
Exploring Dynamic Compilation and Cross-Layer Object

Management Policies for Managed Language Applications

By

Michael Jantz

Submitted to the Department of Electrical Engineering and Computer Science and the

Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Committee members

Prasad A. Kulkarni, Chairperson

Bo Luo

Andrew Gill

Xin Fu

Karen Nordheden

Date defended:

The Dissertation Committee for Michael Jantz certifies

that this is the approved version of the following dissertation :

Exploring Dynamic Compilation and Cross-Layer Object Management Policies for Managed

Language Applications

Prasad A. Kulkarni, Chairperson

Date approved:

ii

Abstract

Recent years have witnessed the widespread adoption of managed programming lan-

guages that are designed to execute on virtual machines. Virtual machine architectures

provide several powerful software engineering advantages over statically compiled bi-

naries, such as portable program representations, additional safety guarantees, auto-

matic memory and thread management, and dynamic program composition, which

have largely driven their success. To support and facilitate the use of these features,

virtual machines implement a number of services that adaptively manage and optimize

application behavior during execution. Such runtime services often require tradeoffs

between efficiency and effectiveness, and different policies can have major implica-

tions on the system’s performance and energy requirements.

In this work, we extensively explore policies for the two runtime services that are

most important for achieving performance and energy efficiency: dynamic (or Just-In-

Time (JIT)) compilation and memory management. First, we examine the properties

of single-tier and multi-tier JIT compilation policies in order to find strategies that

realize the best program performance for existing and future machines. Our analysis

performs hundreds of experiments with different compiler aggressiveness and opti-

mization levels to evaluate the performance impact of varying if and when methods

are compiled. We later investigate the issue of how to optimize program regions to

maximize performance in JIT compilation environments. For this study, we conduct

a thorough analysis of the behavior of optimization phases in our dynamic compiler,

and construct a custom experimental framework to determine the performance limits

of phase selection during dynamic compilation. Next, we explore innovative memory

iii

management strategies to improve energy efficiency in the memory subsystem. We

propose and develop a novel cross-layer approach to memory management that inte-

grates information and analysis in the VM with fine-grained management of memory

resources in the operating system. Using custom as well as standard benchmark work-

loads, we perform detailed evaluation that demonstrates the energy-saving potential

of our approach. We implement and evaluate all of our studies using the industry-

standard Oracle HotSpot Java Virtual Machine to ensure that our conclusions are sup-

ported by widely-used, state-of-the-art runtime technology.

iv

Acknowledgements

I would like to thank my advisor, Prasad Kulkarni, whose guidance and mentorship has

been the most significant force in growing my skills and shaping my attitudes towards

scientific research. Without his patience and support, this work would not have been

possible. I must also thank my family: my parents, whose love and encouragement

helped me get through the hardest and most stressful times of my Ph.D., and my sisters,

particularly, Marianne, who served as a sounding board for many of the ideas presented

in this dissertation. Finally, I thank my wife, Leslie, whose love, advice, and cooking

kept me fueled and motivated to finish this work.

v

Contents

1 Introduction 1

2 Exploring Single and Multi-Level JIT Compilation Policy for Modern Machines 6

2.1 Introduction . 7

2.2 Background and Related Work . 10

2.3 Experimental Framework . 13

2.4 JIT Compilation on Single-Core Machines . 19

2.4.1 Compilation Threshold with Single Compiler Thread 19

2.4.2 Effect of Multiple Compiler Threads on Single-Core Machines 22

2.4.2.1 Single-Core Compilation Policy with the HotSpot Server Compiler 22

2.4.2.2 Single-Core Compilation Policy with the HotSpot Tiered Compiler 25

2.5 JIT Compilation on Multi-Core Machines . 27

2.5.1 Multi-Core Compilation Policy with the HotSpot Server Compiler 28

2.5.2 Multi-Core Compilation Policy with the HotSpot Tiered Compiler 30

2.6 JIT Compilation on Many-Core Machines . 34

2.6.1 Many-Core Compilation Policy with the HotSpot Server Compiler 36

2.6.2 Many-Core Compilation Policy with the HotSpot Tiered Compiler 38

2.7 Effect of Priority-Based Compiler Queues . 39

2.7.1 Priority-Based Compiler Queues in the HotSpot Server Compiler 41

2.7.1.1 Single-Core Machine Configuration 41

vi

2.7.1.2 Many-Core Machine Configuration 42

2.7.2 Priority-Based Compiler Queues in the HotSpot Tiered Compiler 43

2.8 Effect of Multiple Application Threads . 44

2.9 Conclusions . 46

2.10 Future Work . 48

3 Performance Potential of Optimization Phase Selection During Dynamic JIT Compi-

lation 50

3.1 Introduction . 51

3.2 Background and Related Work . 53

3.3 Experimental Framework . 56

3.3.1 Compiler and Benchmarks . 57

3.3.2 Performance Measurement . 58

3.4 Analyzing Behavior of Compiler Optimizations for Phase Selection 59

3.4.1 Experimental Setup . 60

3.4.2 Results and Observations . 60

3.5 Limits of Optimization Selection . 63

3.5.1 Genetic Algorithm Description . 64

3.5.2 Program-Wide GA Results . 65

3.5.3 Method-Specific Genetic Algorithm . 66

3.5.3.1 Experimental Setup . 67

3.5.3.2 Method-Specific GA Results 69

3.6 Effectiveness of Feature Vector Based Heuristic Techniques 70

3.6.1 Overview of Approach . 71

3.6.2 Our Experimental Configuration . 72

3.6.3 Feature-Vector Based Heuristic Algorithm Results 73

3.6.4 Discussion . 75

3.7 Future Work . 77

vii

3.8 Conclusions . 77

4 A Framework for Application Guidance in Virtual Memory Systems 79

4.1 Introduction . 80

4.2 Related Work . 83

4.3 Background . 86

4.4 Application-Guided Memory Management . 87

4.4.1 Expressing Application Intent through Colors 88

4.4.2 Memory Containerization with Trays . 91

4.5 Experimental Setup . 93

4.5.1 Platform . 93

4.5.2 The HotSpot Java Virtual Machine . 93

4.5.3 Application Tools for Monitoring Resources 94

4.5.4 DRAM Power Measurement . 95

4.6 Emulating the NUMA API . 95

4.6.1 Exploiting HotSpot’s Memory Manager to improve NUMA Locality 95

4.6.2 Experimental Results . 96

4.7 Memory Priority for Applications . 98

4.7.1 memnice . 98

4.7.2 Using memnice with Kernel Compilation 100

4.8 Reducing DRAM Power Consumption . 100

4.8.1 Potential of Containerized Memory Management to Reduce DRAM Power

Consumption . 101

4.8.2 Localized Allocation and Recycling to Reduce DRAM Power Consumption 103

4.8.3 Exploiting Generational Garbage Collection 105

4.9 Future Work . 107

4.10 Conclusion . 108

viii

5 Automatic Cross-Layer Memory Management to Reduce DRAM Power Consump-

tion 109

5.1 Introduction . 110

5.2 Related Work . 112

5.3 Background . 113

5.3.1 Overview of DRAM Structure . 113

5.3.2 DRAM Power Consumption . 114

5.3.3 Operating System View of Physical Memory 114

5.3.4 Automatic Heap Management in Managed Language Runtimes 115

5.4 Cross-Layer Memory Management . 116

5.5 Potential of Cross-Layer Framework to Reduce DRAM Energy Consumption . . . 118

5.5.1 The MemBench Benchmark . 119

5.5.2 Experimental Evaluation . 120

5.6 Experimental Framework . 123

5.6.1 Platform . 123

5.6.2 Memory Power and Bandwidth Measurement 123

5.6.3 HotSpot Java Virtual Machine . 124

5.6.4 Benchmarks . 125

5.6.5 Baseline Configuration Performance . 126

5.7 Automatic Cross-Layer Memory Management . 127

5.7.1 Profiling for Hot and Cold Allocation Points 127

5.7.2 Experimental Evaluation . 129

5.7.2.1 Memory Profile Analysis . 129

5.7.3 Controlling the Power State of DRAM Ranks 130

5.7.4 Performance and Energy Evaluation . 133

5.8 Future Work . 134

5.9 Conclusion . 135

ix

6 Conclusion 136

x

List of Figures

2.1 Ratio of client and sever compile times when compiling the same number of pro-

gram methods . 17

2.2 Steady-state program execution times using the server and client compilers as a

ratio of the interpreted program run-time . 17

2.3 Ratio of multi-core performance to single-core performance for each compiler con-

figuration. 18

2.4 Effect of different compilation thresholds on average benchmark performance on

single-core processors. 20

2.5 Effect of multiple compiler threads on single-core program performance in the

HotSpot VM with server compiler. The discrete measured thread points are plotted

equi-distantly on the x-axis. 23

2.6 Effect of multiple compiler threads on single-core program performance in the

HotSpot VM with tiered compiler. The discrete measured thread points are plotted

equi-distantly on the x-axis. 25

2.7 Effect of multiple compiler threads on multi-core application performance with the

HotSpot Server VM . 28

2.8 Effect of multiple compiler threads on multi-core application performance with the

HotSpot Tiered VM . 31

2.9 Effect of multiple compiler threads on multi-core compilation activity with the

Server and Tiered VM . 32

xi

2.10 Simulation of multi-core VM execution on single-core processor 35

2.11 Effect of multiple compiler threads on many-core application performance with

the HotSpot Server VM . 36

2.12 Comparison of multi- and many-core performance results for the server and tiered

VM. 37

2.13 Effect of multiple compiler threads on many-core application performance with

the HotSpot Tiered VM . 39

2.14 Performance of the tiered and ideal compiler priority algorithms over FIFO for

HotSpot server compiler on single-core machines 41

2.15 Performance of the tiered and ideal compiler priority algorithms over FIFO for

HotSpot server compiler on many-core machines 42

2.16 Effect of different numbers of application threads on single-core performance with

the HotSpot Tiered VM . 44

2.17 Effect of different numbers of application threads on multi-core performance with

the HotSpot Tiered VM . 45

3.1 Left Y-axis: Accumulated positive and negative impact of each HotSpot optimiza-

tion over our focus methods (non-scaled). Right Y-axis: Number of focus methods

that are positively or negatively impacted by each HotSpot optimization. 61

3.2 Left Y-axis: Accumulated positive and negative impact of the 25 HotSpot opti-

mizations for each focus method (non-scaled). Right Y-axis: Number of opti-

mizations that positively or negatively impact each focus method. 61

3.3 Average performance of best GA sequence in each generation compared to the

default compiler. 65

3.4 Performance of best program-wide optimization phase sequence after 100 genera-

tions of genetic algorithm. 66

xii

3.5 Performance of method-specific optimization selection after 100 GA generations.

Methods in (a) are ordered by the % of run-time spent in their respective bench-

marks. In (b), methods from the same benchmark are shown together. All results

are are scaled by the fraction of total program time spent in the focus method and

show the run-time improvement of that individual method. 69

3.6 Accumulated improvement of method-specific optimization selection in bench-

marks with multiple focus method. 71

3.7 Effectiveness of benchmark-wide logistic regression. Training data for each bench-

mark consists of all the remaining programs from both benchmark suites. 74

3.8 Effectiveness of method-specific logistic regression. Training data for each method

consists of all the other focus methods used in Section 3.5.3. 75

3.9 Experiments to analyze and improve the performance of feature-vector based heuris-

tic algorithms for online phase selection. (a) Not using cross-validation and (b)

Using observations for Section 3.4. 76

4.1 Physical memory representation in the Linux kernel with trays as it relates to the

system’s memory hardware. 92

4.2 Comparison of implementing the HotSpot NUMA optimization with the default

NUMA API vs. our memory coloring framework (a) shows the performance of

each implementation relative to the default HotSpot performance. (b) shows the %

of NUMA-local memory reads with each configuration. 97

4.3 Free memory available during kernel compilations with different memory priorities 100

4.4 Relationship between memory utilization and power consumption on three differ-

ent configurations . 103

4.5 Local allocation and recycling reduces DRAM power consumption. (a) shows

DRAM power relative to the default kernel (with interleaving enabled) and (b)

shows the results relative to the custom kernel without local allocation and recy-

cling. 104

xiii

4.6 Raw power governor samples with and without “tenured generation optimization”

applied . 106

5.1 Colored spaces in our JVM framework. Dotted lines indicate possible paths for

objects to move from one colored space to another. 118

5.2 Performance (a), bandwidth (b), average DRAM power (c), and DRAM energy (d)

for the MemBench benchmark. 121

5.3 Performance of our baseline configuration with the custom kernel compared to the

default configuration with the unmodified Linux kernel. 126

5.4 Perf. with each colored configuration compared to default. 133

5.5 DRAM energy consumed with each colored configuration compared to default. . . 134

xiv

List of Tables

2.1 Threshold parameters in the tiered compiler . 15

2.2 Benchmarks used in our experiments. 16

3.1 Configurable optimizations in our modified HotSpot compiler. Optimizations marked

with ∗ are disabled in the default compiler. 56

3.2 Focus methods and their respective % of runtime 67

3.3 List of method features used in our experiments 72

5.1 Allocation Time for the MemBench Benchmark. 120

5.2 Benchmarks from SPECjvm2008 . 125

5.3 Cold Size / Total Size in profile and guided runs 130

5.4 Average CKE OFF Residencies: Default Configuration 131

5.5 Average CKE OFF Residencies: 2% Knapsack Coloring 131

5.6 Average CKE OFF Residencies: 5% Knapsack Coloring 132

5.7 Average CKE OFF Residencies: 10% Knapsack Coloring 132

xv

Chapter 1

Introduction

Since the introduction of the Java programming language almost two decades ago, applications

written in managed languages have become ubiquitous in domains ranging from embedded de-

vices to enterprise servers. A major reason for their popularity is that managed languages have the

distinct advantage of program portability; each application is distributed as machine-independent

binary codes and executes inside a virtual machine (VM) environment (also called runtime sys-

tem). In addition to enabling portable program emulation, VMs provide a convenient sandbox

for monitoring and controlling application behavior at runtime. This architecture allows managed

languages to deliver a number of other powerful features, such as garbage collection and dynamic

class loading, that enhance the user-end programming model. To support these features, managed

languages implement a number of services in the runtime system for managing and optimizing

application behavior during execution. Despite their benefits, these services often introduce sig-

nificant overheads and have created new challenges for achieving high performance.

Therefore, much research and industry effort has been focused on finding techniques and poli-

cies to improve the efficiency of runtime services. This technology often relies upon program

monitoring, such as online profiling or sampling, to help guide optimization and management de-

cisions. In many cases, virtual machines have to carefully balance tradeoffs between the amount

of overhead that can be tolerated and the benefits that can be delivered by the runtime service.

1

For example, consider the evolution of runtime emulation technology. Since the application

binary format does not match the native architecture, VMs have to translate program instructions

to machine code at runtime. Unfortunately, simple interpretation schemes incur large overheads

and are too slow to compete with native execution. Thus, virtual machines have incorporated

dynamic or Just-In-Time (JIT) compilation to improve emulation performance. However, since it

occurs at runtime, JIT compilation contributes to the overall execution time of the application and

can potentially impede application progress and further degrade its response time, if performed

injudiciously. To address these issues, researchers invented selective compilation techniques to

control if and when to compile program methods (Hölzle & Ungar, 1996; Paleczny et al., 2001;

Krintz et al., 2000; Arnold et al., 2005). Selective compilation uses online profiling to identify

the subset of hot methods that the application executes most often, and compiles these methods

at program startup, This technique effectively limits the overhead of JIT compilation, while still

deriving most of its performance benefits. Most current VMs employ selective compilation with a

staged emulation model (e.g. interpret first, compile later), and use heuristics to balance throughput

performance with response time (Hansen, 1974).

In this work, we explore a wide range of system policies and configurations as well as pro-

pose innovative solutions for managing tradeoffs and improving optimization decisions in virtual

machines. Our goal is to discover strategies and techniques that improve system performance and

energy efficiency for a wide range of managed language applications. Thus, we target our investi-

gation to runtime services that are most likely to impact execution efficiency, specifically, dynamic

compilation and memory management. We conduct all of our studies using applications written in

Java (today’s most popular managed language), and employ the industry-standard Oracle HotSpot

Java Virtual Machine (JVM) to implement and evaluate each VM-based approach.

We first investigate the questions of if, when, and how to compile and optimize program regions

during execution to maximize program efficiency. Previous research has shown that a conservative

JIT compilation policy is most effective to obtain good runtime performance without impeding

application progress on single-core machines. However, we observe that the best strategy depends

2

on architectural features, such as the number of available computing cores, as well as character-

istics of the runtime compiler, including the number of compiling threads and how fast and how

well methods are optimized. Our first study, presented in the next chapter, explores the properties

of single-tier and multi-tier JIT compilation policies that enable VMs to realize the best program

performance on modern machines. We design and implement an experimental framework to effec-

tively control aspects of if and when methods are compiled, and perform hundreds of experiments

to determine the best strategy for current single/multi-core as well as future many-core architec-

tures.

Our second study, presented in Chapter 3, examines the problem of phase selection in dynamic

compilers. Customizing the applied set of optimization phases for individual methods or programs

has been found to significantly improve the performance of statically generated code. However,

the performance potential of phase selection for JIT compilers is largely unexplored. For this

study, we develop an open-source, production-quality framework for applying program-wide or

method-specific customized phase selections using the HotSpot server compiler as base. Using

this framework, we conduct novel experiments to understand the behavior of optimization phases

relevant to the phase selection problem. We employ long-running genetic algorithms to deter-

mine the performance limits of customized phase selections, and later use these results to evaluate

existing state-of-the-art heuristics.

In contrast to program emulation technology, which is, in most cases, confined to the virtual

machine, most systems provide operating system and hardware support to virtualize applications’

access to memory resources. Despite its widespread popularity and native support, virtual memory

creates a number of challenges for system optimizers and engineers. Specifically, it is very difficult

to obtain precise control over the distribution of memory capacity, bandwidth, and/or power, when

virtualizing system memory. For our second set of studies, we propose innovative memory man-

agement strategies to overcome these challenges and enable more efficient distribution of memory

resources. In Chapter 4, we propose and implement our application guidance framework for vir-

tual memory systems. Our approach improves collaboration between the applications, operating

3

system, and memory hardware (i.e. controllers and DIMMs) during memory management in order

to balance power and performance objectives. It includes an application programming interface

(API) that enables applications to efficiently communicate different provisioning goals concerning

groups of virtual ranges to the kernel. The OS incorporates this information while performing

physical page allocation and recycling to achieve the various objectives. In this work, we describe

the design and implementation of our application guidance framework, and present examples and

experiments to showcase and evaluate the potential of our approach.

