register

of 32-bit size. Since two 16 bit variables are conflicting, they would have occupied

two physical registers, thereby wasting 32 bits. A register allocation algorithm that is

sensitive to the widths/sizes of program variables is called a Bitwidth-aware register

allocation algorithm. While packing and unpacking subwords in registers can be a

source of overhead, it is expected that the locality benefits of bitwidth-aware register

allocation will outweigh the overhead in future processors.

53

Consider the following example illustrating how registers can be under-utilized in

a 32-bit machine due to allocation of narrow sized variables onto physical registers.

First, if a variable is declared as boolean, char, or short, then it will occupy the

complete 32-bits of a physical register even though it only needs access to a subword.

Second, if a variable is declared as a 32-bit integer, but the application uses it to store

values which use less than 32 bits, then some bits of the physical register are wasted.

The second example is quite widespread in applications from embedded systems. For

example, Networking and Multimedia applications in embedded systems typically

hold values both in packed and unpacked form. Specifically, the data in a network

packet is unpacked in a program into various components such as header and control.

The packing and unpacking operations are typically seen as bitwise operations in a

program. A bitwidth aware register allocation algorithm can use this information to

pack several unpacked items onto the same physical register to make efficient use of

the physical register.

Let us consider the code fragment shown in Figure 2.13. This code is part of

the kernel code of the adpcm multimedia benchmark [76]. We can observe that the

variable de l ta on line 4 can have values in the range 0 • • • 15 since it is used to access

indexTable and the size of indexTable is a compile-time constant having value 16.

This bounds de l ta to occupy atmost 4 bits on a physical register. The variable index

on line 4 can have any integer value and hence, may end up using the complete 32

bits. However, after line 6, index can only have values in the range 0-88, i.e., it

needs atmost 7 bits. Similarly, on line 7, the variable step can have values in the

range 7 • • • 32767 as the values in stepTable are compile-time constants that lie in

the range 7 • • • 32767. Hence step needs atmost 15 bits. We can also observe that

buf step is a boolean variable and hence needs only 1 bit. The assignment on line 9

masks the value to 0x/0. This implies that out buff can be represented in 4 useful

bits. Finally, *outp on line 11 needs only 8 bits.

It can be observed that almost all the variables in the code fragment shown in

54

1 int stepTable [89] ; // values lie in range [7...32767]
2 int indexTable [16] ; / / values lie in range [-1...8]
3 . . .

4 index += indexTable [delta]
s if (index < 0) index = 0
6 if (index > 88) index = 88
7 step = stepTable [index]
8 if (bufstep)
g outbuf = (delta << 4) & OxfO
io else
n *outp++ = (delta & OxOf) | (outbuf & OxfO)
12 bufstep = Ibufstep
13 . . .

Figure 2.13 : Code fragment from adpcm benchmark showing the benefits of bitwidth-
aware register allocation

Bitwidth
Analysis Build IG Variable

Packing
Move

Insertion
Register

Allocation

Figure 2.14 : Overall Bitwidth aware register allocation framework

Figure 2.13 contribute to wasting bits when they reside in physical registers. Even

if the variables are spilled onto memory, they waste bits while accessing memory. It

would be ideal to perform packing of variables for both memory access and register

allocation. Memory access packing was studied by Davidson and Jinturkar [49].

Stephenson et al. [115] studied the impact of bitwidth analysis on silicon compilation,

i.e., programs that are directly compiled onto hardware. More recently, Tallam and

Gupta [116] introduced a bitwidth-aware register allocation algorithm that focuses

on packing of variables in physical registers.

We will now summarize the foundations of bitwidth-aware register allocation

algorithm described in [116]. Figure 2.14 depicts the overall bitwidth aware register

allocator. It consists of four key steps: 1) Bitwidth analysis; 2) Variable packing; 3)

Move insertion; 4) Register allocation. Let us describe each of them in detail.

55

2.8.1 Bitwidth Analysis

Bitwidth analysis is a static analysis that determines the actual widths (or bits)

of variables at various program points. We denote the width of a variable v at a

program point p as B(v,p). Before we describe how to compute B(v,p) information,

it is necessary to have a representation for B{v,p). There exists two representations

in the literature: 1) value range based representation proposed by Stephenson et

al. [115] that determines minimum and maximum value assigned to a variable; 2)

dead bit representation proposed by Tallam and Gupta [116] that divides the width

of a variable into three contiguous sections: (a) leading dead bits representing the bits

having zeros in the leading part when the variable is represented in binary; (b) middle

live bits representing the actual bit used; (c) trailing dead bits representing the bits

having zeros in the trailing part. Even though the value range based representation

is more precise, the dead bit representation is better suited for use by the register

allocator. The dead bit representation can be stated formally as:

Definition 2.8.1 The width of a variable v at program point p is a pair of leading

and trailing dead bits, i.e., B(v,p) = (l(v,p),t,(v,p)), where l{v,p) denotes the size of

leading dead bits and t(v,p) denotes the size of trailing dead bits when v is represented

in binary.

Now let us discuss how bitwidth information B(v,p) for variables are computed.

The definition points of variables in the program generate new width information

that needs to be propagated to their uses. This involves a forward data flow analysis

that propagates bitwidth information along control flow edges on a lattice over all

possible pairs of (l(v,p),t(v,p)) with merge functions that take appropriate max or

rain actions. Further, the type of usage of a variable at a program point (arising

from bitwise operations like shifting, masking, or-ing) can improve the precision of

the forward data flow analysis. These new bitwidth information need to be propagated

back from use program points to the definition program points using a backward data

56

flow analysis. Using both the forward and backward data flow algorithms, B(v,p) for

every variable at every program point is computed.

2.8.2 Variable Packing

Variable packing is the process of packing multiple variables onto the same physical

register. We would like to distinguish between the terms coalescing and packing

which are sometimes used inconsistently in the literature. Coalescing (as described

in Section 2.7.1.3) attempts to combine two non-interfering variables so as to remove

any move instruction between them. In contrast, packing attempts to combine two

interfering variables that can fit onto the same physical registers. Packing is shown

to be an NP-complete problem by Tallam and Gupta [116] using a simple reduction

from bin-packing.

Packing is usually performed on an interference graph whose interfering edges

are annotated with bitwidth information between two variables having maximum

width. The maximum width is represented using maximum interference width (MIW).

Formally,

Definition 2.8.2 MIW(v1,v2) = \B(vup)\ + \B(v2,p)\ such that $n, \B(vun)\ +

\B(v2,n)\ > \B(v\,p)\ + \B(v2,p)\, where \B(v,p)\ denotes the middle section of useful

bits in dead bit representation.

Initially, each interfering edge between v\ and v2 is annotated with (\B(vi,n)\,\B(v2, n)|)

where n is the program point having maximum interference width. The packing algo-

rithm proceeds by packing variables in the interference graph as long as MIW(v\, v2)

is less than the size of a physical register. One subtlety that occurs while packing is

that every step of packing needs recomputation of MIW as new packed variables are

formed. This can be an expensive operation as it needs to walk over the IR every time.

Tallam and Gupta[116] proposed the use of estimates of MIW (known as estimated

maximum interference width, i.e., EMIW) that are conservative approximation of

MIW and can be computed in constant time without traversing the IR.

57

After Packing
O)

(a) (b)

Figure 2.15 : Two scenarios for variable packing: Case (a) and Case (b) demonstrating
updated MIW after nodes A and B are packed into a single node AB. In these two
scenarios, there is no imprecision since the MIW can be computed directly from the
given edge labels.

Definition 2.8.3 EMIW(vi,v2) > MIW(vy,v2) for all pairs of interfering variables

vi and v2-

Figure 2.15 depicts two scenarios that occur while computing MIW during packing

of variables in the interference graph. These two cases propagate precise MIW

information after packing since only two of the variables are simultaneously live. The

third scenario is shown in Figure 2.16. Since all the three variables are simultaneously

live, the precise MIW computation would require a recomputation of maximum

interference width of the three variables (and hence, needs a pass over the IR). This

is an expensive process. To ameliorate this, EMIWestimates are used that propagate

an intermediate value that is proven safe using an intermediate mean value theorem

(described below). Note that, the EMIW estimates are computed on-the-fly and do

not require any IR pass.

Theorem 2.8.4 If Emin < Eint < Emax, such that Emin = min(EA, EB, Ec) and

Emax = max{EA, EB, Ec), EMIW(A, B, C) = Eint is safe.

Proof: Refer to [116].•

One of the side effects of variable packing is that it may increase the colorability

of the interference graph. For example, consider the diamond interference graph

58

{(ma*<Ab,Ac)+Bc,Cb) ifEln,= EA

(max(Bal Bc)+Ac, Ca) »Eint = EB
(max(Ca,Cb),Ab+Ba) If Emt = EC w h e r e Emin— E in t — Emax

Emin:=m/n(EA, Eg, Eq)
Emax:= max(EA,EB,Ec)
EA := ma*(Ab, Ac)+Bc+Cb
Eb := max(Bg, Bc)+Ac+Ca
Ec := ma*(Ca, Cb)+Ab+Ba

Figure 2.16 : Third scenario for variable packing; The MIW after nodes A and B
are packed into a single node AB are estimated using EMIW that is a safe estimate
of MIW. The EMIW is computed using Eint that is an intermediate value of EA,
EB and Ec-

which is 2-colorable. If two adjacent neighbors of the diamond graph are packed

during variable packing, then the diamond interference graph reduces to a triangle

that requires 3 colors now. Hence, it is desirable that variable packing be guided by

the techniques used in conservative coalescing [28] and a priority function based on

spillcost.

2.8.3 Move Insertion

After variable packing is performed, the IR code is rewritten with new names for

the packed variables. Since the variables are in packed form now, they need to be

unpacked for their individual uses and definitions. If the underlying architecture

provides hardware instructions for bit-level referencing of a physical register [80],

then unpacking instructions are not needed. Additionally, new move instructions

may be needed to perform mtra-register data transfer. This essentially takes care of

bit-fragmentation due to packing.

59

2.8.4 Register Allocation

The final step of bitwidth aware register allocation algorithm is to perform register

allocation of the packed variables. Since the code was rewritten in the Move Insertion

phase, the interference graph needs to be rebuilt and a standard Graph Coloring

register allocation is performed.

Chapter 7 of this dissertation makes several contributions [11] to the bitwidth-

aware register allocation. First, it proposes a limit study on bitwidth analysis that

indicates the opportunities available for improving the bitwidth aware register alloca-

tor. Second, it proposes several enhancements to bitwidth analysis that closes the gap

between runtime bitwidth analysis and static bitwidth analysis. Finally, it proposes a

number of EMI W estimates that enhances the precision of variable packing compared

to Tallam-Gupta variable packing.

60

Chapter 3

May-Happen-in-Parallel (MHP) Analysis

In this chapter, we describe a May-Happen-in-Parallel (MHP) analysis for HJ pro-

grams that determines if two statements can execute in parallel. As described in

Section 2.2, HJ is a modern object-oriented programming language designed for high

performance and high productivity programming of parallel and multi-core computer

systems. HJ offers various concurrency control constructs to the programmers: mul-

tiple parallel activities can be created using the async construct, their termination

can be coordinated using the f i n i s h construct, mutual exclusion can be enforced

using i so la ted blocks, and barrier based synchronization among activities can be

performed using the phaser construct [107]. HJ also inherits from X10 the partitioning

of data and activities across places through the use of distributions. In this chapter

we describe a MHP analysis for HJ programs that consists of the async, f in ish,

isolated, and place constructs.

3.1 Introduction

May-Happen-in-Parallel (MHP) analysis statically determines if it is possible for

execution instances of two given statements (or the same statement) to execute in

parallel. This analysis serves as foundations for static analysis of concurrent programs

and debugging tools for a concurrent program [39, 71, 87, 91]. Static analysis

techniques that may benefit from MHP analysis include detection of synchronization

anomalies like data-races and deadlock, and improving the accuracy of compiler

analysis by removing infeasible def-use pairs.

Several MHP analyses have been proposed in the literature, e.g., [10, 92]. However,

61

the precision of these approaches is severely limited by the fact that Java's concurrency

constructs are tied to objects. For example, the synchronized, wait, notify, start,

and not i fyAl l operations are all invoked on specific target objects. Objects are

created dynamically and may escape method and thread boundaries. This implies

that we need a precise interprocedural alias analysis [7, 114] to model the interactions

among concurrent tasks. Since precise alias analysis is expensive to perform, many

compilers including dynamic compilers prefer faster approximations. These approx-

imations lead to over-approximating the MHP information, i.e., assuming that two

statement instances may execute in parallel when in fact, they can not.

Compared to Java, the concurrency constructs in HJ (described in Section 2.2)

are simpler yet powerful. They are powerful enough to cover all aspects of parallel

programming as evidenced by the range of benchmark suites that have been ported

to HJ including SPECJBB [112], Java Grande [65], Nas-Parallel Benchmark [93], and

Shootout [108]. They are simpler because several concurrency constructs of HJ are not

attached to objects and do not cross method boundaries. Hence, they do not need

any interprocedural alias analysis. This simplicity allows us to obtain more precise

MHP information using linear-time algorithms.

3.2 Steps for MHP analysis of HJ programs

The high level steps involved in MHP analysis for HJ programs are:

1. Create a Program Structure Tree (PST) representation of the HJ method/pro-

cedure, as described in Section 3.3.

2. Perform a Never-Execute-In-Parallel (NEP) analysis is performed as described

in Section 3.4. This analysis considers the occurrences of f i n i s h and async

nodes in the PST and identifies pairs of statement instances that can never

execute in parallel. For soundness, the NEP analysis conservatively errs on the

side of returning NEP = false when it is unable to perform a precise analysis of

62

the input H J program. In the case of statements in a loop-nest, we use condition

vectors (defined in Section 3.4) to qualify the instances of execution that can

never happen in parallel.

3. Perform a Place-Equivalence (PE) analysis as described in Section 3.5. The

output of this analysis is a predicate, PE(S1,S2), which is set to true if se-

lected instances of SI and S2 are guaranteed to execute at the same place.

PE(Sl,S2)=false indicates that the instances may or may not execute in the

same place. For soundness, the PE analysis conservatively errs on the side of

returning PE = false when it is unable to perform a precise analysis of the input

HJ program. Similar to NEP analysis, we use condition vectors to qualify the

instances of execution of statements that are place equivalent.

4. In the final step of MHP analysis as defined in Section 3.6, we combine NEP and

PE analyses to further refine MHP information for i so la ted constructs. The

basic intuition is that for all instances of statement pairs where NEP is true,

MHP is assigned false. In addition, if the statements are executed in isolation,

then MHP is assigned false for all those instances of execution which happen at

the same place.

Each of the above steps is described in detail in the following sections. An earlier

version of these results was presented in [2].

3.3 Program Structure Tree (PST) Representation

We introduce the Program Structure Tree (PST) representation for HJ procedures,

which will be used in later sections as the foundation for performing MHP analysis.

Definition 3.3.1 A Program Structure Tree PST(N,E) for a procedure is a rooted

tree where

63

1. N is a set of nodes such that each node n G N has one of the following types:

root, statement, loop, async, f in i sh , isolated. The root node designates

the start of the procedure. Each async node is annotated with a place expression

that indicates the HJ place executing the async. Likewise, each i so lated node

can be annotated with a set of places (default is at the current place, i.e., here,).

Note that a statement node does not contain any loop, but may contain other

control flow structures such as i f (represented as IF-STMT in the PST).

2. E is set of tree edges obtained by collapsing the abstract syntax tree representa-

tion of the procedure into the six node types listed above. The tree edges define

the parent-child relationships in the PST.

An PST is directly obtained from an abstract syntax tree and is linear in size with

respect to the program. Note that HJ language semantics ensures that an i solated

node will not be an ancestor of f i n i s h or async node. In addition, all statement

nodes must be leaf nodes in the PST.

Definition 3.3.2 For a PST, parent(N) returns the parent of node N as defined by

E. parent(root) is defined to be null .

3.3.1 Example

Figure 3.1 contains a simple example of an HJ code fragment. The code fragment

operates on a three dimensional array A whose values are distributed across places.

Parallel tasks are created at multiple HJ places on line 5 based on the underlying data

distribution of the array A. We will describe details of array distributions later when

we discuss PE analysis. The array elements are exclusively referenced and modified in

statement SI and statement S2 respectively within a single place using the i solated

constructs. Note that the read of A[i — 1 ,j, k] on SI uses a value written in S2, i.e.,

there exists a flow dependence from S2 to SI. PST for the example program is shown

64

for (i = 1 ; i <= n ; i++)
finish

for (j = 1 ; j <= n ; j++)
for (k = 1 ; k <= n ; k++)

async (A . distribution [i , j ,k])
isolated {

SO: temp = 0;
if (...) {

SI: temp = f(A[i-1,j,k]) ;
}

S2 : A [i , j ,k] = temp ;
>

Figure 3.1 : Example HJ program to demonstrate the computation of MHP(Sl,S2).

LOOP

FINISH

LOOP

LOOP

ASYNC

ISOLATED

SO IF-STMT S2

S1

Figure 3.2 : PST for example program in Figure 3.1

65

in Figure 3.2. As can be seen, the PST has a direct correspondence with the source

level program constructs.

3.4 Never-Execute-in-Parallel Analysis

In this section, we describe the approach for determining if two statements will never

execute in parallel (NEP). The NEP relation is the complement of the May-Happen-

in-Parallel (MHP) relation that has been introduced in past work for Java and other

concurrent programming languages. That is, NEP between two statements holds

true if no instances of the two statements can never occur simultaneously. NEP is

used instead of MHP in this section for the sake of convenience in presentation. In

addition, the NEP relation will be used to compute a refined MHP relation later in

Section 3.6.

The algorithm for computing the NEP relation is given in Figure 3.3. The

algorithm takes two inputs: the PST for the HJ procedure being analyzed, and two

statements, SI and S2, for which we want to compute whether NEP is true or false.

Note that the algorithm also accepts the case where SI = S2. The first step is to find

the least common ancestor of the two statements, denoted by A = LCA(SI,S2). This

gives us the common scope of execution of the two statements. In Steps 4 and 10, it

is established for SI and S2 respectively whether they execute within an "unfinished"

async created within A. Depending on this information, there are 4 cases that arise

for NEP analysis as described in Steps 20 - 26:

• Case 1 (Step 20): If both S\ and S2 do not execute in an async construct under

A then we can conclude they will never execute in parallel.

• Case 2 and 3 (Steps 22 and 24)' If exactly one of Si or S2 executes in an

async scope, then the dominator relation (as defined in Section 2.1.3) can be

used to compute the NEP(Si,S2) relation. In the algorithm, the dominator

relation is checked on ancestors of Sx and S2 (ASi and AS2 respectively) that

66

function BasicNEP()
Input : PST and two statement nodes S'i and S'2 in the PST
Output: NEP(Si, S'2): & boolean value
A := LCA(Sx, S'2), the Lowest Common Ancestor of Si and S2 in the PST,
//Determine i f an instance of S'i can be executed in a new async

a c t i v i t y that escapes a given execution instance of A
async_Si := false;
for iV := Si ; N ^ A ; N := parent(N) do

if N is an async node then
async_S"i := true;

if N is a f i n i s h node then
async-Si := false;

//Repeat the previous step for S2
async_Sl2 := false;
for N := S2 ; N ^ A ; N •= parent(N) do

if N is an async node then
async_S"2 := true;

if N is a f i n i s h node then
async_S,2 := false;

flag := false;
if Si ^ S2 then

//Analyze four cases for async-S'i and async_S2
ASi := PST ancestor of S'i that is a child of A; / /Note that ASi := Si

i f Si i s a chi ld of A
AS2 := PST ancestor of S2 that is a child of A; / /Note that AS2 := S2

i f S2 i s a chi ld of A
if -1 asyncSi A -1 async.S2 then

flag := true; / /Case 1

if -1 asyncSi A asyncS2 then
flag := (AS2 does not dominate ASi); / /Case 2

if asyncSi A -1 asyncS2 then
[_ flag := (.̂S^ does not dominate AS2); / /Case 3

if asyncSi A async.S2 then
flag := false; / /Case 4

27 return NEP(Si, S2) := flag;

Figure 3.3 : Algorithm for computing Never-Execute-in-Parallel (NEP) relations

67

Main thread:

SI: ExternalHelper1.start();
S2 : ...
S3: E x t e r n a l H e l p e r 1 . j o i n () ;
S4: ... / / MHP algorithm concludes that

// Sll and S12 may happen in parallel with S4

ExternalHelper1 thread:

S5: ...
S6: InternalHelper1_1.start();
S7: InternalHelper1_2.start();

S8: InternalHelperl_l.join();
S9: InternalHelper1_2.join();
S10: ... // MHP algorithm concludes that

// Sll and S12 cannot happen in parallel with S10

InternalHelper1_1 thread:

Sll : ...

InternalHelper1_2 thread:

S12 : ...

Figure 3.4 : Java example program to illustrate MHP algorithm

are immediate children of LCA(S\, S2). If the PST path from Si upto LCA(S\,

S2) contains an async node which is not followed by any f i n i s h node and AS\

dominates AS2, then Si and S2 will never execute in parallel.

• Case 4 (Step 26): If both Si and S2 execute in a async scope, then we have to

conservatively assume that NEP = false.

3.4.1 Comparison with MHP Analysis of Java programs

We compare the NEP algorithm from Figure 3.3 with the MHP data flow analysis

algorithm developed by [92]. The later algorithm was designed to address all con-

ciirrency features in Java threads, including wa i t /not i fy /not i fyAl l operations in

SO: finish {
SI: async { / / ExternalHelperThreadl . start()

finish {
S5: ...
S6 : async Sll / / InternalHelperThreadl_l.start()
S7: async S12 / / InternalHelperThreadl_2.start()

>
58 :
59 :
S10 :

>
S2 :

>
53 :
54 :

// finish subsumes InternalHelper1_1.join()
// finish subsumes InternalHelperl_2. join()
// NEP algorithm concludes that
// NEP (S10 , Sll) = NEP (SI 0 , S12) = false

// SO 's finish subsumes ExternalHelperThreadl.join()
// NEP algorithm concludes that
// NEP(S4,S11) = NEP(S4 ,S12) = false

Figure 3.5 : HJ example program to illustrate NEP algorithm

ROOT

Sll

sio

S5 S6: ASYNC S7: ASYNC

S12

Figure 3.6 : PST for example program in Fig 3.5

69

synchronized blocks. In this comparison, we will restrict our attention to the MHP

algorithm's handling of the start, join, and synchronized constructs in Java threads,

which are comparable, but not equivalent, to async, finish, and isolated in HJ.

Figure 3.4 contains the skeleton of a Java program that represents the parallel

control flow in the Spli tRendererNested example used in [92]. As discussed in [92],

their MHP algorithm is conservative in its analysis of nested parallelism and concludes

that S l l and S12 may happen in parallel with S4, even though it is able to conclude

that S l l and S12 cannot happen in parallel with S10.

As a comparison, Figure 3.5 contains the skeleton of an HJ program that is

equivalent to the Java program in Figure 3.4. Its PST is shown in Figure 3.6. If the

NEP algorithm from Figure 3.3 is invoked to compute NEP(S4,S11), it will perform

the following steps to conclude that NEP(S4,S11) = true:

• Step 2: A := LCA(SA,Sll) = ROOT

• Step 4: asyncS4 := false

• Step 10: asyncS 11 := false

• Step 17: AS4 := S4

• Step 18: ASH := SO

• Step 20: flag := true

• Step 27: iVEP(S4,Sll):= true

Thus, the NEP algorithm is able to establish that S l l and S12 cannot happen in

parallel with S4, while the MHP algorithm from [92] conservatively concludes that

S l l and S12 may happen in parallel with S4.

The above discussion focused on the conservativeness in analysis of nested par-

allelism in past work on MHP analysis. As mentioned earlier, another dimension

of conservativeness in MHP analysis of Java programs is the necessity to perform

70

Main thread:

int i , j , k ; / / Shared scalar variables
i n t A [] [] [] = . . . ; / / Shared array A
for (i = 1; i <n; i+ +) {

for (j =0 ; j <n ; j+ +) {
for (k=0; k<n; k++) {

t[j][k] = ...; / / Allocate threads
t [j] [k] .start (); / / start child threads

}
>
for C j =0 ; j <n ; j+ +) {

for (k=0; k<n; k++) {
t[j][k].join(); // join child threads

}
}

>
Child thread:

SI: ... = f(A[i-l,j,k];
S2: A[i , j ,k] = . . . ;

Figure 3.7 : Java code example that demonstrates that NEP(S1, S2) is not just a
binary relation

interprocedural pointer alias analysis of thread objects to establish accurate par-

allel control flow relationships among threads. For example, the MHP analysis

must establish that all thread objects (e.g., ExternalHelperl , In ternalHelper l_l ,

In ternalHelper l_2) are distinct before it can even conclude that S l l and S12 cannot

happen in parallel with S10 in Figure 3.4. As observed in past work on static data

race detection, interprocedural alias analysis of thread objects can pose a significant

challenge in practice. In contrast, intra-procedural analysis of HJ's async, finish,

and isolated constructs is simpler because it does not rely on alias analysis of thread

objects.

As defined thus far, NEP is a binary relation, i.e., it returns either true or false.

However, this is not precise enough to capture all possible scenarios. Consider the Java

example program and the corresponding HJ example program shown in Figure 3.7

71

Main thread:

int A [] [] [] = . . . ; // Shared Array
for (i = l; i <n; i+ +) {

finish {
for (j =0; j <n; j+ +) {

for (k=0; k<n; k++) {
async {

51 : . . . = f (A[i-1,j,k]) ;
52 : A [i , j , k] = ...

>
}

}
}

}

Figure 3.8 : HJ code example that demonstrates that NEP(S1, S2) is not just a binary
relation

and Figure 3.8, respectively. If we apply the algorithms presented in Figure 3.3 to

Figure 3.8 or the algorithm from [92] to Figure 3.7, we will conclude that statements

NEP(S 1, S2) := false, i.e., they may execute in parallel. However, if we observe the

example in Figure 3.7 closely, for threads executed with same value of i and any value

of j and k, NEP(S1, S2) := false because iterations of j and k loops can execute in

parallel. However, for threads across multiple i iterations, NEP(S1, 52) := true as

all the threads created using j and k loops are joined before next iteration of i. This

indicates that the binary relation of NEP definition is not precise enough to capture

the above mentioned scenario and hence, conservatively reports NEP(S1A, 515) :=

false.

What we need is a more precise definition that extends the NEP relation to

statement instances from individual loop iterations. There exists a large body of work

in the domain of automatic parallelization that uses direction vectors and distance

vectors [68] to distinguish arrays accessed across multiple iterations. Motivated by

direction and direction vectors, we define the NEP relation using a condition vector

notation. Formally,

72

Definition 3.4.1 Two statements S\ and S2 are said to never execute in parallel,

written as NEP(Si,S2) = true, with condition vector set CS if the following conditions

hold:

1. S\ and S2 have k > 0 loop nodes, Li,... Lk as common ancestors in the PST.

2. Each element (C i , . . . Ck) in CS is a vector of k functions of type in t x int—>

boolean. In this definition, we will restrict our attention to three possible

functions: "=", and "*". The symbol * denotes the function that returns

true for all inputs1.

3. Let <Si[ii,... ik] denote any execution instance of Si in iteration ii,.. .i^ of loops

Li,..., Lk, and likewise for S2\ji, • • •jk]• If Cx(ix,jx) = true VI < x < k for

some condition vector (Ci , . . .Ck) in CS, then it is guaranteed that statement

instances Si[ii,... ik] and S2\ji,... jk] cannot execute in parallel. •

To summarize Definition 3.4.1, if NEP(Si,S2) = false then there are no pairs

of instances of S'i and S2 that can be guaranteed to not execute in parallel. If

NEP(Si,S2) = true then the instances of S'i and S2 that can be guaranteed to not

execute in parallel are determined by the condition vectors in CS. If CS is (* , . . . , *)

then no instance of S'i can execute in parallel with any instances of S2.

The refined algorithm for computing the NEP relation is given in Figure 3.9. The

refined algorithm invokes the basic algorithm presented in Figure 3.3 and embeds

condition vector set to NEP. Step 9 is performed in the case when S'i and S2 have

k > 1 common loops. This step examines all nodes in the PST starting from A, the

least common ancestor of S'i and S2, and ending at Li, the outermost common loop

that encloses S'i and S2. Note that the algorithm uses the fact whether a loop contains

a f i n i s h or async node in the PST to restrict the set of iterations for which NEP

1These three operators have been also used in past definitions for direction vectors [124], and can
easily be extended to distance vectors.