Our application guidance framework relies on engineers to manually determine and insert ef-

fective memory usage guidance into application source code to realize provisioning goals. Un-

fortunately, these requirements are infeasible for many workloads and usage scenarios. Thus, for

our final study, which is presented in Chapter 5, we integrate our application guidance framework

with the HotSpot JVM to provide an automatic cross-layer memory management framework. Our

implementation develops a novel profiling-based analysis and code generator in HotSpot that auto-

matically classify and organize Java program objects into separate heap regions to improve energy

efficiency. We evaluate our framework using a combination of custom as well as standard bench-

mark workloads and find that it achieves significant DRAM energy savings without requiring any

source code modifications or re-compilations.

The studies presented in this dissertation make significant progress towards understanding and

improving program efficiency with virtual machine runtime services. We investigate a wide range

of strategies and implement a number of new techniques to optimize power and performance for

managed language applications. In sum, the major contributions of this dissertation are:

• We conduct a thorough exploration of various factors that affect JIT compilation strategy,

and provide policy recommendations for available single/multi-core and future many-core

machines,

• We construct a robust, open-source framework for exploring dynamic compiler phase selec-

tion in the HotSpot JVM, and, using this framework, present the first analysis of the ideal

benefits of phase selection in an online JIT compilation environment,

4

• We design and implement the first-ever virtual memory system to allow applications to pro-

vide guidance to the operating system during memory management, and present several

examples to showcase and evaluate the benefits of this approach, and

• We integrate our application guidance framework with the HotSpot JVM to provide auto-

matic cross-layer memory management, and perform detailed experimental and performance

analysis to demonstrate the energy-saving potential of this approach.

5

Chapter 2

Exploring Single and Multi-Level JIT

Compilation Policy for Modern Machines

Dynamic or Just-in-Time (JIT) compilation is essential to achieve high-performance emulation

for programs written in managed languages, such as Java and C#. It has been observed that a

conservative JIT compilation policy is most effective to obtain good runtime performance without

impeding application progress on single-core machines. At the same time, it is often suggested

that a more aggressive dynamic compilation strategy may perform best on modern machines that

provide abundant computing resources, especially with virtual machines (VM) that are also capable

of spawning multiple concurrent compiler threads. However, comprehensive research on the best

JIT compilation policy for such modern processors and VMs is currently lacking. The goal of

this study is to explore the properties of single-tier and multi-tier JIT compilation policies that can

enable existing and future VMs to realize the best program performance on modern machines.

In this chapter, we design novel experiments and implement new VM configurations to ef-

fectively control the compiler aggressiveness and optimization levels (if and when methods are

compiled) in the industry-standard Oracle HotSpot Java VM to achieve this goal. We find that the

best JIT compilation policy is determined by the nature of the application and the speed and effec-

tiveness of the dynamic compilers. We extend earlier results showing the suitability of conserva-

6

tive JIT compilation on single-core machines for VMs with multiple concurrent compiler threads.

We show that employing the free compilation resources (compiler threads and hardware cores) to

aggressively compile more program methods quickly reaches a point of diminishing returns. At

the same time, we also find that using the free resources to reduce compiler queue backup (com-

pile selected hot methods early) significantly benefits program performance, especially for slower

(highly-optimizing) JIT compilers. For such compilers, we observe that accurately prioritizing

JIT method compiles is crucial to realize the most performance benefit with the smallest hardware

budget. Finally, we show that a tiered compilation policy, although complex to implement, greatly

alleviates the impact of more and early JIT compilation of programs on modern machines.

2.1 Introduction

To achieve application portability, programs written in managed programming languages, such

as Java (Gosling et al., 2005) and C# (Microsoft, 2001), are distributed as machine-independent

intermediate language binary codes for a virtual machine (VM) architecture. Since the program

binary format does not match the native architecture, VMs have to employ either interpretation

or dynamic compilation for executing the program. Additionally, the overheads inherent during

program interpretation make dynamic or Just-in-Time (JIT) compilation essential to achieve high-

performance emulation of such programs in a VM (Smith & Nair, 2005).

Since it occurs at runtime, JIT compilation contributes to the overall execution time of the ap-

plication and can potentially impede application progress and further degrade its response time, if

performed injudiciously. Therefore, JIT compilation policies need to carefully tune if, when, and

how to compile different program regions to achieve the best overall performance. Researchers

invented the technique of selective compilation to address the issues of if and when to compile pro-

gram methods during dynamic compilation (Hölzle & Ungar, 1996; Paleczny et al., 2001; Krintz

et al., 2000; Arnold et al., 2005). Additionally, several modern VMs provide multiple optimization

levels along with decision logic to control and decide how to compile each method. While a single-

7

tier compilation strategy always applies the same set of optimizations to each method, a multi-tier

policy may compile the same method multiple times at distinct optimization levels during the same

program run. The control logic in the VM determines each method’s hotness level (or how much

of the execution time is spent in a method) to decide its compilation level.

Motivation: Due to recent changes and emerging trends in hardware and VM architectures, there

is an urgent need for a fresh evaluation of JIT compilation strategies on modern machines. Re-

search on JIT compilation policies has primarily been conducted on single-processor machines

and for VMs with a single compiler thread. As a result, existing policies that attempt to improve

program efficiency while minimizing application pause times and interference are typically quite

conservative. Recent years have witnessed a major paradigm shift in microprocessor design from

high-clock frequency single-core machines to processors that now integrate multiple cores on a

single chip. These modern architectures allow the possibility of running the compiler thread(s) on

a separate core(s) to minimize interference with the application thread. VM developers are also

responding to this change in their hardware environment by allowing the VM to simultaneously ini-

tiate multiple concurrent compiler threads. Such evolution in the hardware and VM contexts may

require radically different JIT compilation policies to achieve the most effective overall program

performance.

Objective: The objective of this research is to investigate and recommend JIT compilation strate-

gies to enable the VM to realize the best program performance on existing single/multi-core pro-

cessors and future many-core machines. We vary the compilation threshold, the number of initiated

compiler threads, and single and multi-tier compilation strategies to control if, when, and how to

detect and compile important program methods. The compilation threshold is a heuristic value

that indicates the hotness of each method in the program. Thus, more aggressive policies employ a

smaller compilation threshold so that more methods become hot sooner. We induce progressive in-

creases in the aggressiveness of JIT compilation strategies, and the number of concurrent compiler

threads and analyze their effect on program performance. While a single-tier compilation strat-

egy uses a single compiler (and fixed optimization set) for each hot method, a multi-tier compiler

8

policy typically compiles a hot method with progressively advanced (that apply more and better

optimizations to potentially produce higher-quality code), but slower, JIT compilers. Our experi-

ments change the different multi-tier hotness thresholds in lock-step to also partially control how

(optimization level) each method is compiled.1 Additionally, we design and construct a novel VM

configuration to conduct experiments for many-core machines that are not commonly available as

yet.

Findings and Contributions: This is the first work to thoroughly explore and evaluate these various

compilation parameters and strategies 1) on multi-core and many-core machines and 2) together.

We find that the most effective JIT compilation strategy depends on several factors, including:

the availability of free computing resources, program features (particularly the ratio of hot pro-

gram methods), and the compiling speed, quality of generated code, and the method prioritization

algorithm used by the compiler(s) employed. In sum, the major contributions of this research are:

1. We design original experiments and VM configurations to investigate the most effective

JIT compilation policies for modern processors and VMs with single and multi-level JIT

compilation.

2. We quantify the impact of altering ‘if’, ‘when’, and one aspect to ‘how’ methods are com-

piled on application performance. Our experiments evaluate JVM performance with vari-

ous settings for compiler aggressiveness and the number of compilation threads, as well as

different techniques for prioritizing method compiles, with both single and multi-level JIT

compilers.

3. We explain the impact of different JIT compilation strategies on available single/multi-core

and future many-core machines.

1In contrast to the two components of ‘if’ and ‘when’ to compile, the issue of how to compile program regions is

much broader and is not unique to dynamic compilation, as can be attested by the presence of multiple optimization

levels in GCC, and the wide body of research in profile-driven compilation (Graham et al., 1982; Chang et al., 1991;

Arnold et al., 2002; Hazelwood & Grove, 2003) and optimization phase ordering/selection (Whitfield & Soffa, 1997;

Haneda et al., 2005a; Cavazos & O’Boyle, 2006; Sanchez et al., 2011) for static and dynamic compilers. Consequently,

we only explore one aspect of ‘how’ to compile methods in this chapter, and provide a more thorough examination of

these issues in Chapter 3.

9

The rest of this chapter is organized as follows. In the next section, we present background

information and related work on existing JIT compilation policies. We describe our general ex-

perimental setup in Section 2.3. Our experiments exploring different JIT compilation strategies

for VMs with multiple compiler threads on single-core machines are described in Section 2.4. In

Section 2.5, we present results that explore the most effective JIT compilation policies for multi-

core machines. We describe the results of our novel experimental configuration to study compila-

tion policies for future many-core machines in Section 2.6. We explain the impact of prioritizing

method compiles, and effect of multiple application threads in Sections 2.7 and 2.8. Finally, we

present our conclusions and describe avenues for future work in Sections 2.9 and 2.10 respectively.

2.2 Background and Related Work

Several researchers have explored the effects of conducting compilation at runtime on overall pro-

gram performance and application pause times. The ParcPlace Smalltalk VM (Deutsch & Schiff-

man, 1984) followed by the Self-93 VM (Hölzle & Ungar, 1996) pioneered many of the adaptive

optimization techniques employed in current VMs, including selective compilation with multiple

compiler threads on single-core machines. Aggressive compilation on such machines has the po-

tential of degrading program performance by increasing the compilation time. The technique of

selective compilation was invented to address this issue with dynamic compilation (Hölzle & Un-

gar, 1996; Paleczny et al., 2001; Krintz et al., 2000; Arnold et al., 2005). This technique is based

on the observation that most applications spend a large majority of their execution time in a small

portion of the code (Knuth, 1971; Bruening & Duesterwald, 2000; Arnold et al., 2005). Selective

compilation uses online profiling to detect this subset of hot methods to compile at program startup,

and thus limits the overhead of JIT compilation while still deriving the most performance benefit.

Most current VMs employ selective compilation with a staged emulation model (Hansen, 1974).

With this model, each method is interpreted or compiled with a fast non-optimizing compiler at

program start to improve application response time. Later, the VM determines and selectively

10

compiles and optimizes only the subset of hot methods to achieve better program performance.

Unfortunately, selecting the hot methods to compile requires future program execution infor-

mation, which is hard to accurately predict (Namjoshi & Kulkarni, 2010). In the absence of any

better strategy, most existing JIT compilers employ a simple prediction model that estimates that

frequently executed current hot methods will also remain hot in the future (Grcevski et al., 2004;

Kotzmann et al., 2008; Arnold et al., 2000a). Online profiling is used to detect these current

hot methods. The most popular online profiling approaches are based on instrumentation coun-

ters (Hansen, 1974; Hölzle & Ungar, 1996; Kotzmann et al., 2008), interrupt-timer-based sam-

pling (Arnold et al., 2000a), or a combination of the two methods (Grcevski et al., 2004). The

method/loop is sent for compilation if the respective method counters exceed a fixed threshold.

Finding the correct threshold value is crucial to achieve good program startup performance in

a virtual machine. Setting a higher than ideal compilation threshold may cause the virtual ma-

chine to be too conservative in sending methods for compilation, reducing program performance

by denying hot methods a chance for optimization. In contrast, a compiler with a very low com-

pilation threshold may compile too many methods, increasing compilation overhead. Therefore,

most performance-aware JIT compilers experiment with many different threshold values for each

compiler stage to determine the one that achieves the best performance over a large benchmark

suite.

Resource constraints force JIT compilation policies to make several tradeoffs. Thus, selec-

tive compilation limits the time spent by the compiler at the cost of potentially lower application

performance. Additionally, the use of online profiling causes delays in making the compilation de-

cisions at program startup. The first component of this delay is caused by the VM waiting for the

method counters to reach the compilation threshold before queuing it for compilation. The second

factor contributing to the compilation delay occurs as each compilation request waits in the com-

piler queue to be serviced by a free compiler thread. Restricting method compiles and the delay

in optimizing hot methods results in poor application startup performance as the program spends

more time executing in unoptimized code (Kulkarni et al., 2007a; Krintz, 2003; Gu & Verbrugge,

11

2008).

Various strategies have been developed to address these delays in JIT compilation at program

startup. Researchers have explored the potential of offline profiling and classfile annotation (Krintz

& Calder, 2001; Krintz, 2003), early and accurate prediction of hot methods (Namjoshi & Kulka-

rni, 2010), and online program phase detection (Gu & Verbrugge, 2008) to alleviate the first delay

component caused by online profiling. Likewise, researchers have also studied techniques to ad-

dress the second component of the compilation delay caused by the backup and wait time in the

method compilation queue. These techniques include increasing the priority (Sundaresan et al.,

2006) and CPU utilization (Kulkarni et al., 2007a; Harris, 1998) of the compiler thread, and pro-

viding a priority-queue implementation to reduce the delay for the hotter program methods (Arnold

et al., 2000b).

However, most of the studies described above have only been targeted for single-core machines.

There exist few explorations of JIT compilation issues for multi-core machines. Krintz et al. in-

vestigated the impact of background compilation in a separate thread to reduce the overhead of dy-

namic compilation (Krintz et al., 2000). This technique uses a single compiler thread and employs

offline profiling to determine and prioritize hot methods to compile. Kulkarni et al. briefly discuss

performing parallel JIT compilation with multiple compiler threads on multi-core machines, but

do not provide any experimental results (Kulkarni et al., 2007a). Existing JVMs, such as Sun’s

HotSpot server VM (Paleczny et al., 2001) and the Azul VM (derived from HotSpot), support

multiple compiler threads, but do not present any discussions on ideal compilation strategies for

multi-core machines. Prior work by Böhm et al. explores the issue of parallel JIT compilation with

a priority queue based dynamic work scheduling strategy in the context of their dynamic binary

translator (Böhm et al., 2011). Esmaeilzadeh et al. study the scalability of various Java workloads

and their power / performance tradeoffs across several different architectures (Esmaeilzadeh et al.,

2011). Our earlier publications explore some aspects of the impact of varying the aggressiveness

of dynamic compilation on modern machines for JVMs with multiple compiler threads (Kulka-

rni & Fuller, 2011; Kulkarni, 2011). This chapter extends our earlier works by (a) providing

12

more comprehensive results, (b) re-implementing most of the experiments in the latest OpenJDK

JVM that provides a state-of-the-art multi-tier compiler and supports improved optimizations, (c)

differentiating the results and re-analyzing our observations based on benchmark characteristics,

(d) exploring different heuristic priority schemes, and (e) investigating the effects of aggressive

compilation and multiple compiler threads on the multi-tiered JIT compilation strategies. Several

production-grade Java VMs, including the Oracle HotSpot and IBM J9, now adopt a multi-tier

compilation strategy, which make our results with the multi-tiered compiler highly interesting and

important.

2.3 Experimental Framework

The research presented in this chapter is performed using Oracle’s OpenJDK/HotSpot Java virtual

machine (build 1.6.0_25-b06) (Paleczny et al., 2001). The HotSpot VM uses interpretation at pro-

gram startup. It then employs a counter-based profiling mechanism, and uses the sum of a method’s

invocation and loop back-edge counters to detect and promote hot methods for compilation. We

call the sum of these counters the execution count of the method. Methods/loops are determined to

be hot if the corresponding method execution count exceeds a fixed threshold. The HotSpot VM

allows the creation of an arbitrary number of compiler threads, as specified on the command-line.

The HotSpot VM implements two distinct optimizing compilers to improve application per-

formance beyond interpretation. The client compiler provides relatively fast compilation times

with smaller program performance gains to reduce application startup time (especially, on single-

core machines). The server compiler applies an aggressive optimization strategy to maximize

performance benefits for longer running applications. We conducted experiments to compare the

overhead and effectiveness of HotSpot’s client and server compiler configurations. We found that

the client compiler is immensely fast, and only requires about 2% of the time, on average, taken

by the server compiler to compile the same set of hot methods. At the same time, the simple and

fast client compiler is able to obtain most (95%) of the performance gain (relative to interpreted

13

code) realized by the server compiler.

In addition to the single-level client and server compilers, HotSpot provides a tiered compiler

configuration that utilizes and combines the benefits of the client and server compilers. In the most

common path in the tiered compiler, each hot method is first compiled with the client compiler

(possibly with additional profiling code inserted), and later, if the method remains hot, is recom-

piled with the server compiler. Each compiler thread in the HotSpot tiered compiler is dedicated to

either the client or server compiler, and each compiler is allocated at least one thread. To account

for the longer compilation times needed by the server compiler, HotSpot automatically assigns the

compiler threads at a 2:1 ratio in favor of the server compiler. The property of the client compiler to

quickly produce high-quality optimized code greatly influences the behavior of the tiered compiler

under varying compilation loads, as our later experiments in this chapter will reveal.

There is a single compiler queue designated to each (client and server) compiler in the tiered

configuration. These queues employ a simple execution count based priority heuristic to ensure

the most active methods are compiled earlier. This heuristic computes the execution count of each

method in the appropriate queue since the last queue removal to find the most active method. As the

load on the compiler threads increases, HotSpot dynamically increases its compilation thresholds

to prevent either the client or server compiler queues from growing prohibitively long. In addition,

the HotSpot tiered compiler has logic to automatically remove stale methods that have stayed in the

queue for too long. For our present experiments, we disable the automatic throttling of compilation

thresholds and removal of stale methods to appropriately model the behavior of a generic tiered

compilation policy. The tiered compiler uses different thresholds that move in lockstep to tune the

aggressiveness of its component client and server compilers. Table 2.1 describes these compilation

thresholds and their default values for each compiler in the tiered configuration.

The experiments in this chapter were conducted using all the benchmarks from three different

benchmark suites, SPECjvm98 (SPEC98, 1998), SPECjvm2008 (SPEC2008, 2008) and DaCapo-

9.12-bach (Blackburn et al., 2006). We employ two inputs (10 and 100) for benchmarks in the

SPECjvm98 suite, two inputs (small and default) for the DaCapo benchmarks, and a single input

14

Table 2.1: Threshold parameters in the tiered compiler

Parameter Description Client

Default

Server

Default

Invocation Threshold Compile method if invocation count exceeds this threshold 200 5000

Backedge Threshold OSR compile method if backedge count exceeds this threshold 7000 40000

Compile Threshold Compile method if invocation + backedge count exceeds this

threshold (and invocation count > Minimum Invocation Threshold)

2000 15000

Minimum Invocation

Threshold

Minimum number of invocations required before method can be

considered for compilation

100 600

(startup) for benchmarks in the SPECjvm2008 suite, resulting in 57 benchmark/input pairs. Two

benchmarks from the DaCapo benchmark suite, tradebeans and tradesoap, did not always run

correctly with the default version of the HotSpot VM, so these benchmarks were excluded from

our set. In order to limit possible sources of variation in our experiments, we set the number of

application threads to one whenever possible. Unfortunately, several of our benchmarks employ

multiple application threads due to internal multithreading that cannot be controlled by the harness

application. Table 2.2 lists the name, number of invoked methods (under the column labeled #M),

and number of application threads (under the column labeled #AT) for each benchmark in our

suite.

All our experiments were performed on a cluster of dual quad-core, 64-bit, x86 machines

running Red Hat Enterprise Linux 5 as the operating system. The cluster includes three models of

server machine: Dell M600 (two 2.83GHz Intel Xeon E5440 processors, 16GB DDR2 SDRAM),

Dell M605 (two 2.4GHz AMD Opteron 2378 processors, 16GB DDR2 SDRAM), and PowerEdge

SC1435 (two 2.5GHz AMD Opteron 2380 processors, 8GB DDR2 SDRAM). We run all of our

experiments on one of these three models, but experiments comparing runs of the same benchmark

always use the same model. There are no hyperthreading or frequency scaling techniques of any

kind enabled during our experiments.

We disable seven of the eight available cores to run our single-core experiments. Our multi-core

experiments utilize all available cores. More specific variations made to the hardware configuration

are explained in the respective sections. Each benchmark is run in isolation to prevent interference

from other user programs. In order to account for inherent timing variations during the benchmark

runs, all the performance results in this chapter report the average over 10 runs for each benchmark-

15

Table 2.2: Benchmarks used in our experiments.

SPECjvm98 SPECjvm2008 DaCapo-9.12-bach

Name #M #AT Name #M #AT Name #M #AT

_201_compress_100 517 1 compiler.compiler 3195 1 avrora_default 1849 6

_201_compress_10 514 1 compiler.sunflow 3082 1 avrora_small 1844 3

_202_jess_100 778 1 compress 960 1 batik_default 4366 1

_202_jess_10 759 1 crypto.aes 1186 1 batik_small 3747 1

_205_raytrace_100 657 1 crypto.rsa 960 1 eclipse_default 11145 5

_205_raytrace_10 639 1 crypto.signverify 1042 1 eclipse_small 5461 3
_209_db_100 512 1 derby 6579 1 fop_default 4245 1

_209_db_10 515 1 mpegaudio 959 1 fop_small 4601 2

_213_javac_100 1239 1 scimark.fft.small 859 1 h2_default 2154 3

_213_javac_10 1211 1 scimark.lu.small 735 1 h2_small 2142 3

_222_mpegaudio_100 659 1 scimark.monte_carlo 707 1 jython_default 3547 1

_222_mpegaudio_10 674 1 scimark.sor.small 715 1 jython_small 2070 2

_227_mtrt_100 658 2 scimark.sparse.small 717 1 luindex_default 1689 2

_227_mtrt_10 666 2 serial 1121 1 luindex_small 1425 1
_228_jack_100 736 1 sunflow 2015 5 lusearch_default 1192 1

_228_jack_10 734 1 xml.transform 2592 1 lusearch_small 1303 2

xml.validation 1794 1 pmd_default 3881 8

pmd_small 3058 3

sunflow_default 1874 2

sunflow_small 1826 2

tomcat_default 9286 6

tomcat_small 9189 6
xalan_default 2296 1

xalan_small 2277 1

configuration pair. The harness of all our benchmark suites allows each benchmark to be iterated

multiple times in the same VM run. We measure the performance of each benchmark as the time

it takes to invoke and complete one benchmark iteration. Thus, for all of the experiments in the

subsequent sections of this paper, any compilation that occurs is performed concurrently with the

running application.

However, we first conduct experiments to illustrate the compilation and steady-state execution

time differences of the HotSpot server and client compilers for all our benchmark programs. Fig-

ures 2.1 and 2.2 show the results of these experiments. Each experiment employs one of either the

server or client compiler. Regardless of which compiler is used, we use the default server compiler

threshold to identify hot methods to ensure the same set of methods are compiled in our com-

parisons. Each steady-state run disables background compilation to enable all hot methods to be

compiled in the first program iteration. We reset the method execution counts after each iteration

to prevent any other methods from becoming hot in later program iterations. We then allow each

benchmark to iterate 11 more times and record the median runtime of these iterations as the time

of the steady-state run. For each benchmark, Figure 2.1 plots the ratio of compilation time regis-

16

0

0.01

0.02

0.03

0.04

0.05

0.06
C

o
m

p
il

a
ti

o
n

 t
im

e
 (

cl
ie

n
t)

 /

co
m

p
il

a
ti

o
n

 t
im

e
 (

se
rv

e
r)

Benchmarks

Figure 2.1: Ratio of client and sever compile times when compiling the same number of program

methods

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
 w

it
h

 c
o

m
p

il
e

d
 c

o
d

e
 /

ti
m

e
 w

it
h

 i
n

te
rp

re
te

d
 c

o
d

e

Benchmarks

Client Server

0.754 0.797

Figure 2.2: Steady-state program execution times using the server and client compilers as a ratio

of the interpreted program run-time

tered by the client and server compilers, averaged over 10 steady-state program runs. Our Linux

system measures thread times in jiffies. The duration of each jiffy, which is configurable at kernel

compile time, is about 1msec on our system. Some benchmarks compile only a few methods in

our steady-state experiments (the minimum is monte_carlo which has only two hot methods with

the default server compiler threshold), and require very little compilation time. Cases in which

the steady-state run registers less than one jiffy of compilation thread time are reported as zero in

Figure 2.1. As we can see, the client compiler is immensely fast, and only requires about 2% of

the time, on average, taken by the server compiler to compile the same set of methods.

17

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
 w

it
h

 m
u

lt
i-

co
re

 c
o

n
fi

g
.

/

T
im

e
 w

it
h

 s
in

g
le

-c
o

re
 c

o
n

fi
g

.

Benchmarks

server tiered

Figure 2.3: Ratio of multi-core performance to single-core performance for each compiler config-

uration.

Figure 2.2 plots the steady-state benchmark run-time using the client and server compilers as

compared with the time required for interpreted execution. To estimate the degree of variability in

our run-time results, we compute 95% confidence intervals for the difference between the means

as described in (Georges et al., 2007) and plot these intervals as error bars.2 Figure 2 shows that

both the compilers achieve significant program speedups. However, it is interesting to note that

the simple and fast client compiler is able to obtain most of the performance gain realized by the

server compiler. This property of the client compiler to quickly produce high-quality optimized

code greatly influences the behavior of the tiered compiler under varying compilation loads, as our

later experiments in this chapter will reveal.

Finally, we present a study to compare the program performance on single-core and multi-core

machines. Figure 2.3 shows the multi-core performance of each benchmark relative to single-

core performance for both the default server and tiered compiler configurations. Not surprisingly,

we observe that most benchmarks run much faster with the multi-core configuration. Much of

this difference is simply due to increased parallelism, but other micro-architectural effects, such

as cache affinity and inter-core communication, may also impact performance depending on the

workload. Another significant factor, which we encounter in our experiments throughout this

2It is difficult to estimate confidence intervals for the average across all the benchmarks (which is reported as an

average of ratios). For these estimates, we assume the maximum difference between the means for each benchmark

(in either the positive or negative direction) and re-calculate the average.

18

work, is that additional cores enable earlier compilation of hot methods. This effect accounts

for the result that the tiered VM, with its much more aggressive compilation threshold, exhibits a

more pronounced performance improvement, on average, than the server VM. The remainder of

this chapter explores and explains the impact of different JIT compilation strategies on modern and

future architectures using the HotSpot server and tiered compiler configurations.

2.4 JIT Compilation on Single-Core Machines

In this section we report the results of our experiments conducted on single-core processors to

understand the impact of aggressive JIT compilation and more compiler threads in a VM on pro-

gram performance. Our experimental setup controls the aggressiveness of distinct JIT compilation

policies by varying the selective compilation threshold. Changing the compilation threshold can

affect program performance in two ways: (a) by compiling a lesser or greater percentage of the

program code (if a method is compiled), and (b) by sending methods to compile early or late (when

is each method compiled). We first employ the HotSpot server VM with a single compiler thread

to find the selective compilation threshold that achieves the best average performance with our set

of benchmark programs.3 Next, we evaluate the impact of multiple compiler threads on program

performance for machines with a single processor with both the server and tiered compilers in the

HotSpot JVM.

2.4.1 Compilation Threshold with Single Compiler Thread

By virtue of sharing the same computation resources, the application and compiler threads share

a complex relationship in a VM running on a single-core machine. A highly selective compile

threshold may achieve poor overall program performance by spending too much time executing

in non-optimized code resulting in poor overall program run-time. By contrast, a lower than ideal

compile threshold may also produce poor performance by spending too long in the compiler thread.

3The tiered compiler spawns a minimum of two compiler threads, and, is therefore not used in this single compiler

thread configuration.

19

0.8

0.9

1

1.1

1.2

1.3

1.4

250000 100000 50000 25000 10000 5000 1500 500

T
im

e
 a

t
th

re
sh

o
ld

 (
X

)
/

ti
m

e
 a

t
th

re
sh

o
ld

 1
0

,0
0

0

Compilation threshold

0

0.2

0.4

0.6

0.8

1

1.2

250000 100000 50000 25000 10000 5000 1500 500

C
o

m
p

il
a

ti
o

n
 t

h
re

a
d

 t
im

e
 /

a
p

p
li

ca
ti

o
n

 t
h

re
a

d
 t

im
e

Compilation threshold

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

250000 100000 50000 25000 10000 5000 1500 500

T
im

e
 a

t
th

re
sh

o
ld

 (
X

)
/

ti
m

e
 a

t
th

re
sh

o
ld

 1
0

,0
0

0

Compilation threhsold

app. time comp. time

0.01

0.1

1

10

100

250000 100000 50000 25000 10000 5000 1500 500

D
e

la
y

 t
im

e
 a

t
th

re
sh

o
ld

 (
X

)
/

d
e

la
y

 t
im

e
 a

t
th

re
sh

o
ld

 1
0

,0
0

0

Compilation threshold

Compilation queue delay for

methods hot at threshold=10,000

(c) (d)

Figure 2.4: Effect of different compilation thresholds on average benchmark performance on

single-core processors.

Therefore, the compiler thresholds need to be carefully tuned to achieve the most efficient average

program execution on single-core machines over several benchmarks.

We perform an experiment to determine the ideal compilation threshold for the HotSpot server

VM with a single compiler thread on our set of benchmarks. These results are presented in Fig-

ure 2.4(a). The figure compares the average overall program performance at different compile

thresholds to the average program performance at the threshold of 10,000, which is the default

compilation threshold for the HotSpot server compiler. We find that a few of the less aggressive

thresholds are slightly faster, on average, than the default for our set of benchmark programs (al-

though the difference is within the margin of error). The default HotSpot server VM employs two

compiler threads and may have been tuned with applications that run longer than our benchmarks,

which may explain this result. The average benchmark performance worsens at both high and low

compile thresholds.

To better interpret these results, we collect individual thread times during each experiment

20

to estimate the amount of time spent doing compilation compared to the amount of time spent

executing the application. Figure 2.4(b) shows the ratio of compilation to application thread times

at each threshold averaged over all the benchmarks. Thus, compilation thresholds that achieve

good performance spend a significant portion of their overall runtime doing compilation. We can

also see that reducing the compilation threshold increases the relative amount of time spent doing

compilation. However, it is not clear how much of this trend is due to longer compilation thread

times (from compiling more methods) or reduced application thread times (from executing more

native code).

Therefore, we also consider the effect of compilation aggressiveness on each component sep-

arately. Figure 2.4(c) shows the break-down of the overall program execution in terms of the

application and compiler thread times at different thresholds to their respective times at the com-

pile threshold of 10,000, averaged over all benchmark programs. We observe that high thresholds

(> 10,000) compile less and degrade performance by not providing an opportunity to the VM to

compile several important program methods. In contrast, the compiler thread times increase with

lower compilation thresholds (< 10,000) as more methods are sent for compilation. We expected

this increased compilation to improve application thread performance. However, the behavior of

the application thread times at low compile thresholds is less intuitive.

On further analysis we found that JIT compilation policies with lower thresholds send more

methods to compile and contribute to compiler queue backup. We hypothesize that the flood of less

important program methods delays the compilation of the most critical methods, resulting in the

non-intuitive degradation in application performance at lower thresholds. To verify this hypothesis

we conduct a separate set of experiments that measure the average compilation queue delay (time

spent waiting in the compile queue) of hot methods in our benchmarks. These experiments compute

the mean average compilation queue delay only for methods that are hot at the default threshold of

10,000 for each benchmark / compile threshold combination.

Figure 2.4(d) plots the average compilation queue delay at each compile threshold relative to

the average compilation queue delay at the default threshold of 10,000 averaged over the bench-

21

marks.4 As we can see, the average compilation queue delay for hot methods increases dramat-

ically as the compilation threshold is reduced. Thus, we conclude that increasing compiler ag-

gressiveness is not likely to improve VM performance running with a single compiler thread on

single-core machines.

2.4.2 Effect of Multiple Compiler Threads on Single-Core Machines

In this section we analyze the effect of multiple compiler threads on program performance on a

single-core machine with the server and tiered compiler configurations of the HotSpot VM.

2.4.2.1 Single-Core Compilation Policy with the HotSpot Server Compiler

For each compilation threshold, a separate plot in Figure 2.5(a) compares the average overall pro-

gram performance with multiple compiler threads to the average performance with a single com-

piler thread at that same threshold. Intuitively, a greater number of compiler threads should be

able to reduce the method compilation queue delay. Indeed, we notice program performance im-

provements for one or two extra compiler threads, but the benefits do not hold with increasing

number of such threads (>3). We further analyzed the performance degradation with more com-

piler threads and noticed an increase in the overall compiler thread times in these cases. This

increase suggests that several methods that were queued for compilation, but never got compiled

before program termination with a single compiler thread are now compiled as we provide more

VM compiler resources. While the increased compiler activity increases compilation overhead,

many of these methods contribute little to improving program performance. Consequently, the

potential improvement in application performance achieved by more compilations seems unable to

recover the additional compiler overhead, resulting in a net loss in overall program performance.

Figure 2.5(b) compares the average overall program performance in each case to the average

performance of a baseline configuration with a single compiler thread at a threshold of 10,000.

4We cannot compute a meaningful ratio for benchmarks with zero or very close to zero average compilation queue

delay at the baseline threshold. Thus, these results do not include 14 (of 57) benchmarks with an average compilation

queue delay less than 1msec (the precision of our timer) at the default threshold.

22

0.8

0.9

1

1.1

1.2

1.3

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

250000 100000

25000 10000

5000 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

250000 100000

25000 10000

5000 1500

(a) (b)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

250000 100000

25000 10000

5000 1500

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

250000 100000

25000 10000

5000 1500

(c) (d)

Figure 2.5: Effect of multiple compiler threads on single-core program performance in the HotSpot

VM with server compiler. The discrete measured thread points are plotted equi-distantly on the

x-axis.

These results reveal the best compiler policy on single-core machines with multiple compiler

threads. Thus, we can see that, on average, the more aggressive thresholds perform quite poorly,

while moderately conservative thresholds fare the best (with any number of compiler threads).

Our analysis finds higher compiler aggressiveness to send more program methods for compilation,

which includes methods that may not make substantial contributions to performance improvement

(cold methods). Additionally, the default server compiler in HotSpot uses a simple FIFO (first-in

first-out) compilation queue, and compiles methods in the same order in which they are sent. Con-

sequently, the cold methods delay the compilation of the really important hot methods relative to

the application thread, producing the resultant loss in performance.

To further evaluate the configurations with varying compilation resources and aggressiveness

(in these and later experiments), we design an optimal scenario that measures the performance of

each benchmark with all of its methods pre-compiled. Thus, the ‘optimal’ configuration reveals

the best-case benefit of JIT compilation. The dashed line in Figure 2.5(b) shows the optimal run-

23

time on the single-core machine configuration relative to the same baseline startup performance

(single benchmark iteration with one compiler thread and a threshold of 10,000), averaged over all

the benchmarks. Thus, the “optimal” steady-state configuration achieves much better performance

compared to the “startup” runs that compile methods concurrently with the running application

on single-core machines. On average, the optimal performance is about 64% faster than the base-

line configuration and about 54% faster than the fastest compilation thread / compile threshold

configuration (with two compilation threads and a compile threshold of 25,000).

Figure 2.5(c) shows the same plots as in Figure 2.5(b) but only for the 11 (20%) benchmarks

with the lowest compilation to application time ratio. Thus, for applications that spend relatively

little time compiling, only the very aggressive compilation thresholds cause some compilation

queue delay and may produce small performance improvements in some cases. For such bench-

marks, all the hot methods are always compiled before program termination. Consequently, the

small performance improvements with the more aggressive thresholds are due to compiling hot

methods earlier (reduced queue delay). Furthermore, there is only a small performance difference

between the startup and optimal runs. By contrast, Figure 2.5(d) only includes the 11 (20%) bench-

marks with a relatively high compilation to application time ratio. For programs with such high

compilation activity, the effect of compilation queue delay is more pronounced. We find that the

less aggressive compiler policies produce better efficiency gains for these programs, but there is

still much room for improvement as evidenced by optimal performance results.