73

7
8

9
10

11

12

13

14
15
16

17

18

function Ref inedNEP()
Input : PST and two statement nodes Si and S2 in the PST with k > 0

common loop node ancestors in the PST, L\,..., L^
Output: NEP(SI, S2), a boolean value and CS, a set of condition vectors

that is used only if NEP(S\, S2) = true. Given statement instances
S i [i i , . . . ik] and S2\ji, • ..jk], if Cx(ix,jx) = true VI < x < k for
some condition vector (Ci , . . . CK) in CS then it is guaranteed that
the two statement instances cannot execute in parallel

A:= LCA{SUS2);
flag = BasicNEP();
if Si ^ S2 A flag then

[_ CS:= CSU {<"=",...,«=») };

if k > 1 then
/ / S i and S2 have at l eas t one common loop
seqloop := true;
x := k + 1;
for N := A ; N ± Lx ; N := parent(N) do

if N is an async node then
seqloop := false;

if N is a f i n i s h node then
[_ seqloop := true;

if N is a loop node then
x := x — 1;
if seqloop then

CS:=
CS U { (C i = " = " , . . .,CX = U^",CX+1 = "*",. ,.,CK = "*")};

return NEP{SI,S2) := (CS^ 0); //Return NEP
non-empty

true if CS i s

Figure 3.9 : Algorithm for computing refined Never-Execute-in-Parallel (NEP)
relations

74

= true. If (say) loop LX contains a f i n i s h node that is an ancestor of both S'i and

S*2 statements and there is no intervening async node in P S T path from the f i n i s h

node to LX, we observe that instances of S\ and S2 from two distinct iterations of LX

(but created in the same iteration of outer loops L i , . . . , Lx_i) can never execute in

parallel. This property is captured by a condition vector in which CX is set to ,

C i , . . . , CX- 1 are set t o " = " , and CX+1,..., CK are set t o "*".

3.4.2 Complex i ty

The algorithm in Figure 3.9 assumes that the PST has already been constructed,

which is a one-time O(N) cost. In addition, Steps 22 and 24 of Figure 3.3 use the

dominator relation on the original control flow graph, which can be computed using

algorithms that vary in execution time complexity from O(NlogN), 0(Na(N)) [79]

to 0(N) [61] as a one-time cost. We observe that the NEP algorithm takes 0(H)

time to determine if a given pair of nodes, S'i and satisfy NEP(SI,S2) = true,

where H is the height of the PST. Note that the condition vector set CS, can contain

at most L + L condition vectors — one contributed by Step 5 and L by Step 17 - each

of which has O(L) size, where L < H is the maximum nesting of loops in the PST.

Step 14 can be considered a constant time operation. If used to compute the NEP

relation for all pairs of statements, the total execution time will be 0(N2H), which

is more efficient than the 0(N3) time of the MHP algorithm in [92], However, we

expect that the execution time overhead of the NEP algorithm will be much smaller

than 0(N2H) in practice, since it can be used in a demand-driven fashion to only

compute the NEP relation for pairs of statements that are of interest to an interactive

tool or compiler transformation system.

3.4.3 Example

We start by using the example program in Figure 3.1 to illustrate the algorithm. The

example was intentionally chosen to be as simple as possible to illustrate the core

75

ideas. In this example, we are interested in determining which pairs of execution

instances of statements Si and S2 will never execute in parallel with each other, so

the algorithm in Figure 3.9 will be invoked to compute NEP(SI,S2). The output of

this algorithm will be NEP(SI,S2) = true, with condition vector set CS= {(=,=,=

), { 7^,*,*}}. This implies that two instances of Si and S2 are guaranteed to never

execute in parallel if: 1) they belong to the same i - j - k iteration, or 2) they come

from iterations with distinct values of i . The first case is true because the statements

are executed in order with respect to the same async. The second case is true because

of the f i n i s h construct within each for-i loop iteration.

Now, let us use the following HJ code fragment to illustrate the four cases in

Step 15 in the basic NEP algorithm provided in Figure 3.3:

{ S I ; async S2 ; S3 ; async S4 ; }

Case 1 NEP(S i, S3) = true, in accordance with Step 20.

Case 2 NEP(S\, S2) = true, in accordance with Step 22.

Case 3 NEP(S2, S3) = false, in accordance with Step 24.

Case 4 NEP(S2, S4) = false, in accordance with Step 26.

To summarize, the significant differences between the NEP analysis presented in

this chapter and past work on MHP analysis are as follows:

1. The availability of basic concurrency control constructs in HJ such as async and

f i n i s h enables a more efficient and precise NEP analysis algorithm compared

to past work on MHP analysis for Java. Our algorithm is based on simple path

traversals in the PST.

2. Past work on MHP analysis resulted in a simple true/false value for a given

pair of statements. Our work makes the NEP relation more precise by adding

76

condition vectors that are able to identify execution instances for which the

NEP relations hold.

3. As discussed later in Section 3.6, we show how the NEP information can be

further refined by using the isolation properties of isolated blocks in HJ.

3.5 Place Equivalence Analysis

In an attempt to combine shared-m,emory programming (e.g., Java, Open MP, pth reads)

and distributed-memory programming (e.g., MPI, UPC), HJ inherits the place feature

from X10. Places co-locate data objects and the activities that operate on them.

This feature can also be used to mitigate some of the false-sharing issues that arise

in parallel computing. The activities that execute within a single place can have mu-

tually exclusive accesses using i s o l a t e d HJ constructs. Before we analyze i so l a t ed

constructs, we need to determine if two statements can execute within the same place

or not.

In this section, we describe our approach for determining if two statements are

place equivalent (PE), i.e., if they will definitely execute at the same place. Most

parallel programming models that are currently used for distributed-memory mul-

tiprocessors follow a Single Program Multiple Data (SPMD) model in which one

thread is executed per place. However, the HJ programming model is more general

since it integrates thread-level parallelism and cluster-level parallelism by allowing

multiple activities to be created within the same place and across different places.

Place equivalence analysis therefore becomes important for more general parallel

programming models such as HJ.

Similar to the NEP relation, we need to distinguish the PE relation within loop

iterations using a condition vector set.

Definition 3.5.1 Two statements Si and S2 are said to be place equivalent, written

as PE(S\, S2) = true, with condition vector set CS if the following conditions hold:

77

1. Si and S2 have k > 0 loop nodes, L\,... as common ancestors in the PST

2. Let Si[zi,... ik] denote any execution instance of Si in iteration ii,... ik of loops

L i , . . . , Lk, and likewise for S2[ji, • -.jk]- If Cx(ix,jx) = true VI < x < k for

some condition vector (C\,... Ck) in CS, then it is guaranteed that statement

instances Sijz'i,... ik] and S2[ji,.. • jk] must execute at the same place. •

To summarize Definition 3.5.1, if PE(SI,S2) = false then there are no pairs of

instance of SI and S2 for which place equivalence is guaranteed. If PE(SI,S2) = true

then the instances of S'i and S2 that can be guaranteed to execute at the same place

are determined by the condition vectors in CS.

Before we describe the complete algorithm for PE computation, let us describe

two subtle issues that complicate the analysis. First, async statements in HJ can

be provided with an additional place expression to indicate the location/place of the

activity (without any place expression, the activity is created at the default place i.e.,

0). This implies that, given two statements S'i and S2, PE(Si, S2) needs to determine

if the place expression of the activity executing Si is equal to the place expression

of the activity executing S2. This boils down to determining if two expressions can

have the same value. The idea is to perform a Definitely Same (as described in 2.6.1)

equivalence analysis, VS, on all place expressions in the procedure. For two place-

valued expressions, e\ and e2, VS(ei,e2) = true indicates that they must evaluate

to the same place. A global value numbering technique such as [6] can be iised to

assign each expression e a value number V(e). VS can then be computed by using

the lexical identity, VS(ei,e2) := (V(ei) = V(e2)). More advanced techniques for

place equivalence analysis are described in [3, 37].

Second, the distributions of the underlying arrays accessed within a loop are

needed to determine place equivalence. Consider the following code fragment as

an example:

78

for (i = 1 ; i < = n ; i++) // LI

for (j = 1 ; j < = n ; j++) // L2

for (k = 1 ; k < = n ; k++) // L3

async (A . distribution [f (i , j), k]) S;

We need to know the data distribution of array A in the async statement, in

A.distr ibut ion[f (i , j) ,k], In HJ and X10 [38], array A can be distributed using

a wide range of standard and user-defined distributions such as UNIQUE, RANDOM,

CYCLIC, and BLOCK. As an example, let us assume that A is distributed in (BLOCK,

*) fashion so that A[m, *] is guaranteed to reside at the same place, where m is the

index of the first dimension. A depiction of (BLOCK, *) is shown in Figure 3.10. In this

figure, both (BLOCK, *) and (CYCLIC, *) will result in the same distribution because A

has p * p elements. The async activity in the above code fragment with distribution

(BLOCK,*) will be mapped to different places based on indices i and j, but not k,

i.e., place-variant with respect to loops LI and L2. We term this kind of analysis

as LoopSet analysis. Loop Set determines loops for which a place expression is place

variant. The LoopSet for the above code fragment is LoopSet(A.distribution[f (i,j) ,k})

:= {L1,L2}, where L3 is not in the LoopSet indicates that it is place invariant.

LoopSet analysis for other HJ distributions can be determined in a similar fashion

to (BLOCK, *) and have been omitted for simplicity of presentation. Note that, it may

be in general hard to perform LoopSet analysis e.g., use of advanced features like

array views, and array projection. In such cases, we can always use a conservative

approach to include a loop in the LoopSet.

The algorithm for computing the PE relation is given in Figure 3.11. As described

above, the algorithm needs two additional pre-passes as inputs along with the PST.

First, a global place-value numbering pre-pass for place expressions to determine

place local information for statements. Second, a global loop-invariant analysis based

LoopSet analysis pre-pass to determine loops for which a given place expression is place

variant. Global value numbering can be performed using an SiS!^-based algorithm as

79

place 0 *• A [0,0] A[0,1] A[0,p-2] A[0,p-1]

place 1 >• j A[1,0] A[1,1] A[1,p-2] A[1,p-1]

place p-2 *• A[p-2,0] A[p-2,1] A[p-2,p-2] A[p-2,p-1]

place p-1 *• A[p-1,0] A[p-1,1] A[p-1,p-2] A[p-1,p-1]

Figure 3.10 : (BLOCK, *) distribution of array A[p,p] that uses p places

in [6]. Global loop-invariant analysis [5] can be used to compute LoopSet information.

The algorithm uses value numbering for each node in the PST. This is computed

by propagating the value number of the async that is executing the given node.

As shown in Step 7 of Figure 3.11, a pair of statements Si and S2 associated with

same global place-value numbers, i.e., V(S\) = V(S2) a r e always going to execute at

the same place. If V(S\) ^ V(S2) and there are no intervening async nodes within

the innermost common scope of Si and S2, then these statements are also bound to

execute at the same place.

Step 13 traverses the common ancestors (only loop and async PST nodes) to

compute condition vector using LoopSet. For loops that are placeLocalLoops, the

condition vector entries are set to *. Note that LoopSet keeps track of the place-

variant loops and placeLocalLoops keeps track of place-invariant loops.

80

2

3
4
5
6
7
8

9
10

function PEAnalysis()
Input : (1) PST and two statement nodes S'i and S2 in the PST with

k > 0 common loop node ancestors in the PST, L\,..., Lk; (2) A
value number V(e), for each place expression e that is the target of
an async (e) statement. For convenience, we also assume the
availability of V(N) for each async node N in the PST, where
V(N) denotes the value of here for the activity executing S; (3) For
each place expression e, LoopSet(e) = subset of loops {Li,..., Lm}
for which the value of place expression e is place-variant

Output: PE(Si, S2), a boolean value and CS, a set of condition vectors that
is used only if PE(S\, S2) = true

A := LCA(S\, S2), the Least Common Ancestor of S'i and S2 in the PST ;
Compute async_Si, and async-S^ as in Figure 3.3;
CS := 0; / / I n i t i a l i z e CS to an empty set
if S'i S2 then

if V(Si) = V(S2) then
CS:= CS U { (* , . . . , *) };
PE(S 1, S2) := true; return;

else if asyncSi A -> asyncS2 then
CS := CS U { (= , . . . , = } }; / / Instances of Si and S2 that

come from the same i terat ion of Li,...,Lk must execute
in the same a c t i v i t y and hence at the same place

//Si and S2 have at l eas t one common loop
11
12

13
14
15

16

17
18

19
20

21

22

23

24

if k > 1 A -1 asyncSi A -> asyncS2 then
placeLocalLoops := {Li,..., Lk}; x := k + 1;
for N := A ; N ^ Lx ; N \= parent(N) do

L
if N is an async node with destination place expression e then

placeLocalLoops := placeLocalLoops - LoopSetie);
if N is a loop node then

x := x — 1;
if

= x
Lx e placeLocalLoops then

* ; | Cx

else
L a

if placeLocalLoops ^ 0 then
L CS:= CS U { {C\,..., Ck) };

return PE(SU S2)
non-empty

(CS=£ 0 ^//Return PE = true if CS i s

Figure 3.11 : Algorithm for computing Place Equivalence (PE) relations

81

3.5.1 Complexity

The algorithm in Figure 3.11 assumes that the PST is constructed in 0(N) time.

The pre-passes for the other inputs to the algorithm, Global Value Numbering2 and

LoopSet analysis, can also be computed in linear time. We observe that Step 2 takes

0(H) time. The condition vector set CS, can at most have two entries - one obtained

from Step 7 and another from Step 23 - each of which has O(L) size, where L < H.

For all pairs of statements in the HJ program, the overall complexity of PE analysis

is bounded by 0(N2H), which is the same complexity as that of NEP analysis. As

before, this can be limited to 0(H) time for each statement pair queried in a demand-

driven fashion after the initial data structures are constructed.

3.5.2 Example

Let us now see how the algorithm works for the example program in Figure 3.1, as-

suming that array A has a (BLOCK,BLOCK,*) distribution. This means that elements

A[i,j, *] of array A are guaranteed to be mapped to the same place, and the async

statement in the example will follow the same distribution. Hence, the PE algorithm

will compute placeLocalLoops = {£3}, which in turn results in a place condition vector

set of CS= {(= , = , =) ,(= ,= ,*)} . This implies that Si and S2 with same values

of i and j are guaranteed to execute in the same place. Note that, in general, the

algorithm in Figure 3.11 does not require that the number of dimensions in an array

reference to match the number of loops in the loop nest or that the index ordering

for the array access match the ordering of the loop nesting.

3.6 MHP Analysis using Isolated Sections

In this section, we show how the Never-Execute-in-Parallel (NEP) analysis from

Section 3.4 can be combined with the Place-Equivalence (PE) information analysis

2For an S ^ - b a s e d algorithm such as [6], the complexity is technically linear in the size of the
SSA form, which in turn is observed to be linear in the size of the input program in practice.

82

from Section 3.5 to obtain a more precise May-Happen-in-Parallel (MHP) analysis

for HJ programs by using isolated sections. The simple approach to computing MHP

would be to simply invert the NEP relation, i.e., to return MHP(Si,S2) = false when

NEP(Si,S2) = true. The key insight leveraged in this section is that two execution

instances of statements S\ and S2 in an H J program are guaranteed to not happen in

parallel if they both occur in isolated sections that are executed at the same place.

This enables us to broaden the number of executions for which we can assert that

MHP = false. Note that instances of Si and S2 can indeed happen in parallel if they

occur in isolated sections that execute at different places.

1 function FinalMHP()
Input : PST and two statement nodes Si and S2 in the PST with k > 0

common loop node ancestors in the PST, Lx,..., L^
Output: MHP(Si, S2), a boolean value and CS, a set of condition vectors

that is used only if MHP(SU S2) = false
2 Compute NEP(Si, S2) and its associated condition vectors, CSNEP using the

NEP algorithm in Figure 3.9;
3 Set isolated-Si := true if Si has an i so lated node as an ancestor in the

PST,
4 Set isolated-^ := true if S2 has an i so lated node as an ancestor in the

PST,
//Combine NEP and PE analysis resu l t s

5 if isolated-Si A isolated-S2 then

10

l i

Compute PE(SI, S2) and its associated condition vectors, CSPE using
the PE1 algorithm in Figure 3.11;
MHP(SU S2) := - (NEP(SI, S2) V PE(SU S2));
CS '.— CSNEP U CSPE;

else
/ / J u s t return NEP analysis resu l t s
MHP(SI,S2) := - NEP(SI,S2);
CS := CSNEP',

12 return

Figure 3.12 : Algorithm for computing May-Happen-in-Parallel (MHP) relation
using place equivalence and isolated sections in HJ

83

The algorithm for computing the MHP relation is given in Figure 3.12. For a

pair of statements S'i and S2, Steps 3 and 4 check if they are nested in i so l a t ed

blocks. In case both S'i and S2 are nested in isolated blocks, MHP(SI,S2) is computed

by combining the NEP and PE results in Step 7. Otherwise, the MHP relation is

computed directly from the NEP relation.

3.6.1 Complexity

The complexity of computing the MHP relation is bounded by 0(N2H). This is due

to the complexity of computing both NEP relation and PE relation. As before, this

can be limited to O(H) time for each statement pair queried in a demand-driven

fashion after the initial data structures are constructed.

3.6.2 Example

As discussed earlier, the NEP solution computed using the analysis described in

Section 3.4 for the example in Figure 3.1 was NEP(SI,S2) = true with condition

vector set CSNEP = {(=, =, =), (*, *}}• This indicates that for different values

of loop index i, Si and S2 can not execute in parallel. However, this information can

be refined vising the PE solution due to the presence of i s o l a t e d PST node in the

loop body. The PE solution computed using the analysis described in Section 3.5

was PE(SI,S2) = true with condition vector set CSPE = {(=, =, =), (= ,= ,*)} .

This indicates that S'i and S2 will execute at the same HJ place for different values

of loop index k but with same values for loop indices i and j. Using the above two

results, the algorithm in this section is able to determine that MHP(SI,S2) = false

with condition vector set CS = {(=, =, = }, (*, *), (=, =, *)}, i.e., MHP(SI,S2)

= false if they belong to the same i-j-k iteration, or if they come from iterations with

distinct values of i or with the same values of i and j.

84

3.7 Summary

In this chapter, we introduced a new demand-driven algorithm for May-Happen-

in-Parallel (MHP) analysis that is applicable to any language that adopts the core

concepts of p laces , async, f i n i s h , and i s o l a t e d blocks from the HJ programming

model. The main contributions of this work compared to past MHP analysis algo-

rithms are as follows:

1. We introduced a more precise definition of the MHP relation than in pa st work

by adding condition vectors that identify execution instances for which the MHP

relation holds, instead of just returning a single true/false value for all pairs of

executing instances.

2. Compared to past work, the availability of basic concurrency control constructs

such as async and f i n i s h enabled the use of more efficient and precise analysis

algorithms based on simple path traversals in the Program Structure Tree, and

did not rely on interprocedural pointer alias analysis of thread objects as in

MHP analysis for the Java language.

3. We introduced place equivalence (PE) analysis to identify execution instances

that happen at the same place. The PE analysis helps us in leveraging the fact

that two statement instances which occur in isolated blocks that execute at the

same HJ place must have MHP = false.

MHP analysis described in this chapter can be extended in future to other ad-

vanced concurrency constructs of HJ such as future-force and phaser. Additionally,

the analysis currently operates at an intraprocedural level leaving extensions for

interprocedural level as future work [10], perhaps as extensions to the interprocedural

side effect analysis of parallel programs discussed in the next chapter.

85

Chapter 4

Side-Effect Analysis for Parallel Programs

Side-effect analysis determines the effects of a procedure call at a call site. Knowledge

of the side-effects of a procedure call has several important applications. For example,

many program analyses need to understand the effects of a procedure call so as to

enable program transformations across procedure boundaries. In Section 2.5, four

different types of side-effects using Banning's formulation, i.e., MOD, REF, USE,

and DEF have been described. Both MOD and REF side-effects are flow-insensitive

problems where as USE and DEF axe flow-sensitive problems. Flow-sensitive problems

are solved by tracing through control-flow paths where as flow-insensitive problems

are solved by ignoring the control flow paths. The complexity of computing MOD

side-effects using Banning's approach (as described in Section 2.5) is 0(NEa(E, N),

where E is the number of call sites in the program, N is the number of procedures in

the program and a represents the inverse Ackermanns' function.

JIT and dynamic compilers perform program optimization and transformation

in limited situations. In particular they do not typically perform interprocedural

analyses. The reason behind this is two folds: 1) the whole program may not

be available during compilation and programs may be loaded dynamically; 2) the

complexity of interprocedural analyses is high. The former case is addressed by

closed-world solutions presented in [36]. This chapter addresses the later case and

presents a fast flow-insensitive and field-insensitive side-effect analysis. The side-

effect analysis does not need any interprocedural alias analysis to propagate the exact

object references modified or referenced. Instead, it unifies all the references of an

object field using a heap-array representation. This representation does not need any

86

special attention for parameter bindings.

Due to the advent of parallel programming languages for multi-core systems, the

analysis of parallel programs pose additional challenges to dynamic compilers due

to parallel constructs in the program. These parallel constructs in general carry

inherent side-effects in them and hence further add to the complexity of the side-

effect analysis. Note that there is a natural interplay between the side-effect analysis

and parallel constructs analysis, since parallel constructs are usually translated to low-

level runtime library procedure calls in the intermediate representation level at which

program transformations are performed. In this chapter, we propose an algorithm

to perform side-effect analysis of programs with parallel constructs in a dynamic

compiler.

Section 4.1 discusses a flow-insensitive and field-insensitive side-effect analysis

algorithm suitable for analyzing method calls in a dynamic compilation environment.

Section 4.2 describes how the side-effect analysis algorithm can be extended for the

async, f i n i s h , and i s o l a t e d core parallel constructs of HJ programming language.

4.1 Side-Effect Analysis of Method Calls

Let us describe the impact of side-effect analysis on program transformations. Con-

sider the code fragment shown in Figure 4.1. Let us assume that we are performing

scalar replacement for load elimination transformation (as described in Section 2.6)

for method bar. We notice that there is a flow dependence from line 8 to line 10

indicating that the memory load on line 10 can be replaced by a scalar. However, the

load statement on line 10 cannot be scalar-replaced without the knowledge of the side-

effects of the method call setNothingO in line 9. In contrast, a scalar replacement for

load elimination algorithm based on interprocedural side-effect analysis can determine

that the method call se tNothingO does not have any side-effects, thereby realizing

the opportunity for eliminating the load in line 10 by scalar replacing the value

assigned in line 8. We also observe that there is an input dependence from line 11

87

1: class A {
2: int f;
3: int g;
4: void setFieldF (int n) { this.f = n; >
5: void setFieldG (int n) { this.g = n; }
6: void setNothing () O
7: void bar (A a, B b) {
8: a.f = 4;
9: a . s e t N o t h i n g ();
10: ... = a.f; / / Can we eliminate this memory load operation?
11: . . . = b.x;
12: a.setFieldG ();
13: ... = b.x; / / Can we eliminate this memory load operation?
14: if (C) a.setFieldF (3);
15: ... = a.f; / / Can we eliminate this memory load operation?
1 6 : >
17:}
18: class B {
19: int x;
20 : >

Figure 4.1 : Example program: Interprocedural side-effect information can enable the
load in lines 10 and 13 to be replaced by a scalar. The load in line 15 cannot be fully
removed when condition C is statically unknown.

to line 13 indicating a potential target for scalar replacement for the memory load

on line 13. However, due to the method call on line 12, the memory load on line 13

can be eliminated using an interprocedural analysis if we store the result of the prior

load on line 11 in a scalar variable. Note that the memory load in line 15 cannot be

replaced by a scalar by total redundancy elimination (also known as fully redundant

or available expression), but is a good candidate for partial redundancy elimination

(PRE). The example demonstrates the importance of side-effect analysis on compiler

transformations.

Before we describe the algorithm for side-effect computation of HJ programs, we

need a way to efficiently represent the side-effect information. Memory load and

store operations in the bytecode of HJ programs are explicitly visible via GETFIELD

and PUTFIELD memory operations. A GETFIELD (or PUTFIELD) operation receives

an object reference and a field reference to load (or store) into a memory location.

88

We represent the field references using the heap array representation described in

Section 2.6.1.

4.1.1 Heap Array Representation

To recap from Section 2.6.1, each field x in the program is abstracted by a distinct

heap array, Hx. Hx represents all the instances of field x in the heap during runtime.

A GETFIELD of a.x is represented as an use of element 1~Lx[a], and a PUTFIELD of b.x

is represented as a def of element 7ix [6]. The use of heap arrays ensures that field x is

considered to be the same across instances of two different static types T\ and T2, if

(say) TI is a subtype of T2. Heap arrays capture abstractions at the level of fields not

at the level of precise object references. Hence, they are field-insensitive. This level

of abstraction provides faster analysis in dynamic compilation as they avoid complex

interprocedural alias analysis for objects.

4.1.2 Method Level Side-effect

As discussed earlier, the goal of a side-effect analysis is to determine for each call

site, a safe approximation of the side-effects that the method involved at that call site

may have. This recursively includes any side effects of the methods called from that

site. We capture this using the generalized flow-insensitive side-effect formulation

proposed by Banning [9]. The generalized flow-insensitive side-effects of a method

are represented vising GMOD and GREF sets. Using the heap array representation,

the AMOD, AREF, GMOD and GREF side-effects described in Section 2.5 can be

rewritten as:

89

Figure 4.2 : Lattice for heap array GMOD and GREF sets

IMOD(p) = {Hx[a]\3s ep,sE {PUTFIELD a.x, PUTSTATIC a.x}} (4.1)

IREF(p) = {Hx[a}\3s Ep,se {GETFIELD a.x,GETSTATIC a.x}} (4.2)

GMOD(p) = IMOD(p) (J {GMOD(q)} (4.3)
3s€p,s invokes q

GREF(p) = IREF(p) (J {GREF(q)} (4.4)
3sGp,s invokes q

In Banning's original formulation, MOD and REF sets are defined for specific

call sites and were computed using both the parameter bindings at the call site and

the GMOD of the callee. Since our analysis uses the heap array representation for

modeling side effects, we do not pay special attention to parameter bindings.

The complete lattice for heap array GMOD and GREF sets is shown in Figure 4.2.

It illustrates the lattice structure for heap array sets, GMOD and GREF, with lattice

ordering defined by the subset relationship.

Figure 4.3 presents the fast side-effect analysis algorithm. As we analyze the

body of a method m in flow-insensitive manner, we accumulate the field accesses for

GETFIELD/GETSTATIC and PUTFIELD/PUTSTATIC instructions in GREF and GMOD

sets respectively. For CALL p instruction, we determine the target of the method call.

The side effect of a method m also carries an inProgess flag to prevent re-definition

of side-effects for recursive method calls. The side-effects for recursive methods are

90

10
n
12

13
14
15

16

17

18
19

function S ideEffec tAnalys is ()
Input : Method m and its IR
Output: Compute side-effect for m and its called procedures. Return

GMOD(m) and GREF(m)
Initialize summary information for method m;
GREF(m) = GMOD(m) = {};
inProgress(m) = true;
for instruction I in IR do

switch I do
case GETFIELD/GETSTATIC a. f

resolve the target of the field access a.f;
GREF(m) = GREF(m) \J{a.f};

case PUTTFIELD/PUTSTATIC a.f
resolve the target of the field access a.f;
GMOD(m) = GMOD{m)\/a.f;

case CALL p()
resolve the target of the method access p;
if the target of p is unknown or there are more than one target of
p then

GREF(m) = GMOD(m) = _L;
else if inProgress(p) is set OR p is already analyzed then

//Has already been analyzed
GREF(m) = GREF(rn) V GREF(p);
GMOD{m) = GMOD(m) \J GMOD(p);

20 inProgress(m) = false;
21 return GMOD(m) and GREF(m)

Figure 4.3 : Simple Flow-Insensitive and Field-Insensitive Interprocedural Side-
Effect Analysis to compute GREF and GMOD summaries for each method m
via a top-down traversal of the call chain

91

iterated until a fixed point is reached (as in [9]).

If the target method does not have a precise static type or has several targets,

we reset both the GMOD and GREF summaries of m to 1 . Otherwise, we analyze

the target method of callee p and unify the respective GMOD and GREF sets of the

callee with the caller. This unification process is described as the meet operator (V)

in the algorithm presented in Figure 4.3. Any method whose summary is computed

as _L will propagate this information up in the call chain.

In general, determining the target of a method call can be complicated in the

presence of virtual methods calls and dynamic class loading. However, since HJ does

not share Java's dynamic class loading semantics, we can separate the HJ classes

from the Java classes and assume that it is safe to pre-load HJ classes. Specifically,

we determine the target of a call to an HJ method as follows. First, we check if the

method call has been resolved and has exactly one target. Second, we check if the

method can be resolved using the existing set of classes loaded in the VM. Third, we

trigger loading of the HJ class if necessary to resolve the target (Note that pre-loading

will not need any further class loading). Finally, for virtual calls, we use whatever

type information we have available for the t h i s parameter to try and resolve the

call to a single target. If the above steps do not yield a single unique target, we

conservatively propagate J_ as summaries for the given method. Merging side effects

from multiple targets is a subject for future work. Currently, we limit our attention

to HJ classes only, and conservatively propagate J_ for all methods in Java classes.

4.1.3 Complexity

Since we use heap array representation, the worst case size of a side-effect set is

bounded by the number of fields F in a program. Let there be N number of procedures

and E number of call sites. For recursive calls, we need to compute strongly connected

components in the call graph, G = (N, E), and iterate until a fixed point is reached.

The computation of strongly connected components using Tarjan's depth-first search

92

1 class A
2 int f
3 void
4 void
5 A a
6 A b
7 a . f
8 f 00
9
10 >
11 }

Eoo (A a) { a.f = n; }
>ar () {
= n e w A O ;
= n e w A ();
= 4;
(b) ;
= a.f; / / Can we eliminate this load operation?

Figure 4.4 : Even with interprocedural side-effect information we can not ascertain
that the memory load on line 9 can be eliminated; We need an additional differently-
different (DV) analysis to guarantee that a and b are guaranteed to be pointing to
different objects in every execution of the program.

algorithm [117] is of 0(N + E) complexity. Each step of the depth-first search

algorithm involves F field operations using a standard bit-vector implementation.

Thus the overall complexity of Algorithm 4.3 is 0(N + E) * F.

4.1.4 Discussion

Let us consider the example shown in Figure 4.4. Using Algorithm 4.3, GMOD(foo) =

{H^[b}}. To scalar replace the memory load on line 9, i.e., heap array 7 w e need

to guarantee that a and b are pointing to different objects (in this case it is true as

a and b are assigned two different objects in lines 5 and 6 respectively). So we need

additional analysis to compute if two heap arrays are same or different that refines the

side-effect analysis results. The details of these analyses are provided in Section 2.6.3.

4.2 Extended Side-effect Analysis for Parallel Constructs

Consider the example HJ program shown in Figure 4.5, which will serve as a running

example to demonstrate side-effect analysis of parallel constructs in HJ programs.

The example program has a main method that invokes two asyncs (one in line 6 and

93

1: void i a i n () {.
2: p . x = ...
3: s . w = ...
4: finish -[//finish_main
5: if (...) {
6: async { //async_main
7 : p . x = . . .
8: isolated { q • y = . . . ; . . . ; . . . = q . y ; }
9 : . . . = p . x
10: >
11: >
12: . . . = p . x
13: foo()
14: }
15: ... = p . x
16: ... = s . w
17: >
18: void foo() {
19: async bar() //async_foo
20: isolated { q.y = ... >
21: ... = s . w
22: >
23: void bar() {
24 : r . z = ...
25 : ... = r . z
26 : >

Figure 4.5 : Example HJ program for side-effect analysis in the presence of parallel
constructs.

another in line 19 via the call to foo) and awaits for their termination using the

f i n i s h construct that spans lines 4-14. Both the asyncs use i so lated constructs to

perform read-modify-write operations on the shared object field q.y. The call graph

for the example program is shown in Figure 4.6. Using the method level side-effect

analysis described in Section 4.1, GMOD(bar) and GREF(bar) can be computed as

{7~Lz[r\}. Since other methods main and foo contain parallel constructs like f in ish,

async, and i so lated, we need additional machinery to compute side-effects of these

methods.

We describe our proposed side-effect analysis for f i n i s h constructs, methods

with escaping async's feature, and i so lated constructs in subsections 4.2.1 - 4.2.3

94

bar

Figure 4.6 : Call Graph for Example program in Figure 4.5. Note that a f i n i s h
scope in HJ is translated into a pair of startFinish and stopFinish method calls.

respectively, and then present the complete parallelism-aware side-effect analysis

algorithm in Section 4.3.

The side-effect analysis for async constructs can be directly obtained from the

GMOD and GREF sets of the target method of the async. In HJ, an async call is

translated to low-level HJ runtime method call.

4.2.1 Side-Effects for Finish Scopes

Finish scopes in HJ impose the constraint that any async created within its scope

must be completed before the statement after the finish scope is executed. Compiler

optimizations such as code motion must pay attention to finish scope boundaries as

it may be incorrect in general, to perform code motion into the body of the finish

scope or out of the finish scope without knowing the effect of the finish scope. Hence,

we introduce FMOD(f) and FREF(f) to represent the set of heap arrays modified

and referenced within the async constructs inside a finish scope / respectively. The

GMOD and GREF sets for any async invoked within a finish scope / , either directly

or indirectly, is propagated to the finish scope by unifying them with the FMOD(f)

and FREF(f) sets respectively. Each dynamic instance of an HJ statement has a

unique Immediately Enclosing Finish (IEF) instance [107]. In our static analysis, we

define IEF(s) to be the closest enclosing finish scope for statement s in the same

95

method. IEF(s) is undefined, i.e., _L, if s does not have an enclosing finish statement

in the same method. We conservatively propagate J_ information for both FMOD

and FREF sets, when any method invoked inside a finish scope has unknown target

or multiple targets. Formally,

Uisef.s invokes GMOD{q) U EMOD(q)} if q is an async call

U3se/,.s invokes q{EMOD(q)} otherwise

U3sef,s invokes q{ GREF(q) U EREF(q)} if q is an async call

U3sef,s invokes q{^REF{q)} otherwise

The async calls that are directly or indirectly (via other function calls) invoked

inside a finish scope f are captured in the FMOD and FREF. EMOD and EREF

capture MOD and REF sets for escaping asyncs described below.

Consider the method main in Example 4.5. The finish scope encompasses the

side-effects of all the methods and asyncs invoked within it. Ignoring the isolated

constructs on line 8 and 20 (which will be discussed later), the i?MO£'(finish_main)

can be computed as {Hx\p],Hz[r]}. Hz[r} is added to the side-effect due to the

method call foo in the finish scope. Similarly, Fi?i?F(finish_main) is computed as

{Hx\p],H*[r],Hw[s}}.

4.2.2 Side-Effects for Methods with Escaping Asyncs

HJ permits methods with escaping asyncs, i.e., asyncs that have no enclosing finish

scopes in the same method. We define an async-escaping method as: 1) a method

which contains an async invocation that is not, enclosed in a finish scope, or 2) a

method which invokes another async-escaping method that is not wrapped in a finish

scope. The GMOD and GREF sets for async-escaping methods are propagated to

their enclosing finish scopes as their termination is guaranteed only at the end of

FMOD(f) =

FREF(f) =

96

the enclosing finish scopes. We introduce escaping EMOD and EREF sets along

with GMOD and GREF to handle async-escaping methods. Async-escaping methods

continue to be async-escaping in the call graph chain until an IEF is encountered.

Note that the side-effects of non-escaping async's will be collected by normal side-

effect analysis of methods.

Let T(s,p) denote a predicate that indicates if s is executed within a finish scope

in p, i.e., IEF(s)\ = _L. We can formally define EMOD and EREF as:

EMOD(p) =

EREF(p)

U3sep,s invokes V) A (GMOD(q)U if q is an async call
EMOD(q))}

{ Ua**,. lnvokes qhHs,p) A (EMOD(q))} otherwise

U3sep,8 invokes P) A (GREF(q)U if q is an async call
EREF(q))}

{ lkep,.s invokes P) A (EREF(q))} otherwise

The EMOD and EREF side effects for unfinished asyncs are propagated along the

call chain until a finish scope / is encountered. This ensures that the effect of these

async-escaping methods are only visible at the end of IEF, thereby, allowing code

reordering compiler transformation around these methods.

The method f oo in Example 4.5 invokes an async on line 19 that is not wrapped

in a finish scope and is an async-escaping method. The EMOD(k)o) and EREF(foo)

are computed using the side effect sets GMOD and GREF of bar, i.e., {Hz[r]\.

4.2.3 Side-Effects for Isolated Blocks

The i so la ted synchronization primitive enforces mutual exclusion among async's.

Usually code motion optimizations across synchronization primitives are strongly tied

to the memory model, e.g., in Java, the memory operations which were visible to a

97

thread before exiting a synchronized block are visible to any thread after it enters a

synchronized block protected by the same monitor, since all the memory operations

happen before the release, and the release happens before the acquire. To allow or

disallow code motion around isolated blocks, we introduce AMOD and AREFsets that

represent all the heap arrays modified and referenced respectively across all isolated

blocks in the program. Note that, this is an overly conservative approximation as

some of the isolated blocks may never execute in parallel with other isolated blocks

due to a "happens-before" relationship. Further refinement of AMOD and AREF sets

using May-Happen-in-Parallel (MHP) information [2] is a subject for future work.

Let P denote all the procedures in the call graph. Let I(s,p) predicate denote if

s is executed within an isolated block in procedure p. Additionally, T(s,p) is set to

true for all the statements in the body of an isolated method. AMOD and AREF can

be defined formally as:

AIMOD(p) = {Wx[a]|3s € p,T(s,p) As E {PUTFIELD a.x, PUTSTATIC

AIREF(p) = {Wx[a]|3s e p,T(s,p) As E {GETFIELD a.x, GETSTATIC

AGMOD(p) = AIMOD(p) | J {l(s,p) A GMOD(q))}
3 i n v o k e s q

AGREF(p) = AIREF(p) (J {I(s,p) A GREF(q)}
3s€p ,s invokes q

AMOD = U p&PAGMOD(p)

AREF = U p(:pAGREF(p)

Note that HJ does not permit async and f i n i s h constructs inside the body of an

isolated block or an isolated method. Hence EMOD and EREF side effects do not

need to be incorporated into the AGMOD and AGREF sets.

Going back to the example program in Figure 4.5, the isolated blocks on lines 8

98

and 20 modify and reference heap array W[q]. Hence, AMOD = AREF = {Hy[q\}.

4.3 Parallelism-aware Side-Effect Analysis Algorithm

The overall side-effect analysis algorithm in the presence of f in i sh , async, and

i so la ted constructs is presented in Figure 4.7. This algorithm is designed to be

performed on the Java bytecode performed by the HJ compiler, which translates each

async construct to a runAsync call in the Java-based HJ runtime, which in turn calls

the runHJTask method in an inner class that contains the body of the async.

Further, every finish scope is translated into a pair of startFinish() and stopFin-

ish() runtime calls.

For statements/methods executed in isolated blocks, we unify the AMOD and

AREF sets using the meet operator \Jv The \Ji is a conditional meet operation

which is performed only if the current statement/method call is in an isolated block.

Note that the HJ language does not permit any usage of async or f i n i s h constructs

in the body of isolated sections [38].

The algorithm presented in Figure 4.7 walks over the IR in a flow-insensitive

manner and unifies the GMOD and GREF sets for heap arrays accessed in GETFIELD

(GETSTATIC) and PUTSTATIC (PUTFIELD) instructions respectively (as shown in steps 11

and 15). If these instructions are accessed within an isolated section, we unify

them with AMOD and AREF respectively (as shown in steps 12 and 16). For

Call p() instructions, we take different actions for different function calls due to

parallel constructs. For startFinish function call demarcating the start of a new finish

scope, we create, i.e., FMOD(IEF(I)) and FREF(IEF(I)) sets for the finish scope

(as shown in steps 7-10 in Figure 4.8). At stopFinish function call indicating activity

termination, FMOD(IEF(I)) and FREF(IEF{I)) are merged into the GMOD(m) and

GREF(m) sets for the current caller m (as shown in steps 12-15 in Figure 4.8). This

unification implies that the side-effect of the asyncs created within the finish scope

can only be visible at the end of the finish scope.

99

6

7
8
9

10

11
12

13
14
15
16

17
18

function Paral lelSideEffeetAnalysis()
Input : Method m and its IR
Output: (1) Compute side-effect for m and its called procedures: Return

GMOD(m) and GREF(m); (2) Compute side-effect for finish
scopes: Return FMOD and FREF; (3) Compute side-effect for
isolated constructs: Return AMOD and AREF

Initialize information for method m;
GREF(m) = T and GM0D(m) = T;
inProgress(m) = true;
/ /A stack containing act ive f i n i s h scopes
S:= <j>;
Set IEF of the first instruction in IR to J_;
for instruction I in IR do

switch I do
case GETFIELD/GETSTATIC a.f

Resolve the target of the field access a.f;
GREF(m) = GREF(m) V {Hf[a]}i
AREF = AREF \Ji {Hs[a]}\

case PUTFIELD/PUTSTATIC a.f
Resolve the target of the field access a.f;
GMOD(m) = GM0D(m) \J {Hf[a]};
AMOD = AMOD \Ji {Hf[a}};

case CALL pQ
HandleCallQ;

19 inProgress(m) = false;
20 r e t u r n

GMOD(m), GREF(m) ,AMOD(m) ,AREF(m), FMOD, FREF, EMOD{m), EREF(m)

Figure 4.7 : ParallelSideEf f e e t Analysis (m): Side-effect analysis in the
presence of HJ parallel constructs for method m

100

1 f u n c t i o n HandleCall()
2 Resolve the target of the method access p;
3 if the target of p is unknown or has several targets then
4 GREF(m) = ± and GMOD{m) = _L;
5 |_ EREF(m) = JL and EMOD(m) = _L;

6 e l se if the target of p is s tar tFinish t h e n
7 / := Create a new finish scope;
s IEF(I) := /;
9 S.push(f);

10 |_ FMOD(IEF(I)) = T and FREF(IEF(I)) = T;

n e lse if the target method is stopFinish t h e n
12 GMODim) = GMOD(m) V FMOD(IEF(I));
is GREF(m) = GREF(m) V FREF(IEF(I)):
14 / := S.pop()]
15 Set IEF of s ta tements following stopFinish to / ;

16 e l se if the target method, is runAsync t h e n
17 HandleAsync();

is else if inProgress(p) is set OR GMOD(p) and GREF(p) sets are available OR
recursively invoke P a r a l l e l S i d e E f f ec tAna lys i s (p) for p t h e n

19 [_ HandleNormalMethodCall ();

Figure 4.8 : Additional function to handle method calls for
Paral le lSideEffectAnalysis(m)

101

For the runAsync function call (as shown in Figure 4.9), we determine the target

runHJTask method and recursively compute side-effects for this method. The GMOD,

GREF, EMOD and EREF sets of the runHJTask method are then unified in the

caller's enclosing finish scope's FMOD and FREF sets as shown in steps 8-9 in

Figure 4.9. If the runAsync method call was not enclosed in a finish scope, the

GMOD, GREF, EMOD and EREF sets of runHJTask are unified with the EMOD

and EREF for the caller. This is shown in steps 5-6 in Figure 4.9. Unification with

EMOD and EREF sets indicates that all the side effect for the callee async remain

escaping for the caller. If the async call is enclosed in a finish scope, the async call's

side effects can only be visible at the end of the finish scope and hence added to

FMOD(IEF(I)) and FREF(IEF{I)) as shown in steps 8-9 in Figure 4.9.

Normal method calls that are not related to parallel constructs (as shown in

Figure 4.9) are handled by unifying the GMOD, GREF, EMOD and EREF sets of

the callee with their corresponding side-effect sets in the caller if there is no IEF for

the call instruction. In case of IEF(I) is undefined, the EMOD and EREF sets of the

callee are unified with respective GMOD and GREF sets of the immediately enclosing

finish scope summary. If the callee is an isolated method or is invoked in an isolated

block, the GMOD and GREF sets are unified with the global AMOD and AREF sets

respectively.

For the example program shown in Figure 4.5 and its corresponding call graph in

Figure 4.6, the final side-effect sets are shown in Table 4.1.

The complexity of Algorithm 4.7 is similar in nature to that of Algorithm 4.3.

Hence, the overall complexity of Algorithm 4.7 is 0(N + E) * F, where N accounts

for both normal method calls and parallel constructs in a program.

4.3.1 Discussion

As discussed in Section 4.2.3, we compute global side-effects for i so lated blocks and

methods. However, it is possible to refine it with the May-Happens-in-Parallel infor-

102

1 function HandleAsyiic()
2 Determine the target runHJTask, t:
3 Obtain GMOD(t) and GREF(t) by invoking

Paral le lS ideEffectAnalys is (t) ; / /recurs ive c a l l
4 if IEF(I) is undefined then

EMOD(m) = EMOD(rn) V GMOD(t) \f EMOD(t);
EREF(m) = EREF(m) V GREF(t) \J EREF(t);

else
FMOD(IEF(I)) = FMOD(IEF(I)) \J GMOD(t) \f EMOD(t);
FREF(IEF{I)) = FREF(IEF{I)) V GREF(t) V EREF(t);

10 function HandleNormalMethodCallQ
11 GMOD(m) = GMOD(m) \f GMOD(p):
12 GREF(m) = GREF(m) \J GREF{p);
is v4MO£> = .4MOD \/i GMOD(p);
14 AREF = AREF\Ji GREF(p);
15 if IEF(I) is undefined then
16 EMOD(m) = EMOD(m) V EMOD{p);
IT [_ EREF(m) = EREF(m) V EREF(p);

is else
19 FMOD(IEF(I)) = FMOD(IEF(I)) V EMOD{p);
20 [_ FREF(IEF(I)) = FREF(IEF(I)) \J EREF(p)\

Figure 4.9 : Additional functions to handle async calls and normal method calls
for ParallelSideEf f e e t Analysis (m)

103

GMOD(bar) = GREFibax) = {'.Hz[r]}
EMOD{ bar) = EREF{ bar) = T
GMO£(async_foo) = OR£F(async_foo) = T
£MOD(async_foo) = £P£F(async_foo) = {Hz[r}}
GMOD(foo) = T and GREF{ioo) = { ^ [s] }
EMOD(foo) = £i2£F(foo) = {W*[r]}
GM(9D(async_main) = G7?£T(asyncjnain) = { ^ [p] }
EMOD(async_main) = EREF(async _main) = T
FMOD(finish_main) =
FREF{finish_main) = {Wx[p], ft2[r]}
GMOD{ main) = Gi2£F(main) = {Hx\p],Hz[r],Hw[s]}
EMOD{ main) = ^ ^ (m a i n) = T
AMOD = AREF = {W[q}}

Table 4.1 : Side-effect results of parallel constructs and method calls for example
program shown in Figure 4.5

mation described in Chapter 3. Consider the example program shown in Figure 4.10.

Using the global side-effects, it may not be possible to scalar replace the memory

loads in lines 10 and 15. In this case, we observe that the finish scope in lines 7-11

guarantees that the isolated blocks in lines 9 and 14 can never execute in parallel

with each other (can be obtained using MHP analysis). This fact can be leveraged

to deduce that the memory load operations in lines 10 and 15 can be scalar replaced.

Given the MHP information, we can refine AMOD and AREF side-effects to capture

fine-grained MOD and REF sets for a subset of the isolated blocks and methods that

may execute in parallel.

4.4 Summary

In this chapter, we introduced side-effect analysis for object field references in HJ

programs having parallel constructs. In particular, we discussed side-effects of async,

f i n i s h , and i s o l a t e d constructs. The side-effects of these constructs will be used in

the next chapter to perform scalar replacement transformation using a new Isolation

104

1: class isolatedMHP {
2: int x;
3: int y;
4: void main (isolatedMHP aa) {
5: aa.y=10;
6: aa.x=10;
7: finish async {
8: aa.y++;
9: isolated { aa.x++; }
10: ... = aa.y; // Can you eliminate this load?
1 1 : }
12: async {.
13: aa.x++;
14: isolated { aa.y++; }
15: ... = aa.x; // Can you eliminate this load?
16: }
17: >
1 8 : >

Figure 4.10 : Improving the precision of global isolated side-effects.

Consistency memory model.

In future, it is possible to extend our side-effect analysis to advanced constructs

of HJ like places and phasers. Additionally, side-effect analysis for object field

references can be extended to arrays using bounded regular section analysis [62, 120].

105

Chapter 5

Isolation Consistency Memory Model and its
Impact on Scalar Replacement

Due to recent software trends in parallel programming languages for multi-core pro-

cessors, it is necessary for a compiler to be aware of the parallel constructs in the

input parallel program to be able to perform any code reordering transformation.

For example, the most commonly used common subexpression elimination (CSE)

data flow framework can not be easily adapted to parallel programs for the following

reasons:

1. Parallel constructs introduce additional kill expressions, i.e., side-effects (ad-

dressed in Chapter 4).

2. Interferences between shared data accesses of multiple threads may prohibit

some subexpression elimination scenarios.

The legality of compiler transformations in the presence of interferences between

shared accesses is typically defined using a memory model. In this chapter, we

introduce a new weaker memory model called Isolation Consistency that permits

several code reordering scenarios compared to many existing weaker memory models.

Using this memory model we present an algorithm to perform scalar replacement for

load elimination of HJ parallel programs.

5.1 Program Transformation and Memory Model

As stated by [78], a parallel program transformation is correct "if the set of possible

observable behaviors of a transformed program is a subset of the possible observable

106

behaviors of the original program." The possible observable behaviors of a parallel

program and consequently the permissible program transformations are determined

by the underlying memory model. There exists a wide range of memory models.

A strong memory consistency model limits the observable orderings of memory op-

erations among threads and is viewed by programmers as being easier to reason

about, but difficult to implement efficiently. On the other hand, a relaxed or weaker

memory model permits several reordering of memory operations and may be less easy

for programmers to reason about, but is easy to implement efficiently.

Sequential Consistency (SC) defined by [72] introduced the stronger memory

consistency model used in practice. Lamport's paper states that "the result of any

execution is the same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear in this se-

quence in the order specified by its program". This definition of sequential consistency

disallows reordering of memory operations of a thread even if there is no intra-thread

control and data dependence between the memory operations. Consider the example

program shown in Figure 5.1. A standard compiler reordering transformation that

reorders statements 1 and 2 in Thread 1 can produce the result r\ = 2 and r2 = 1

and this result is not consistent in SC model. Note that the statements within

each of the threads Thread 1 and Thread 2 do not have any dependence between

them. This small example demonstrates that sequential consistency limits concurrent

program transformation by disallowing reorderings that are legal under sequential

execution. Additionally, sequential consistency implementations have led to a strong

memory coherence assumption in the hardware, i.e., "all writes to the same location

are serialized in some order and are performed in that order with respect to any

processor" [58]. This enforces some form of serializability on the write operations to

the same locations. These hardware memory coherence assumptions are often ignored

in the software memory consistency model.

The main approach taken in recent memory consistency models is to permit com-

107

a.x = a.y = 0
Thread 1 Thread 2

1: r1 := a.x 3: r 2 := a.y

2: a.y := 1 4: a.x := 2

Figure 5.1 : Sequential consistency is violated if the results rx = 2 and r2 = 1 are
obtained. A standard code reordering compiler transformation can produce this result
by reordering the statements in Thread 1.

piler transformations to be applied, while guaranteeing that sequential consistency be

retained for programs having no data races. Several weak memory models have been

proposed in recent years including release consistency (RC) [58], Java memory model

(JMM) [84], C+ + memory model (C++MM) [21], OpenMP memory model [64], and

Location Consistency (LC) [53].

Neither the X10 or HJ language has a clear definition of a memory model. Since

the HJ programming language uses a serial subset of the Java vl.4 language with new

support for concurrency, one could imagine using Java memory model for HJ. There

are several reasons why we chose not to use JMM for HJ programs:

• HJ's concurrency support using async-f inish is more general than the s tar t - jo in

model used in Java. The async-f inish constructs allow features such as

escaping-asyncs (described in Chapter 4) that have very different semantics

than Java's concurrency model;

• Current definitions of JMM are driven by informal examples [103] and lack

rigorous formal mechanisms for reasoning in many cases. This has lead to

many counter examples to compiler transformations allowed in JMM [121],

Table 5.1 depicts some of the code reordering transformations that are allowed

(or disallowed) by the SC and JMM models;

• The JMM is mainly driven by the requirements in the software such as out-

of-thin air and to our knowledge, it does not provide a memory coherence

108

Transformation SC JMM
Reorder normal memory accesses X X

Redundant read after read elimination V X

Redundant read after write elimination V V
Redundant write before write elimination y/ y/
Redundant write after read elimination V X

Roach motel reordering X X

Table 5.1 : Comparison of SC and JMM for compile reordering transformations [121].
Redundant read after read elimination is the classic case of eliminating input
dependences. Redundant read after write elimination removes flow dependences.
Redundant write before write elimination removes redundant stores. Redundant write
after read elimination removes the writes that write the same value as that of the
read. Roach motel reordering allows code motion into and out of synchronized blocks.

guarantees;

Driven by the above reasons and the fact that a memory consistency model

must be a contract between both the hardware and software, we describe a new

Isolation Consistency memory model for HJ programs that builds on the formalism

of Location Consistency (LC) [53] and extends LC model appropriately to provide

weaker semantics for i s o l a t e d constructs and v o l a t i l e variables. One of the main

reasons for choosing the LC model as the foundation is that the LC model does not

require serialized ordering of memory operations to the same location (as required

by SC), but instead imposes a partial ordering. Due to this, LC model allows more

compiler transformations and is easier to implement. For example, going back to our

code fragment in Figure 5.1, r i = 2 and r2 = 1 is a possible legal outcome since the

updates to a.x, a.y, ri , and r2 occur to different memory locations.

5.2 Isolation Consistency Memory Model

There is a range of memory models that have been studied in the literature including

Sequential Consistency (SC) [72], Release Consistency (RC) [58], the Java Memory

Model (JMM) [84], the OpenMP memory model [64], and Location Consistency

109

(LC) [53]. It is well known that all these models yield the same semantics for

data-race-free programs, but may exhibit different semantics for parallel programs

with races. A major research challenge lies in dealing with the common case when a

compiler (especially a dynamic compiler) does not know for sure that the input parallel

program is data-race-free. To address this case, we define a weak memory model,

Isolation Consistency (IC), for which the scalar replacement for load elimination

transformation described in Chapter 5 are guaranteed to be correct even in the

presence of data races. They will also be correct for any data-race-free parallel

program with a stronger memory model, but the optimizations may not be correct

for parallel programs with data races that must obey a stronger memory model.

5.2.1 Abstraction

The definition of IC builds on the operational semantics used to define the Location

Consistency (LC) in [53]. Each shared memory location L is modeled as a partial

order using a partially ordered multiset (pomset), state(L) = (S, -<), where S is a

multiset and -< C S x S is a partial order on S. Pomset captures the sequencing of

memory and synchronization operations. Each element e of the multiset S is one of

the following (We use the term worker to refer to the thread/processor executing the

async):

• Write operation: if worker Pi writes value v in location L, it performs a write(Pi, v, L)

operation;

• Finish synchronization: f i n i s h constructs in HJ impose a happens-before order-

ing since any async created inside the body of a finish scope completes execution

before the statement after the finish scope is executed. This can be captured

using a directed signal-wait synchronization primitive. If worker P2 needs to

wait for worker Px, then Px performs a signal(P2) operation and P2 performs a

110

corresponding wait(Pi) operation1.

• Isolation: if workers Pi,... ,Pk need exclusive access within an HJ place using

isolated constructs, then each worker performs an acquire(Pi, *) operation fol-

lowed by a release(Pi, *) operation, where * represents all the shared memory

locations in all the places defined in the isolated scope.

• Volatile Variables: Volatile variables in HJ are similar to Java, i.e., when one

worker writes to a volatile variable, and another worker sees that write, the first,

worker is communicating the second about all of the contents of memory up until

it performed the write to that volatile variable. The volatile variables in the

IC model are modeled by wrapping each volatile access using an isolated block.

Hence, an acquire(Pi, *) operation followed by a release(Pi, *) is performed for

every volatile access.