These observations suggest that a VM that can adapt its compilation threshold based on the

compiler load may achieve the best performance for all programs on single-core machines. Addi-

tionally, implementing a priority-queue to order compilations may also enable the more aggressive

compilation thresholds to achieve better performance. We explore the effect of prioritized method

compiles on program performance in further detail in Section 2.7. Finally, a small increase in

the number of compiler threads can also improve performance by reducing the compilation queue

delay.

24

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 2
 C

T
's

Number of compiler threads (CT's)

100000 20000 4000

2000 1000 500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

100000 20000

4000 2000

1000 500

(a) (b)

0.85

0.9

0.95

1

1.05

1.1

1.15

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

100000 20000

4000 2000

1000 500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

100000 20000

4000 2000

1000 500

(c) (d)

Figure 2.6: Effect of multiple compiler threads on single-core program performance in the HotSpot

VM with tiered compiler. The discrete measured thread points are plotted equi-distantly on the x-

axis.

2.4.2.2 Single-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we explore the effect on program performance of changing the compiler aggres-

siveness and the number of compiler threads with a tiered compiler configuration on single-core

machines. For our experiments with the tiered compiler, we vary the client and server compiler

thresholds in lock-step to adjust the aggressiveness of the tiered compiler and use the correspond-

ing first-level (client) compiler threshold in the graph legends.

Each line-plot in Figure 2.6(a) compares the average overall program performance in the tiered

compiler with multiple compiler threads to the average performance with only one client and one

server compiler thread at that same threshold. In contrast to the server compiler configuration,

increasing the number of compiler threads does not yield any performance benefit and, for larger

increases, significantly degrades performance at every threshold. This effect is likely due to the

combination of two factors: (a) a very fast first-level compiler that prevents significant backup in

25

its compiler queue even with a single compiler thread while achieving most of the performance

benefits of later re-compilations, and (b) the priority heuristic used by the tiered compiler that may

be able to find and compile the most important methods first. Thus, any additional compilations

performed by more compiler threads only increase the compilation overhead without commen-

surately contributing to program performance. In Section 2.7.2, we compare the default tiered

compiler to one which employs FIFO (first-in first-out) compilation queues to evaluate the effect

of prioritized compilation queues on program performance.

Figure 2.6(b) compares the average program performances in each case to the average per-

formance of the baseline tiered configuration with one client and one server compiler thread and

the default threshold parameters (with a client compiler threshold of 2,000). The default tiered

compiler employs significantly more aggressive compilation thresholds compared to the default

stand-alone server compiler, and, on average, queues up more than three times as many methods

for compilation. Consequently, relatively conservative compile thresholds achieve the best perfor-

mance on single-core machines. The dashed line in Figure 2.6(b) plots the runtime of the optimal

configuration (measured as described in the previous section) relative to the runtime of the baseline

tiered configuration. Thus, with the tiered VM on single-core machines, the optimal run-time is

still much faster than any other start-up configuration. However, due to the fast client compiler

and effective priority heuristic, the performance of the tiered VM is significantly closer (10% in

the best case) to the optimal runtime than the server VM configurations presented in the previous

section.

We again observe that applications with extreme (very low or very high) compilation activity

show different performance trends than the average over the complete set of benchmarks. Fig-

ure 2.6(c) plots the average performance of the HotSpot tiered compiler VM at different threshold

and compiler thread configurations for the 20% benchmarks with the lowest compilation to appli-

cation time ratio. As expected, compile threshold aggressiveness and the amount of compilation

resources have much less of a performance impact on these applications. Additionally, the perfor-

mance achieved is much closer to the optimal runtime for this set of benchmarks. However, in con-

26

trast to the server compiler results in Figure 2.5(c), some less aggressive thresholds are marginally

more effective in the tiered compiler, which again indicates that the compilation queue delay is

much less of a factor in the presence of a fast compiler and a good heuristic for prioritizing method

compiles. Alternatively, in Figure 2.6(d), we study benchmarks with relatively high compilation

activity, and find that less aggressive compile thresholds yield very significant performance gains,

due to a very aggressive default threshold used by the tiered compiler.

In summary, for single-core machines it is crucial to select the compiler threshold such that

only the most dominant program methods are sent to compilation. With such an ideal compiler

threshold, only two compiler threads (one client and one server) are able to service all compilation

requests prior to program termination. An ideal threshold combined with a very fast client compiler

and a good priority heuristic negates any benefit of additional compiler threads reducing the queue

delay. A less aggressive threshold lowers program performance by not allowing the tiered VM

to compile all hot methods. In contrast, with more aggressive thresholds, a minimum number of

compiler threads are not able to service all queued methods, producing performance degradations

due to the overhead of increased compiler activity with more compiler threads.

2.5 JIT Compilation on Multi-Core Machines

Dynamic JIT compilation on single-processor machines has to be conservative to manage the com-

pilation overhead at runtime. Modern multi-core machines provide the opportunity to spawn mul-

tiple compiler threads and run them concurrently on separate (free) processor cores, while not

interrupting the application thread(s). As such, it is a common perception that a more aggressive

compilation policy is likely to achieve better application thread and overall program performance

on multi-core machines for VMs with multiple compiler threads. Aggressiveness, in this context,

can imply compiling early or compiling more methods by lowering the compile threshold. In

this section, we report the impact of varying JIT compilation aggressiveness and the number of

compiler threads on the performance of the server and tiered VM on multi-core machines.

27

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

0.25

0.4

0.55

0.7

0.85

1

1.15

1.3

1.45

1.6

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

(a) (b)

0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

25000 10000

5000 1500

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

25000 10000

5000 1500

50

(c) (d)

Figure 2.7: Effect of multiple compiler threads on multi-core application performance with the

HotSpot Server VM

2.5.1 Multi-Core Compilation Policy with the HotSpot Server Compiler

Figure 2.7 illustrates the results of our experiments with the HotSpot server compiler on multi-

core machines. For each indicated compile threshold, a corresponding line-plot in Figure 2.7(a)

shows the ratio of the program performance with different number of compiler threads to the

program performance with a single compiler thread at that same threshold, averaged over our

57 benchmark-input pairs. Thus, we can see that increasing the number of compiler threads up

to seven threads improves application performance at all compile thresholds. However, larger

increases in the number of compiler threads (> 7) derive no performance benefits and actually

degrade performance with the more aggressive compilation thresholds.

As mentioned earlier, additional compiler threads can improve performance by reducing com-

pilation queue delay, allowing the important program methods to be compiled earlier. Early com-

pilation allows a greater fraction of the program execution to occur in optimized native code (rather

than being interpreted), which produces significant gains in program performance. The additional

28

compiler threads impose minimal impediment to the application threads as long as that computa-

tion can be off-loaded onto free (separate) cores. Our existing hardware setup only provides eight

distinct processing cores. Consequently, larger increases in the number of compiler threads cause

application and compilation threads to compete for machine resources. Moreover, configurations

with aggressive compilation thresholds frequently compile methods that derive little performance

benefit. This additional (but incommensurate) compilation overhead can only be sustained as long

as compilation is free, and results in significant performance losses in the absence of free compu-

tational resources.

Figure 2.7(b) compares all the program performances (with different thresholds and different

number of compiler threads) to a single baseline program performance. The selected baseline is the

program performance with a single compiler thread at the default HotSpot server compiler thresh-

old of 10,000. We can see that while the optimal performance (again indicated by the dashed line)

is much faster than the performance of the baseline configuration, increasing compilation activity

on otherwise free compute cores enables the server VM to make up much of this difference. In the

best case (configuration with threshold 5,000 and 7 compiler threads) the combination of increased

compiler aggressiveness with more compiler threads improves performance by 34.6%, on average,

over the baseline. However, most of that improvement (roughly 33%) is obtained by simply re-

ducing the compilation queue delay that is realized by increasing the number of compiler threads

at the default HotSpot (10,000) threshold. Thus, the higher compiler aggressiveness achieved by

lowering the selective compilation threshold seems to offer relatively small benefits over the more

conservative compiler policies.

Another interesting observation that can be made from the plots in Figure 2.7(b) is that ag-

gressive compilation policies require more compiler threads (implying greater computational re-

sources) to achieve good program performance. Indeed, our most aggressive threshold of 50 per-

forms extremely poorly compared to the default threshold with only one compiler thread (over

60% worse), and requires seven compiler threads to surpass the baseline performance.

As the compiler thresholds get more aggressive, we witness (from Figure 2.7(a)) successively

29

larger performance losses with increasing the number of compiler threads beyond seven. These

losses are due to increasing application interference caused by compiler activity at aggressive

thresholds and are a result of the computational limitations in the available hardware. In Sec-

tion 2.6 we construct a simulation configuration to study the behavior of aggressive compilation

policies with large number of compiler threads on (many-core) machines with virtually unlimited

computation resources.

Similar to our single-core configurations, we find that these results change dramatically de-

pending on the compilation characteristics of individual benchmark applications. Figures 2.7(c)

and 2.7(d) plot the average performance at each multi-core compilation threshold and compiler

thread configurations for 20% of the benchmarks with the lowest and highest compilation to appli-

cation time ratios in our baseline configuration respectively. Varying compilation thresholds and

resources has much less of a performance effect on benchmarks that spend relatively little time

doing compilation. The best configuration for these benchmarks (with a compilation threshold of

5000 and two compiler threads) yields less than a 2% improvement over the baseline configuration.

Also, for these benchmarks, the baseline configuration achieves performance that is much closer

to optimal (again, indicated by the dashed line) compared to the overall average in Figure 2.7(b).

Alternatively, for benchmarks that spend relatively more time doing compilation, as shown in Fig-

ure 2.7(d), there is even more room for improvement compared to the average over all benchmarks.

As expected, exploiting the free processor resources to spawn additional compiler threads results

in a more substantial performance benefit (an average efficiency gain of over 60%) for these 11

benchmarks.

2.5.2 Multi-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we evaluate the effect of varying compiler aggressiveness on the overall program

performance delivered by the VM with its tiered compilation policy. The compilation thresholds

for the two compilers in our tiered experimental configurations are varied in lock-step so that they

always maintain the same ratio. For each compilation threshold setting with the tiered compiler,

30

0.8

1

1.2

1.4

1.6

1.8

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 2
 C

T
's

Number of compiler threads (CT's)

20000 4000

2000 1000

500 20

0.5

0.75

1

1.25

1.5

1.75

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

20000 4000

2000 1000

500 20

(a) (b)

0.9

0.95

1

1.05

1.1

1.15

1.2

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

20000 4000

2000 1000

500 20

0.2

0.6

1

1.4

1.8

2.2

2.6

3

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

High comp. time / app. time

highest 11(of 57) benchmarks

20000 4000

2000 1000

500 20

(c) (d)

Figure 2.8: Effect of multiple compiler threads on multi-core application performance with the

HotSpot Tiered VM

a separate plot in Figure 2.8(a) compares the average overall program performance with multiple

compiler threads to the average performance with two (one client and one server) compiler threads

at that same compilation threshold. In stark contrast to our results in Section 2.5.1 with the server

compiler, increasing the number of compiler threads for the tiered compiler only marginally im-

proves performance at any compile threshold. This result is due to the speed and effectiveness

of the HotSpot client compiler. As mentioned earlier in Section 2.3, the HotSpot client compiler

imposes a very small compilation delay, and yet generates code of only a slightly lower quality as

compared to the much slower server compiler. Consequently, although the hot methods promoted

to level-2 (server compiler) compilation may face delays in the compiler queue, its performance

impact is much reduced since the program can still execute in level-1 (client compiler) optimized

code. The small improvement in program performance with more compiler threads (up to seven)

is again the result of reduction in the server compiler queue delay. However, overall we found that

the compiler queue delay is much less of a factor with the tiered compilation policy.

31

0

200

400

600

800

1000

1200

1 2 3 4 7 10 25 50 100

C
o

m
p

il
a

ti
o

n
 t

im
e

 (
in

 j
if

fi
e

s)

w
it

h
 d

e
fa

u
lt

 t
h

re
sh

o
ld

Number of compilation threads

server tiered

0

200

400

600

800

1000

1 2 3 4 7 10 25 50 100N
u

m
b

e
r

o
f

m
e

th
o

d
s

co
m

p
il

e
d

w
it

h
 d

e
fa

u
lt

 t
h

re
sh

o
ld

Number of compilation threads

server tiered

(a) (b)

Figure 2.9: Effect of multiple compiler threads on multi-core compilation activity with the Server

and Tiered VM

Our results also show large and progressively more severe performance losses with increasing

compilation threshold aggressiveness as we increase the number of compiler threads past the num-

ber of (free) available processing cores. In order to explain these performance losses, we extend

our framework to report additional measurements of compilation activity. Figures 2.9(a) and 2.9(b)

respectively show compilation thread times and the number of methods compiled with the server

and tiered VMs with their respective default compile thresholds and with increasing numbers of

compiler threads, averaged over all the benchmarks. We find that, due to its extremely fast client

compiler, the tiered VM employs a much more aggressive compile threshold, which enables it to

compile more methods more quickly, and often finish the benchmark run faster, than the server

VM. However, with its multi-level compilation strategy, this often results in a situation with many

methods remaining in the level-2 (server) compilation queues at the end of the program run. In-

creasing the number of compilation threads enables more of these methods to be (re-)compiled

during the application run. This additional compilation (with lower program speed benefit returns)

obstruct application progress as the number of threads is raised beyond the limits of available hard-

ware. Therefore, we conclude that the number of compiler threads in the tiered VM should be set

within the limits of available hardware in order to prevent sharp performance losses.

Figure 2.8(b) presents the ratio of average program performance delivered by the VM with

varying tiered compilation thresholds and compiler threads when compared to a single baseline

performance (client compiler threshold of 2,000) with two (one client and one server) compiler

32

threads. Thus, employing a small number of compilation threads (< 10) typically achieves the

best performance. This performance is much closer to optimal than the baseline performance with

the server VM, although the server VM shows greater improvements as the number of compiler

threads is increased.

Other trends in the graph in Figure 2.8(b) are similar to those presented with Figure 2.8(a) with

the additional recommendation against employing overly conservative compiler policies on multi-

core machines. Although conservative policies do a good job of reducing compilation overhead

for single-core machines (Figure 2.6(b)), they can lower performance for multi-core machines due

to a combination of two factors: (a) not compiling all the important program methods, and (b)

causing a large delay in compiling the important methods. However, we also find that a wide range

of compiler policies (from the client compiler thresholds of 4,000 to 20) achieve almost identical

performance as long as compilation is free. This observation indicates that (a) not compiling the

important methods (rather than the compiler queue delay) seems to be the dominant factor that can

limit performance with the tiered compiler, and (b) compiling the less important program methods

does not substantially benefit performance.

The plots in Figures 2.8(c) and 2.8(d) only employ the results of benchmarks that show very

low or very high compilation activity respectively, and are constructed similar to the graph in

Figure 2.8(b) in all other aspects. These graphs reiterate the earlier observation that program char-

acteristics greatly influence its performance at different compiler aggressiveness. For benchmarks

with only a few very hot methods (Figure 2.8(c)), varying compiler thresholds has little to no effect

on overall performance. And Figure 2.8(d) shows that the average trends noticed across all of our

benchmarks in Figure 2.8(b) are exaggerated when considered only over the programs displaying

high compilation activity. This graph again indicates that the delay in compiling the hot methods

does not seem to be a major factor affecting program run-time when using tiered compilation with

a fast and good Level-1 compiler.

33

2.6 JIT Compilation on Many-Core Machines

Our observations regarding aggressive JIT compilation policies on modern multi-core machines in

the last section were limited by our existing 8-core processor based hardware. In future years, ar-

chitects and chip developers are expecting and planning a continuously increasing number of cores

in modern microprocessors. It is possible that our conclusions regarding JIT compilation policies

may change with the availability of more abundant hardware resources. However, processors with

a large number of cores (or many-cores) are not easily available just yet. Therefore, in this sec-

tion, we construct a unique experimental configuration to conduct experiments that investigate JIT

compilation strategies for such future many-core machines.

Our experimental setup estimates many-core VM behavior using a single processor/core. To

construct this setup, we first update our HotSpot VM to report the category of each operating

system thread that it creates (such as, application, compiler, garbage-collector, etc.), and to also

report the creation or deletion of any VM/program thread at runtime. Next, we modify the harness

of all our benchmark suites to not only report the overall program execution time, but to also

provide a break-down of the time consumed by each individual VM thread. We use the /proc

file-system interface provided by the Linux operating system to obtain individual thread times, and

employ the JNI interface to access this platform-specific OS feature from within a Java program.

Finally, we also use the thread-processor-affinity interface methods provided by the Linux OS to

enable our VM to choose the set of processor cores that are eligible to run each VM thread. Thus,

on each new thread creation, the VM is now able to assign the processor affinity of the new VM

thread (based on its category) to the set of processors specified by the user on the command-line.

We use this facility to constrain all application and compiler threads in a VM to run on a single

processor core.

Our experimental setup to evaluate the behavior of many-core (unlimited cores) application

execution on a single-core machine is illustrated in Figure 2.10. Figure 2.10(a) shows a snapshot

of one possible VM execution order with multiple compiler threads, with each thread running on

a distinct core of a many-core machine. Our experimental setup employs the OS thread affinity

34

Core1

Core1

Core2

Core3

Core4

(b) Single−core simulation of multi−core execution

(a) Multi−core execution

Application

Thread

Compiler

Thread
A C

A C1 A C1

A A A A A A A A A

C1C1

C2 C3 A C1 C2 A A A C1 C2 A A C1 A

C1

C2C2C2

C3

C1C1

Figure 2.10: Simulation of multi-core VM execution on single-core processor

interface to force all application and compiler threads to run on a single core, and relies on the

OS round-robin thread scheduling to achieve a corresponding thread execution order that is shown

in Figure 2.10(b). It is important to note that JIT compilations in our simulation of many-core

VM execution (on single-core machine) occur at about the same time relative to the application

thread as on a physical many-core machine. Now, on a many-core machine, where each compiler

thread runs on its own distinct core concurrently with the application thread, the total program

run-time is equal to the application thread run-time alone, as understood from Figure 2.10(a).

Therefore, our ability to precisely measure individual application thread times in our single-core

simulation enables us to realistically emulate an environment where each thread has access to its

own core. Note that, while this configuration is not by itself new, its application to measure “many-

core” performance is novel. This framework, for the first time, allows us to study the behavior of

different JIT compilation strategies with any number of compiler threads running on separate cores

on future many-core hardware.