Let workers(e) be the set of workers involved in the operation e. For example,

for e = write(Pi,v, L), workers(e) = {Pi}. For an e = a,cquire(Pi,*) operation,

mostjrecent-release(e) = {ei,..., ek}, where ej is the most recent release opera-

tion ej = release(Pi, *) performed prior to acquire e. For an wait operation e,

signal sour ces{e) = {ei,... ,ek} where e, signals its completion of execution to e

during run-time.

5.2.2 State-Update rules for L

When new memory or synchronization operations are performed, the pomset (S, -<)

is updated. The rules for updating a pomset based on an operation e are provided

using three rules namely default rule, wait rule, and acquire rule. Each of the rules

are described below:

xThe signal and wait operations used in the phaser construct of HJ language are different from
the ones we consider here.

I l l

Definition 5.2.1 Default Rule: The default rule for computing the new pomset

(Snewj -<new) from the old pomset (Sold1 -<oid) after operation e, is as follows:

Snew :== Sold U { e }

-<new '•— -<oid U {(x ,e) | x G S0id A workers(x) fl workers(e) ^ 0}

The default rule states that the new operation, e, is inserted into the multiset

S, and the partial order -< is updated so that x precedes e in S, if workers(e) and

workers(x) have a non-empty intersection.

Definition 5.2.2 Wait Rule: The rule for computing the new pomset (Snew, -<new)

from the old pomset (S0id, -<0id) after a wait operation e, is as follows:

Snew '•— S0id U { e }

{(x,e) | x e S0id A workers(x) n workers(e) ^ 0}

U {(£,e) | x G signalsource(e)}

The wait rule adds the directed synchronization ordering in the pomset along with

the default rule.

Definition 5.2.3 Acquire Rule: The rule for computing the new pomset (Snew,-<neu

) from the old pomset (S 0 i d , ~<oid) after a acquire operation e, is as follows:

•<new-=^oid u {{x,e) I x e Sold A workers(x) D workers(e) ^ 0}

U {(e',e) | e' € mosLrecenLrelease(e)}

Similar to wait rule, the acquire rule adds the mutual exclusive ordering in the

pomset along with the default rule.

112

5.2.3 State Observability for L

Given a read operation e = read(Pi, L), the pomset (S, -<) is extended as follows:

S' = S U {e}

-<' = -< U {(e', e)\e' G S A G workers(e')}

Now, the set of values V(e) for read operation e = read(Pi, L) in (5", -<') can be

obtained as follows,

V{e) = { v | 3w = write(Pj, v, L) G S'

and w satisfies Condition 1 or 2 listed below}

where conditions 1 and 2 are:

• Condition 1: w = write(Pj, v, L) and w -<' e and w G MRW(S, -<, e)

If w is a write operation that precedes e in -<', then it can only be included in the

value set V(e) if it is a most recent write (MRW) operation with respect to the

read operation e. w = write(Pj,v, L) is said to be a most recent write operation

in extended pomset (5", -<') for location L with respect to read operation e

if to is a predecessor of e (w -<' e) and there is no other write operation on

shared location L, w' ^ w, such that w' precedes e (w' -<' e) and w precedes w'

(•w -< w').

• Condition 2: w = write(Pj,v, L) and w -ft e

If w is a write operation that does not precede e in -<', then it is automatically

included in V(e) (even though w may precede other write operations to location

L in -<').

In summary, LC models the state of each shared location as a partially ordered

multiset (pomset) of write and synchronization operations in an abstract interpreter.

113

In any execution that satisfies the LC model, the result returned by a read operation

R must belong to the value set of the location, i.e., it must have been written by a

write operation that is a "most recent write" with respect to R in the pomset or a

write operation that is unrelated to R in the pomset.

However, the LC model also placed the restriction that the abstract interpreter

executes each instruction in a thread in its original order, thereby ensuring that

causality is not violated.

In Isolation Consistency (IC), we assume that only the control and data depen-

dences within a thread need to be preserved in the abstract interpreter. Thus the

abstract interpreter is allowed to execute instructions out-of-order within a thread so

long as intra-thread dependences are not violated. These intra-thread dependences

are defined using a weak atomicity model [85] which ensures the correct ordering of

load and store operations from multiple threads when they occur in isolated sections.

For load and store operations that occur outside an isolated section, the only inter-

thread ordering constraints arise from the "happens-before" relationships enforced by

the finish construct.

5.2.4 Example Scenarios

Consider the four example parallel code fragments shown in Figure 5.2. Cases 1 and

2 demonstrate the potential for scalar replacement for load elimination across async

constructs, Case 3 across a f i n i s h construct, and Case 4 across i so lated constructs.

In each case, we want to know if the load of a .f in statement 4 can be eliminated

by substituting the value of a prior store operation. (The . . . notation represents

computations that do not contain accesses to any instances of field f.) The IC model

permits scalar replacement in all four cases, but that is not the case for the SC and

JMM models. Cases 1 and 4 have no data races, but for the non-IC memory models,

the onus is on the compiler to establish that there are no data races in those cases.

Case 1 appears to be an easy case because the async body is assumed to not

114

1: final A a = new A ();
2: a.f = ... ;
3: async { .. . }
4: . .. = a.f;

1
2
3
4

final A a = new A () ;
a.f = . . . ;
async { while(...) a.f = F(a.f); >
... = a.f;
// Can reuse a.f from Stmt 2 // Can reuse a.f from Stmt 2

(a) Case 1 (b) Case 2

1
2
3
4

final A a = new A O ;
a.f = . . . ;
finish async { a.f = 2; ... }
... = a.f;
// Can reuse a.f from Stmt 3

1
2
3
4

final A a = new A();
a.f = ...
async { isolated if (...) a.x++; }
... = a.f;
// Can reuse a.f from Stmt 2

(c) Case 3 (d) Case 4

Figure 5.2 : Four parallel code fragments that demonstrate scalar replacement for
load elimination opportunities in the presence of parallel constructs.

perform any access to field f . Both the JMM and IC models permit scalar replacement

for load elimination of the a . f getfield operation in statement 4 by using the value

stored in statement 2. However, an additional delay set analysis [106] is necessary

for the SC model to ensure that there is no other access to field f elsewhere in

the program that could contribute to a cycle and result in an execution that is

potentially inconsistent with the SC model. Delay set analysis is a time-consuming

whole program analysis that will be impractical for use in a dynamic optimizing

compiler.

In Case 2, there is a potential data race between the conditional store of a .f

in statement 3 and the load in statement 4. With the IC model, the compiler can

conclude that the value stored in a . f in statement 2 will always be part of the value

set for the load in statement 4, therefore making it legal to perform a load elimination

accordingly. The SC and JMM models will not permit scalar replacement in this case,

but the OpenMP [64] model will.

Case 3 demonstrates the scope of eliminating loads across finish boundaries. In

this case, the load in statement 4 may not be eliminated with respect to statement

115

2. The f i n i s h scope in statement 3 demarcates the completion of the execution of

the async body in statement 3 and hence is visible to the rest of the program.

Case 4 shows the effect of scalar replacement for load elimination in the presence

of isolated constructs. The load in statement 4 cannot be eliminated in the SC and

JMM models due to the i s o l a t e d construct. However, if we can analyze the side

effect of the isolated construct, we should able to eliminate the load in statement 4.

In this case,the async only updates field a.x. Hence, eliminating the load of a .f in

statement 4 is safe in the IC model.

5.3 Scalar Replacement for Load Elimination

Now, we will describe the scalar replacement for load elimination algorithm that

analyzes parallel constructs. It follows the same basic steps of the load elimination

algorithm described in Section 2.6, but embeds side-effects of parallel constructs and

permits scalar replacement using isolation consistency model described in the previous

section. The side-effects for method calls and parallel constructs are computed using

the algorithms presented in Chapter 4.

Algorithm 5.3 presents the complete scalar replacement for load elimination algo-

rithm in the presence of parallel constructs. Steps 4-21 determine the type of method

call based on the parallel constructs and inserts appropriate pseudo-def and pseudo-

use instructions for their GMOD and GREF sets. Each entry into the isolated block

is annotated with pseudo-defs to fields in AMOD. This prohibits any load reuse

in the isolated block for fields that may be modified in any isolated scope. Each

exit of an isolated construct is annotated with pseudo-uses of fields in AREF. This

permits loads to be eliminated in and after the isolated block exit. startFinish and

runAsync method calls are handled by side-effect analysis and act as a no-op for load

elimination algorithm. At stopFinish, pseudo-def and pseudo-use instructions are

added for FMOD and FREF finish side-effect sets of the current finish scope. Other

normal method calls insert pseudo-def and uses for GMOD and GREF summary sets

116

1 function ParallelismAwareLoadElim ()
Input : Method m and its IR
Output: Transformed IR after Load Elimination

2 Compute side-effect summary information by invoking ParallelSideEffectAnalysis
presented in Figure 4.7;

3 f o r instruction I in IR d o
4 s w i t c h I d o
5 c a s e isolatedenter
6 Insert pseudo-defs for each heap array in AMOD at /;
7 c a s e isolatedexit
8 Insert pseudo-uses for each heap array in AREF at /;
9 c a s e startFinish
10 no-op;
11 c a s e stop Finish
12 Insert pseudo-defs for each field in FM0D(IEF(I));
13 Insert pseudo-refs for each field in FREF(IEF(I))-,

14 c a s e async
15 n o - o p ;

16 c a s e CALL p
17 if target of p is an isolated method t h e n
18 Insert pseudo-defs for each field in AMOD before /;
19 Insert pseudo-uses for each fields in AREF after /;
20 e l s e
21 Insert, pseudo-defs and pseudo-uses for each field in GMOD(p) and

|_ GREF(p) respectively at /;

22 Construct extended array ssa form for each heap operand access including the pseudo-def
and pseudo-use accesses introduced above;

23 Perform global value numbering to compute definitely-same (DS) and allocation site
information to compute definitely-different (DD) relations;

24 Perform data flow analysis to propagate uses of heap arrays to defs;
25 Create data flow equations for <f>, d(f>, and utj> nodes;
26 Iterate over the data flow equations until a fixed point is reached;
27 Perform scalar replacement for load elimination;
28 For a load of a heap operand, if the value number of the associated heap operand is

available, then replace the load instruction;

Figure 5.3 : Scalar replacement for load elimination algorithm in the presence
of parallel constructs of HJ. Legality of the elimination is provided by Isolation
Consistency memory model.

117

if the target of the method call is not an isolated method. Otherwise, pseudo-defs for

fields in IMOD and pseudo-uses for fields in IREF are inserted before and after the

method call.

Steps 22-28 in Algorithm 5.3 first construct an extended array ssa form repre-

sentation of the IR over which a global value numbering is performed to compute

object accesses that may be definitely-same (US) or definitely-different (VV). In

Step 24, a data flow analysis is performed that propagates uses of heap operands to

their definition points. Finally, actual load elimination is performed by replacing the

memory load operation by a compiler generated temporary in cases where the load

is already fully available. The steps 22-28 are described in details in [52],

5.3.1 E x a m p l e

Consider the example program shown in Figure 5.4. The same example was used

in Chapter 4 to demonstrate side-effect analysis of parallel constructs. Table 4.1 in

Section 4.3 summarizes the side-effects of both method calls and parallel constructs.

Using these side-effect information and the scalar replacement algorithm with IC

memory model described in Algorithm 5.3 produces the transformed code shown in

Figure 5.5. Note that, pjx is used as a scalar variable for replacing a memory load

of p.x. The memory load operations on lines 8, 9, 12, 16, and 25 can now be scalar

replaced. The memory load on line 15 can not be scalar replaced due to the finish

ordering imposed by the f i n i s h construct on lines 4-14. One interesting scenario is

that the memory load on line 12 can be scalar replaced even though the program can

have a data race with respect to the async created on line 6.

5.4 Summary

This chapter introduces a new weak memory consistency model as Isolation Consis-

tency memory model (IC) that favors compiler reordering transformations for racy

programs while producing sequentially consistent behaviors for race-free programs.

118

1: void mainO {
2 : p . x = . . .
3 : s . w = . . .
4: f in i sh { / / / i n i s h _ m a i n
5: if (. . .) {
6: async { //async_main
7 : p . x = . . .
8: i so lated { . . . = q.y; . . . ; q.y = . . . ; }
9 : . . . = p . x
10 : }
11: >
12 : . . . = p . x
13: fooQ
14: >
15 : . . . = p . x
16 : . . . = s . w
17: >
18: void foo() {
19: async bar() //async_foo
20: i so lated { q.y = . . . ; }
21: . . . = s . w
22: >
23: void bar() {
24: r . z = . . .
25 : . . . = r . z
26: }

Figure 5.4 : Example HJ program demonstrating scalar replacement for load
elimination in the presence of parallel constructs.

The ordering constraints imposed by IC model are also described. Finally, a scalar-

replacement for load elimination algorithm is presented whose legality is guaranteed

by the IC memory model. In Section 8.1, we will present the performance improve-

ments using our parallelism-aware scalar replacement for load elimination algorithm.

Possible directions for future work include extensions for array accesses, i.e.,

perform scalar replacement for arrays and define Isolation Consistency model in

the presence of arrays. To handle advanced features of HJ such as remote async

in distributed systems, we would like to perform scalar replacement of fields and

array accesses across remote async boundaries to be able to optimize communication

among the asyncs.

119

1: void mainO -[
2a: p_x = . . .
2b : p . x = p_x
3a: s_w = . . .
3b : s . w = s_w
4: f in i sh { / / / ini sh_main
5: if (. . .) {
6: async { //async_main
7a: p_xl = . . .
7 b : p . x = p _ x l / / Eliminated memory load
8: i so lated { q_y = . . . ; q.y = q _ y ; . . . ; . . . = q_y; }

// Eliminated memory load
9 : . . . = p _ x l / / Eliminated memory load
10 : }
1 1 : }
1 2 : . . . = p _ x / / Eliminated memory load
13: foo()
14: >
1 5 : . . . = p . x / / Can not eliminate memory load
1 6 : . . . = s _ w / / Eliminated memory load
17: >
18: void foo() {
19: async bar() / /async_foo
20: i so lated { q.y = . . . >
21: . . . = s . w
22 : >
23: void bar() {
24a: r_z = . . .
24b: r . z = r_z
2 5 : . . . = r _ z / / Eliminated memory load
2 6 : >

Figure 5.5 : Transformed program after scalar replacement for load elimination is
performed on the code fragment provided in Figure 5.4. Note that, the memory load
of p.x on line 13 can not be eliminated due to the finish construct.

120

Chapter 6

Space-Efficient Register Allocation

Typically, a register allocator consists of two tasks: allocation and assignment. Allo-

cation ensures that no more than k symbolic registers are residing in physical registers

at any program point (where k is the total number of physical registers available in

the target machine), assignment produces the actual physical register names required

to generate the executable code. Both these tasks are NP-hard at the global (i.e.,

procedure) level.

Today's architectures pose new challenges to register allocation due to hardware

features such as register classes, register aliases, -pre-coloring, and register pairs. For

example, the Intel x86 architecture provides eight integer physical registers, of which

six are usable by the compiler. These six physical registers are further divided into

four register classes based on calling conventions and 8-bit operand accesses. To

produce high-quality machine code, a register allocator must consider these hardware

features in both the allocation and assignment phases.

In this chapter, we make the following contributions:

1. We introduce a Bipartite Liveness Graph (BLG) representation as an alternative

to the interference graph (IG) representation. Allocation with the BLG is for-

mulated as an optimization problem and a greedy heuristic is presented to solve

it. Our allocation phase is independent of the move-coalescing optimization

that is usually performed along with allocation in an IG based Graph Coloring

algorithm.

2. We present a spill-free register assignment that reduces the number of spill in-

structions by using register-to-register move and exchange instructions wherever

121

possible to maximize the use of registers.

3. We formulate spill-free register assignment with move coalescing as a combined

optimization problem that maximizes the benefits of move coalescing while

finding an assignment for every symbolic register. Move coalescing is performed

on a Coalesce Graph (CG) that models both IR move instructions and additional

register-to-register moves/exchanges needed to generate correct code. A local

greedy heuristic is presented to address the assignment optimization problem.

4. We extend the register assignment approach from (3) above to handle regis-

ter classes. An optimization version of the assignment problem is presented

that minimizes the additional spilled symbolic registers and at the same time

maximizes the benefits of move coalescing. A prioritized bucket-based greedy

heuristic is presented to address this problem.

5. Finally, we present an Extended Linear Scan (ELS) register allocation algorithm

that avoids building the BLG explicitly to save space. ELS retains the compile

time and space efficiency of Linear Scan register allocation algorithms.

6.1 Notions Revisited

For convenience, a program point can be split into two program points based on the

values read and written at that program point [105], A register allocation problem

can then be defined with respect to the split program points as follows.

Definition 6.1.1 Each program point p is split into p~ and p+, where p~ consists of

the variables that are read at p and p+ consists of the variables thai are written at p.

Definition 6.1.2 Given a set of symbolic registers, S, and k uniform physical reg-

isters that are independent and interchangeable, determine if it is possible to assign

each symbolic register s £ S to a physical register at every program point where s

122

is live. If so, report the assignment as reg(s,x) that indicates the physical register

assigned to s at each program point x.

The number of simultaneously live symbolic registers at a program point p is

denoted by numlive(p). MAX LIVE represents the maximum number of simultane-

ously live symbolic registers in any program point. A program point p is said to be

constrained if numlive(p) > k. In the presence of register classes, we call a program

point p as constrained if it violates any of the register requirements of any of the

register classes of the symbolic registers that are live at p.

Linear Scan (LS) [100, 105, 119] is a compile time and space efficient approach

to register allocation that is suitable for dynamic compilation. It assumes a linear

ordering of the IR instructions (typically depth-first order [4]). The central data

structure in LS is the notion of live interval. A live interval may contain program

points where a variable v may not be live, i.e., it does not contain any useful value

but it is included in the live interval of v. The sub-interval during which a variable

is not live is known as a hole [119].

Definit ion 6.1.3 [x, y] is a basic interval for variable v (denoted as BI(v)) ijfVp,

p > x, p < y and v is live at p. Note that BI(f) does not include any holes. Lo(BI(v))

and Hi(BI(v)) denote the unique start and end points respectively of basic interval

BI(v).

Definit ion 6.1.4 A compound interval for a variable v (denoted as Cl(t>),) consists

of a set of basic intervals for v. Note that CI(f) accommodates holes.

Definit ion 6.1.5 Two basic intervals, [xi,yi] and [o:2,2/2]? are sa^d to be intersecting

if one of the following holds:

1. x2 > x,\ and x2 < y\

2. y2 > xx and y2 < yx

123

a) Code fragment with basic and
compound intervals:

C(a) C(b) C(c) m

2 b = ...
3 c = a
4 d = b
5 if(...) {
6 e = ...
7 ... = C

a d = ...
9 f = e
10 ... = 1
11 c = ...
12}
13 ... = d
14 ... = C

b) Interference Graph (dashed
lines show move instructions):

C(e) C(f)

c) Bipartite Liveness Graph
(BLG):

Figure 6.1 : a) Example code fragment with basic and compound intervals; the dotted
lines represent end-points of basic intervals, b) Interference Graph (IG); the solid
lines in IG represent interference and the dashed lines represent move instructions,
c) Bipartite Liveness Graph (BLG); the vertices on the left of the graph represent
compound intervals, and the vertices on the right represent basic interval end points.

Let B denotes the set of all basic intervals and C denote the set of all compound

intervals in the program. Let C denote the set of start points, i.e., Lo of all the basic

intervals and H denote the set of end points, i.e., Hi of all the basic intervals in the

program.

6.2 Example

Figure 6.1 presents an example code fragment with its basic and compound intervals

and IG. Let us assume that we have 2 physical registers, ri and r2. We can easily

124

see that the IG has a clique of size 3, i.e., the cycle comprising of nodes c, d, and e.

Now, consider a Graph Coloring register allocator that performs coalescing along with

allocation. Both aggressive [35] and conservative [25, 28] coalescing will be able to

eliminate the move edges (a, c), (6, d), and (e, /) without increasing the colorability of

the original interference graph. Since there are two physical registers, we have to spill

one among the coalesced nodes ac, bd, and e f . Coalescing has worsened the situation

because it would have sufficed to spill just one of the nodes in the coalesced node that

is part of the cycle, e.g., it would have been enough to just spill d instead of bd. The

un-coalescing approach used in an optimistic coalescing technique [96] will be able to

just spill one of the nodes involved in the cycle as it tries all possible combinations

of assigning colors to individual nodes of a potentially spilled coalesced node. The

points to note here are that we can not color the IG using 2 physical registers and

that opportunities for coalescing can be missed due to not being able to color certain

nodes.

A close look at the code and the intervals reveal the fact that none of the program

points have more than 2 variables live simultaneously. If this is the case, two questions

come to mind: 1) can we generate spill-free code with 2 physical registers that does

not give up any coalescing of symbolic registers? 2) if the answer to the first question

is yes, then why did Graph Coloring generate spill code and also miss the coalescing

opportunity?

The answer to the first question is yes. The Bipartite Liveness Graph (BLG)

shown in Figure 6.1(c) captures the fact that every basic interval end point in V

has degree less than or equal to 2 indicating no more than 2 compound intervals

are simultaneously live. Using this information, the following register assignment is

possible:

reg({ 1+3"]) = n , reg(\2+,4"]) = r2, reg({4+5"]) = r2, reg([3+7-]) = n ,

re<?([6+, 9"]) = r2, reg([9+ 10"]) = r2, reg([8+ 13"]) = ru

and reg([11+, 14~]) = r2.

125

This assignment requires an additional register exchange operation since the reg-

ister assignment for the basic intervals of both CI(c) and CI (d) were exchanged

when the code after the i f condition was executed, i.e., CI(c) : reg([3+, 7~]) =

ri,reg([11+ 14"]) = r2 and CI(d) : reg([4+,5~]) = r2, re#([8+, 13"]) = rx. We need

to insert an exchg rx, r2 instruction on the control flow edge between 4 and 13. Also

note that none of the coalescing opportunities on lines 3, 4 and 9 were given up during

such an assignment.

Now let us try to answer the second question. Looking at the code fragment,

we observe that in program point 13", d interferes with two values of c assigned on

lines 3 and 11. Similarly, c interferes with two values of d assigned on lines 4 and 8.

During runtime if the if-branch is taken then assignments on lines 8 and 11 will be

visible to the code following the if condition, otherwise assignments on lines 3 and 4

will be visible. This notion can not be precisely captured using the definition of live

ranges in an interference graph unless we convert the program to SSA form. However,

an SSA based approach inserts extra copy statements during out-of-ssa translation

which pose an additional challenge as discussed in Section 6.3.

Figure 6.2 presents another example code fragment with its basic and compound

intervals and IG. Similar to the previous example, we can easily see that the IG has a

clique of size 3, i.e., the cycle comprising of nodes b, c, and d. Graph Coloring register

allocator will end up spilling one of the nodes b, c or d and give up the corresponding

coalescing opportunity. However, it is possible to generate spill-free assignment for

this program that does not need to spill any variable.

The following assignment is possible:

reg([l+,2~})=rx, reg([2+, 5~])=rx, reg([4+J~]) = r2, reg([6+, 7~})=rx,

reg([8+, 10-])=rx , re 5 ([l l+ , 13"])=ri, reg([9+, U~])=r2, reg([13+, 15"])=n,

and reg{[U+, 16~])=r2.

This assignment requires an additional register-to-register move as the two basic inter-

vals of the compound interval CI(d) are allocated in two different physical registers,

126

i.e., reg([6+, 7~])=ri and reg([9+, 14_])=r2 . We need mov 7-1,7*2 instruction to be

added on the control flow edge between program points 7 and 13. Additionally, we

observe that the all the move instructions on lines 2, 13 and 14 can be removed in the

generated code as both the source and destination have the same physical register. If

we analyze the code fragment, we observe that b interferes with c on the true branch

of the i f condition and b interferes with d on the false branch. During runtime only

one path is taken and hence, one of the interferences but not both will be held. Once

again, this notion was not precisely captured in the notion of live ranges in an IG

representation.

The above examples illustrate cases in which none of the program points has more

than 2 simultaneously live symbolic registers, yet the interference graph contains a

clique of size 3 (forcing the need to spill a symbolic register). This raises a question

about the general approach of formulating the register allocation problem as the graph

coloring problem on the IG using live ranges. Even though the interference graph

provides a global view of the program, it is less precise than intervals, and is also

known to be a space and time bottleneck. Additionally, when coalescing is performed

along with register allocation on an interference graph, the degree of some nodes may

increase. (The colorability of the interference graph may increase if we do not use

conservative coalescing.) This unnecessarily complicates the allocation phase of the

register allocation process. We believe that the allocation phase should only focus

on choosing a set of symbolic registers that need to be allocated to physical registers

and should have nothing to do with coalescing. Coalescing should ideally be a part

of the assignment phase of a register allocation algorithm.

6.3 Overall Approach

The register allocator presented in this chapter is depicted in Figure 6.3. The first step

in the allocator is to build data structures for Basic Intervals, Compound Intervals

and the Bipartite Liveness Graph (BLG) defined in Section 6.4. Then, allocation is

127

a) Code fragment with basic and
compound intervals:

C(a) C(b) C(c) C(d) C(e) cm

J 2 b = a

3 if(...) {

4 C = ...

5 ... = b

6 d = ...

7 }
a else {

a d = ...

10 ... = b

ti c = ...

12 }

13 e = c

14 f = d

15 ... = e
16 ... = f

b) Interference Graph (dashed
lines show move instructions):

0 0
c) Bipartite Liveness Graph
(BLG):

Figure 6.2 : a) Example code fragment with basic and compound intervals; the dotted
lines represent end-points of basic intervals, b) Interference Graph (IG); the solid
lines in IG represent interference and the dashed lines represent move instructions,
c) Bipartite Liveness Graph (BLG); the vertices on the left of the graph represent
compound intervals, and the vertices on the right represent basic interval end points.

Figure 6.3 : Overall Space Efficient Register Allocator using BLG.

128

Build Spill MCS Order Build Spill MCS Order K Potential
Select Actual Select Spill code

Figure 6.4 : SSA based Register Allocation. This figure is adapted from [22].

performed on the BLG to determine a set of compound intervals that need to be spilled

everywhere (as shown in the blocks for potential spill and actual spill). A combined

phase of assignment and coalescing is then performed until all the remaining symbolic

registers are assigned physical registers or spilled. Then register move and exchange

instructions are added to the IR to produce correct code. Finally, spill code is added

to the IR.

As a comparison, Figure 6.4 depicts various components of an SSA-based reg-

ister allocation [22, 59, 98]. Comparing our allocator with that of an SSA-based

register allocator, an SSA register allocation typically demands for high compile-time

overhead due to the interference graph and has additional complexity in optimizing

copy statements during out-of-ssa translation. In particular, the allocator proposed

in [22, 60]:

1. requires an interference graph for coloring and spilling. As seen in past work [42,

105], the interference graph is typically the space and time bottleneck in the

register allocator. In contrast, our approach requires a Bipartite Liveness Graph

(BLG) that is of lower space complexity than an interference graph in practice.

2. needs to pay attention to out-of-ssa translation after register allocation [97].

Additional copies for SSA node translation may be added that may degrade

the quality of machine code produced. Also, it is not clear how issues such

as the swap and lost copy problems [44] in out-of-ssa translation interfere with

coloring and spilling. Our approach is more direct, as the register allocation is

performed on a linear IR, not an SSA IR.

3. requires coalescing be performed after coloring assignment. This in turn advo-

129

cates the need for re-coloring in the IG during the coalescing pass, leading to

color clashes [60]. Backtracking on color assignments in the IG is an expensive

operation that may be undesirable in a dynamic compilation environment. In

contrast, our approach performs move coalescing over a Coalesce Graph that

combines the moves present in the IR and the moves that are needed by the

assignment phase into a single optimization problem. The assignment and

coalescing passes go hand-in-hand in our approach.

4. may require additional heuristics such as those described in [110] on the in-

terference graph to handle advanced features like register classes and register

aliasing. These features are easier to model in a BLG than on an interference

graph.

6.4 Allocation using Bipartite Liveness Graphs

The Bipartite Liveness Graph (BLG) is a new representation that captures program-

point specific liveness information as an alternative to the interference graph. We take

an all-or-nothing approach for spills, i.e., if spilled, every occurrence of the symbolic

register in the program will perform either a fetch or a store of the memory location

assigned to the symbolic register.

Definition 6.4.1 A Bipartite Liveness Graph (TSLGj is a undirected weighted bipar-

tite graph, G = (UU V, E), where V denotes all the basic interval end points1 in H, U

denotes all the compound intervals in C and an edge e = (u, v) G E indicates that the

compound interval u G U is live at the interval end point v G V. Each u G U has an

associated non-negative weight SPILL(u) that denotes the spill cost of u. Similarly,

each v G V has an associated non-negative weight FREQ(v) that denotes the execution

frequency of the IR instruction associated with basic interval end point v.

^ h e choice of interval end points is arbitrary. We could ha\re used interval start points instead.

130

Definition 6.4.2 Allocation Optimization Problem: Given a BLG, G, and k

uniform physical registers, find a spill set S C U and G' C G induced by S such that:

(1) Vv e V, v is unconstrained, i.e., DEGREE(v) < k; and (2) ^seS SPILL(s)

is minimized. For each compound interval s 6 S and basic interval b G s, set

spilled(b) := true.

Note that, it is a waste of space to capture liveness information at every program

point in the BLG. Prom an allocation perspective, it suffices to consider either the

basic interval start points alone, or end points alone but not both. This is because

spilling/allocation decisions only need to be taken at those points.

Given a BLG, the register allocation problem now reduces to an optimization

problem whose solution ensures no more than k physical registers are needed at

every interval end point and at the same time spills as few compound intervals

as possible. Algorithm 6.5 provides a greedy heuristic that solves the allocation

optimization problem. Steps 3-12 choose Potential Spill (as shown in Figure 6.3)

candidates using a max-min heuristic. Steps 13-17 unspill some of the potential spill

candidates producing Actual Spill (as shown in Figure 6.3) candidates. Depending

on the quality of potential spill candidate selection, the unspilling of spill candidates

provide a way of rectifying the obvious spilling decisions (akin to unspilling in Graph

Coloring).

Theorem 6.4.3 Algorithm 6.5 ensures that every program point has k or fewer

symbolic registers simultaneously live.

Proof: The algorithm continues to execute the while loop in Steps 3-12 until there

are constrained nodes v € V in the BLG. This is guaranteed by Steps 3, 10, and 12.
•

Theorem 6.4.4 Algorithm 6.5 requires 0(\B\ * |C|) space.

131

1 function GreedyAllocQ
Input : Weighted Bipartite Liveness Graph G — (U, V) and k uniform

physical registers
Output: Set T C U which needs to be spilled to ensure all interval end

points w G V b e unconstrained, i.e., V6 G T, spilled(b) = true
2 Stack S := <f)\

/ /Potent ia l s p i l l se lec t ion
3 Choose a constrained node n G V with largest FREQ(n);
4 while n != null do

Choose a compound interval s G U having an edge to n and has smallest
SPILL(s)]
Push n onto S;
Delete edge (s, n);
Choose a constrained node n G V having an edge to s and has largest
FREQin);
if n == null then

Choose a constrained node n G V with largest FREQ(n);
Delete all edges incident on s;
Remove s from G;

/ /Actual s p i l l se lec t ion
while S is not empty do

s := pop(S);
if Vv &V,v does not become constrained by reverting s and its edges in
G then

spilled(s) := true;
T : = T U { s } ;

is return T

Figure 6.5 : Greedy heuristic to perform allocation using max-min strategy.

132

Proof: The main data structure for Algorithm 6.5 is the BLG. A BLG, G = (U U

V, E) can represented using an adjacency list representation that uses 0(\U\ + \V\ +

l^l) space. Since \U\ = \C\, \V\ = \B\, and in the worst case can be \B\ * \C\, the

overall space requirement for a BLG is —0(\B\ * |C|). Additional \C\ stack space is

required for unspilling.•

Note that though 0(|£>| * |C|) is a worst-case quadratic size, in practice, we do not

need to consider every interval end point of the program in a BLG for Algorithm 6.5

- only constrained end points are sufficient. Hence, we expect the BLG to be a sparse

graph with even lower space requirements.

Theorem 6.4.5 Algorithm 6.5 requires 0(\B\ * (MAX LIVE - k) * |C|) time.

Proof: Every interval end point of B is traversed at most (MAXLIVE — k) number

of times to make it unconstrained. Each visit of an interval end point needs to visit all

its outgoing edges and choose a minimum spill cost compound interval. This requires

at most \C\ edge visits.•

6.4.1 Eager Heuristic

As a comparison to the heuristic presented in Figure 6.5, we present another greedy

heuristic in Figure 6.6 to perform eager allocation. This approach is compile-time

efficient, as each interval end point in BLG is traversed exactly once. The basic

idea is to find the next largest frequency interval end point and make the end point

unconstrained before traversing another interval end point.

Theorem 6.4.6 Algorithm 6.6 requires 0(\B\ * |C|) time.

Proof: Every interval end point of B is traversed exactly once. Each such visit

needs to visit all its outgoing edges and choose a set of minimum spill cost compound

intervals to make the end point unconstrained. This requires at most \C\ edge visits.•

The key advantage of performing register allocation using BLG is that the allo-

cation process only focuses on spilling decisions to produce unconstrained interval

133

1 function EagerUniformAllocation ()
Input : Weighted Bipartite Liveness Graph G = (U,V) and k uniform

physical registers
Output: Set T C U which needs to be spilled to ensure all interval end

points v G V be unconstrained, i.e., Mb G T, spilled(b) = true
2 Stack S := (p]

/ / P o t e n t i a l s p i l l s e l ec t ion
3 Choose a constrained node n EV with largest FREQ(n);
4 while n != null do

Choose a compound interval s G U having an edge to n and has smallest
SPILL(s);
while s != null do

Push n onto S;
Delete all edges incident on s;
Remove s from G;
if n is constrained then

Choose a compound interval s G U having an edge to n and has
smallest SPILL(s);

Choose a constrained node n G V with largest FREQ(n)-,
/ /Actual s p i l l s e l ec t ion

13 while S is not empty do
s :=pop(S);
if Vf G V, v does not become constrained by reverting s and its edges in
G then

spilled(s) := true;
T :— T U {s};

is return T

Figure 6.6 : Eager heuristic to perform allocation. Each interval end point
is traversed exactly once and during each visit the end point is made eagerly
unconstrained.

134

end points/program-points and does so in a space efficient manner. In contrast, an

interference-graph-based allocation has to focus on both spilling decisions and move-

coalescing in an attempt to reduce the colorability of the interference graph. Move

coalescing using aggressive and optimistic coalescing approaches often increase the

colorability of the interference graph, thereby leading to more spill decisions. The

BLG based approach introduced in this section advocates that the coalescing be

instead performed in the assignment phase.

After the allocation phase ensures that every program point needs k or fewer

physical registers, in the next section we describe how assignment for basic intervals

can be performed by possibly adding extra register moves/exchanges to the IR without

spilling any symbolic registers. In the presence of move coalescing and register-to-

register moves, we state the assignment problem as an optimization with the goal of

removing the most register-to-register moves whether they come from assignments or

moves that were originally present in the IR.

6.5 Assignment using Register Moves and Exchanges

In this section, we present a spill-free assignment that allows register-to-register moves

and exchange instructions. We first formulate the basic assignment of intervals and

then present an advanced heuristic to perform coalescing along with assignment in

the presence of register-to-register moves.

6.5.1 Spill-Free Assignment

Definition 6.5.1 Spill-free Assignment: Given a set of basic intervals b G B with

spilled(b) = false, and k uniform physical registers, find a register assignment reg(b)

for every basic interval b G B including any register-to-register copy or exchange

instructions that need to be inserted in the IR.

The algorithm to perform register assignment for basic intervals is provided in

Algorithm 6.7. The algorithm sorts the basic intervals in increasing start points.

135

function RegMoveAssignment()
Input : IR, Set of basic intervals b £ B with spilled(b) = false and k

uniform physical registers
Output : \/b £ B. re turn the register assignment reg(b) and any register

moves and exchange instructions
M : = 0;
avail := set of physical registers;
for each basic interval b :— [x,y], in increasing start points, i.e., C do

for each basic interval b' := [x',y'} such that y' < x do
avail := avail U reg(b');

r := find a physical register p G avail tha t was assigned to another basic
interval of the same compound interval;
/ / i f there are more than one choices, choose the physical

r e g i s t e r that reduces the cost of extra move/exchange
ins truct ions added

if r == null then
Assert avail is not empty;
r := find a physical register p G avail;

reg(b) := r; avail := avail - {r};
for each control flow edge, e do

for each compound interval c G B that is live at both end points of e do
b\ := basic interval of c at the source of e;
b2 := basic interval of c at the destination of e;
if bi != null a,nd b2 != null then

ri := reg(bi); r2 := reg(b2);
if ri /= r2 then

rn := generate a new move instruction tha t moves r\ to r2,
i.e., mov rx,r2;
M := Mu{m};

//Add Move and Exchange instruct ions in the IR
GenerateMoves(IR, M,e);

return T and IR

Figure 6.7 : Assignment using register-to-register moves and exchange instruc-
tions.

136

Steps 4-11 perform assignment to basic intervals using a avail list of physical registers.

The assignment to a basic intervals first prefers getting the physical register that was

previously assigned to another basic intervals of the same compound interval (as

shown in Step 7). This avoids the need for additional move/exchange instructions.

However, in cases where the already assigned physical register is unavailable, we assign

a new available physical register (as shown in Step 10). Assigning such a new physical

register may produce incorrect code without additional move/exchange instructions

on certain control flow paths.

Steps 12- 21 of Algorithm 6.7 creates a list of move instructions that need to

be inserted on a control flow edge. These move instructions form the nodes of

a directed anti-dependence graph D in Algorithm 6.8. The edges in D represent

the anti-dependence between a pair of move instructions. Steps 5-10 add the anti-

dependence edges to D. A strongly connected component (SCC) search is performed

on D to generate efficient code using exchange instructions for SCCs of size 2 or more

(as shown in Steps 12-18). The nodes in an SCC are collapsed to a single node with

exchange instructions. Finally, a topological sort order of D produces the correct

code for a control flow edge e.

The outputs produced by Algorithm 6.7 are an extension of the outputs for the

Graph Coloring algorithm. The register map, reg is finer-grained for our approach

than for Graph Coloring since it is capable of assigning different physical registers

to different basic intervals of a compound interval. Another output of our approach

is a set of register-to-register move or exchange instructions needed to support the

assignment in the reg map. We assume that it is preferable to generate register-to-

register moves than spill loads and stores on current and future systems, even for

loads and stores that results in cache hits. This is because many processors incur

a coherence overhead for loads and stores, compared to register accesses. Further,

register-register moves can be optimized by move coalescing described in the next

section.

137

2
3

4

5

6
7

8
9

10

11
12
13

14

15

16

17

18

19

20

21

function GenerateMovesQ
Input : IR, Set of move instructions M and a control flow edge e
Output: Modified IR with register move and exchange instructions added
//D i s the anti-dependence graph
D := cj>-
for nil G M do

Add a node for mi in D;

//Add the anti-dependence edges
for mi G D do

for m2 G D and m 2 ! = mi do
srci := source of the move instruction in mi;
dest'2 := destination of the move instruction in 777.2;
if srci == dest2 then

I Add a a directed edge (mi,m2) to D;

S := Find strongly connected components in D;
for each s G S do

Collapse all the nodes in s to a single node n in D;
while number of move instructions in s > 1 do

mi := Remove first move instruction from s;
m2 := First move instruction in s;
x := Generate an exchange instruction between the destinations of
777.1 a n d m

2 ;
Append x to the instructions of n;

for each node n in D in topological sort order do
Add the move or exchange instructions of the node n to the IR along the
control flow edge e;

return Modified IR

Figure 6.8 : Algorithm to insert of register-to-register move and exchange
operations on a control flow edge.

138

mov r , , r 2 mov r2 , r.j

Figure 6.9 : Anti-dependence graph (D) for example program shown in Figure 6.1.
D has a strongly connected component (SCC) which can be reduced to a single node
with xchg r%, r2 instruction.

6.5.2 Example

Consider our previous example program shown in Figure 6.1. After applying Algo-

rithm 6.7 to the sorted interval start points, we get the following assignments:

reg{[1+ 3"]) = r1 ; reg([2+ 4"]) = r2, reg([4+, 5"]) = r2, reg([3+, 7"]) = n ,

reg{[6+, 9"]) = r2, reg([9+, 10"]) = r2, reg([8+ 13"]) = n , and reg([11+, 14"]) = r2.

We can now observe that along the control-flow edge between statements 4 and 13,

the assignment for compound interval Cl(c) changes from rx to r2. This results in

the creation of a move instruction mi : mov rx, r2 (due to Step 19 of Algorithm 6.7).

Similarly, along the same control flow edge, the assignment for compound interval

CI(d) changes from r2 to rx. This yields another move instruction m2 : mov r2 , rx .

The move instructions mx and m2 result in an anti-dependence graph D shown

in Figure 6.9. D contains a strongly connected component involving mx and m2.

We can generate efficient code using exchange instructions according to Steps 11-20

of Algorithm 6.8. The xchg r i , r 2 instruction is added along the control-flow edge

between statements 4 and 13.

The example program shown in Figure 6.2 is much simpler. After applying

algorithm 6.7 to the sorted interval start points, we get the following assignments:

re f l([l+, 2"]) = r1 ; reg([2+,5"]) = n , reg{[4+7"]) = r2, reg([6+, 7"]) = ru

reg{[8+, 10"]) = n , reg([ll+, 13"]) = r1? reg([9+, 14"]) = r2, reg([13+, 15"]) = n ,

and rep([14+,16~]) = r2.

139

This assignment needs a mov ri, r2 instruction to be inserted on the control-flow edge

between statements 7 and 13 as the compound interval CI(d) is switched from r\ to

r2 along that path.

Lemma 6.5.2 The assertion in Step 9 of Algorithm 6.7 never fails.

Proof: Follows from the fact that every interval end point has no more than k sym-

bolic registers simultaneously live. This fact was ensured by the allocation phase.•

Theorem 6.5.3 Given k uniform physical registers, spill-free assignment always finds

an assignment for every b G B whose spilled(b) = false.

Proof: Follows from the previous lemma.•

Theorem 6.5.4 Spill-free assignment takes 0(\£\ * \C\) space where £ represents the

set of control flow edges in a program.

Proof: The additional space requirement in assignment phase is due to the anti-

dependence graph D. For every control-flow edge e G £, in the worst case we need

to insert \C\ register-to-register move instructions. These are the number of nodes

in D. The number of edges in D are bounded by the square of the number of

physical registers since it represents all possible anti-dependences between all possible

pairs of physical registers in the worst case. Hence, the overall space complexity is

o(\e*\c\).n

Theorem 6.5.5 Spill-free assignment takes 0(\B\ + (|£| * |C|)) time.

Proof: Similar in nature to the proof for Theorem 6.5.4.D

140

6.5.3 Assignment with Move Coalescing and Register Moves

Move coalescing is an important optimization in register-allocation algorithms that as-

sign the same physical register to the source and destination of an IR move instruction

when possible to do so. The register assignment phase must try to coalesce as many

moves as possible so as to get rid of the move instructions from the IR. As we saw

in the preceding section, additional register moves may be inserted in the assignment

phase instead of spilling. In this section we first present a Coalesce Graph that models

both the IR move instructions and register-to-register moves. Then the register

assignment phase on the coalesce graph is formulated as an optimization problem

that tries to maximize the number of move instructions removed after assignment.

Definition 6.5.6 A Coalesce Graph (CG) is an undirected weighted graph, G =

(V, Em U Er), where V represents the basic intervals in B and an edge e C V x V

corresponds to the following two types of move instructions between a pair of basic

intervals:

1. Em: the move instructions already present in the IR. The weight of such an

edge W(e) is the frequency of the corresponding move instruction.

2. Er: the register-to-register move instructions that need to be added on control-

flow edges for which the two interval end points have different register assign-

ments for the same compound interval. The weight of such an edge W(e) is the

frequency of the control-flow edge on which the move instruction is added. An

exchange instruction can be viewed as consisting of two move instructions.

Definition 6.5.7 Assignment Optimization Problem: Given a set of basic in-

tervals b e B with spilled(b) = false, CG = (V,E = {Em U Er}), IR, and k uniform

physical registers, find a register assignment reg(b) for every basic interval b such that

the following objective function is minimized:

141

E w (e)
VeG-E, e=(6i,62) A reg(bi)\=reg(b2)

The assignment guides which additional register-to-register copy or exchange instruc-

tions need to be inserted in the IR.

Algorithm 6.10 presents a greedy heuristic to select a physical register for a basic

interval b given the coalesce graph and the available set of physical registers. Map is

a data structure that maps a physical register to a cost. Steps 3-7 find the physical

registers (and their associated costs) that are already assigned to the neighbors of b

in the coalesce graph (similar to the idea of biased coloring [27]). The additional cost

of register-to-register moves that need to be inserted for correct code generation by

assigning a physical register to a basic interval is penalized in Steps 8-11. The greedy

heuristics chooses a physical register reg(b) with maximum cost, i.e., the benefit of

assigning the physical register to basic interval b.

Theorem 6.5.8 Register assignment using Algorithm 6.10 requires 0(\B\ + |IR| +

(|C| * maxc)) space where maxc denotes the maximum number of basic intervals that

a compound interval has.

Proof: The additional space requirement is due to the coalesce graph CG containing

\B\ number of nodes. Ern in the worst case ends up creating \IR\ edges. Er adds edges

between basic intervals of the same compound interval and hence needs |C| * maxc

number of edges.•

Theorem 6.5.9 Register assignment using Algorithm 6.10 takes 0((\B\ * maxc) +

|IR| + (\£\ * |C|)) time.

Proof : In addition to Theorem 6.5.5, before deciding a physical register for each basic

interval b it is required to traverse each of the neighbors in CG. For all basic intervals,

this adds over all \IR\ time complexity for IR move instructions and \B\ * maxc time

complexity for Er edges in CG. •

142

9

10
11

function GetPref erredPhysical ()
Input : A basic interval b E B, coalesce graph G = (V, E = {Em U Er})

and a set R currently available uniform physical registers
Output: Find the assignment reg(b)
Initialize Map for every physical register to 0;
//Maximize the IR moves that can be removed
for each edge e = (b\,b) E Em do

if b\ and b do not intersect then
V := reg(bi);
if p != null and p E R then

[_ Map(p) := Map(p) + W(e);

//Minimize the new r e g i s t e r - t o - r e g i s t e r moves that needs to be
inserted

8 for each edge e = (&i, b) E Er do
p := reg(b\)\
if p != null and p E R then

I Map(p) := Map(p) - W(e);

12 ret := Find p with maximum cost in Map;
13 if ret == null then
14 ret := Find any free physical register from R;

15 reg(b) := ret;
16 return reg(b);

Figure 6.10 : Greedy heuristic to choose a physical register for a basic interval
that maximizes copy removal.

143

All integer physical registers

EAX, EBX, ECX,
EDX, EDI, EBP

EBX, EDI, EBP

, -

EAX, EBX, ECX,
EDX

8 bit Nonvolatile Nonvolatile 8 bit Volatile

Figure 6.11 : Four register classes for integer operands in Jikes RVM for x86
architectures. The register class comprising of EBX represents the 8 bit non-volatile
class. The register class with EBX, EDI and EBP represents the non-volatile register
class. The register class with EAX, EBX, ECX, EDX represents the 8 bit volatile class.
All the six available integer physical register form a class of their own.

i a : = ...
2d := . . .
3 . . . : = a
4 c : = ...
s . . . : = d
e . . . : = c

Figure 6.12 : Example program demonstrating assignment problems using register
classes. Given regclass(a) = regclass(d) = [ri,r2] and regclass(c) — [r\], if we
assign reg(a) = r2 and reg(d) = r\, then we will have to spill c where as if we assign
reg(a) = r\ and reg(d) = r2, we would have obtained an assignment for c, i.e.,
reg(c) = r^

6.6 Allocation and Assignment with Register Classes

In the preceding sections, we have described register allocation and assignment for k

physical registers that are uniform, i.e., they are independent and interchangeable.

However, due to advances in architecture, machines do not typically provide a uniform

set of physical registers. For example, Figure 6.11 shows the register classes used in

Jikes RVM for integer registers in Intel x86 architecture2. Note that, the register

classes for x86 architecture are not disjoint, this implies that we can not consider

allocation and assignment phases separately for each register class.

2Register classes are referred to as "register preferences" in Jikes RVM.

144

Figure 6.13 : Example demonstrating problems in coalescing due to register classes: if
we coalesce bi with b2 then we would have to give up any other coalescing opportunities
with 63, 64 and 65.

Register classes add new challenges to both the allocation and assignment prob-

lems. Consider the example code shown in Figure 6.12. Let us assume that the

register class for a and d consists of [ri,r2] and the register class of c consists of [ri].

During the assignment phase, if we assign r2 to a and then r\ to d, this leads to c

being spilled since c can only be assigned to r\ and rx is occupied by d. Had we

assigned rx to a, we would have been able to perform a spill-free assignment.

In another scenario, consider the coalesce graph shown in Figure 6.13 that depicts

the additional complexity that arises while dealing with register classes and coalescing.

If we coalesce 6X and b2 during a coalescing phase, then we would have to forgo

remaining coalescing opportunities with b3, b4 and b5. In this case, it could have been

better to coalesce bi with intervals other than b2.

As we have seen in Section 2.7, both the allocation and assignment problems for

k uniform physical registers are difficult, i.e., NP-hard to perform at all levels of

compilation including global level. The new challenges as discussed in the examples

above due to the register classes adds to the complexity of each problem. The reality

is that we can not ignore their presence. In this section, we describe how allocation

and assignment can be performed in the presence of register classes (esp. in a dynamic

compilation environment).

145

6.6.1 Constrained Allocation using BLG

Allocation in the presence of register classes can be performed using the following

two approaches:

1. Build BLG for each register class and apply Algorithm 6.5 to each BLG in a

particular order (starting with the most constrained register class having fewer

physical registers in a class). For example, in the x86 architecture, we need

to build four BLGs and apply Algorithm 6.5 in the order 8 bit non-volatile,

non-volatile, 8 bit volatile and then for the complete integer register class. If a

compound interval is spilled in a BLG for a register class, that decision should

be propagated to other BLGs of other classes.

2. An alternative approach is to build a single BLG. During every visit of an

interval end point in Algorithm 6.5, we make it unconstrained with respect to

all register classes before another interval end point is visited. This approach is

space-efficient as it builds only one BLG but can eagerly generate more spills

than (1).

6.6.2 Constrained Assignment

Register Assignment in the presence of register classes can be a challenging task esp.

when performed along with move coalescing. Given a coalesce graph (as defined in

Section 6.5), when we try to find an assignment for a basic interval b, the register

classes of the neighbors of b in the coalesce graph along with the register class of b

play a key role in selecting a physical register for b. An IR move instruction can be

coalesced if source and destination basic intervals have a non-null intersection in their

register classes.

Another key point in register assignment is that we no longer can rely on the

increasing start point order for assignment of basic intervals since an early decision of

physical register assignment of a register class may result in more symbolic registers

146

being spilled later on or giving up other opportunities for coalescing (as shown in

Figure 6.12).

Definition 6.6.1 Constrained Assignment Optimization Problem: Given a

set of basic intervals b G B with spilled(b) = false, regclassib) indicating physical

registers that can be assigned to each b, CG = (V , E = {Em U Er}), and IR, find a

register assignment reg(b) for a subset of basic intervals S C B such that the following

objective function is minimized:

]T SPILL(b)+ Y , W(e)

V6eB-S VeeE, e=(bi,b2) A reg(6i)!=re</(62)

Insert additional register-to-register copy or exchange instructions in the IR.

Algorithm 6.14 presents a bucket-based approach to register assignment that tries

to strike a balance between register classes and spill cost. The toColor is a data

structure that holds sorted basic intervals according to register classes in a two

dimensional array. Steps 8-13 fill in elements of toColor array in the next available

bucket. Steps 14-17 find an assignment for basic intervals by traversing the toColor

array in row major order.

Algorithm 6.15 describes a heuristic for selecting an assignment for a basic interval.

Steps 6-14 compute costs for physical registers that are already assigned to neighbors

and that are not yet assigned to neighbors but will be assigned in future. The reason

we consider the unassigned neighbors is to avoid eager decisions of move coalescing.

Steps 15-18 penalize the cost of additional register-to-register moves inserted on

control flow edges. Finally, Steps 19-21 find a physical register if one is available.

Steps 22-24, spills the basic interval if there is no physical register available.

The space and time requirement of Algorithm 6.14 is similar to those of Algo-

rithm 6.10.

147

function ConstrainedAssignment ()
Input : Set of basic intervals b E B,Wb E B regclass(b), coalesce graph

G = (V, E = {Em U£ r }) , a set of physical register classes K, a
constant numJmcket

Output: Find the assignment reg(b) and spill decision spilled(b)
/ /Find t o t a l number of elements per regclass
for b E B do

/ /ge tClassId returns the unique c lass id
cid := getClassId (regclass(b))\
perClass[cid] + +;

/ /Decide per bucket number of elements
for i := 0; i < \K\;i + + do

perBucket[i] := [perClass[i]/\K\\ + 1;
availBucket[i] := 0;

//toColor i s a 2-d array whose each element i s a l i s t of basic
intervals ; Determine the bucket to which a given b should
belong

for b E B in decreasing order of SPILL(b) do
cid := getClassId (regclass(b));
bucket := availBucket[cid];
Append b to toColor[bucket][cid};
if number of elements in toColor[bucket][cid] is higher then
perClass[cid] then

availBucket[cid] + +;

/ /Ass ign physical reg i s t ers as dictated by the 2-d toColor array
for i := 0; i < \K\; i + + do

for j := 0 ;j < numJbucket, j + + do
for b E toColor[i][j] do

L findAssignment (b);

Figure 6.14 : Greedy heuristic to perform register assignment in the presence of
register classes that prefers to spill new compound intervals in order to maximize
copy removal.

148

function f indAssignment ()
Input : A basic interval b G B, Vfe G B regclass(b), coalesce graph

G = (V, E = {Em U Er}), a set of available physical registers R
Output: Find the assignment reg(b) and spill decision spilled(b)
if R == cf) or R n regclass(b) = = <fi then

Spill the compound interval corresponding to b;
return;

Initialize Map for each physical register to 0;
for each edge e = (bi,b) G Em do

if bi and b do not intersect then
p := reg(bx);
if p /= null and p G R and p G regclass(b) then

[_ Map(p) := Map{p) + W(e);

else if p == null then
for p' G regclass(b\) do

if p' G R and p' G regclass(b) then
[_ Map(p) := Map(p) + W(e);

do for eac/i edge e = (61, 6) G Er

p := reg(bi);
for p' ^ p in Map with cost > 0 do

Map(p') := Map(p') - W(e);

25
26

ret := Find p with maximum cost in Map;
if ret == null then

[_ ret := Find a physical register from regclass(b) D R\
if ret == null then

Spill the compound interval corresponding to 6;
return;

reg(b) := ret;
return reg(b);

Figure 6.15 : Heuristic to choose a physical register that maximizes copy removal.

149

6.7 Extended Linear Scan (ELS)

In the preceding sections, we have described space-efficient register allocation using

the Bipartite Liveness Graph. In this section, we will describe an Extended Linear

Scan (ELS) register allocation algorithm that uses even less space than a space-

efficient register allocation algorithm. The key point addressed in the Extended Linear

Scan is that it does not need an explicit representation for the Bipartite Liveness

Graph, but uses numlive information at interval end points.

Figure 6.16 summarizes our Extended Linear Scan algorithm. Steps 3-8 are the

Potential Spill pass. We use the observation that the only interval end points p for

which spill decisions need to be made are those for which numlive[p] > k. The

heuristic used in Step 4 is to process these interval end points in decreasing order of

FREQ[q\. As in Chaitin's Graph Coloring algorithm, Step 5 selects the compound

interval with the smallest spillcost for spilling. A key difference with graph coloring

is that this decision is driven by the choice of interval end point p, and allows for

assigning different physical registers to the same symbolic register at different program

points. After Step 3 has completed, a feasible register allocation is obtained with

numlive[p] < k at each interval end point p. The set of compound intervals selected

to be spilled are identified by spilled(s) = true, and are also pushed onto stack

S. Steps 9-14 is the Actual Spill pass. It examines the compound intervals pushed

on the stack to see if any of them can be "unspilled". Step 15 is the Select pass.

The algorithm for register assignment with register-to-register move and exchange

instructions is already discussed in Section 6.5.3.