35

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

50

(a) (b)

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

25000 10000

5000 1500

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

25000 10000

5000 1500

50

(c) (d)

Figure 2.11: Effect of multiple compiler threads on many-core application performance with the

HotSpot Server VM

2.6.1 Many-Core Compilation Policy with the HotSpot Server Compiler

We now employ our many-core experimental setup to conduct similar experiments to those done

in Section 2.5.1. Figure 2.11 shows the results of these experiments and plots the average applica-

tion thread times with varying number of compiler threads and compiler aggressiveness for all of

our benchmark applications. These plots correspond with the graphs illustrated in Figure 2.7. In

order to assess the accuracy of our simulation, we plot Figure 2.12(a), which shows a side-by-side

comparison of a subset of the results for the multi and many-core configurations with 1-7 com-

piler threads. From these plots, we can see that the trends in these results are mostly consistent

with our observations from the last section for a small (≤ 7) number of compiler threads. This

similarity validates the ability of our simple simulation model to estimate the effect of JIT com-

pilation policies on many-core machines, in spite of the potential differences between inter-core

communication, cache models and other low-level microarchitectural effects.

Figure 2.11(a) shows that, unlike the multi-core plots in Figure 2.7(a), given unlimited comput-

36

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 7

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

1
0

0
0

0
T

 t
h

re
sh

o
ld

 1
 C

T

Number of compiler threads (CT's)

Server VM 25000-multi 25000-many

10000-multi 10000-many

50-multi 50-many

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

2 3 4 7

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Tiered VM
20000-multi 20000-many

2000-multi 2000-many

20-multi 20-many

(a) (b)

Figure 2.12: Comparison of multi- and many-core performance results for the server and tiered

VM.

ing resources, application thread performance for aggressive compiler thresholds continues gaining

improvements beyond a small number of compiler threads. Thus, the performance degradation for

the more aggressive thresholds beyond about 7-10 compiler threads in the last section is, in fact,

caused due to the limitations of the underlying 8-core hardware. This result shows the utility of

our novel setup to investigate VM properties for future many-core machines. From the results plot-

ted in Figure 2.11(b), we observe that the more aggressive compilation policies eventually (with

> 10 compiler threads) yield performance gains over the baseline server compiler threshold of

10,000 with one compiler thread. Additionally, we note that the difference between the baseline

configuration and the optimal performance (indicated by the dashed line in Figure 2.11(b)) with

our many-core simulation is similar to our results with multi-core machines.

We also find that isolating and plotting the performance of benchmarks with relatively small

or relatively large amounts of compilation activity in our many-core configuration shows different

trends than our complete set of benchmarks. As shown in Figure 2.11(c), increasing the number

of compiler threads for benchmarks that spend relatively little time compiling does not have a sig-

nificant impact on performance at any threshold. At the same time, early compilation of the (small

number of) hot methods reduces the benchmark run-times at aggressive compilation thresholds.

Alternatively, as seen from Figure 2.11(d), benchmarks with more compilation activity tend to

show even starker performance improvements with increasing number of compiler threads. This

result makes intuitive sense, as applications that require more compilation yield better performance

37

when we allocate additional compilation resources. Comparing the optimal performance over each

set of benchmarks, we find that our many-core experiments show trends that are similar to our pre-

vious results – benchmarks with relatively little compilation activity achieve performance that is

much closer to optimal, while benchmarks with relatively high compilation activity have more

room for performance improvement.

2.6.2 Many-Core Compilation Policy with the HotSpot Tiered Compiler

In this section we analyze the results of experiments that employ our many-core framework to

estimate the average run-time behavior of programs for the tiered compiler strategy with the avail-

ability of unlimited free compilation resources. The results in this section enable us to extend our

observations from Section 2.5.2 to many-core machines. The results in Figures 2.13(a) and 2.13(b)

again reveal that, in a wide range of compilation thresholds, changing compiler aggressiveness has

a smaller effect on performance as compared to the single-level server compiler. As we expect, a

side-by-side comparison of the multi and many-core results in Figure 2.12(b) shows that the trends

in these results are mostly consistent with the results in Section 2.5.2 for a small number of com-

piler threads. The most distinctive observation that can be made from our many-core experiments

is that, given sufficient computing resources, there is no significant performance loss with larger

numbers of compiler threads since all compilation activity is considered free. Unfortunately, as

noticed with the multi-core results, increasing the number of compiler threads is likely to only

produce a modest impact on program run-time with the tiered compiler. This observation again in-

dicates that techniques to reduce the delay in compiling hot methods are not as effective to improve

run-time performance with the tiered compiler.

Figures 2.13(c) and 2.13(d) plot the same program run-time ratio as Figure 2.13(b), but only

for benchmarks that have a very low or very high compilation activity. As observed in all similar

plots earlier, benchmarks with low compilation activity have only a small number of very active

methods, and all compiler aggressiveness levels produce similar performances. Benchmarks with

a high compilation load mostly exaggerate the trends noticed over all benchmarks (Figure 2.13(b)).

38

0.85

0.9

0.95

1

1.05

1.1

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

 2
 C

T
's

Number of compiler threads (CT's)

20000 4000 2000

1000 500 20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

20000 4000 2000

1000 500 20

(a) (b)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

Low comp. time / app. time

lowest 11 (of 57) benchmarks

20000 4000

2000 1000

500 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 7 10 25 50 100

T
im

e
,

(P
)T

 t
h

re
sh

o
ld

,
(X

)
C

T
 /

T
im

e
,

2
0

0
0

T
 t

h
re

sh
o

ld
 2

 C
T

's

Number of compiler threads (CT's)

High comp. time / app. time

highest 11 (of 57) benchmarks

20000 4000

2000 1000

500 20

(c) (d)

Figure 2.13: Effect of multiple compiler threads on many-core application performance with the

HotSpot Tiered VM

Very conservative compiler thresholds cause large performance losses for such benchmarks. Ad-

ditionally, with free compiler resources, higher compiler aggressiveness can produce marginally

better results than the default threshold for such benchmarks by compiling and optimizing a larger

portion of the program.

2.7 Effect of Priority-Based Compiler Queues

Aggressive compilation policies can send a lot of methods to compile, which may back-up the

compile queue. Poor method ordering in the compiler queue may result in further delaying the

compilation of the most important methods, as the VM spends its time compiling the less critical

program methods. Delaying the generation of optimized code for the hottest methods will likely

degrade application performance. An algorithm to effectively prioritize methods compiles may

be able to nullify the harmful effects of back-up in the compiler queue. In this section, we study

the effect of different compiler queue prioritization schemes on the server and tiered compiler

39

configurations.

We present results of experiments with three different priority queue implementations. The

first-in-first-out (FIFO) queue implementation is the default strategy employed by the HotSpot

server compiler that compiles all methods in the order they are sent for compilation by the appli-

cation threads. By default, the HotSpot tiered compiler uses a heuristic priority queue technique

for ordering method compiles. When selecting a method for compilation with this heuristic, the

tiered compiler computes an event rate for every eligible method and selects the method with the

maximum event rate. The event rate is simply the sum of invocation and backedge counts per

millisecond since the last dequeue operation. We modified the HotSpot VM to make the FIFO and

tiered queue implementations available to the multi-stage tiered and single-stage server compilers

respectively.

Both the FIFO and tiered techniques for ordering method compiles use a completely online

strategy that only uses past program behavior to detect hot methods to compile to speed-up the

remaining program run. Additionally, the more aggressive JIT compilation policies make their

hotness decisions earlier, giving any online strategy an even reduced opportunity to accurately

assess method priorities. Therefore, to set a suitable goal for the online compiler priority queue

implementations, we attempt to construct an ideal strategy for ordering method compilations. An

ideal compilation strategy should be able to precisely determine the actual hotness level of all

methods sent to compile, and always compile them in that order. Unfortunately, such an ideal

strategy requires knowledge of future program behavior.

In lieu of future program information, we devise a compilation strategy that prioritizes method

compiles based on their total execution counts over an earlier profile run. With this strategy, the

compiler thread always selects and compiles the method with the highest profiled execution counts

from the available candidates in the compiler queue. Thus, our ideal priority-queue strategy re-

quires a profile-run of every benchmark to determine its method hotness counts. We collect these

total method hotness counts during this previous program run, and make them available to the ideal

priority algorithm in the measured run. We do note that even our ideal profile-driven strategy may

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

T
ie

re
d

 P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

T
im

e
,

F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 7 10 25 50 100

T
im

e
,

Id
e

a
l

P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

T
im

e
,

F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

(a)

(b)

Figure 2.14: Performance of the tiered and ideal compiler priority algorithms over FIFO for

HotSpot server compiler on single-core machines

not achieve the actual best results because the candidate method with the highest hotness level may

still not be the best method to compile at that point during program execution.

2.7.1 Priority-Based Compiler Queues in the HotSpot Server Compiler

Our results in the earlier sections suggest that the relatively poor performance achieved by aggres-

sive JIT compilation policies in the server compiler may be an artifact of the FIFO compiler queue

that cannot adequately prioritize the compilations by actual hotness levels of application meth-

ods. Therefore, in this section, we explore and measure the potential of different priority queue

implementations to improve the performance obtained by different JIT compilation strategies.

2.7.1.1 Single-Core Machine Configuration

Figures 2.14(a) and 2.14(b) show the performance benefit of the tiered and ideal compiler prior-

ity queue implementations, respectively. Each line in these graphs is plotted relative to the de-

fault FIFO priority queue implementation with a single compiler thread at the default threshold of

10,000 on single-core machines. These graphs reveal that the online tiered prioritization technique

is not able to improve performance over the simple FIFO technique and actually results in a per-

formance loss for a few benchmarks. In contrast, the VM performance with the ideal prioritization

scheme shows that accurate assignment of method priorities is important, and allows the smaller

compile thresholds to also achieve relatively good average program performance for small number

41

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 7 10 25 50 100

T
im

e
,

T
ie

re
d

 P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

T
im

e
,

F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000

5000 1500

50

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 7 10 25 50 100

P
e

rf
.

Id
e

a
l

P
Q

,
(P

)
T

H
,

(X
)

C
T

 /

P
e

rf
.,

 F
IF

O
 P

Q
,

1
0

0
0

0
 T

H
,

1
 C

T

Number of compiler threads (CT's)

25000 10000 5000

1500 50

(a)

(b)

Figure 2.15: Performance of the tiered and ideal compiler priority algorithms over FIFO for

HotSpot server compiler on many-core machines

of compiler threads.

We had also discovered (and reported in Section 2.4.2) that initiating a greater number of

compiler threads on single-core machines results in compiling methods that are otherwise left

uncompiled (in the compiler queue) upon program termination with fewer compiler threads. The

resulting increase in the compilation overhead is not sufficiently compensated by the improved

application efficiency, resulting in a net overall performance loss. We find that this effect persists

regardless of the method priority algorithm employed. We do see that accurately ordering the

method compiles enables the VM with our ideal priority queue implementation to obtain better

performance than the best achieved with the FIFO queue.

2.7.1.2 Many-Core Machine Configuration

Figures 2.15(a) and 2.15(b) compare the performance results of using our tiered and ideal compiler

priority queue, respectively, with a baseline VM that uses the simple FIFO-based compiler queue

implementation with the compile threshold of 10,000 for many-core machines. The results with

the ideal priority queue implementation show that appropriately sorting method compiles signif-

icantly benefits program performance at all threshold levels. At the same time, the performance

benefits are more prominent for aggressive compile thresholds. This behavior is logical since more

aggressive thresholds are more likely to flood the queue with low-priority compiles that delay the

compilation of the hotter methods with the FIFO queue.

42

We also find that the best average benchmark performance with our ideal priority queue for

every threshold plot is achieved with a smaller number of compiler threads, especially for the more

aggressive compiler thresholds. This result shows that our ideal priority queue does realize its

goal of compiling the hotter methods before the cold methods. The later lower priority method

compilations seem to not make a major impact on program performance.

Finally, we can also conclude that using a good priority compiler queue allows more aggres-

sive compilation policies (that compile a greater fraction of the program early) to improve perfor-

mance over a less aggressive strategy on multi/many-core machines. Moreover, a small number of

compiler threads is generally sufficient to achieve the best average application thread performance.

Overall, the best aggressive compilation policy improves performance by about 30% over the base-

line configuration, and by about 9% over the best performance achieved by the server VM’s default

compilation threshold of 10,000 with any number of compiler threads. Unfortunately, the online

tiered prioritization heuristic is again not able to match the performance of the ideal priority queue.

Thus, more research may be needed to devise better online priority algorithms to achieve the most

effective overall program performance on modern machines.

2.7.2 Priority-Based Compiler Queues in the HotSpot Tiered Compiler

As explained earlier, the HotSpot tiered configuration uses a simple and fast priority heuristic to

order methods in the queue. In this section, we describe the impact of FIFO, tiered (default), and

ideal prioritization algorithms for all the compiler queues in the tiered configuration.

We find that prioritizing method compiles has no significant effect on program performance at

any compiler aggressiveness for the tiered compiler on all machines configurations. These results

suggest that performance behavior with the tiered compilers is dominated by the very fast client

compiler, which generates good quality code without causing a significant compiler queue backup.

The very hot methods that are promoted to be further optimized by the server compiler do take time

and may cause queue back-up. We find that larger server compiler overhead increases program

runtime on single-core machines, but not on the many-core machines where compilation is free.

43

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20,000 1 2

4 7

10

0.5

1

1.5

2

2.5

3

3.5

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20 1 2

4 7

10

(a) (b)

Figure 2.16: Effect of different numbers of application threads on single-core performance with

the HotSpot Tiered VM

2.8 Effect of Multiple Application Threads

All our earlier experiments were primarily conducted with single-threaded benchmarks. However,

real-world applications widely vary in the number and workload of concurrent application threads.

In this section, we explore the effect of compiler aggressiveness and resources on the performance

of benchmarks with different numbers of application threads.

Experiments in this section were conducted using 16 SPECjvm2008 benchmarks (all except

derby).5 Our other benchmark suites do not allow an easy mechanism to uniformly and precisely

control the number of spawned application threads. While SPECjvm98 only permits runs with a

fixed number of application threads, many of the DaCapo programs spawn a variable numbers of

internal threads that cannot be controlled by the harness (see Table 2.2). For each VM configu-

ration, we selected three compilation thresholds (least aggressive, most aggressive, and default)

and ran the benchmarks with a different number of compiler and application threads to under-

stand their interactions. Results with the server and tiered VMs show similar application–compiler

thread interaction trends, and therefore, we only report results with the tiered VM in this section.

Figures 2.16(a) and 2.16(b) show the results of these experiments with the tiered VM on our

single-core configuration for the least (CT=20,000) and most aggressive (CT=20) compile thresh-

olds, respectively. Each line in the figures (plotted for a specific number of application threads

5SPECjvm2008 automatically scales the benchmark workload in proportion to the number of application threads.

This causes the derby benchmark with a greater number of application threads to often fail with an out-of-memory

error.

44

0.8

0.85

0.9

0.95

1

1.05

1.1

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20,000 1 2

4 7

10

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 7 10 25 50 100T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s,

 (
X

)
C

T
 /

T
im

e
,

P
(T

)
a

p
p

.
th

re
a

d
s

1
 C

T

Number of compilation threads (CT's)

Threshold = 20
1 2

4 7

10

(a) (b)

Figure 2.17: Effect of different numbers of application threads on multi-core performance with the

HotSpot Tiered VM

as indicated in the legend) shows the ratio of program speed with a different number of compiler

threads to the performance with a single compiler thread and that same number of application

threads. A separate baseline for each application thread configuration is necessitated because

SPECjvm2008 employs a different workload size for each such setting. As explained previously

in Section 2.4.2.2 (Figure 2.6), Figure 2.16 again shows that a fast and high-quality level-1 com-

piler that doesn’t cause much queue delay is responsible for the loss in program performance with

one (or few) application threads as the number of compiler threads are increased. However, we

now observe that the magnitude of this loss diminishes as the number of application threads is

increased. We believe this effect is caused by the change in relative application thread interference

that is due to the compiler threads servicing less important program methods with limited hard-

ware resources. In other words, the likelihood of the OS scheduler selecting an application thread

is smaller when there are fewer application threads in the run queue. Thus, adding application

threads diminishes the relative loss in performance by increasing the likelihood that an application

thread runs.

Another interesting trend we noticed in both the server and tiered VMs can be see from the

multi-core experiments displayed in Figure 2.17. We find that (especially at less aggressive com-

pile thresholds) configurations with larger numbers of application threads tend to show slightly

larger improvements as the number of compiler threads is increased. In programs with multiple

application threads, the output of a compilation may be used simultaneously in threads execut-

45

ing in parallel. Thus, early compilations may benefit more of the application’s computation in

comparison to single-threaded applications.

We found that our many-core experiments also demonstrate very similar trends. However, in

the absence of interference to the application threads with unlimited computation resources, we do

not find any significant performance losses with larger numbers of compiler threads. These results

also support the observation that configurations with more application threads tend to show more

pronounced performance improvements from early compilation.

2.9 Conclusions

Many virtual machines now allow the concurrent execution of multiple compiler threads to exploit

the abundant computing resources available in modern processors to improve overall program

performance. It is expected that more aggressive JIT compilation strategies may be able to lower

program run-time by compiling and optimizing more program methods early. The goal of this work

is to explore the potential performance benefit of more aggressive JIT compilation policies for

modern multi/many-core machines and VMs that support multiple simultaneous compiler threads.

We explore the properties of two VM compiler configurations: a single-level highly optimizing

(but slow) server compiler, and a multi-level tiered compiler. The HotSpot tiered compiler uses

a very fast (but lightly optimizing) client compiler at the first stage, and a powerful SSA-based

(server) compiler for re-compiling the very hot methods. Due to its re-compilations, the tiered

compiler induces a higher compilation load compared to the single-level server compiler. Our

experiments vary the hotness thresholds to control compiler aggressiveness, and employ different

number of concurrent compiler threads to exploit free computation resources. We also develop a

novel experimental framework to evaluate our goal for future many-core processors.

Results from our experiments allow us to make several interesting observations:

1. Properties of the tiered compiler are largely influenced by the fast client compiler that is able

to obtain most of the performance benefits of the slower server compiler at a small fraction

46

of the compilation cost.