Theorem 6.7.1 The ELS algorithm takes 0(\B\ + \C\) space and 0(\B\ + \B\(log(m,axc) +

log\B\)) time, where maxc is the maximum value of numlive[p] at any interval end

point p.

Proof: For Step 3 (Potential Spill), the selection in Step 4 of program point q with

numlive[q] > k and largest estimated frequency, FREQ[q], contributes 0(\B\log\B\)

150

time and Step 5 contributes 0(\B\log(maxc)) time, assuming that a heap data struc-

ture (or equivalent) is used in both cases. Finally, Step 9 (Actual Spill) and Step 15

(Register Assignment) contribute at most 0 (| # |) time. • .

6.8 Summary

In this chapter, we addressed the problem of compile time and space efficient register

allocation. Most approaches to register allocation involve the construction of an

interference graph, which is known from past work to be a major space and time

bottleneck [42, 105]. A notable exception is the Linear Scan algorithm which is

favored by many dynamic and just-in-time compilers because it avoids the overhead

of constructing an interference graph. We introduced a new approach to register allo-

cation that improves on the runtime performance delivered by Linear Scan, without

exceeding its space bound. To that end, we introduced a Bipartite Liveness Graph

representation as an alternative foundation to the interference graph. Allocation

with the BLG is formulated as an optimization problem and a greedy heuristic is

presented to solve it. We also formulated spill-free register assignment combined with

move coalescing as a combined optimization problem using the Coalesce Graph, which

models both IR move instructions and additional register-to-register moves/exchanges

arising from register assignment. We then extended the above register allocation and

assignment approaches to handle register classes. Experimental evaluation of our

proposed allocator is provided in Section 8.2.

151

10
n
12
13

14

function ExtendedLinearScan ()
I n p u t : IR, numlive\p] for every interval end point p, and k uniform

physical registers
Output: Set T C U which needs to be spilled to ensure all interval end

points t i G F b e unconstrained, i.e., Mb G T, spilled(b) = true and
if spilled(b) = false, then reg(b) specifies the physical register
assigned to b.

Stack S := 4>;
/ / P o t e n t i a l S p i l l Select ion
while 3 an interval end point p with numlive\p] > k do

q := choose an interval end point with numlive[q] > k and largest
estimated frequency, FREQ[q\;
s := compound interval that is live at q, has spilled(s) = false, and has
the smallest value of SPILL(s);
Set spilled(s) :== true and push s on stack S;
for each interval end point x where s is live do

numUve[x] := numlive[x] — 1;

/ /Actual S p i l l Select ion
9 while stack S is non-empty do

s := pop(T);
if numlive[q] < k at each interval end point q where s is live then

Set spilled(s) := false;
for each internal end point x where s is live do

numlive[x] := numlive[x] + 1;

/ /Reg i s t er Assignment using Figure 6.7
15 RegMoveAssignmentQ

Figure 6.16 : Overview of Extended Linear Scan algorithm (ELS) with all-or-
nothing approach

152

Chapter 7

Bitwidth-aware Register Allocation

Bitwidth-aware Register allocation [116] extends the traditional register allocators by

packing subword data values, i.e., data values with narrower width than the standard

data width (word size) supported by the underlying processor. The packed data

values can be allocated in the same physical register, thereby moderating the register

pressure of the program. Various applications, in particular from the embedded

domain, make extensive use of sub-word sized values and can benefit significantly

by bitwidth-aware register allocation.

In this chapter, we propose three key contributions to bitwidth-aware register

allocation: 1) a limit study that compares the Tallam-Gupta bitwidth analysis algo-

rithm [116] with a dynamic profile-driven bitwidth information, and show significant

opportunities for enhancements; 2) an enhanced bitwidth analysis algorithm that

performs more detailed scalar and array analysis for improved bitwidth information

than in Tallam-Gupta; 3) an enhanced packing algorithm that improves packing

algorithm of Tallam-Gupta by a new set of safe bitwidth estimates.

Figure 7.1 : Overall Bitwidth-aware register allocation framework.

153

7.1 Overall Bitwidth-aware register allocation

Figure 7.1 depicts the overall flow of a bitwidth-aware register allocation algorithm.

The core of a bitwidth-aware register allocation lies in the bitwidth analysis that

computes actual width requirements for every variable at every program point. This

bitwidth information is used to annotate the edges of the interference graph during

the Build phase. Iterative Packing is then applied over the interference graph to

pack narrow width live ranges as long as they can be packed onto the same physical

register. Additional move instructions are added in the IR for extracting individual

variables from the packed variables and finally, the global register allocation algorithm

is applied for the variables that includes the new packed variables created in Packing

step.

7.2 Limit Study

Our first step in studying bitwidth-aware register allocation was to perform a limit

study that compares the bitwidth usage computed by the static compile-time bitwidth

analysis algorithm in Tallam-Gupta (also described in Section 2.8.1) with dynamic

bitwidth information obtained from an execution profile. The infrastructure used for

this study was based on the GCC compiler, as depicted in Figure 7.2. The register

allocation phase in GCC was modified to accept input from the box labeled "Bitwidth

Analysis", which can either generate compile-time or profile-driven bitwidth informa-

tion. Using Tallam-Gupta bitwidth analysis, the width of a variable at a program

point can be represented by three parts: a leading part of unused bits (I), a middle part

of active bits, and a trailing part of unused bits (t). We implemented the Tallam-

Gupta bitwidth algorithm in the GCC compiler to obtain this information for the

compile-time case. For the profile-driven case, we instrumented the code generated

by GCC so as to perform a "logical or" of the values dynamically assigned to each

variable. The major motivation for performing the limit study is that the prior work

by Tallam-Gupta reported static benefits of bitwidth-aware register allocation (fewer

154

C Program

Figure 7.2 : GCC modification for Limit Study

registers used, smaller cliques in the interference graph), but did not provide any

indication of what additional opportunities remain for improved bitwidth analysis.

The benchmarks used in our evaluation were all taken from the Bitwise benchmark

set [17], so as to be representative of embedded applications. Our evaluation was

performed on 9 out of the 15 programs in the full benchmark set. The following

five programs were not used because they did not contain a return value, thereby

making it possible for GCC to optimize away the entire program as dead code —

bilint, levdurb, motiontest, sha, softfloat. In addition, the life program was not used,

because the Bitwise benchmark set already contains a new life program which is very

similar to life. All experiments were performed using the -03 option and the -param

max-unroll-times=0 option1 with version 4.1 of GCC targeted to the x86 platform.

Table 7.1 lists the total number of variables (symbolic registers) available for

^his option disables loop unrolling. Loop unrolling can create more candidates for register
allocation, but the relative impact of unrolling depends on the benchmark so it was disabled.

155

Total # variables Total # and % of variables with variable bitwidth
Benchmark (Bitwidth analysis) (Profile-driven)

adpcm 26 20 (76.92%) 25 (96.15%)
bubblesort 20 11 (55.00%) 20 (100.00%)
convolve 8 6 (75.00%) 7 (87.50%)

edge_detect, 107 20 (18.69%) 76 (71.02%)
histogram 29 16 (55.17%) 23 (79.31%)

jacobi 36 13 (36.11%) 23 (63.88%)
median 33 9 (27.27%) 26 (78.78%)

mpegcorr 30 13 (43.33%) 21 (70.00%)
newlife 62 19 (30.64%) 48 (77.41%)

Table 7.1 : Comparison of compile-time and profile-driven bitwidth analysis: Number
of and percentage of variables with bitwidth less then 32 bits.

register allocation in each benchmark, followed by the number of variables that were

identified to have varying bitwidth by static analysis, and next by the number of

variables that were identified to have variable bitwidth by profile information. The

results in the table indicate that there is opportunity for significant improvement in

compile-time bitwidth analysis, compared to the static analysis obtained from the

Tallam-Gupta algorithm.

We now introduce another metric called the active compression factor (ACF) to

measure the effectiveness of the bit width analysis. Let ABij denote the number of

active bits in register operand j at statement i (obtained either from static analysis or

from profile information), and TBj denote the number of total bits in register operand

j (in other words, the statically defined size of j). Let FREQi denote the dynamic

frequency of statement i. We define the active compression factor as follows:

Y FREQi * T B j

j ^ f j p _ i&INSN jeREGOPBRAND
£ J] FREQi * AB^

ielNSN jeREGOPERAND

Note that ACF must be > 1 since TB-- > M , - .

156

Benchmark Compile-time Profile-driven
compression compression

adpcm 1.37 3.39
bubblesort 1.21 3.90
convolve 1.00 3.05

edge.detect 1.04 2.26
histogram 1.10 2.09

jacobi 1.00 1.67
median 1.01 2.14

mpegcorr 1.03 1.94
newlife 1.05 2.67

Table 7.2 : Active Compression Factor (ACF) comparison across static and profile-
driven bitwidth analysis without loop unrolling.

Table 7.2 shows ACF values for the compile-time and profile-driven cases. The

same execution profile information is used for the FREQi values in both cases - the

difference lies in the computation of the ABij values. A larger ACF value indicates

a greater opportunity for bitwidth-aware register allocation. The results in Table 7.2

show ACF values in the range of 1.0 to 1.37 for the compile-time case, and in the

range of 1.45 to 3.90 for the profile-driven case. Once again, this shows opportunity for

improved bitwidth analysis, compared to the results obtained from the Tallam-Gupta

algorithm.

7.3 Enhanced Bitwidth Analysis

We outline two key enhancements that we made to the bitwidth analysis in the

Tallam-Gupta algorithm, both of which were motivated by the opportunities identified

by the limit study in the previous section.

1. Enhanced Scalar Analysis. The Tallam-Gupta bitwidth analysis includes a

forward zero bit section analysis and a backward dead bit section analysis using a

data flow framework. The forte of such an approach is that it first forward prop-

agates width information from definition to use and then back propagates them

157

from use to definition. Although their approach analyzed variables involved in

logical operations efficiently, they did not compute accurate width information

for variables involved in operations such as arithmetic computations. Consider

the programming scenario where a variable is incremented inside a loop by some

constant value. If we knew the loop bounds, we can compute the upper bound

on the value that can be assigned to the variable. This can be used to decide

the useful bits of the variable. This kind of programming scenario is seen very

often in Bitwise benchmark set [17].

Bitwidth analysis for variables modified inside loops require a closed-form so-

lution. We extended the bitwidth analysis of Tallam-Gupta with a recurrence

analysis that can identify general induction variables and other patterns with

closed-form solutions. This is more general than the scalar range analysis

presented by [115].

Each closed form expression for a variable x updated inside a loop-nest is

represented using a linear chrec that is expressed using {base, op, stride} and

is evaluated using Newton's interpolation formula as {base, +, stride}(x) :=

base + step * x. The base represents the value computed outside the loop nest

and the stride represents the value added or subtracted in every iteration of the

loop. Note that the stride can also be a variable whose bitwidth information

is already available or whose closed-form expression can be/is being computed.

The idea of using chrec representation is that it can be evaluated quickly using

Newton's interpolation formula. Note that the recurrence analysis can analyze

improper loop nests.

Given chrec representation for each statement of a loop nest I, the high level

algorithm to compute the range of possible values for variables defined in I

using S'S'yl-based intermediate representation is provided in [15]. Typically an

SSA based intermediate representation is unavailable during register allocation

level. We present a recurrence analysis using the Program Dependence Graph

158

(PDG). The steps are provided in Algorithm 7.3. A cycle in the PDG represents

the need for a closed-form solution. Since each statement in the PDG has an

associated chrec, we combine multiple chrecs of the statements in the PDG. The

combined chrecs can then be evaluated using Newton's interpolation formula

given the base value and the loop bounds.

2. Enhanced Array Analysis. A key limitation of the Tallam-Gupta algorithm

is that it performs no analysis of array variables. We added an array range

analysis that tracks the values being assigned to arrays, and integrates the

array analysis with the enhanced scalar analysis. This enhancement performs

a flow-insensitive analysis of all accesses to an array variable.

1 function RecurrenceAnalysis ()
Input : IR, loop nest I
Output: Width of the variables defined inside loop nest I

2 Perform renaming in the IR:
3 Compute the Program Dependence Graph (PDG);
4 for each SCC in PDG do
5 Combine the chrecs of the statements in the SCC;
6 Collapse the SCC into a single node in the PDG;

r Perform a topological sort of nodes in the PDG and propagate the chrecs;
8 Using the upper and lower bounds of I and the initial values of variables

outside I, evaluate the combined chrecs;

Figure 7.3 : Recurrence analysis for computing bitwidth information of variables
accessed inside loops.

We use two code examples to illustrate the benefits of these two enhancements,

and how they are used in conjunction with each other. Figure 7.4 contains a code

fragment from the Bitwise adpcm benchmark. While it may not be standard practice

in general, it is common practice in embedded applications for loop iterations to

be bounded by compile-time constants defined in the program. When analyzing the

159

d e f i n e NSAMPLES 2407

int sbuf[NSAMPLES];

f o r (i = 0 ; i < N S A M P L E S ; i + +) {
sbuf [i]=i & OxFFFF;

>
for (i = 0; i < NSAMPLES; i++) {

val = sbuf [i] ;

>

Figure 7.4 : Code fragment from BITWISE adpcm benchmark.

for (i=0; i<SIZE/2; i++) {
s o r t l i s t _ e v e n [i] = (SIZE-(i << 1)) | (1 << (WIDTH-1));
sortlist.odd [i] = (SIZE-((i << 1) | 1)) | (1 << (WIDTH-1));

}
for(top = S I Z E - l ; t o p > 0 ; top--) {

for(i=0;i<top;i + +) {
io = i >> 1;
ie = io + (i & 1) ;
sl = s o r t l i s t _ e v e n [ie];
s 2 = s o r t l i s t _ o d d [i o] ;
i f (s1 > s2 ~ (i & 1)) {

s o r t l i s t _ e v e n [ie] = s2;
s o r t l i s t _ o d d [i o] = si;

>
>

}

Figure 7.5 : Code fragment from BITWISE bubblesort benchmark.

160

expression, i & OxFFFF, our enhanced scalar analysis determines that variable i must

be in the range, 0 . . . 2406. Further, the constant OxFFFF value has a bitwidth of 16

bits. Hence, each element assigned to the sbuf array has a lower bound of 0, and an

upper bound of min(2406, 65535) = 2406, or a maximum bitwidth of 12 bits (The min

function is applied when a bitwise-and operator is being analyzed.). Scalar variable

val is then bounded by a maximum bitwidth of 12 bits.

Figure 7.5 contains a code fragment from the Bitwise bubblesort benchmark. There

are two static definitions each for arrays so r t l i s t _even and sor t l i s t_odd . However,

the values of s2 and s i that appear in the right-hand-side of the second pair of

definitions originate from the same arrays. Therefore, our array analysis determines

that the bitwidth of the array elements must be bounded by their initial definition,

i.e., 17 bits.

7.4 Enhanced Packing

In this section, we outline improvements in the variable packing heuristic used in the

bitwidth-aware register allocation. Figure 7.8 contains a summary of the Tallam-

Gupta bitwidth-aware register allocation algorithm. The key step that implements

the packing heuristic is Step 7. Packing heuristic plays a significant role on the effec-

tiveness of bitwidth-aware register allocation. Note that the packing step in bitwidth-

aware register allocation is different from coalescing in classical register allocation. In

classical register allocation, two non-interfering variables can be coalesced so as to

use the same physical register. In contrast, packing permits two interfering variables

to be combined provided the sum of their bitwidths does not exceed the register word

size.

We now discuss three key characteristics of the Tallam-Gupta algorithm, and

outline how they were extended/replaced in our algorithm:

1. Packing is performed conservatively in the Tallam-Gupta algorithm, i.e., pack-

ing is restricted to cases when the node created by packing two nodes has fewer

161

1: A : = . . .
2: B := . . .
3: ... := A & Oxlffff // 17 bits needed
4: C := . . .
5: ... := B & Oxff // 8 bits needed
6: ... := C & Oxff // 8 bits needed
7: D := true
8: ... := A & 0x7fff / / 15 bits needed
9: ... := D //I bit needed

Figure 7.6 : Example program for demonstrating imprecision in Tallam-Gupta
packing

Figure 7.7 : Interference Graph for Example program shown in Figure 7.6 that
shows overly conservative estimation of EMIW width information using Tallam-Gupta
approach.

than k neighbors with degree of k or more (where k is the number of registers

available for allocation). Even though this guarantees that the colorability of

the interference graph is not increased, our experimental results (described in

Section 8.3) show that this restriction is too conservative in many cases, so we

use aggressive approach proposed by [35].

2. As described in Figure 2.16, if nodes A and B are packed, and both have an edge

to another node, C, Tallam-Gupta conservatively estimates the new label for

162

the edge from the new packed node, AB to C, using EMIW. We observe that

the EMIW estimates used in the Tallam-Gupta algorithm can result in edge

labels that are overly conservative, thereby precluding some possible packing

opportunities. Let us consider the example program shown in Figure 7.6 and its

corresponding interference graph with edge labeling shown in Figure 7.7. Using

Tallam-Gupta approach described as Eint in Figure 2.16, the EMIW of the cycle

ABC can be computed as (25, 8) since EA = 17 + 8 + 8 = 33, EB = 8 +15 + 8 =

29, and Ec = 8 + 17 + 8 = 33 imply Eint = 33. This will prevent packing A, B,

and C to a single physical register since the combined width exceeds the 32-bit

size of a physical register that is assumed in this example. Note that D can be

packed with A using Tallam-Gupta heuristic shown in Figure 2.15. However, if

we look at the code in Figure 7.6, the MIW(A, B, C) = 29. It should have been

possible to pack A, B, C, and D to a single physical register. This indicates the

imprecision of their approach. We will describe a new set of EMIW estimates

in the next section to improve the precision of packing.

3. The priority function for live ranges used in the Tallam-Gupta algorithm for

selecting nodes in Step 3 of Figure 7.8 is defined as follows:

,, . Estimated Load/Store Savings .
Priority (Ir) = (7.1)

Live Range Area
Estimateds Load/Store Savings

]TVp width(lr,p)
(7.2)

However, our experience has shown that this priority function often favors short-

lived live ranges which have a small area, even though they may not offer a

large savings in load/store instructions. Our enhancement was to remove the

denominator term in the priority function, so that all live ranges are prioritized

(largest-first) according to the estimated absolute load/store savings.

163

10

l i

function BitwidthAwareRegisterAllocation ()
Input : IR
Output: Transformed IR with register allocation
Construct the interference graph IG;
Label IG edges with width information due to interferences;
W:=Construct a prioritized node list for the nodes in IG;
while W 4) do

Get a node, say n, from prioritized node list;
for each node a in n's neighbor do

/ /Packing heur i s t i c
Attempt packing a with n;
if packing is successful then

[_ Update IG with a new packed node and edges;

W := W - {n};
12 Replace each packed variable set with a new name in IR;
13 Introduce new intra-variable moves in IR;
14 Perform graph coloring register allocation and assignment;
15 return modified IR

Figure 7.8 : Bitwidth aware register allocation in a graph coloring scenario.

164

7.4.1 Improved EMIW estimates

As mentioned in (2) above, the update of edge labels after variable packing can be

overly conservative in the Tallam-Gupta algorithm. Tallam-Gupta uses edge labels

in the interference graph to compute EMIW estimates to approximate the MIW

information. Our observation (motivated by the example shown in Figure 7.7) is that

the nodes in the interference graph can also be annotated with their maximum width

information that can be used in conjunction with edge labeling to obtain more precise

EMIW estimates. For the example program shown in Figure 7.7, the MIW of variables

A and C is 15 + 8 = 23. To this, if we add 8, which is the maximum width of B across

all program points, we will get EMIW(A, B, C) = 21+8 = 29 = MIW{A, B, C), which

is precise than Tallam-Gupta's EMIW(A, B, C) = 33.

Let NODEMAX denotes the maximum width of a variable across all program

points. Using NODEMAX for every variable in the interference graph and Tallam-

Gupta's edge labeling, we present a set of new Ei, E2, E3, E±, E5 and Eq estimates

for EMIW as shown in Table 7.3. These EMIW estimates are used in conjunction

with the equations provided in Figure 2.16. The safety of the new precise estimates

trivially follow from the intermediate value theorem of Tallam-Gupta and is described

in [11],

7.5 Summary

In this chapter, we studied the problem of enhancing bitwidth-aware register alloca-

tion. Our limit study showed significant opportunities for improvement, compared

to the algorithm pioneered by Tallam and Gupta. The enhanced bitwidth analysis

that performs more detailed scalar analysis and array analysis results in improved

bitwidth information than in Tallam and Gupta. The enhanced packing algorithm

that performs less conservative (more aggressive) coalescing than in [116]. Also,

the proposed improved EMIW estimates result in improving the precision of packing

algorithm. Section 8.3 reports experimental evaluation of our proposed enhancements.

165

Ex = Ab + Ba + NODEMAX(C)
E2 = Ac + Ca + NODEMAX(B)
E3 = Cb + Bc + NOD EM AX {A)
E4 = Ba + Ca + max(Ab, Ac), if Emin = EA and E4 > Emin

E5 = Ab + Cb + max(Ba, Bc), if Emin = EB and E5 > Emin

EG = Ac + Bc + max(Ca, Cb), if Emin = Ec and EG > Emin

EMIW(A, B, C) = min{EinU Eu E2, E3, E4, E5, E6)

(ABC: Cab) = (Ab + Ba, NODEMAX(C)) if EMIW{A, B, C) = Ex

IABC, Cab) = (Ac + NODEMAX(B), Ca) if EMIW(A, B, C) = E2

(ABC, Cab) = (Bc + NODEMAX(A), Cb) if EMIW(A, B, C) = Ez

(.ABC, Cab) = (Ba + max(Ab, Ac), Ca) if EMIW(A, B, C) = E4

(ABC, Cab) = + max(JB0, Bc), Cb) if EMIW{A, B, C) =
Cab) = (Ac + Bc> ma3;(Ca, C6)) if EMIWjA, B, C) =

Table 7.3 : New EMIW estimates for variable packing using NODEMAX.

In future, we would like to study the overhead of bitwidth-aware register allocation

in terms of the number of extra instructions added for packing and unpacking, the

effect on run-time performance and energy reduction. The idea of variable packing

can be used for modern architectures which provide vector physical registers to pack

scalar values. For example, the Intel x86 SSE2 extension provides sixteen 128-bit

physical registers which can be used to pack several 32-bit integer values to address

the bandwidth bottlenecks in multi-core processors.

166

Chapter 8

Performance Results

In this chapter, we report on our experimental evaluation for the Side-effect Analysis

(described in Chapter 4), Scalar replacement for Load Elimination (described in

Chapter 5), Space-efficient Register Allocation (described in Chapter 6) and Bitwidth-

aware Register Allocation (described in Chapter 7). We use two compiler infras-

tructures to demonstrate the effectiveness of our techniques, Jikes RVM [66] and

GCC [56]. Scalar replacement techniques presented in this thesis were evaluated

in a Jikes RVM dynamic compilation environment for HJ programs. The register

allocation algorithms were evaluated both in Jikes RVM and GCC. Finally, the

enhancements to Bitwidth-aware register allocation were evaluated in GCC alone

since the standard set of benchmarks exposing bitwidth characteristics were written

mostly in C programming language.

8.1 Side-Effect Analysis and Load Elimination

We present an experimental evaluation of the scalar replacement for load elimination

algorithm introduced in Chapter 4 and Chapter 5 for a set of programs written in the

subset of HJ consisting of the async, f i n i s h and i so lated parallel constructs.

8.1.1 Experimental setup

The performance results were obtained using Jikes RVM 3.0.0 [66] on a 16-core

system that has four 2.40GHz quad-core Intel Xeon processors running Red-Hat Linux

(RHEL 5). The system has 30GB of memory.

For our experimental evaluation, we use the production configuration of Jikes RVM

167

with the following options:-X: aos: initial_compiler=opt -X: ire:00. By default,

Jikes RVM does not enable SSA based HIR optimizations like scalar replacement for

load elimination transformation at optimization level OO. We modified Jikes RVM

to enable the SSA and load elimination phases at OO. However, since the focus of

our transformation is on optimizing application classes, the boot image was built

with scalar replacement for load elimination turned off and the same boot image was

used for all execution runs reported. The set of optimizations performed at OO are:

copy propagation, constant propagation, common subexpression elimination, inline

allocation of scalar, inlining of statically resolved methods and linear scan register

allocation. The ParallelSideEf fectAnalysis procedure presented in Figure 4.7 was

implemented as an HIR optimization pass in the OptimizationPlanner, and the new

scalar replacement for load elimination algorithm from Figure 5.3 was implemented

as an extension to the existing load elimination algorithm in Jikes RVM based on the

FKS algorithm [52],

All results were obtained using the -Xmx2000M JVM option to limit the heap size

to 2GB, thereby ensuring that the memory requirement for our experiments was well

below the available memory on the 16-core Intel Xeon SMP. The PL0S_FRAC variable

in Plan, java was set to 0.4/ for all runs, to ensure that the Large Object Size (LOS)

was large enough to accommodate all benchmarks. The main program was extended

with a five-iteration loop within the same Java process for all JVM runs, and the

best of the five times was reported in each case. This approach was chosen to reduce

the impact of dynamic compilation time and other virtual machine services in the

performance comparisons.

For our experiments, we used the five largest HJ programs that we could find

— three Section 3 Java Grande Forum (JGF) benchmarks (Moldyn, Ray Tracer,

Montecarlo) and two NAS Parallel (NPB) benchmarks (CG and MG). All JGF

benchmarks were run with the largest data size available. Sizes "A" and "W" were

used for CG and MG respectively, to ensure completion in a reasonable amount of

168

Benchmarks # of async # of f i n i s h # of i so lated
CG-A 5 5 0

MG-W 4 4 0
Moldyn-B 5 5 0

Raytracer-B 1 1 0
Montecarlo-B 1 1 0
SPECjbb2000 1 1 169

Table 8.1 : Static count of parallel constructs in various benchmarks.

time. For all executions we set the NUMBEFLOF_LOCAL_PLACES runtime option for HJ

to 1 to obtain a single-place configuration, and also set INIT_THREADS_PER_PLACE to

the number of worker threads (k) used in the evaluation. All executions used the

work-sharing HJ vl .5 runtime scheduling system described in [13].

The five HJ benchmarks listed above use f i n i s h and async constructs, but not

i solated. To evaluate our optimization in the presence of i so lated constructs, we

created a hybrid HJ+Java version of SPECjbb2000 benchmark that uses the async,

f i n i s h and i so la ted constructs from HJ, but also retains the CyclicBarrier. await ()

construct from Java (which was modeled as an unknown method call in our analysis).

8.1.2 Experimental results

All the benchmarks we used offer many scalar replacement for load elimination

opportunities across method calls and parallel constructs due to several usage of

field accesses. Table 8.1 depicts the static count of various parallel constructs in the

benchmarks. MolDyn, CG, and MG benchmarks create a large number of small tasks and

await for their completion within an outer loop. Both the smaller tasks and the outer

loop access several object fields which can be eliminated by our scalar replacement

for load elimination approach. For Montecarlo and RayTracer benchmarks there is

no outer loop and uses relatively fewer parallelization constructs. SPECjbb2000 offers

opportunities for code motion around i so lated constructs as these constructs are

spread all around the source code.

169

We perform two additional compiler transformations that create more opportuni-

ties for scalar replacement and improved register allocation:

1. Loop-invariant getfield code motion pre-pass: In general, a loop-invariant getf i e ld

operation cannot be moved out of a loop since it may throw a NullPointerException.

To address this case, we perform the standard transformation of replacing a

while loop by a zero-trip test and a repeat-until loop so as to enable loop-

invariant code motion of g e t f i e l d operations while still preserving exception

semantics. This transformation is performed as a pre-pass to scalar replacement

for load elimination. We use the side-effect analysis described in Chapter 4 for

method calls inside the loop to determine if a g e t f i e l d operation is loop-

invariant.

2. Live-range splitting post-pass: a potential negative impact of scalar replacement

is that increasing the size of live-ranges can lead to increased register pressure.

This in turn may cause a performance degradation if the register allocator

does not perform live-range splitting. Since the Linear Scan register allocator

in Jikes RVM currently does not split live-ranges, we introduce a live-range

splitting pass after load elimination that only splits live-ranges of the scalar

temporaries introduced by our optimizations. The live-ranges of these scalars

are split around all call instructions and loop entry-exit regions. This creates

smaller scalar live-ranges for which spilling and register assignment decisions

can be made separately. However, in some cases, this benefit can be undone

by the register allocator if it decides to coalesce the live ranges back before

allocation.

Experimental results are reported for the following cases:

1. 1-thread NOLOADELIM - Baseline measurement with no load elimination and

a single worker thread;

170

Benchmark NO LOADELIM FKS+TRANS LOADELIM
Total Comp. ssa+loadelim trans Total Comp.

time in ms time in ms time in ms time in ms
CG-A 461 277 75 811
MG-W 574 336 98 989
Moldyn-B 263 194 35 493
Raytracer-B 275 157 35 468
Montecarlo-B 273 156 35 469
SPECjbb2000 4336 1099 232 5625

Table 8.2 : Compilation times in milliseconds of various Jikes RVM passes for
NPB benchmarks (CG and MG), JGF benchmarks (Moldyn, Raytracer, and
Montecarlo) and SPECjbb2000 benchmark using NO LOADELIM, FKS LOADELIM,
and FKS+TRANS LOADELIM cases.

2. k-thread FKS LOADELIM - use of the FKS load elimination algorithm [52]

with no side effect analysis and k worker threads.

3. k-thread FKS+TRANS LOADELIM - use of the FKS load elimination algo-

rithm [52] with the two transformation passes described in the paragraph above

but with no side effect analysis, and k worker threads.

4. k-thread PAR LOADELIM - use of the extended parallelism-aware scalar re-

placement for load elimination algorithm from Figure 5.3 with side effect analysis

and k worker threads.

5. k-thread PAR+TRANS LOADELIM - use of the extended parallelism-aware

scalar replacement for load elimination algorithm from Figure 5.3 combined

with the two transformation passes described in the previous paragraph and k

worker threads.

In this study, the results for 2), 3), 4), and 5) were restricted to the elimination

of getfield operations only. Extension of these results for array-load operations is a

subject for future work.

171

Benchmark PAR+TRANS LOADELIM
side-effect ssa+loadelim trans Total Comp

time in ms time in ms time in ms time in ms
CG-A 102 398 84 1137
MG-W 131 442 110 1348
Moldyn-B 76 255 47 673
Raytracer-B 77 246 44 670
Montecarlo-B 90 253 44 692
SPECjbb2000 580 1153 329 6867

Table 8.3 : Compilation times in milliseconds of various Jikes RVM passes for NPB
benchmarks (CG and MG), JGF benchmarks (Moldyn, Raytracer, and Montecarlo)
and SPECjbb2000 benchmark using PAR LOADELIM and PAR+TRANS LOADE-
LIM cases.

Table 8.2 and 8.3 report the compile-time results for various Jikes RVM passes.

The total compilation time for PAR+TRANS LOADELIMis on average 1.38x slower

than FKS+TRANS LOADELIM and ranges from 1.22 x (for SPECjbb2000) to 1.47x

(for Montecarlo). This modest increase in compile-time establishes that the side-effect

analysis based load elimination algorithm introduced in this thesis is practical for use

in dynamic compilation.

Table 8.4 and 8.5 report the dynamic number of GETFIELD operations for

different scalar replacement for load elimination algorithms. The second column in

the table specifies the total number of GETFIELD operations in the original program.

The third and fourth columns report the remaining number of GETFIELD operations

in the program after using FKS LOADELIM and FKS+TRANS LOADELIM algo-

rithms respectively. Similarly, the fifth and sixth column report the remaining number

of GETFIELD operations using PAR LOADELIM and PAR+TRANS LOADELIM

algorithms respectively. (Since we're only counting dynamic GETFIELD operations

in Table 8.4 and 8.5, the live range splitting post-pass in TRANS has no impact on

these results.)

We observe that PAR+TRANS LOADELIM reduces the dynamic GETFIELD

172

Benchmark # getfield # getfield after # getfield after
(original) FKS FKS+TRANS

load elim. load elim.
CG-A 3.89E09 3.10E09 3.03E09
MG-W 1.41E04 1.15E04 1.13E04
MolDyn-B 1.19E10 7.91E09 5.82E09
Raytracer-B 3.08E10 2.02E10 2.02E10
Montecarlo-B 1.75E09 1.54E09 1.48E09
SPECjbb2000 1.19E09 1.025E09 8.95E08

Table 8.4 : Dynamic counts of GETFIELD operations for NPB benchmarks (CG
and MG), JGF benchmarks (Moldyn, Raytracer, and Montecarlo) and SPECjbb2000
benchmark using FKS LOADELIM and FKS+TRANS LOADELIM cases.

Benchmark # getfield # getfield impr. impr. impr.
after after rel. to rel. to rel. to
PAR PAR+TRANS FKS+TRANS FKS original

load elim. load elim. (%age) (%age) (%age)
CG-A 2.34E09 3.92E05 99.99 % 99.99 % 99.99 %
MG-W 7.96E03 6.71E03 40.58 % 41.72 % 52.55 %
MolDyn-B 4.91E09 3.11E09 46.49 % 60.62 % 73.89 %
Raytracer-B 1.67E10 1.38E10 31.82 % 31.93 % 55.25 %
Montecarlo-B 1.15E09 9.19E08 37.95 % 40.47 % 47.38 %
SPECjbb2000 6.65E08 5.78E+08 35.44 % 43.19 % 51.56 %

Table 8.5 : Dynamic counts of GETFIELD operations for NPB benchmarks (CG
and MG), JGF benchmarks (Moldyn, Raytracer, and Montecarlo) and SPECjbb2000
benchmark using PAR and PAR+TRANS LOADELIM cases. The improvements
of PAR+TRANS LOADELIM with respect to original, FKS, and FKS+TRANS
LOADELIM cases are presented in the last three columns.

173

counts for all benchmarks in the range of 31.93% for Raytracer and 99.99% in CG com-

pared to FKS LOADELIM (shown in column 8). With respect to total GETFIELD

operations (column 2), PAR+TRANS LOADELIM reduces the dynamic counts in

the range of 47.38% for Montecarlo and 99.99% in CG (shown in column 9). For the

CG benchmark, the dominant method in terms of execution time is stepO. In the

absence of our side effect analysis, load elimination for this function was limited due

to the presence of a function call inside the inner loop.

Figure 8.1 presents the relative performance improvements of the three parallel

Section 3 Java Grande benchmarks and the two Nas Parallel benchmarks1 with respect

to the 1-thread NO LOADELIM case. For the 1-thread case, we observe an average

of 1.29x performance improvement of PAR+TRANS LOADELIM in comparison to

the FKS LOADELIM case, with a best-case 1.76x improvement (for Moldyn). While

comparing with FKS+TRANS LOADELIM, PAR+TRANS LOADELIM yields an

average improvement of 1.20x with best-case 1.32x improvement (for Moldyn).

For the 16-thread case, the parallelism-aware scalar replacement for load elimina-

tion algorithm in Figure 5.3 including the two optimizations (PAR + TRANS LOADE-

LIM Thread=16) resulted in a 1.15x improvement over the FKS intraprocedural ap-

proach without optimizations, on average. For the MolDyn benchmark, we achieved a

maximum of 1.39x improvement. When we compare against FKS with optimizations,

on average PAR+TRANS LOADELIM Thread=16 resulted in a 1.11 x improvement

with best-case 1.20x improvement for Moldyn. Three of the five benchmarks (CG,

MolDyn, and Montecarlo) show measurable speedup with the use of PAR. LOADE-

LIM, whereas for the remaining two (MG and Raytracer) there was no measurable

speedup. Using live-range splitting as part of PAR + TRANS LOADELIM, we can

see that both MG and Raytracer do not degrade performance. We believe that a

1For SPECjbb2000, we haven't as yet obtained a measurable difference in runtime due to the
reduction in dynamic getfields shown in Table 8.4 and 8.5, because of the inability of the HJ vl.5
work-sharing runtime to work efficiently with await () calls from Java. In the future, we plan to
extend our scalar replacement for load elimination algorithm to support phasers [107] which can be
used as a replacement for the await () calls.

174

Speedup on 4 Quadcore Intel Xeon

• FKS LOADELIM Thread 1 • FKS+TRANS LOADELIM Thread 1 • PAR LOADELIM Thread 1

• PAR+TRANS LOADELIM Thread 1 • NOLOADELIM Thread 16 • FKS LOADELIM Thread 16

• FKS+TRANS LOADELIM Thread 16 PAR LOADELIM Thread 16 • PAR+TRANS LOADELIM Thread 16

o <
o

o
S

CG-A MG-W MolDyn-B RayTracer-B Montecar lo-B GEO MEAN

Figure 8.1 : Performance improvement for NPB benchmarks (CG and MG) and
JGF Benchmarks (Moldyn, Raytracer, and Montecarlo) using the scalar replacement
for load elimination algorithm presented in Figure 5.3. The improvement is shown
relative to the 1-thread NO LOADELIM case.

175

Scaling of Moldyn Size B Benchmark

- • - N O LOADELIM --•••FKS LOADELIM -*"PAR LOADELIM

of Threads

Figure 8.2 : Scaling of JGF Section 3 MolDyn Size B benchmark using the scalar
replacement for load elimination algorithm introduced in Figure 5.3. The speedup is
shown relative to the 1-thread NO LOADELIM case.

Figure 8.3 : Scaling of NPB CG Size A benchmark using the scalar replacement for
load elimination algorithm introduced in Figure 5.3. The speedup is shown relative
to the 1-thread NO LOADELIM case.

176

live-range splitting based register allocator could further improve the performance

results reported in this thesis. Figure 8.2 and 8.3 show the speedup details for Mol-

Dyn and CG benchmarks as the number of workers (k) increases for PAR + TRANS

LOADELIM.

8.2 Space-Efficient Register Allocation

We present an experimental evaluation of the space-efficient register allocation al-

gorithm introduced in Chapter 6 for the SPECint2000 integer benchmark suite in

GCC static compiler and the Java Grande Forum serial benchmarks in Jikes RVM

dynamic compiler.

8.2.1 GCC Evaluation

We report on experimental results obtained from a prototype implementation of

Graph Coloring (as described in [89]) and Extended Linear Scan register allocator

(as described in Section 6.7 of Chapter 6) in GCC compiler.

8.2.1.1 Experimental setup

We used version 4.1 of the GCC compiler using the -03 option. Compile-time and

execution time were measured on a POWER5 processor running at 1.9GHz with

31.7GB of real memory running AIX 5.3.

Experimental results are presented for eight out of twelve programs from v2 of the

SPECint2000 benchmark suite. Results were not obtained for 252.eon because it is a

C + + benchmark, and for the three other benchmarks — 176.gcc, 253.perlbmk, and

255.vortex — because of known issues [111] that require benchmark modification or

installation of v3 of the CPU2000 benchmarks.

177

Function \s\ \IG\
\B\ SCF GC ELS

164.gzip.build_tree 161 2301 261 11.3% 141.4ms 9.4ms
175.vpr.try_route 254 2380 445 18.7% 208.7ms 9.5ms
181. mcf. sort .basket 138 949 226 22.7% 6.8ms 0.1ms
186.crafty.InputMove 122 1004 219 21.8% 150.2ms 7.8s
19 7. par ser. list Jinks 352 9090 414 4.5% 114.4ms 7.4ms
254.gap.SyFgets 547 7661 922 12.0% 118.8ms 8.0ms
256.bzip2.sendMTFValues 256 2426 430 17.7% 133.0ms 7.4ms
300 .twolf. closepins 227 5105 503 9.8% 212.8ms 9.1ms

Table 8.6 : Compile-time overheads for functions with the largest interference graphs
in SPECint2000 benchmarks. [5| = # symbolic registers, \IG\ = # nodes and edges
in Interference Graph , \B\ = # intervals in interval set, Space Compression Factor
(SCF) = |£?|/|/G|, GC = graph coloring compile-time, ELS = Extended Linear Scan
with register-to-register move and exchange instructions.

SPEC rates on POWERS processor

• GC HI BLG

js 1000

gzip vpr mcf crafty parser gap bzip 2 twolf MEAN

Figure 8.4 : SPEC rates for Graph Coloring and ELS register Allocator described in
Section 6.7.

178

8.2.1.2 Experimental results

Table 8.6 summarizes compile-time overheads of the Graph Coloring and ELS regis-

ter allocation algorithm. The measurements were obtained for functions with the

largest interference graphs in the eight SPECint2000 benchmarks, using the -03

- f i n l ine - l imi t=3000 - f t i m e - r e p o r t options in gcc. It is interesting to note that

the Interference Graph size, \IG\, typically grows as OdSp'5), whereas the number

of intervals, \B\ is always < 2|S'|. This is one of the important reasons behind the

compile-time efficiency of the Linear Scan and ELS register allocation algorithms.

While it is theoretically possible for the number of intervals for a symbolic register

to be as high as half the total number of instructions in the program (e.g., if every

alternate instruction is a "hole" - which could lead to a non-linear complexity for

the ELS register allocator), we see that in practice the average number of intervals

per symbolic register is bounded by a small constant 2). We see that the Space

Compression Factor (SCF) = \B\/\IG\ varies from 4.5% to 22.7%, indicating the

extent to which we expect the interval set, B to be smaller than the interference

graph, IG. Finally, the last two columns contain the compile-time spent in global

register allocation for these two algorithms. For improved measurement accuracy,

the register allocation phase was repeated 100 times, and the timing (in ms) reported

in Table 8.6 is the average over the 100 runs. While compile-time measurements

depend significantly on the engineering of the algorithm implementations, the early

indications are there is a marked reduction in compile-time when moving from GC

to ELS register allocation for all benchmarks. The compile-time speedups for ELS

register allocator relative to GC varied from 15 x to 68 x, with an overall speedup of

18.5 x when adding all the compile-times.

Figure 8.4 shows the SPEC rates obtained for the Graph Coloring and ELS register

allocation algorithms, using the -03 option in GCC. Recall that a larger SPEC rate

indicates better performance. In summary, the runtime performance improved by

up to 5.8% for the ELS register allocator relative to GC (for 197.parser), with an

179

average improvement of 2.3%. There was only one case in which a small performance

degradation was observed for the ELS register allocator, relative to GC - a slowdown

of 1.4% for 181. mcf. These results clearly show that the compile-time benefits for

Extended Linear Scan can be obtained without sacrificing runtime performance —

in fact, ELS register allocator delivers a net improvement in runtime performance

relative to GC. Further, the results indicate that the extra register-to-register moves

did not contribute a significant performance degradation.

8.2.2 Jikes RVM evaluation

We present an experimental evaluation of the Bipartite Liveness Graph (BLG) based

constrained register allocation and assignment algorithms presented in Section 6.6 of

Chapter 6.

8.2.2.1 Experimental setup

The experimental setup uses Jikes RVM 3.0.0 [66] dynamic compiler on an Intel

Xeon 2.4GHz system with 30GB of memory and running Red-Hat Linux (RHEL 5).

We used the serial version of the Java Grande Form (JGF) benchmark suite [65] to

evaluate the performance of our register allocator.

The serial programs in the JGF benchmark suite comprises of seven Section 2

benchmarks (Crypt, Heapsort, Sparsematmult, Sor, Series, LUFact, and FFT)

and five larger Section 3 benchmarks (Raytracer, Moldyn, Montecarlo, Euler, and

Search). Of these, Jikes RVM was unable to execute the FFT benchmark due to VM

errors, so we present results for the remaining eleven. Further, the execution times

were obtained for the Section 2 benchmarks at optimization level 02 and for Section 3

benchmarks at optimization level 00. (Jikes RVM was unable to execute Section 3

benchmarks at a higher optimization level than 00 due to compilation errors.) The

boot image for Jikes RVM used a production configuration with a modification to

PL0S_FRAC that was set to 0. 4f to ensure that Jikes RVM had a Large Object Space

180

Benchmark Reg-to-Reg Reg-to-Reg
Move Exchange

Crypt-C >/ X

Heapsort-C y j X

Sparsematmult-C V X

Sor-C y j X

Series-B y j X

LUFact-C y/ V
Raytracer-B V V
Moldyn-B y/ y/

Montecarlo-B y/ X

Euler-B y j

Search-B V 7

Table 8.7 : Benchmarks for which register-to-register move and register exchange
instructions were generated.

(LOS) that was large enough for these benchmarks. The execution times reported

were the best of three runs within a single JVM instance for each benchmark.

Since the Jikes RVM release did not support generation of the Intel exchange

instruction, we modified its assembler to add this support. Jikes RVM uses SSE regis-

ters for storing double/floating point values. However, to the best of our knowledge,

there does not exist a direct exchange instruction to swap values in SSE registers, so

we used three xor instructions to exchange a pair of float/double values.

8.2.2.2 Experimental results

Table 8.7 reports the benchmarks that used register moves and those that iised

register exchange operation. We can see that all the benchmarks use register-to-

register move instructions. All Section 3 benchmarks and the LUFact benchmark

used register-to-register exchange instructions. This suggests that larger methods

offer more opportunities for generation of exchange instructions than smaller methods.

Figure 8.5 reports the relative speedup of our register allocator with that of the

existing linear scan register allocator in Jikes RVM. Our register allocator resulted in

181

Speedup on Intel Xeon 3

Figure 8.5 : Speedup of BLG with register classes relative to LS

a performance improvement in the range of 1.00 x to 3.52 x. The largest improvement

of 3.52 x was obtained for Moldyn, with improvements of 1.42 x and 1.15x for Sor and

Euler respectively. In no case did BLG deliver worse performance than LS. These

results demonstrate that the Bipartite Liveness Graph based register allocation al-

gorithm can deliver convincing runtime performance improvements relative to Linear

Scan.

Table 8.8 compares the compile time overhead of ELS and LS register allocation

algorithms. Since ELS separates allocation and assignment into two separate passes

(as opposed to LS that performs both in a single pass) and also includes the option

of adding register-to-register moves, the compile-time of ELS was observed to be

between 2 to 3 times slower than LS. As the execution times for these benchmarks

are in the order of tens of seconds, we believe this increase in compile-time for the

182

Benchmark LS ELS
Compile-time Compile-time

in ms in ms
Crypt-C 24 68
Heapsort-C 19 41
Sparsematmult-C 19 45
Sor-C 19 44
Series-B 19 49
LUFact-C 22 51
Raytracer-B 35 101
Moldyn-B 47 114
Montecarlo-B 23 70
Euler-B 92 267
Search-B 23 56

Table 8.8 : Compile-time comparison of ELS with LS1 in Jikes RVM

margin of performance improvement achieved is acceptable, in general.

8.3 Bitwidth-Aware Register Allocation

We report on experimental results obtained from our prototype implementation of

bitwidth-aware register allocation based on GCC.

8.3.1 Experimental setup

Figure 8.6 depicts how the bitwidth-aware register allocator is inserted into the

phases of the GCC compiler. A standard graph coloring register allocator [35] was

used instead of GCC's local and global register allocator. Note that we now have

three options for Bitwidth Analysis — the Tallam-Gupta [116] algorithm, enhanced

bitwidth analysis, and profile-driven information. The enhanced analysis results were

obtained by our implementation of the enhanced scalar and array analysis outlined

in Section 7.3. Also, there are two options for Variable Packing — the Tallam-Gupta

algorithm or the enhanced packing algorithm outlined in Section 7.4.

The experimental results reported in this section will be used to compare five

183

different cases:

1. Bitwidth-Unaware — a standard graph coloring algorithm is used with no

support for bitwidth-aware register allocation.

2. + Bitwidth-Aware — enhancement of the previous case by using the Tallam-

Gupta bitwidth-aware register allocation.

3. + Enhanced Packing — addition of the enhanced packing techniques introduced

in Section 7.4.

4. + Enhanced Bitwidth — addition of the enhanced scalar and array bitwidth

analysis techniques introduced in Section 7.3.

5. + Profiled Bitwidth — like the previous case, but with profiled bitwidth in-

formation from the limit study used instead of statically analyzed bitwidth

information.

The benchmark programs being used in this section are the same as those that

were used for the limit study described in Section 7.2.

As can be seen in Figure 8.6, the same register allocator based on graph coloring

is used in all cases. Therefore, the only way for the bitwidth-aware heuristics to

demonstrate an improvement compared to bitwidth-unaware allocation, is for the

heuristics to perform some packing of nodes.

8.3.2 Experimental results

Table 8.9 reports the number of node-pairs packed when processing all nine bench-

mark programs for number of available registers 8. Note that the packing pre-pass for

Tallam-Gupta depends on the number of available registers (conservative coalescing)

whereas our modified approach does not (aggressive coalescing). The results show

that our combined heuristic (Case 4 above) performs significantly more packing than

the Tallam-Gupta algorithm.

184

Benchmarks Bitwidth-Aware + Enhanced + Enhanced + Profiled
(Tallam-Gupta) Packing Bitwidth Bitwidth

adpcm 0 7 15 18
bubblesort 1 1 12 12
convolve 0 0 2 2

edge_detect 0 0 25 64
histogram 1 1 15 15

jacobi 0 0 15 16
median 0 0 16 17

mpegcorr 0 0 10 13
newlife 0 2 40 41

Table 8.9 : Comparison of number of packed node-pairs with different levels of bit-
sensitive register allocation for the number of available physical registers = 8.

C Program

Figure 8.6 : GCC modification for register allocation

185

Number Bitwidth + Bitwidth + Enhanced + Enhanced + Profiled
of Unaware + Aware Packing Bitwidth Bitwidth

registers (Standard
Coloring)

(Tallam
-Gupta)

4 2427150 2427150 1973769(81) 669469(27) 622421(25)
6 836687 836687 267324(31) 26443(3) 18953(2)
8 58633 58633 36967(63) 6909(11) 5370(9)
10 19581 19581 19571(99) 3342(17) 1803(9)
12 9945 9945 9945(100) 1824(18) 527(5)
14 6378 6378 6378(100) 548(8) 0(0)
16 4860 4860 4860(100) 10(0) 0(0)
18 3342 3342 3342(100) 0(0) 0(0)

Table 8.10 : Comparison of dynamic spill load/store instructions with different levels
of bit-sensitive register allocation.

Next, Table 8.10 compares the number of dynamic load/store instructions arising

from register spills for the five different cases. Each row represents the case for

a certain number of available registers, and each entry represents the sum of the

dynamic load/store spill instructions for the nine benchmarks.

As seen in Table 8.10, the Tallam-Gupta algorithm had zero impact on reducing

the number of dynamic load/store spill instructions, for the cases studied, and essen-

tially yielded the same dynamic spill load/store instruction count as the bitwidth-

unaware. However, the techniques introduced in Chapter 7 (cases 3 and 4 above)

reduced the dynamic spill load/store instruction count to 3% to 27% of the bitwidth-

unaware case. This is a significant reduction.

8.4 Summary

This chapter provides an experimental evaluation of the memory access optimization

techniques described in this dissertation. The scalar replacement for load elimination

transformation described Chapter 5 show decreases in dynamic counts for GETFIELD

operations of up to 99.99%, and performance improvements of up to 1.76x on 1

186

core, and 1.39 x on 16 cores, when compared to the load elimination algorithm

available in Jikes RVM. A prototype implementation of our BLG register allocation

phase combined with the constrained assignment in Jikes RVM demonstrates runtime

performance improvements of up to 3.52 x relative to the Linear Scan on an x86

processor. An evaluation of our Extended Linear Scan register allocator in GCC

show that the compile-time speedups for ELS relative to GC were significant, and

varied from 15 x to 68 x. In addition, the resulting execution time improved by up

to 5.8%, with an average improvement of 2.3% on a POWER5 processor. Finally,

the enhancements to bitwidth-aware register allocation described in Chapter 7 can

reduce the number of dynamic spill load/store instructions to between 3% and 27%.

The experimental evaluations combined with the foundations presented in this dis-

sertation, we strongly believe that the proposed high-level and low-level optimizations

are useful in addressing some of the new challenges emerging in efficient optimization

of parallel programs for multi-core architectures.

187

Chapter 9

Conclusions and Future Work

In this dissertation, we have presented a combination of high-level and low-level

compiler analyses and optimizations to address the Memory Wall problem in multi-

core architectures. The high level analyses include May-Happen-in-Parallel (MHP)

analysis and Side-Effect Analysis for any language that adopts the core concepts of

places, async, f in i sh , and i so la ted from the HJ programming model. The low

level optimizations include Scalar replacement for Load Elimination and Register

Allocation.

We introduced a new algorithm for May-Happen-in-Parallel (MHP) analysis for

HJ programming model. The main contributions of this work compared to past MHP

analysis algorithms are as follows:

1. We introduced a more precise definition of the MHP relation than in past work

by adding condition vectors that identify execution instances for which the MHP

relation holds, instead of just returning a single true/false value for all pairs of

executing instances.

2. Compared to past work, the availability of basic concurrency control constructs

such as async and f i n i s h enabled the use of more efficient and precise analysis

algorithms based on simple path traversals in the Program Structure Tree, and

did not rely on interprocedural pointer alias analysis of thread objects as in

MHP analysis for the Java language.

3. We introduced place equivalence (PE) analysis to identify execution instances

that happen at the same place. The PE analysis helps us in leveraging the fact

188

that two statement instances which occur in atomic sections that execute at the

same XI0 place must have MHP = false.

We introduced an interprocedural scalar replacement for load elimination algo-

rithm for dynamic optimization of parallel programs. The main contributions of our

work include: a) side-effect analysis of method calls, b) support for scalar replacement

for load elimination in the presence of three core parallel constructs - async, f in ish ,

and i solated, c) an IC memory model that establishes the legality of our load

elimination transformation for parallel constructs, and d) performance results to

study the impact of scalar replacement on a set of standard HJ parallel programs.

Our performance results show decreases in dynamic counts for getfield operations of

up to 99.99%, and performance improvements of up to 1.76x on 1 core, and 1.39x

on 16 cores, when comparing the algorithm in this paper with the load elimination

algorithm available in Jikes RVM. The algorithm has been implemented in Jikes RVM

for optimizing a subset of HJ parallel programs.

We addressed the problem of space-efficient register allocation. Most approaches

to register allocation involve the construction of an interference graph, which is

known from past work to be a major space and time bottleneck [42, 105], A notable

exception is the Linear Scan algorithm which is favored by many dynamic and just-in-

time compilers because it avoids the overhead of constructing an interference graph.

In this thesis, we introduced a new approach to register allocation that improves

on the runtime performance delivered by Linear Scan, without exceeding its space

bound. To that end, we introduced a Bipartite Liveness Graph representation as

an alternative foundation to the interference graph. Allocation with the BLG is

formulated as an optimization problem and a greedy heuristic is presented to solve it.

We also formulated spill-free register assignment combined with move coalescing as

a combined optimization problem using the Coalesce Graph, which models both IR

move instructions and additional register-to-register moves/exchanges arising from

register assignment. We then extended the above register allocation and assignment

189

approaches to handle register classes. Our experimental results for 11 serial Java

Grande benchmarks compared our BLG based register allocation with that of the

existing Linear Scan (LS) register allocator in Jikes RVM. The results show that a

BLG based register allocation can achieve runtime benefits of up to 3.52 x compared

to LS.

We studied the problem of enhancing bitwidth-aware register allocation. Our limit

study showed significant opportunities for improvement, compared to the algorithm

pioneered by Tallam-Gupta. We used our prototype implementation of bitwidth-

aware register allocation in gcc to compare the dynamic number of load/store instruc-

tions) resulting from a) bitwidth-unaware allocation, b) bitwidth-aware allocation, c)

enhanced bitwidth-aware allocation with improved bitwidth analysis and improved

packing, and d) ideal profile-driven bitwidth-aware allocation. Our results show that

our enhancements can reduce the dynamic number of spill load/store instructions to

3% to 27% of the number obtained from the Tallam-Gupta algorithm.

9.1 Future Work

The May-Happen-in-Parallel analysis presented in this dissertation can be enriched

using distance vectors and can be applied in an interprocedural context. The same can

also be improved to handle other synchronization constructs of HJ including phasers

and delayed async. Possible directions for future work for scalar replacement include

improving the precision of our analysis using MHP analysis. Also, our techniques can

be implemented for array accesses that go beyond simple field accesses. Directions for

future work in space-efficient register allocation include further study of the trade-off

between register-move instructions and spill load/store instructions, and support for

partial spill using live-range splitting. The bitwidth aware register allocation needs

to study the overhead of bit-aware register allocation (number of extra instructions

added), effect on run-time performance and energy reduction.