2. Program features, in particular the ratio of hot program methods, impact their performance

behavior at different compiler aggressiveness levels. We found that programs with a low

compilation to application time ratio are not significantly affected by varying compiler ag-

gressiveness levels or by spawning additional compiler threads.

3. On single-core machines, compilation can impede application progress. The best compila-

tion policy for such machines seems to be an aggressiveness level that only sends as many

methods to compile as can be completely serviced by the VM in 1-2 compiler threads for

most benchmarks.

4. For machines with multiple cores, methods compiled by a moderately aggressive compile

threshold are typically sufficient to obtain the best possible performance. Compiling any

more methods quickly results in diminishing returns and very minor performance gains.

5. Reducing the compiler queue delay and compiling early is more important to program per-

formance than compiling all program methods. Spawning more compiler threads (at a given

compilation aggressiveness) is an effective technique to reduce the compiler queue delay.

6. On single-core and multi-core machines, an excessive amount of compiler activity and

threads may impede program progress by denying the application threads time to run on the

CPU. This effect is reduced as the ratio of application to compiler threads increase. We also

saw evidence that benchmarks with more application threads tend to show slightly sharper

improvements from early compilation.

7. The tiered VM, with its extremely fast client compiler, is able to compile methods more

quickly with fewer compilation resources, and typically outperforms the server VM on

single-core machines or when the number of compiler threads is kept at a minimum. Al-

ternatively, when there are additional computing resources available, increasing the number

of compiler threads can sharply improve performance with the server VM.

47

8. Effective prioritization of method compiles is important to find and compile the most impor-

tant methods early, especially for the slow, powerful, highly-optimizing compilers. However,

additional research is necessary to find good online prioritization algorithms.

9. Initiating more compiler threads than available computing resources typically hurts perfor-

mance.

Based on these observations we make the following recommendations regarding a good com-

pilation policy for modern machines: (a) JIT compilers should use an adaptive compiler aggres-

siveness based on availability of free computing resources. At the very least VMs should employ

two (sets of) compiler thresholds, a conservative (large) threshold when running on single-core

processors, and moderately aggressive (small) threshold on multi/many-core machines. (b) Spawn

as many compiler threads as available free compute cores (and as constrained by the specific power

budget). (c) Employ an effective priority queue implementation to reduce the compilation queue

delay for the slower compilers. (d) The more complex tiered compilation strategies used in some

of the existing state-of-the-art JVMs can achieve the most effective startup program performance

with minimal compiler threads and little need for effective prioritization of method compiles. We

believe that our comprehensive research will guide future VM developers in making informed

decisions regarding how to design and implement the most effective JIT compilation policies to

achieve the best application performance.

2.10 Future Work

This work presents several interesting avenues for future research. First, this work shows that

the availability of abundant computation resources in future machines will allow the possibility

of program performance improvement by early compilation of a greater fraction of the program.

With the development of profile-driven optimization phases, future work will have to consider the

effect of early compilation on the amount of collected profile information and resulting impact on

generated code. Additionally, researchers may also need to explore the interaction of increased

48

compiler activity with garbage collection. More native code produced by aggressive JIT compila-

tion can raise memory pressure and garbage collection overheads, which may then affect program

non-determinism due to the increased pause times associated with garbage collections. Second,

in this chapter we explored some priority queue implementations that may be more suitable for

aggressive compilation policies, especially with a slow, highly optimizing compiler. We plan to

continue our search for better method prioritization schemes in the future. Third, this work shows

that the optimal settings for compilation threshold and the number of compiling threads depend on

factors, such as application characteristics, that cannot be determined statically. Thus, we plan to

conduct experiments to study the performance potential of adaptively scaling these parameters at

runtime. Fourth, this work primarily focuses on exploring if and when to compile program methods

to maximize overall program performance for modern machines. We do consider some aspects of

how to compile with the tiered HotSpot configuration. However, how to compile program regions

is a much broader research topic that includes issues such as better selection and ordering of op-

timizations at different compilation levels. The following chapter presents research we conducted

to address some of these issues in the HotSpot VM. We plan to exploit the observations from this

work to focus on optimizations (and methods) with the greatest impact on program performance

and build new and more effective online models. Finally, we are currently also conducting similar

experiments in other virtual machines (JikesRVM) to see if our conclusions from this work hold

across different VMs. Later, we plan to also validate our results for different processor architec-

tures.

49

Chapter 3

Performance Potential of Optimization

Phase Selection During Dynamic JIT

Compilation

Phase selection is the process of customizing the applied set of compiler optimization phases for

individual functions or programs to improve performance of generated code. Researchers have re-

cently developed novel feature-vector based heuristic techniques to perform phase selection during

online JIT compilation. While these heuristics improve program startup speed, steady-state per-

formance was not seen to benefit over the default fixed single sequence baseline. Unfortunately, it

is still not conclusively known whether this lack of steady-state performance gain is due to a fail-

ure of existing online phase selection heuristics, or because there is, indeed, little or no speedup

to be gained by phase selection in online JIT environments. The goal of this work is to resolve this

question, while examining the phase selection related behavior of optimizations, and assessing and

improving the effectiveness of existing heuristic solutions.

We conduct experiments to find and understand the potency of the factors that can cause the

phase selection problem in JIT compilers. Next, using long-running genetic algorithms we de-

termine that program-wide and method-specific phase selection in the HotSpot JIT compiler can

50

produce ideal steady-state performance gains of up to 15% (4.3% average) and 44% (6.2% aver-

age) respectively. We also find that existing state-of-the-art heuristic solutions are unable to realize

these performance gains (in our experimental setup), discuss possible causes, and show that ex-

ploiting knowledge of optimization phase behavior can help improve such heuristic solutions. Our

work develops a robust open-source production-quality framework using the HotSpot JVM to fur-

ther explore this problem in the future.

3.1 Introduction

An optimization phase in a compiler transforms the input program into a semantically equivalent

version with the goal of improving the performance of generated code. Quality compilers im-

plement many optimizations. Researchers have found that the set of optimizations producing the

best quality code varies for each method/program and can result in substantial performance bene-

fits over always applying any single optimization sequence (Hoste & Eeckhout, 2008; Cavazos &

O’Boyle, 2006). Optimization phase selection is the process of automatically finding the best set

of optimizations for each method/program to maximize performance of generated code, and is an

important, fundamental, but unresolved problem in compiler optimization.

We distinguish phase selection from the related issue of phase ordering, which explores the

effect of different orderings of optimization phases on program performance. We find that although

phase ordering is possible in some research compilers, such as VPO (Kulkarni et al., 2007b) and

Jikes Research Virtual Machine (VM) (Kulkarni & Cavazos, 2012), reordering optimization phases

is extremely hard to support in most production systems, including GCC (Fursin et al., 2011)

and the HotSpot VM, due to their use of multiple intermediate formats and complex inherent

dependencies between optimizations. Therefore, our work for this chapter conducted using the

HotSpot JVM only explores the problem of phase selection by selectively turning optimization

phases ON and OFF.

The problem of optimization selection has been extensively investigated by the static compiler

51

community (Almagor et al., 2004; Hoste & Eeckhout, 2008; Fursin et al., 2011; Triantafyllis et al.,

2003). Unfortunately, techniques employed to successfully address this problem in static compilers

(such as iterative compilation) are not always applicable to dynamic or JIT (Just-in-Time) compil-

ers. Since compilation occurs at runtime, one over-riding constraint for dynamic compilers is the

need to be fast so as to minimize interference with program execution and to make the optimized

code available for execution sooner. To realize fast online phase selection, researchers have de-

veloped novel techniques that employ feature-vector based machine-learning heuristics to quickly

customize the set of optimizations applied to each method (Cavazos & O’Boyle, 2006; Sanchez

et al., 2011). Such heuristic solutions perform the time-consuming task of model learning offline,

and then use the models to quickly customize optimization sets for individual programs/methods

online during JIT compilation.

It has been observed that while such existing online phase selection techniques improve pro-

gram startup (application + compilation) speed, they do not benefit throughput or steady-state per-

formance (program speed after all compilation activity is complete). Program throughput is very

important to many longer-running applications. Additionally, with the near-universal availability

of increasingly parallel computing resources in modern multi/many-core processors and the ability

of modern VMs to spawn multiple asynchronous compiler threads, researchers expect the compila-

tion overhead to become an even smaller component of the total program runtime (Kulkarni, 2011).

Consequently, achieving steady-state or code-quality improvements is becoming increasingly im-

portant for modern systems. Unfortunately, while researchers are still investing in the development

of new techniques to resolve phase selection, we do not yet conclusively know whether the lack of

steady-state performance gain provided by existing online phase selection techniques is a failure of

these techniques, or because there is, indeed, little or no speedup to be gained by phase selection in

online environments. While addressing this primary question, we make the following contributions

in this work.

1. We conduct a thorough analysis to understand the phase selection related behavior of JIT

compiler optimization phases and identify the potency of factors that could produce the

52

phase selection problem,

2. We conduct long-running (genetic algorithm based) iterative searches to determine the ideal

benefits of phase selection in online JIT environments,

3. We evaluate the accuracy and effectiveness of existing state-of-the-art online heuristic tech-

niques in achieving the benefit delivered by (the more expensive) iterative search techniques

and discuss improvements, and

4. We construct a robust open-source framework for dynamic JIT compiler phase selection

exploration in the standard Sun/Oracle HotSpot Java virtual machine (JVM) (Paleczny et al.,

2001). Our framework prepares 28 optimizations in the HotSpot compiler for individual

fine-grain control by different phase selection algorithms.

The rest of the chapter is organized as follows. We present related work in the next section. We

describe our HotSpot based experimental framework and benchmark set in Section 3.3. We explore

the behavior of HotSpot compiler optimizations and present our observations in Section 3.4. We

present our results on the ideal case performance benefits of phase sequence customization at the

whole-program and per-method levels in Section 3.5. We determine the effectiveness of existing

feature-vector based heuristic techniques and provide feedback on improving them in Section 3.6.

Finally, we present our planned future work and the conclusions of this study in Sections 3.7 and

3.8 respectively.

3.2 Background and Related Work

In this section we provide some overview and describe related works in the area of optimization

phase selection research. Phase selection and ordering are long-standing problems in compiler

optimization. Several studies have also discovered that there is no single optimization set that can

produce optimal code for every method/program (Almagor et al., 2004). A common technique to

address the phase selection problem in static compilers is to iteratively evaluate the performance

of many/all different phase sequences to find the best one for individual methods or programs.

53

Unfortunately, with the large number of optimizations present in modern compilers (say, n), the

search space of all possible combinations of optimization settings (2n) can be very large. Therefore,

researchers have in the past employed various techniques to reduce the space of potential candidate

solutions. Chow and Wu applied a technique called fractional factorial design to systematically

design a series of experiments to select a good set of program-specific optimization phases by

determining interactions between phases (Chow & Wu, 1999). Haneda et al. employed statistical

analysis of the effect of compiler options to prune the phase selection search space and find a

single compiler setting for a collection of programs that performs better than the standard settings

used in GCC (Haneda et al., 2005b). Pan and Eigenmann developed three heuristic algorithms to

quickly select good compiler optimization settings, and found that their combined approach that

first identifies phases with negative performance effects and greedily eliminates them achieves the

best result (Pan & Eigenmann, 2008). Also related is the work by Fursin et al. who develop a

GCC-based framework (MILEPOST GCC) to automatically extract program features and learn

the best optimizations across programs. Given a new program to compile, this framework can

correlate the program’s features with the closest program seen earlier to apply a customized and

potentially more effective optimization combination (Fursin et al., 2011).

Machine-learning techniques, such as genetic algorithms and hill-climbing, have been com-

monly employed to search for the best set or ordering of optimizations for individual program-

s/methods. Cooper et al. were among the first to use machine-learning algorithms to quickly

and effectively search the phase selection search space to find program-level optimization se-

quences to reduce code-size for embedded applications (Cooper et al., 1999; Almagor et al.,

2004). Hoste and Eeckhout developed a system called COLE that uses genetic algorithm based

multi-objective evolutionary search algorithm to automatically find pareto optimal optimization

settings for GCC (Hoste & Eeckhout, 2008). Kulkarni et al. compared the proficiency of several

machine-learning algorithms to find the best phase sequence as obtained by their exhaustive search

strategy (Kulkarni et al., 2007b). They observed that search techniques such as genetic algorithms

achieve benefit that is very close to that best performance. We use this result in our current study

54

to characterize the GA-delivered best performance as a good indicator of the performance limit of

phase selection in dynamic compilers.

Also related is their more recent work that compares the ability of GA-based program and

function-level searches to find the best phase sequence, and finds the finer-granularity of function-

level searches to achieve better overall results in their static C compiler, VPO (Kulkarni et al.,

2010). All these above studies were conducted for static compilers. Instead, in this work, we use

the GA searches to determine the performance limits of phase selection in dynamic compilers.

While program-specific GA and other iterative searches may be acceptable for static compil-

ers, they are too time-consuming for use in dynamic compilers. Consequently, researchers have

developed novel techniques to quickly customize phase sequences to individual methods in dy-

namic JIT compilers. Cavazos and O’Boyle employed the technique of logistic regression to learn

a predictive model offline that can later be used in online compilation environments (like their

Jikes Research VM) to derive customized optimization sequences for methods based on its fea-

tures (Cavazos & O’Boyle, 2006). Another related work by Sanchez et al. used support vector

machines to learn and discover method-specific compilation sequences in IBM’s (closed-source)

production JVM (Sanchez et al., 2011). This work used a different learning algorithm and was

conducted in a production JVM. While these techniques reduce program startup times due to

savings in the compilation overhead, the feature-vector based online algorithm was not able to

improve program steady-state performance over the default compiler configuration. Additionally,

none of the existing works attempt to determine the potential benefit of phase selection to improve

code-quality in a dynamic compiler. While resolving this important question, we also evaluate

the success of existing heuristic schemes to achieve this best potential performance benefit in the

HotSpot production JVM.

In this chapter, we also investigate the behavior of optimizations to better understand the scope

and extent of the optimization selection problem in dynamic compilers. Earlier researchers have at-

tempted to measure the benefit of dynamic optimizations, for example, to overcome the overheads

induced by the safety and flexibility constraints of Java (Ishizaki et al., 1999), in cross-platform

55

Optimization Phase Description

aggressive copy coalescing Perform aggressive copy coalescing after coming out of SSA form (before register allocation).

block layout by frequency Use edge frequencies to drive block ordering.

block layout rotate loops Allow back branches to be fall through when determining block layout.

conditional constant prop. Perform optimistic sparse conditional constant propagation until a fixed point is reached.

conservative copy coalescing Perform conservative copy coalescing during register allocation (RA). Requires RA is enabled.

do escape analysis Identify and optimize objects that are accessible only within one method or thread.

eliminate allocations Use escape analysis to eliminate allocations.

global code motion Hoist instructions to block with least execution frequency.

inline Replace (non accessor/mutator) method calls with the body of the method.

inline accessors Replace accessor/mutator method calls with the body of the method.

instruction scheduling Perform instruction scheduling after register allocation.

iterative global value number-

ing (GVN)

Iteratively replaces nodes with their values if the value has been previously recorded (applied in several

places after parsing).

loop peeling Peel out the first iteration of a loop.

loop unswitching Clone loops with an invariant test and insert a clone of the test that selects which version to execute.

optimize null checks Detect implicit null check opportunities (e.g. null checks with suitable memory operations nearby use the

memory operation to perform the null check).

parse-time GVN Replaces nodes with their values if the value has been previously recorded during parsing.

partial loop peeling Partially peel the top portion of a loop by cloning and placing one copy just before the new loop head and

the other copy at the bottom of the new loop (also known as loop rotation).

peephole remove copies Apply peephole copy removal immediately following register allocation.

range check elimination Split loop iterations to eliminate range checks.

reassociate invariants Re-associates expressions with loop invariants.

register allocation Employ a Briggs-Chaitin style graph coloring register allocator to assign registers to live ranges.

remove useless nodes Identify and remove useless nodes in the ideal graph after parsing.

split if blocks Folds some branches by cloning compares and control flow through merge points.

use loop predicate Generate a predicate to select fast/slow loop versions.

use super word Transform scalar operations into packed (super word) operations.

eliminate auto box∗ Eliminate extra nodes in the ideal graph due to autoboxing.

optimize fills∗ Convert fill/copy loops into an intrinsic method.

optimize strings∗ Optimize strings constructed by StringBuilder.

Table 3.1: Configurable optimizations in our modified HotSpot compiler. Optimizations marked

with ∗ are disabled in the default compiler.

implementations (Ishizaki et al., 2003), and to explore optimization synergies (Lee et al., 2006).

However, none of these works perform their studies in the context of understanding the optimiza-

tion selection problem for JIT compilers.

3.3 Experimental Framework

In this section, we describe the compiler and benchmarks used, and the methodology employed for

our experiments.

56

3.3.1 Compiler and Benchmarks

We perform our study using the server compiler in Sun/Oracle’s HotSpot Java virtual machine

(build 1.6.0_25-b06) (Paleczny et al., 2001). Similar to many production compilers, HotSpot im-

poses a strict ordering on optimization phases due to the use of multiple intermediate representa-

tions and documented or undocumented assumptions and dependencies between different phases.

Additionally, the HotSpot compiler applies a fixed set of optimizations to every method it compiles.

The compilation process parses the method’s bytecodes into a static single assignment (SSA) repre-

sentation known as the ideal graph. Several optimizations, including method inlining, are applied

as the method’s bytecodes are parsed. The compiler then performs a fixed set of optimizations

on the resultant structure before converting to machine instructions, performing scheduling and

register allocation, and finally generating machine code.

The HotSpot JVM provides command-line flags to optionally enable or disable several op-

timizations. However, many optimization phases do not have such flags, and some also gener-

ate/update analysis information used by later stages. We modified the HotSpot compiler to provide

command-line flags for most optimization phases, and factored out the analysis calculation so that

it is computed regardless of the optimization setting. Some transformations, such as constant fold-

ing and instruction selection, are required by later stages to produce correct code and are hard to

effectively disable. We also do not include a flag for dead code elimination, which is performed

continuously by the structure of the intermediate representation and would require much more

invasive changes to disable. We perform innovative modifications to deactivate the compulsory

phases of register allocation (RA) and global code motion (GCM). The disabled version of RA

assumes every register conflicts with every live range, and thus, always spills live ranges to mem-

ory. Likewise, the disabled version of GCM schedules all instructions to execute as late as possible

and does not attempt to hoist instructions to blocks that may be executed much less frequently. Fi-

nally, we modified the HotSpot JVM to accept binary sequences describing the application status

(ON/OFF) of each phase at the program or method-level. Thus, while not altering any optimization

algorithm or the baseline compiler configuration, we made several major updates to the HotSpot

57

JIT compiler to facilitate its use during phase selection research. Table 3.1 shows the complete set

of optimization phases that we are now able to optionally enable or disable for our experiments.