190

Bibliography

[1] N. Adiga et al. An overview of the BlueGene/L Supercomputer. In Supercom-

puting '02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,

pages 1-22, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[2] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-

parallel analysis of X10 programs. In PPoPP '07: Proceedings of the 12th ACM

SIGPLAN symposium on Principles and Practice of Parallel Programming,

pages 183-193, New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-

602-8. doi: http://doi.acrn.org/10.1145/1229428.1229471.

[3] S. Agarwal, R. Barik, V. K. Nandivada, R. K. Shyamasundar, and P. Varma.

Static Detection of Place Locality and Elimination of Runtime Checks. The

Sixth ASIAN Symposium on Programming Languages and Systems, 2008.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1986.

[5] F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In Design

and Optimization of Compilers, pages 1-30. Prentice-Hall, 1972.

[6] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables

in programs. In POPL '88: Proceedings of the 15th ACM SIGPLAN-SIGACT

symposium on Principles of Programming Languages, pages 1-11, New York,

NY, USA, 1988. ACM Press. ISBN 0-89791-252-7. doi: http://doi.acm.org/10.

1145/73560.73561.

http://doi.acrn.org/10.1145/1229428.1229471
http://doi.acm.org/10

191

[7] L. O. Andersen. Program analysis and specialization for the c programming

language. Technical report, 1994.

[8] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University

Press, second edition, October 2002. ISBN 052182060X.

[9] J. P. Banning. An efficient way to find the side effects of procedure calls and

the aliases of variables. In POPL '79: Proceedings of the 6th ACM SIGACT-

SIGPLAN symposium on Principles of Programming Languages, pages 29-41,

New York, NY, USA, 1979. ACM. doi: http://doi.acm.org/10.1145/567752.

567756.

[10] R. Barik. Efficient Computation of May-Happen-in-Parallel Information for

Concurrent Java Programs. In 18th International Workshop on Languages and

Compilers for Parallel Computing, October 2005.

[11] R. Barik and V. Sarkar. Enhanced Bitwidth-Aware Register Allocation. In

Proceedings of the 2006 International Conference on Compiler Construction

(CC 2006), March 2006.

[12] R. Barik and V. Sarkar. Interprocedural load elimination for dynamic optimiza-

tion of parallel programs. In International Conference on Parallel Architectures

and Compilation Techniques, (PACT'09), North Carolina, September 2009.

[13] R. Barik, V. Cave, C. Donawa, A. Kielstra, I. Peshansky, and V. Sarkar.

Experiences with an SMP Implementation for X10 based on the Java Concur-

rency Utilities (Extended Abstract). In Proceedings of the 2006 Workshop on

Programming Models for Ubiqui-tous Parallelism, co-located with PACT 2006,

September 2006, Seattle, Washington, 2006.

[14] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.

IBM Syst. J., 5(2):78—101, 1966.

http://doi.acm.org/10.1145/567752

192

[15] D. Berlin, D. Edelsohn, and S. Pop. High-Level Loop Optimizations for GCC.

In The 2004 GCC Developers' Summit, 2004.

[16] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum

Cardinality Search for Computing Minimal Triangulations of Graphs. Algorith-

mica, 39(4):287-298, 2004. ISSN 0178-4617. doi: http://dx.doi.org/10.1007/

s00453-004-1084-3.

[17] Bitwise. Bitwise benchmarks, http://www.cag.lcs.mit.edu/bitwise/bitwise_benc

hmarks.htm.

[18] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.

Cilk: An Efficient Multithreaded Runtime System. In Proceedings of the

Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), Santa Barbara California, July 19-21, pages 207-216,

1995.

[19] R. Bodik and R. Gupta. Array Data-Flow Analysis for Load-Store Optimiza-

tions in Superscalar Architectures. Lecture Notes in Computer Science, (1033):

1-15, August 1995. Proceedings of Eighth Annual Workshop on Languages and

Compilers for Parallel Computing, Columbus, Ohio.

[20] R. Bodik, R. Gupta, and M. L. Soffa. Load-reuse analysis: design and

evaluation. SIGPLAN Not., 34(5):64-76, 1999. ISSN 0362-1340. doi: http:

/ / doi.acm.org/10.1145/301631.301643.

[21] H.-J. Boehm and S. V. Adve. Foundations of the C + + concurrency memory

model. In PLDI '08: Proceedings of the 2008 ACM SIGPLAN conference on

Programming Language Design and Implementation, pages 68-78, New York,

NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. doi: http://doi.acm.org/10.

1145/1375581.1375591.

http://dx.doi.org/10.1007/
http://www.cag.lcs.mit.edu/bitwise/bitwise_benc
http://doi.acm.org/10

193

[22] F. Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two

Separate Phases. PhD thesis, April 2009.

[23] F. Bouchez, A. Darte, and F. Rastello. On the Complexity of Register

Coalescing. In CGO '07: Proceedings of the International Symposium on Code

Generation and Optimization, pages 102-114, Washington, DC, USA, 2007.

IEEE Computer Society. ISBN 0-7695-2764-7. doi: http://dx.doi.org/10.1109/

CGO.2007.26.

[24] P. Briggs. Register allocation via graph coloring. Technical Report TR92-183,

Rice University, Houston, Texas, 1998.

[25] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring Heuristics

for Register Allocation. Proceedings of the 1989 SIGPLAN Conference on

Programming Language Design and Implementation, 24(7):275-284, July 1989.

[26] P. Briggs, K. D. Cooper, and L. Torczon. Coloring register pairs. ACM Lett.

Program. Lang. Syst, 1(1):3-13, 1992. ISSN 1057-4514. doi: http://doi.acm.

org/10.1145/130616.130617.

[27] P. Briggs, K. D. Cooper, and L. Torczon. Rematerialization. In Proceedings of

the Conference on Programming Language Design and Implementation (PLDI),

volume 27, pages 311-321, New York, NY, 1992. ACM Press. ISBN 0-89791-

475-9.

[28] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring reg-

ister allocation. ACM Transactions on Programming Languages and Systems,

16(3):428-455, May 1994.

[29] P. Brisk, F. Dabiri, J. Macbeth, and M. Sarrafzadeh. Polynomial time

graph coloring register allocation. lJ^th International Workshop on Logic and

Synthesis, 2005.

http://dx.doi.org/10.1109/
http://doi.acm

194

[30] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg, and

S. W. Reeves. Fast copy coalescing and live-range identification. In PLDI '02:

Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation, pages 25-32, New York, NY, USA, 2002. ACM

Press. ISBN 1-58113-463-0. doi: http://doi.acm.org/10.1145/512529.512534.

[31] D. Callahan and B. Koblenz. Register allocation via hierarchical graph

coloring. In PLDI '91: Proceedings of the ACM SIGPLAN 1991 conference on

Programming Language Design and Implementation, pages 192-203, New York,

NY, USA, 1991. ACM Press, doi: http://doi.acm.org/10.1145/113445.113462.

[32] D. Callahan and J. Sublok. Static analysis of low-level synchronization. In

PADD '88: Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop

on Parallel and distributed debugging, pages 100-111, New York, NY, USA,

1988. ACM Press. ISBN 0-89791-296-9. doi: http://doi.acm.org/10.1145/68210.

69225.

[33] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for

Subscripted Variables. Proceedings of the ACM SIGPLAN '90 Conference on

Programming Language Design and Implementation, White Plains, New York,

pages 53-65, June 1990.

[34] S. Carr and K. Kennedy. Scalar Replacement in the Presence of Conditional

Control Flow. Software—Practice and Experience, (l):51-77, January 1994.

[35] G. J. Chaitin. Register allocation and spilling via graph coloring. In Proceedings

of the ACM SIGPLAN '82 Symposium on Compiler Construction, pages 98-

105, Jun. 1982.

[36] C. Chambers, J. Dean, and D. Grove. A framework for selective recompilation in

the presence of complex intermodule dependencies. In ICSE '95: Proceedings of

the 17th international conference on Software engineering, pages 221-230, New

http://doi.acm.org/10.1145/512529.512534
http://doi.acm.org/10.1145/113445.113462
http://doi.acm.org/10.1145/68210

195

York, NY, USA, 1995. ACM. ISBN 0-89791-708-1. doi: http://doi.acm.org/10.

1145/225014.225035.

[37] S. Chandra, V. Saraswat, V. Sarkar, and R. Bodik. Type inference for

locality analysis of distributed data structures. In PPoPP '08: Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 11-22, New York, NY, USA, 2008. ACM. ISBN 978-1-

59593-795-7. doi: http://doi.acm.org/10.1145/1345206.1345211.

[38] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun,

V. Saraswat, and V. Sarkar. X10: An Object-Oriented Approach to Non-

Uniform Cluster Computing. In OOPSLA 2005 Onward! Track, 2005.

[39] J.-D. Choi, K. Lee, A. Loginov, R. O'Callahan, V. Sarkar, and M. Sridharan.

Efficient and precise datarace detection for multithreaded object-oriented

programs. In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementation, pages 258-269, New

York, NY, USA, 2002. ACM Press. ISBN 1-58113-463-0. doi: http://doi.acm.

org/10.1145/512529.512560.

[40] F. Chow and J. Hennessy. Register allocation by priority-based coloring. In

SIGPLAN '84: Proceedings of the 1984 SIGPLAN symposium on Compiler

construction, pages 222-232, New York, NY, USA, 1984. ACM Press. ISBN

0-89791-139-3. doi: http://doi.acm.org/10.1145/502874.502896.

[41] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. A new algorithm for

partial redundancy elimination based on SSA form. In PLDI '97: Proceedings

of the ACM SIGPLAN 1997 conference on Programming Language Design and

Implementation, pages 273-286, New York, NY, USA, 1997. ACM. ISBN 0-

89791-907-6. doi: http://doi.acm.org/10.1145/258915.258940.

http://doi.acm.org/10
http://doi.acm.org/10.1145/1345206.1345211
http://doi.acm
http://doi.acm.org/10.1145/502874.502896
http://doi.acm.org/10.1145/258915.258940

196

[42] K. D. Cooper and A. Dasgupta. Tailoring Graph-coloring Register Allocation

For Runtime Compilation. In CGO '06: Proceedings of the International

Symposium on Code Generation and Optimization, pages 39-49, Washington,

DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2499-0. doi: http:

//dx.doi.org/10.1109/CGO.2006.35.

[43] K. D. Cooper and K. Kennedy. Fast interprocedual alias analysis. In POPL '89:

Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of

Programming Languages, pages 49-59, New York, NY, USA, 1989. ACM. ISBN

0-89791-294-2. doi: http://doi.acm.org/10.1145/75277.75282.

[44] K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann,

2004. ISBN 1-55860-699-8.

[45] K. D. Cooper and L. Xu. An efficient static analysis algorithm to detect

redundant memory operations. SIGPLAN Not., 38(2 supplement):97-107, 2003.

ISSN 0362-1340. doi: http://doi.acm.org/10.1145/773039.773049.

[46] K. D. Cooper, L. T. Simpson, and C. A. Vick. Operator strength reduction.

ACM Trans. Program. Lang. Syst., 23(5):603-625, 2001. ISSN 0164-0925. doi:

http: //doi.acm.org/10.1145/504709.504710.

[47] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An

Efficient Method for Computing Static Single Assignment Form. Sixteenth

Annual ACM Symposium on Principles of Programming Languages, pages 25-

35, January 1989.

[48] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-

ciently Computing Static Single Assignment Form and the Control Dependence

Graph. ACM Transactions on Programming Languages and Systems, 13(4):

451-490, October 1991.

http://doi.acm.org/10.1145/75277.75282
http://doi.acm.org/10.1145/773039.773049

197

[49] J. W. Davidson and S. Jinturkar. Memory access coalescing: a technique

for eliminating redundant memory accesses. In PLDI '94: Proceedings of

the ACM SIGPLAN 1994 conference on Programming Language Design and

Implementation, pages 186-195, New York, NY, USA, 1994. ACM Press. ISBN

0-89791-662-X. doi: http://doi.acm.org/10.1145/178243.178259.

[50] E. Duesterwald and M. L. Soffa. Concurrency analysis in the presence

of procedures using a data-flow framework. In TAV4: Proceedings of the

symposium on Testing, analysis, and verification, pages 36-48, New York, NY,

USA, 1991. ACM Press. ISBN 0-89791-449-X. doi: http://doi.acm.org/10.

1145/120807.120811.

[51] T. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC Language Specification

vl.1.1, October 2003.

[52] S. J. Fink, K. Knobe, and V. Sarkar. Unified Analysis of Array and Object

References in Strongly Typed Languages. In SAS '00: Proceedings of the 7th

International Symposium on Static Analysis, pages 155-174, London, UK, 2000.

Springer-Verlag. ISBN 3-540-67668-6.

[53] G. R. Gao and V. Sarkar. Location consistency-a new memory model and

cache consistency protocol. IEEE Trans. Comput., 49(8):798-813, 2000. ISSN

0018-9340. doi: http://dx.doi.org/10.1109/12.868026.

[54] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[55] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum

Covering by Cliques, and Maximum Independent Set of a Chordal Graph. SIAM

Journal on Computing, 1(2): 180-187, 1972.

[56] GCC. Gcc compiler, http://gcc.gnu.org/.

http://doi.acm.org/10.1145/178243.178259
http://doi.acm.org/10
http://dx.doi.org/10.1109/12.868026
http://gcc.gnu.org/

198

[57] L. George and A. W. Appel. Iterated register coalescing. ACM Transactions

on Programming Languages and Systems, 18(3):300-324, May 1996.

[58] K. Gharachorloo, D. Lenoski, J. Lanudon, P. Gibbons, A. Gupta, and

J. Hennessy. Memory Consistency and Event Ordering in Scalable Shared-

Memory Multiprocessors. In Proc. of the 17th Annual International Symposium

on Computer Architecture, pages 15-26, May 1990.

[59] S. Hack and G. Goos. Optimal register allocation for SSA-form programs in

polynomial time. Inf. Process. Lett., 98(4):150-155, 2006. ISSN 0020-0190. doi:

http://dx.doi.Org/10.1016/j.ipl.2006.01.008.

[60] S. Hack and G. Goos. Copy coalescing by graph recoloring. In PLDI '08:

Proceedings of the 2008 ACM SIGPLAN conference on Programming Language

Design and Implementation, pages 227-237, New York, NY, USA, 2008. ACM.

ISBN 978-1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375610.

[61] D. Harel. A Linear Time Algorithm for Finding Dominators in Flow Graphs

and Related Problems. Symposium on Theory of Computing, May 1985.

[62] P. Havlak and K. Kennedy. An Implementation of Interprocedural Bounded

Regular Section Analysis. IEEE Trans. Parallel Distrib. Syst, 2(3):350-360,

1991. ISSN 1045-9219. doi: http://dx.doi.org/10.1109/71.86110.

[63] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and

K. Yelick. Titanium Language Reference Manual. Technical Report CSD-01-

1163, University of California at Berkeley, Berkeley, Ca, USA, 2001.

[64] J. P. Hoeflinger and B. R. de Supinski. The OpenMP Memory Model. In First

International Workshop on OpenMP (IWOMP 2005), Eugene, OR, June 2005.

Springer-Verlag.

http://dx.doi.Org/10.1016/j.ipl.2006.01.008
http://doi.acm.org/10.1145/1375581.1375610
http://dx.doi.org/10.1109/71.86110

199

[65] JGF. The Java Grande Forum benchmark suite,

htt p: / / www .epcc.ed.ac.uk/j avagr ande / j avag. ht ml.

[66] Jikes. Jikes rvm. http://jikesrvm.org/.

[67] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms.

J. ACM, 23(1):158—171, 1976. ISSN 0004-5411. doi: http://doi.acm.org/10.

1145/321921.321938.

[68] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002. ISBN 1-55860-286-0.

[69] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In POPL

'98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles

of Programming Languages, pages 107-120, New York, NY, USA, 1998. ACM

Press. ISBN 0-89791-979-3. doi: http://doi.acm.org/10.1145/268946.268956.

[70] T. Kotzmann, C. Wimmer, H. Mossenbock, T. Rodriguez, K. Russell, and

D. Cox. Design of the java hotspot™client compiler for java 6. ACM

Trans. Archit. Code Optim., 5(l):l-32, 2008. ISSN 1544-3566. doi: http:

/ / doi.acm.org/10.1145/1369396.1370017.

[71] J. Krinke. Static Slicing of Threaded Programs. In Workshop on Program

Analysis For Software Tools and Engineering, pages 35-42, 1998.

[72] L. Lamport. How to Make a Multiprocessor Computer that Correctly

Executes Multiprocess Programs. IEEE Trans, on Computers, C-28(9):690-

691, September 1979.

[73] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2006.

http://jikesrvm.org/
http://doi.acm.org/10
http://doi.acm.org/10.1145/268946.268956

200

[74] C. Lattner and V. Adve. The LLVM Compiler Framework and Infrastructure

Tutorial. In LCPC'04 Mini Workshop on Compiler Research Infrastructures,

West Lafayette, Indiana, Sep 2004.

[75] A. Le, L. Ondrej, and H. Laurie. Using inter-procedural side-effect information

in JIT optimizations. In In 14th International Conference on Compiler

Construction (CC). LNCS, pages 287-304. Springer Verlag, 2005.

[76] C. Lee, M. Potkonjak, and W. H. Mangione-smith. MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems. In In

International Symposium on Microarchitecture, pages 330-335, 1997.

[77] J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent Static Single Assignment

Form and Constant Propagation for Explicitly Parallel Programs. In In

Proceedings of 1999 ACM SIGPLAN Symposium on the Principles and Practice

of Parallel Programming, pages 114-130. Springer-Verlag, 1999.

[78] J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler algorithms for parallel

programs. SIGPLAN Not., 34(8):1-12, 1999. ISSN 0362-1340. doi: http:

//doi.acm.org/10.1145/329366.301105.

[79] T. Lengauer and R. Tarjan. A Fast Algorithm for Finding Dominators in a

Flowgraph. TOPLAS, July 1979.

[80] B. Li, Y. Zhang, and R. Gupta. Speculative subword register allocation in

embedded processors. In Proceedings of the LCPC 2004 Workshop, 2004.

[81] L. Li and C. Verbrugge. A Practical MHP Information analysis for Concurrent

Java programs. In The 17th International Workshop on Languages and

Compilers for Parallel Computing (LCPC'04), 2004.

[82] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu. Register promotion by sparse

201

partial redundancy elimination of loads and stores. SIGPLAN Not., 33(5):26-

37, 1998. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/277652.277659.

[83] J. Lu and K. D. Cooper. Register promotion in C programs. In PLDI '97:

Proceedings of the ACM SIGPLAN 1997 conference on Programming Language

Design and Implementation, pages 308-319, New York, NY, USA, 1997. ACM.

ISBN 0-89791-907-6. doi: http://doi.acm.org/10.1145/258915.258943.

[84] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL '05:

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of

Programming Languages, pages 378-391, New York, NY, USA, 2005. ACM.

ISBN 1-58113-830-X. doi: http://doi.acm.org/10.1145/1040305.1040336.

[85] M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory

atomicity semantics. IEEE Comput. Archit. Lett., 5(2): 17, 2006. ISSN 1556-

6056. doi: http://dx.doi.org/10.1109/L-CA.2006.18.

[86] S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In PPOPP

'93: Proceedings of the fourth ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming, pages 129-138, New York, NY, USA, 1993.

ACM Press. ISBN 0-89791-589-5. doi: http://doi.acm.org/10.1145/155332.

155346.

[87] S. P. Masticola and B. G. Ryder. A model of Ada programs for static

deadlock detection in polynomial times. In PADD '91: Proceedings of the

1991 ACM/ONR workshop on Parallel and distributed debugging, pages 97-

107, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-457-0. doi:

http://doi.acm.org/10.1145/122759.122768.

[88] R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen. Combining register

allocation and instruction scheduling. In Technical Report STAN-CS-TN-95-

22, Department of Computer Science, Stanford University, 1995.

http://doi.acm.org/10.1145/277652.277659
http://doi.acm.org/10.1145/258915.258943
http://doi.acm.org/10.1145/1040305.1040336
http://dx.doi.org/10.1109/L-CA.2006.18
http://doi.acm.org/10.1145/155332
http://doi.acm.org/10.1145/122759.122768

202

[89] S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmarm Publishers, 1997.

[90] G. Naumovich and G. S. Avrunin. A conservative data flow algorithm for

detecting all pairs of statements that may happen in parallel. In SIGSOFT

'98/FSE-6: Proceedings of the 6th ACM SIGSOFT international symposium on

Foundations of software engineering, pages 24-34, New York, NY, USA, 1998.

ACM Press. ISBN 1-58113-108-9. doi: http://doi.acm.org/10.1145/288195.

288213.

[91] G. Naumovich, G. S. Avruin, and L. A. Clarke. Data Flow Analysis for Checking

Properties of Concurrent Java Programs. Technical Report UM-CS-1998-022,

1998.

[92] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient algorithm for

computing MHP information for concurrent Java programs. In Proceedings

of the joint 7th European Software Engineering Conference and 7th ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pages 338-

354, Sept. 1999.

[93] NPB. NAS parallel benchmarks. http://www.nas.nasa.gov/Resources/Software

/npb.html.

[94] S. Olariu. An optimal greedy heuristic to color interval graphs. Inf. Process.

Lett., 37(l):21-25, 1991. ISSN 0020-0190. doi: http://dx.doi.org/10.1016/

0020-0190(91)90245-D.

[95] OpenMP. OpenMP: A Proposed Industry Standard API for Shared Memory

Programming, October 1997. White paper on OpenMP initiative, available at

http://www.openmp.org/openmp/mp-documents/paper/paper.ps.

[96] J. Park and S.-M. Moon. Optimistic register coalescing. In J.-L. Gaudiot, editor,

http://doi.acm.org/10.1145/288195
http://www.nas.nasa.gov/Resources/Software
http://dx.doi.org/10.1016/
http://www.openmp.org/openmp/mp-documents/paper/paper.ps

203

International Conference on Parallel Architectures and Compilation Techniques,

pages 196-204, Paris, October 1998. IFIP,ACM,IEEE, North-Holland.

[97] F. M. Pereira and J. Palsberg. SSA Elimination after Register Allocation.

In CC '09: Proceedings of the 18th International Conference on Compiler

Construction, pages 158-173, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN

978-3-642-00721-7. doi: http://dx.doi.org/10.1007/978-3-642-00722-4_12.

[98] F. M. Pereira and J. Palsberg. Register allocation via coloring of chordal graphs.

In APLAS'05: Proceedings of APLAS'05, volume 3780 of Lecture Notes In

Computer Science, pages 315-329, November 2005.

[99] D. Pham et al. The design and implementation of a first-generation CELL

processor. Solid-State Circuits Conference, 2005. Digest of Technical Papers.

ISSCC. 2005 IEEE International, pages 184-592 Vol. 1, 2005.

[100] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Program.

Lang. Syst., 21(5):895-913, 1999. ISSN 0164-0925. doi: http://doi.acm.org/10.

1145/330249.330250.

[101] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: a system for fast,

flexible, and high-level dynamic code generation. In PLDI '97: Proceedings

of the ACM SIGPLAN 1997 conference on Programming language design and

implementation, pages 109-121, New York, NY, USA, 1997. ACM. ISBN 0-

89791-907-6. doi: http://doi.acm.org/10.1145/258915.258926.

[102] C. V. Praun, F. Schneider, and T. R. Gross. Load Elimination in the Presence

of Side Effects, Concurrency and Precise Exceptions. In LCPC '03: Proceedings

of the 16th International Workshop on Languages and Compilers for Parallel

Computing, 2003.

[103] W. Pugh. Java Memory Model Causality Test Cases. Technical report, U

Maryland, 2004. http://www.cs.umd.edu/pugh/java/memoryModel/.

http://dx.doi.org/10.1007/978-3-642-00722-4_12
http://doi.acm.org/10
http://doi.acm.org/10.1145/258915.258926
http://www.cs.umd.edu/pugh/java/memoryModel/

204

[104] F. M. Quint ao Pereira and J. Palsberg. Register allocation by puzzle solving. In

PLDI '08: Proceedings of the 2008 ACM SIGPLAN conference on Programming

language design and implementation, pages 216-226, New York, NY, USA, 2008.

ACM. ISBN 978-1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.

1375609.

[105] V. Sarkar and R. Barik. Extended Linear Scan: an Alternate Foundation for

Global Register Allocation. In Proceedings of the 2007 International Conference

on Compiler Construction (CC 2007), 2007.

[106] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Pro-

gramsthat Share Memory. ACM Transactions on Programming Languages and

Systems, 10(2):282-312, April 1988.

[107] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a unified

deadlock-free construct for collective and point-to-point synchronization. In

ICS '08: Proceedings of the 22nd annual international conference on Supercomp

uting, pages 277-288, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-158-

3. doi: http://doi.acm.org/10.1145/1375527.1375568.

[108] Shootout. Shootout benchmarks, http://shootout.alioth.debian.org/gp4/.

[109] A. Skjellum, E. Lusk, and W. Gropp. Using MPI: Portable Parallel Program-

ming with the Message Passing Iinterface. MIT Press, 1999.

[110] M. D. Smith, N. Ramsey, and G. Holloway. A generalized algorithm for graph-

coloring register allocation. In PLDI '04-' Proceedings of the ACM SIGPLAN

2004 conference on Programming language design and implementation, pages

277-288, New York, NY, USA, 2004. ACM. ISBN 1-58113-807-5. doi: http:

/ / doi.acm.org/10.1145/996841.996875.

[111] SPEC-Issues. http://www.spec.org/cpu2000/issues/. Issues regarding 176.gcc,

253.perlbmk, 255.vortex, and other CPU2000 benchmarks.

http://doi.acm.org/10.1145/1375581
http://doi.acm.org/10.1145/1375527.1375568
http://shootout.alioth.debian.org/gp4/
http://www.spec.org/cpu2000/issues/

205

[112] SPECjbb. SPECjbb2000 (java business benchmark).

http://www.spec.org/jbb2000.

[113] T. C. Spillman. Exposing side-effects in a PL/I optimizing compiler. In In

Proceedings of the IFIP Congress 1971, pages 376-381, 1971.

[114] B. Steensgaard. Points-to analysis in almost linear time. In 23rd Annual ACM

SIGACT-SIGPLAN Symposium on the Principles of Programming Languages,

pages 32-41, Jan. 1996.

[115] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth Analysis with Appli-

cation to Silicon Compilation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, Vancouver, British Columbia, June 2000.

[116] S. Tallam and R. Gupta. Bitwidth aware global register allocation. In POPL '03:

Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 85-96, New York, NY, USA, 2003. ACM Press.

ISBN 1-58113-628-5. doi: http://doi.acm.org/10.1145/604131.604139.

[117] R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal of

Computing, 1,2:146-160, September 1972.

[118] R. N. Taylor. Complexity of Analyzing the Synchronization Structure of

Concurrent Programs. Acta Inf., 19:57-84, 1983.

[119] O. Traub, G. H. Holloway, and M. D. Smith. Quality and Speed in Linear-

scan Register Allocation. In SIGPLAN Conference on Programming Language

Design and Implementation, pages 142-151, 1998.

[120] R. Triolet, F. Irigoin, and P. Feautrier. Direct Parallelization of Call Statements.

Proceedings of the Sigplan '86 Symposium on Compiler Construction, 21(7):

176-185, July 1986.

http://www.spec.org/jbb2000
http://doi.acm.org/10.1145/604131.604139

206

[121] J. Sevcfk and D. Aspinall. On Validity of Program Transformations in the

Java Memory Model. In ECOOP '08: Proceedings of the 22nd European

conference on Object-Oriented Programming, pages 27-51, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-70591-8. doi: http://dx.doi.org/10.

1007/978-3-540-70592-5.3.

[122] M. Wegman and K. Zadeck. Constant Propagation with Conditional Branches.

Conf. Rec. Twelfth ACM Symposium on Principles of Programming Languages,

pages 291-299, January 1985.

[123] C. Wimmer and H. Mossenbock. Optimized interval splitting in a linear

scan register allocator. In VEE '05: Proceedings of the 1st ACM/USENIX

international conference on Virtual execution environments, pages 132-141,

New York, NY, USA, 2005. ACM. ISBN 1-59593-047-7. doi: http://doi.acm.

org/10.1145/1064979.1064998.

[124] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London

and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research

Monographs in Parallel and Distributed Computing.

[125] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical Place Trees: A Portable

Abstraction for Task Parallelism and Data Movement. In 22nd International

Workshop on Languages and Compilers for Parallel Computing, October 2009.

http://dx.doi.org/10
http://doi.acm