Our experiments were conducted over applications from two suites of benchmarks. We use

all SPECjvm98 benchmarks (SPEC98, 1998) with two input sizes (10 and 100), and 12 (of 14)

applications from the DaCapo benchmark suite (Blackburn et al., 2006) with the small and default

inputs. Two DaCapo benchmarks, tradebeans and tradesoap, are excluded from our study since

they do not always run correctly with our default HotSpot VM.

3.3.2 Performance Measurement

One of the goals of this research is to quantify the performance benefit of optimization phase se-

lection with regards to generated code quality in a production-grade dynamic compiler. Therefore,

the experiments in this study discount compilation time and measure the steady-state performance.

In the default mode, the VM employs selective compilation and only compiles methods with ex-

ecution counts that exceed the selected threshold. Our experimental setup first determines this

set of (hot) methods compiled during the startup mode for each benchmark. All our steady-state

experiments only compile this hot method set for all its program runs. Both the SPECjvm98 and

DaCapo harness allow each benchmark to be iterated multiple times in the same VM run. During

our steady-state program runs we disable background compilation to force all these hot methods to

be compiled in the first program iteration. We modify our VM to reset execution counts after each

iteration to prevent methods from becoming hot (and getting compiled) in later iterations. We al-

low each benchmark to iterate five more times and record the median runtime of these iterations as

the steady-state program run-time. To account for inherent timing variations during the benchmark

runs, all the performance results in this chapter report the average and 95% confidence intervals

over ten steady-state runs using the setup described by Georges et al. (Georges et al., 2007).

All experiments were performed on a cluster of Dell PowerEdge 1850 server machines run-

ning Red Hat Enterprise Linux 5.1 as the operating system. Each machine has four 64-bit 2.8GHz

Intel Xeon processors, 6GB of DDR2 SDRAM, and a 4MB L2 cache. Our HotSpot VM uses

58

the stand-alone server compiler and the default garbage collector settings for “server-class” ma-

chines (http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper 150215.pdf,

2006) (“parallel collector” GC, initial heap size is 96MB, maximum is 1GB). We make no attempt

to restrict or control GC during our experiments. Finally, there are no hyperthreading or frequency

scaling techniques of any kind enabled during our experiments.

3.4 Analyzing Behavior of Compiler Optimizations for Phase

Selection

Compiler optimizations are designed to improve program performance. Therefore, it is often

(naïvely) expected that always applying (turning ON) all available optimizations to all program

regions should generate the best quality code. However, optimizations operating on the same pro-

gram code and competing for finite machine resources (registers) may interact with each other.

Such interactions may remove opportunities for later optimizations to generate even better code.

Additionally, program performance is often very hard for the compiler to predict on the current

generation of machines with complex architectural and micro-architectural features. Consequently,

program transformations performed by an optimization may not always benefit program execution

speed. The goal of effective phase selection is to find and disable optimizations with negative

effects for each program region. In this section we conduct a series of experiments to explore

important optimization selection issues, such as why and when is optimization selection effective

for standard dynamic JIT compilers. We are also interested in finding indicators to suggest that

customizing optimization selections for individual programs or methods is likely to benefit perfor-

mance. We report several interesting observations that help explain both the prior as well as our

current results in phase selection research for dynamic JIT compilers.

59

3.4.1 Experimental Setup

Our setup to analyze the behavior of optimization phases is inspired by Lee et al.’s framework to

determine the benefits and costs of compiler optimizations (Lee et al., 2006). Our experimental

configuration (defOpt) uses the default HotSpot server compilation sequence as baseline. The exe-

cution time of each benchmark with this baseline (T (OPT < de f Opt >)) is compared with its time

obtained by a JIT compiler that disables one optimization (x) at a time (T (OPT < de f Opt−x >)).

We use the following fraction to quantify the effect of HotSpot optimizations in this configuration.

T (OPT < de f Opt − x >)−T(OPT < de f Opt >)

T (OPT < de f Opt >)
(3.1)

Each experimental run disables only one optimization (out of 25) from the optimization set

used in the default HotSpot compiler. Equation 3.1 computes a negative value if removing the

corresponding optimization, x, from the baseline optimization set improves performance (reduces

program runtime) of the generated code. In other words, a negative value implies that including

that optimization harms performance of the generated code. The HotSpot JIT compiler uses an

individual method for its compilation unit. Therefore, in this section we evaluate the effect of

compiler optimizations over distinct program methods.

Our experiments in this section are conducted over 53 hot focus methods over all the programs

in our benchmark suite. These focus methods are selected because each comprises at least 10% of

its respective benchmark run-time. More details on the rationale and selection of focus methods,

as well as a complete list of these methods, are provided in Section 3.5.3.1.

3.4.2 Results and Observations

Figure 3.1 (left Y-axis, bar-plot) illustrates the accumulated negative and positive impact of each

optimization calculated using Equation 3.1 over all our 53 individual program methods. For each

HotSpot optimization, Figure 3.1 (right Y-axis, line-plot) also shows the number of program meth-

60

-20

-10

0

10

20

30

40

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N
u

m
b

e
r

o
f

im
p

a
c
te

d
 m

e
th

o
d

s

A
cc

u
m

u
la

te
d

 i
m

p
a

ct

HotSpot optimizations

- acc. impact

+ acc. impact

- # impacted

+ # impacted

16.06 1.92

Figure 3.1: Left Y-axis: Accumulated positive and negative impact of each HotSpot optimization

over our focus methods (non-scaled). Right Y-axis: Number of focus methods that are positively

or negatively impacted by each HotSpot optimization.

-10

-5

0

5

10

15

20

-0.8

-0.4

0

0.4

0.8

1.2

1.6

N
u

m
b

e
r

o
f

o
p

ti
m

iz
a

ti
o

n
s

w
it

h
 s

ig
n

if
ic

a
n

t
im

p
a

ct

A
cc

u
m

u
la

te
d

 i
m

p
a

ct

Methods

- acc. Imp. + acc. Imp.

- # opts + # opts

2.48 3.33 3.38

Figure 3.2: Left Y-axis: Accumulated positive and negative impact of the 25 HotSpot optimiza-

tions for each focus method (non-scaled). Right Y-axis: Number of optimizations that positively

or negatively impact each focus method.

ods that witness a negative or positive impact. These results enable us to make several important

observations regarding the behavior of optimizations in the HotSpot JIT compiler. First, the re-

sults validate the claims that optimizations are not always beneficial to program performance. This

observation provides the motivation and justification for further developing and exploring effective

phase selection algorithms to enable the JIT compiler to generate the best possible output code for

each method/program. Second, we observe that most optimizations in the HotSpot JIT compiler

produce, at least occasional, negative effects. This observation indicates that eliminating the opti-

mization phase selection issue may require researchers to understand and update several different

compiler optimizations, which makes a compiler design-time solution very hard. Third, most op-

61

timizations do not negatively impact a large number of program methods, and the typical negative

impact is also not very high. However, we also find optimizations, including AggressiveCoalesce,

IterGVN, and SplitIfBlocks, that, rather than improving, show a degrading performance impact

more often. This result is surprising since dynamic compilers generally only provide the more

conservative compiler optimizations.1 Thus, this study finds optimizations that need to be urgently

analyzed to alleviate the optimization selection problem in HotSpot. Fourth, we unexpectedly

find that most of the optimizations in the HotSpot JIT compiler only have a marginal individual

influence on performance. We observe that method inlining is by far the most beneficial compiler

optimization in HotSpot, followed by register allocation.2

Figure 3.2 plots the accumulated positive and negative optimization impact (on left Y-axis, bar-

plot) and the number of optimizations that impact performance (on right Y-axis, line-plot) for each

of our focus methods represented along the X-axis. These results allow us to make two other ob-

servations that are particularly enlightening. First, there are typically not many optimizations that

degrade performance for any single method (2.2 out of 25, on average). More importantly, even

for methods with several individual degrading optimizations, the accumulated negative impact is

never very high. This result, in a way, tempers the expectations of performance improvements

from ideal phase selection in JIT compilers (particularly, HotSpot). In other words, we can only

expect customized phase selections to provide modest performance benefits for individual meth-

ods/programs in most cases. Second, for most methods, there are only a few optimizations (4.36

out of 25, on average) that benefit performance. Thus, there is a huge potential for saving compi-

lation overhead during program startup by disabling the inactive optimizations. It is this, hitherto

unreported, attribute of JIT compilers that enables the online feature-vector based phase selection

1Compare the 28 optimization flags in HotSpot with over 100 such flags provided by GCC.
2Method inlining is a difficult optimization to control. Our experimental setup, which uses a fixed list of methods

to compile, may slightly exaggerate the performance impact of disabling method inlining because some methods that

would normally be inlined may not be compiled at all if they are not in the hot method list. To avoid such exaggeration,

one possibility is to detect and compile such methods when inlining is disabled. However, an inlined method (say, P)

that is not otherwise compiled spends its X inlined invocations in compiled code, but other Y invocations in interpreted

code. With inlining disabled for the focus method, if P is compiled then it will spend all ‘X+Y’ invocations in compiled

code. We chose the exaggeration because we found that it was very uncommon for methods not in the fixed list to still

be inlinable.

62

algorithms to improve program startup performance in earlier works (Cavazos & O’Boyle, 2006;

Sanchez et al., 2011).

Finally, we note that although this simple study provides useful information regarding opti-

mization behavior, it may not capture all possible optimization interactions that can be simultane-

ously active in a single optimization setting for a method. For example, phase interactions may

cause compiler optimization phases that degrade performance when applied alone to improve per-

formance when combined with other optimizations. However, these simple experiments provided

us with both the motivation to further explore the potential of phase selection for dynamic compil-

ers, while lowering our expectations for large performance benefits.

3.5 Limits of Optimization Selection

Most dynamic JIT compilers apply the same set of optimization phases to all methods and pro-

grams. Our results in the last section indicate the potential for performance gains by customizing

optimization phase selection for individual (smaller) code regions. In this section we conduct

experiments to quantify the steady-state speed benefits of customizing optimization sets for indi-

vidual programs/methods in JIT compilers. The large number of optimizations in HotSpot makes

it unfeasible to perform exhaustive optimization selection search space evaluation. Earlier research

has demonstrated that genetic algorithms (GA) are highly effective at finding near-optimal phase

sequences (Kulkarni et al., 2007b). Therefore, we use a variant of a popular GA to find effec-

tive program-level and method-level optimization phase selection solutions (Cooper et al., 1999).

Correspondingly, we term the benefit in program run-time achieved by the GA derived phase se-

quence over the default HotSpot VM as the ideal performance benefit of phase selection for each

program/method.

We also emphasize that it is impractical to employ a GA-based solution to customize optimiza-

tion sets in an online JIT compilation environment. Our program-wide and method-specific GA

experiments are intended to only determine the performance limits of phase selection. We use

63

these limits in the next section to evaluate the effectiveness of existing state-of-the-art heuristics to

specialize optimization sets in online JIT compilers.

3.5.1 Genetic Algorithm Description

In this section we describe the genetic algorithm we employ for our phase selection experiments.

Genetic algorithms are heuristic search techniques that mimic the process of natural evolution (Gold-

berg, 1989). Genes in the GA correspond to binary digits indicating the ON/OFF status of an op-

timization. Chromosomes correspond to optimization phase selections. The set of chromosomes

currently under consideration constitutes a population. The evolution of a population occurs in

generations. Each generation evaluates the fitness of every chromosome in the current population,

and then uses the operations of crossover and mutation to create the next population. The num-

ber of generations specifies the number of population sets to evaluate. Chromosomes in the first

GA generation are randomly initialized. After evaluating the performance of code generated by

each chromosome in the population, they are sorted in decreasing order of performance. During

crossover, 20% of chromosomes from the poorly performing half of the population are replaced

by repeatedly selecting two chromosomes from the better half of the population and replacing the

lower half of each chromosome with the lower half of the other to produce two new chromosomes

each time. During mutation we flip the ON/OFF status of each gene with a small probability of

5% for chromosomes in the upper half of the population and 10% for the chromosomes in the

lower half. The chromosomes replaced during crossover, as well as (up to five) chromosome(s)

with performance(s) within one standard deviation of the best performance in the generation are

not mutated. The fitness criteria used by our GA is the steady-state performance of the benchmark.

For this study, we have 20 chromosomes in each population and run the GA for 100 generations.

We have verified that 100 generations are sufficient for the GA to reach saturation in most cases.

To speed-up the GA runs, we developed a parallel GA implementation that can simultaneously

evaluate multiple chromosomes in a generation on a cluster of identically-configured machines.

64

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 10 20 30 40 50 60 70 80 90

B
e

st
 p

ro
g

ra
m

-w
id

e
 G

A
 t

im
e

 /

ti
m

e
 w

it
h

 d
e

fa
u

lt
 c

o
m

p
il

e
r

Generations

jvm98-small jvm98-large

dacapo-small dacapo-default

Figure 3.3: Average performance of best GA sequence in each generation compared to the default

compiler.

3.5.2 Program-Wide GA Results

In this experiment we use our GA to find unique optimization selections for each of our benchmark-

input pairs. Figure 3.3 plots the performance of code compiled with the best optimization set found

by the GA in each generation as compared to the code generated by the default compiler sequence

averaged over all programs for each benchmark suite. This figure shows that most (over 75%)

of the average performance gains are realized in the first few (20) GA generations. Also, over

90% of the best average performance is obtained after 50 generations. Thus, 100 generations seem

sufficient for our GA to converge on its near-best solution for most benchmarks. We also find

that the SPECjvm98 benchmarks benefit more from optimization specialization than the DaCapo

benchmarks. As expected, different inputs do not seem to significantly affect the steady-state

optimization selection gains for most benchmarks.

Figure 3.4 compares the performance of each program optimized with the best program-wide

optimization phase set found by our genetic algorithm with the program performance achieved

by the default HotSpot server compiler for both our benchmark suites. The error bars show the

95% confidence interval for the difference between the means over 10 runs of the best customized

optimization selection and the default compiler sequence. We note that the default optimization

sequence in the HotSpot compiler has been heavily tuned over several years to meet market ex-

pectations for Java performance, and thus presents a very aggressive baseline. In spite of this

65

0.75

0.8

0.85

0.9

0.95

1

1.05

B
e

st
 p

ro
g

ra
m

-w
id

e
 G

A
 t

im
e

 /

ti
m

e
 w

it
h

 d
e

fa
u

lt
 c

o
m

p
il

e
r

Benchmarks

small large / default

Figure 3.4: Performance of best program-wide optimization phase sequence after 100 generations

of genetic algorithm.

aggressively tuned baseline, we find that customizing optimization selections can significantly im-

prove performance (up to 15%) for several of our benchmark programs.

On average, the SPECjvm98 benchmarks improve by about 7% with both their small and large

inputs. However, for programs in the DaCapo benchmark suite, program-wide optimization set

specialization achieves smaller average benefits of 3.2% and 2.3% for their small and default input

sizes respectively. The DaCapo benchmarks typically contain many more hot and total program

methods as compared to the SPECjvm98 benchmarks. Additionally, unlike several SPECjvm98

programs that have a single or few dominant hot methods, most DaCapo benchmarks have a rel-

atively flat execution profile with many methods that are similarly hot, with only slightly varying

degrees (Blackburn et al., 2006). Therefore, program-wide optimization sets for DaCapo bench-

marks are customized over much longer code regions (single optimization set over many more

hot methods), which, we believe, results in lower average performance gains from program-wide

optimization selection. Over all benchmarks, the average benefit of ideal program-wide phase

selection is 4.3%.

3.5.3 Method-Specific Genetic Algorithm

The default HotSpot compiler optimizes individual methods at a time, and applies the same set

of optimizations to each compiled method. Prior research has found that optimization phase se-

66

Benchmark Method % Time

1 db-large Database.shell_sort 86.67
2 compress-small Compressor.compress 54.99

3 compress-large Compressor.compress 53.42
4 avrora-default LegacyInterpreter.fastLoop 50.85
5 db-small Database.shell_sort 50.72
6 jess-small Node2.findInMemory 48.57
7 jack-small TokenEngine.getNextTokenFromStream 48.05
8 avrora-small LegacyInterpreter.fastLoop 44.49
9 jack-large TokenEngine.getNextTokenFromStream 44.23

10 sunflow-default KDTree.intersect 40.52

11 luindex-default DocInverterPerField.processFields 40.43
12 sunflow-default TriangleMesh$WaldTriangle.intersect 39.20
13 sunflow-small KDTree.intersect 37.92
14 sunflow-small TriangleMesh$WaldTriangle.intersect 36.78
15 jess-large Node2.runTestsVaryRight 34.31
16 jython-small PyFrame.getlocal 32.73
17 luindex-small DocInverterPerField.processFields 30.51
18 lusearch-small SegmentTermEnum.scanTo 29.88
19 lusearch-default SegmentTermEnum.scanTo 28.76

20 jess-large Node2.runTests 27.41
21 compress-large Decompressor.decompress 24.86
22 compress-small Compressor.output 23.39
23 mpegaudio-small q.l 23.12
24 batik-default MorphologyOp.isBetter 22.26
25 mpegaudio-large q.l 21.87
26 jython-small PyFrame.setline 21.79
27 xalan-small ToStream.characters 21.70
28 db-small ValidityCheckOutputStream.strip1 21.52

29 compress-large Compressor.output 21.40
30 compress-small Decompressor.decompress 21.23
31 xalan-default ToStream.characters 20.00
32 pmd-default DacapoClassLoader.loadClass 19.26
33 batik-small PNGImageEncoder.clamp 17.74
34 sunflow-small BoundingIntervalHierarchy.intersect 15.22
35 h2-small Query.query 13.84
36 sunflow-default BoundingIntervalHierarchy.intersect 13.79

37 javac-large ScannerInputStream.read 13.46
38 javac-small ScannerInputStream.read 13.17
39 luindex-small TermsHashPerField.add 13.01
40 mpegaudio-small tb.u0114 12.88
41 jython-default PyFrame.setline 12.68
42 mpegaudio-large tb.u0114 12.61
43 jess-large Funcall.Execute 12.25
44 luindex-small StandardTokenizerImpl.getNextToken 12.23
45 lusearch-small IndexInput.readVLong 11.82

46 lusearch-default StandardAnalyzer.tokenStream 11.49
47 lusearch-default IndexInput.readVLong 11.46
48 lusearch-small StandardAnalyzer.tokenStream 11.44
49 h2-default Command.executeQueryLocal 11.37
50 luindex-default TermsHashPerField.add 10.65
51 jython-default PyFrame.getlocal 10.62
52 eclipse-default Parser.parse 10.52
53 luindex-default StandardTokenizerImpl.getNextToken 10.49

Table 3.2: Focus methods and their respective % of runtime

quences tuned to each method yield better program performance than a single program-wide phase

sequence (Kulkarni et al., 2010; Agakov et al., 2006). In this section, we explore the performance

potential of optimization selection at the method-level during dynamic JIT compilation.

3.5.3.1 Experimental Setup

There are two possible approaches for implementing GA searches to determine the performance

potential of method-specific optimization phase settings: (a) running multiple simultaneous (and

independent) GAs to gather optimization sequences for all program methods concurrently in the

same run, and (b) executing the GA for each method in isolation (one method per program run).

67

The first approach requires instrumenting every program method to record the time spent in each

method in a single program run. These individual method times can then be used to concurrently

drive independent method-specific GAs for all methods in a program. The VM also needs the

ability to use distinct optimization selections to be employed for different program methods. We

implemented this experimental scheme for our HotSpot VM by updating the compiler to instru-

ment each method with instructions that employ the x86 TSC (Time-Stamp Counter) to record

individual method run-times. However, achieving accurate results with this scheme faces several

challenges. The HotSpot JVM contains interprocedural optimizations, such as method inlining,

due to which varying the optimization sequence of one method affects the performance behavior

of other program methods. Additionally, we also found that the order in which methods are com-

piled can vary from one run of the program to the next, which affects optimization decisions and

method run-times. Finally, the added instrumentation to record method times also adds some noise

and impacts optimization application and method performance.

Therefore, we decided to employ the more straight-forward and accurate, but also time-consuming,

approach of applying the GA to only one program method at a time. In each program run, the VM

uses the optimization set provided by the GA to optimize one focus method and the default baseline

set of optimizations to compile the other hot program methods. Thus, any reduction in the final

program run-time over the baseline program performance can be attributed to the improvement in

the single focus method. In an earlier offline run, we use our TSC based instrumentations with

the baseline compiler configuration to estimate the fraction of total time spent by the program in

each focus method. Any improvement in the overall program run-time during the GA is scaled

with the fraction of time spent in the focus method to determine the run-time improvement in that

individual method. We conduct this experiment over the 53 focus methods over all benchmarks

that each comprise at least 10% of the time spent in their respective default program run. These

methods, along with the % of total runtime each comprises in their respective benchmarks, are

listed in Table 3.2.

68

0

0.2

0.4

0.6

0.8

1

1.2

B
e

st
 m

e
th

o
d

-s
p

e
ci

fi
c

G
A

 t
im

e
 /

ti
m

e
 w

it
h

 d
e

fa
u

lt
 c

o
m

p
il

e
r

Methods

0

0.2

0.4

0.6

0.8

1

1.2

B
e

st
 m

e
th

o
d

-s
p

e
ci

fi
c

G
A

 t
im

e
 /

ti
m

e
 w

it
h

 d
e

fa
u

lt
 c

o
m

p
il

e
r

Benchmarks

small large / default

(a) (b)

Figure 3.5: Performance of method-specific optimization selection after 100 GA generations.

Methods in (a) are ordered by the % of run-time spent in their respective benchmarks. In (b),

methods from the same benchmark are shown together. All results are are scaled by the fraction of

total program time spent in the focus method and show the run-time improvement of that individual

method.

3.5.3.2 Method-Specific GA Results

Figure 3.5(a) shows the scaled benefit in the run-time of each focus method when compiled with

the best optimization set returned by the GA as compared to the method time if compiled with

the baseline HotSpot server compiler. Methods along the x-axis in this graph are ordered by the

fraction that they contribute to their respective overall program run-times (the same order methods

are listed in Table 3.2). The final bar shows the average improvement over the 53 focus methods.

Thus, we can see that customizing the optimization set for individual program methods can achieve

significant performance benefits in some cases. While the best performance improvement is about

44%, method-specific optimization selection achieves close to a 6.2% reduction in run-time, on

average. Figure 3.5(b) provides a different view of these same results with methods on the x-axis

grouped together according to their respective benchmarks.

The plot in Figure 3.6 verifies that the (non-scaled) improvements in individual method run-

times add-up over the entire program in most cases. That is, if individually customizing two

methods in a program improves the overall program run-time by x and y respectively, then does the

program achieve an (x+ y) percent improvement if both customized methods are used in the same

program run? As mentioned earlier, our focus methods are selected such that each constitutes

at least 10% of the baseline program run-time. Thus, different benchmarks contribute different

69

number (zero, one, or more than one) of focus methods to our set. The first bar in Figure 3.6 simply

sums-up the individual method run-time benefits (from distinct program runs) for benchmarks that

provide two or more focus methods. The second bar plots the run-time of code generated using

the best customized optimization sets for all focus methods in the same run. We print the number

of focus methods provided by each benchmark above each set of bars. Thus, we find that the

individual method benefits add-up well in many cases, yielding performance benefit that is close

to the sum of the individual benefit of all its customized component methods.

Please note that the experiments for Figure 3.6 only employ customized optimization selections

for the focus methods. The remaining hot benchmark methods are compiled using the baseline se-

quence, which results in lower average improvements as compared to the average in Figure 3.5(a).

Thus, customizing optimization sets over smaller program regions (methods (6.2%) vs. programs

(4.3%)) realize better overall performance gains for JIT compilers.

It is important to note that we observe good correlation between the ideal method-specific

improvements in Figure 3.5(a) and the per-method accumulated positive and negative impact of

optimizations plotted in Figure 3.2. Thus, many methods with large accumulated negative effects

(such as methods numbers #2, #3, #7, #21, #30, and #36) also show the greatest benefit from

customized phase sequences found by our iterative (GA) search algorithm. Similarly, methods

with small negative impacts in Figure 3.2 (including many methods numbered between #40 – #53)

do not show significant benefits with ideal phase selection customization. While this correlation

is encouraging, it may also imply that optimization interactions may not be very prominent in

production-grade JVMs, such as HotSpot.

3.6 Effectiveness of Feature Vector Based Heuristic Techniques

Experiments in Sections 3.5.2 and 3.5.3 determine the potential gains due to effective phase selec-

tion in the HotSpot compiler. However, such iterative searches are extremely time-consuming, and

are therefore not practical for dynamic compilers. Previous works have proposed using feature-

70

3 3

3 2 2 2 2 2 3 3 3 3

3 3

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

B
e

st
 m

e
th

o
d

-s
p

e
ci

fi
c

ti
m

e
 /

ti
m

e
 w

it
h

 d
e

fa
u

lt
 c

o
m

p
il

e
r

Benchmarks

acc. GA improvements post run

Figure 3.6: Accumulated improvement of method-specific optimization selection in benchmarks

with multiple focus method.

vector based heuristic techniques to quickly derive customized optimization selections during on-

line compilation (Cavazos & O’Boyle, 2006; Sanchez et al., 2011). Such techniques use an expen-

sive offline approach to construct their predictive models that are then employed by a fast online

scheme to customize phase selections to individual methods. In this section we report results of

the first evaluation (compared to ideal) of the effectiveness of such feature-vector based heuristic

techniques for finding good optimization solutions.

3.6.1 Overview of Approach

Feature-vector based heuristic algorithms operate in two stages, training and deployment. The

training stage conducts a set of offline experiments that measure the program performance achieved

by different phase selections for a certain set of programs. This stage then selects the best perform-

ing sets of phases for each method. The approach then uses a set of program features to characterize

every compilation unit (method). The features should be selected such that they are representative

of the program properties that are important and relevant to the optimization phases, and are easy

and fast to extract at run-time. Finally, the training stage employs statistical techniques, such as

logistic regression and support vector machines, to correlate good optimization phase settings with

the method feature list.

The deployment stage installs the learned statistical model into the compiler. Now, for each

71

Scalar Features Distribution Features

Counters Types ALU Operations

Bytecodes byte char add sub
Arguments int double mul div

Temporaries short long rem neg

Nodes float object shift or

address and xor

inc compare

Attributes Casting Memory Operations

Constructor to byte load load const

Final to char store new

Protected to short new array / multiarray

Public to int

Static to long Control Flow

Synchronized to float branch call
Exceptions to double jsr switch

Loops to address

to object Miscellaneous

cast check instance of throw

array ops field ops

synchronization

Table 3.3: List of method features used in our experiments

new compilation, the algorithm first determines the method’s feature set. This feature set is given

to the model that returns a customized setting for each optimization that is expected to be effective

for the method. Thus, with this technique, each method may be compiled with a different phase

sequence.

3.6.2 Our Experimental Configuration

We use techniques that have been successfully employed in prior works to develop our experimen-

tal framework (Cavazos & O’Boyle, 2006; Sanchez et al., 2011). Table 3.3 lists the features we use

to characterize each method, which are a combination of the features employed in earlier works

and those relevant to the HotSpot compiler. These features are organized into two sets: scalar fea-

tures consist of counters and binary attributes for a given method without any special relationship;

distribution features characterize the actual code of the method by aggregating similar operand

types and operations that appear in the method. The counters count the number of bytecodes,

arguments, and temporaries present in the method, as well as the number of nodes in the interme-

diate representation immediately after parsing. Attributes include properties denoted by keywords

(final, protected, static, etc.), as well as implicit properties such as whether the method contains

72

loops or uses exception handlers. We record distribution features by incrementing a counter for

each feature during bytecode parsing. The types features include Java native types, addresses (i.e.

arrays) and user-defined objects. The remaining features correspond to one or more Java bytecode

instructions. We use these features during the technique of logistic regression (Bishop, 1995) to

learn our model for these experiments. Logistic regression has the property that it can even output

phase sequences not seen during the model-training. We have tuned our logistic regression model

to make it as similar as possible to the one used previously by Cavazos and O’Boyle (Cavazos &

O’Boyle, 2006).

3.6.3 Feature-Vector Based Heuristic Algorithm Results

We perform two sets of experiments to evaluate the effectiveness of a feature-vector based logistic

regression algorithm to learn and find good phase sequences for unseen methods during dynamic

JIT compilation. As done in our other experiments, all numbers report the steady-state benchmark

times. All our experiments in this section employ cross-validation. In other words, the evaluated

benchmark or method (with both the small and large/default inputs) is never included in the training

set for that benchmark or method.

Figure 3.7 plots the performance achieved by the optimization set delivered by the logistic

regression algorithm when applied to each benchmark method as compared to the performance of

the best benchmark-wide optimization sequence from Section 3.5.2. The training data for each

program uses the top ten methods (based on their baseline run-times) from all the other (SPEC and

DaCapo) benchmarks. While distinct benchmarks may contain different number of methods, we

always consider ten methods from each program to weigh the benchmarks equally in the training

set. For every benchmark, each top ten method contributes a distinct feature vector but uses the

single benchmark-wide best optimization sequence from Section 3.5.2. The logistic regression

algorithm may find a different optimization selection for each method during its online application.

In spite of this flexibility, the feature vector based technique is never able to reach or improve the

ideal single benchmark-wide optimization solution provided by the GA. Thus, figure 3.7 shows

73

0.9

0.95

1

1.05

1.1

1.15

1.2

Fe
a

tu
re

 v
e

ct
o

r
m

o
d

e
l

ti
m

e
 /

b
e

st
 p

ro
g

ra
m

-w
id

e
 G

A
 t

im
e

Benchmarks

small large / default

Figure 3.7: Effectiveness of benchmark-wide logistic regression. Training data for each benchmark

consists of all the remaining programs from both benchmark suites.

that, on average, the feature-vector based solution produces code that is 7.8% and 5.0% worse

for SPECjvm98 (small and large data sets respectively) and 4.3% and 2.4% worse for DaCapo

(small and default) as compared to the ideal GA phase selection. However, this technique is some

times able to find optimization sequences that achieve performances that are close to or better

than those realized by the default HotSpot server compiler. On average, the feature-vector based

heuristic achieves performance that is 2.5% better for SPECjvm98-small benchmarks, and equal

in all other cases (SPECjvm98-large and DaCapo small and default) as compared to the baseline

server compiler.

Figure 3.8 compares the performance of the logistic regression technique for individual pro-

gram methods to their best GA-based performance. Since we employ cross-validation, the training

data for each method uses information from all the other focus methods. Similar to the experimen-

tal configuration used in Section 3.5.3, each program run uses the logistic regression technique

only for one focus method, while the remaining program methods are compiled with the baseline

optimization sequence. The difference in program performance between the feature-vector based

heuristic and the focus-method GA is scaled with the fraction of overall program time spent in

the relevant method. Thus, we can see from Figure 3.8 that the per-method performance results

achieved by the feature-vector based heuristic are quite disappointing. We find that, on average,

the heuristic solutions achieve performance that is over 22% worse than the GA-tuned solution,

and 14.7% worse than the baseline HotSpot server compiler.

74

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
e

a
tu

re
 v

e
ct

o
r

m
o

d
e

l
ti

m
e

 /

b
e

st
 m

e
th

o
d

-s
p

e
ci

fi
c

G
A

 t
im

e

Methods

4.95 5.34

Figure 3.8: Effectiveness of method-specific logistic regression. Training data for each method

consists of all the other focus methods used in Section 3.5.3.

3.6.4 Discussion

Thus, we find that existing state-of-the-art online feature-vector based algorithms are not able to

find optimization sequences that improve code quality over the default baseline. We note that this

observation is similar to the findings in other previous works (Cavazos & O’Boyle, 2006; Sanchez

et al., 2011). However, these earlier works did not investigate whether this lack of performance

gain is because optimization selection is not especially beneficial in online JIT compilers, or if

existing feature-vector heuristics are not powerful enough to realize those gains. Our experiments

conclusively reveal that, although modest on average, the benefits of optimization customization

do exist for several methods in dynamic compilers. Thus, additional research in improving online

phase selection heuristic algorithms is necessary to enable them to effectively specialize optimiza-

tion settings for individual programs or methods. We conduct a few other experiments to analyze

(and possibly, improve) the effectiveness of the logistic regression based feature-vector algorithm

employed in this section.

In our first experiment we use the same per-method feature-vector based heuristic from the

last section. However, instead of performing cross-validation, we allow the training data for each

method to include that same method as well. Figure 3.9(a) plots the result of this experiment

and compares the run-time of each method optimized with the phase selection delivered by the

heuristic algorithm to the method’s run-time when tuned using the ideal GA sequence. Thus,

75

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fe
a

tu
re

 v
e

ct
o

r
m

o
d

e
l

ti
m

e
 /

b
e

st
 m

e
th

o
d

-s
p

e
ci

fi
c

G
A

 t
im

e

Methods

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
e

a
tu

re
 v

e
ct

o
r

m
o

d
e

l
ti

m
e

 /

b
e

st
 m

e
th

o
d

-s
p

e
ci

fi
c

G
A

 t
im

e

Methods

1.56 1.66

(a) (b)

Figure 3.9: Experiments to analyze and improve the performance of feature-vector based heuristic

algorithms for online phase selection. (a) Not using cross-validation and (b) Using observations

for Section 3.4.

without cross-validation the heuristic algorithm achieves performance that is only 4.3% worse

than ideal, and 2.5% better compared to the default HotSpot baseline. This result indicates that the

logistic regression heuristic is not intrinsically poor, but may need a larger training set of methods,

more subsets of methods in the training set with similar features that also have similar ideal phase

sequences, and/or a better selection of method features to be more effective.

We have analyzed and observed several important properties of optimization phases in Sec-

tion 3.4. In our next experiment, we employ the observation that most optimizations do not neg-

atively impact a large number of methods to improve the performance of the feature-vector based

heuristic (using cross-validation). With our new experiment we update the set of configurable opti-

mizations (that we can set to ON/OFF) for each method to only those that show a negative effect on

over 10% of the methods in the training set. The rest of the optimizations maintain their baseline

ON/OFF configuration. Figure 3.9(b) shows the results of this experimental setup. Thus, we can

see that the updated heuristic algorithm now achieves average performance that is 8.4% worse than

ideal, and only 1.4% worse that the baseline.

There may be several other possible avenues to employ knowledge regarding the behavior and

relationships of optimization phases to further improve the performance of online heuristic algo-

rithms. However, both our experiments in this section show the potential and possible directions for

improving the effectiveness of existing feature-vector based online algorithms for phase selection.

76

3.7 Future Work

There are multiple possible directions for future work. First, we will explore the effect of size and

range of training data on the feature-vector based solution to the optimization selection problem for

dynamic compilers. Second, we will attempt to improve existing heuristic techniques and develop

new online approaches to better exploit the potential of optimization selection. In particular, we

intend to exploit the observations from Section 3.4 and focus more on optimizations (and methods)

with the most accumulated negative effects to build new and more effective online models. It will

also be interesting to explore if more expensive phase selection techniques become attractive for

the most important methods in later stages of tiered JIT compilers on multi-core machines. Third,

we observed that the manner in which some method is optimized can affect the code generated for

other program methods. This is an interesting issue whose implications for program optimization

are not entirely clear, and we will study this issue in the future. Finally, we plan to repeat this study

with other VMs and processor architectures to validate our results and conclusions.

3.8 Conclusions

The objectives of this research were to: (a) analyze and understand the phase selection related

behavior of optimization phases in a production-quality JVM, (b) determine the steady-state per-

formance potential of optimization selection, and (c) evaluate the effectiveness of existing feature-

vector based heuristic techniques in achieving this performance potential and suggest improve-

ments. We perform our research with the industry-standard Oracle HotSpot JVM to make our

results generally and broadly applicable.

We found that most optimization phases in a dynamic JIT compiler only have a small effect on

performance, and most phases do not negatively impact program run-time. These experiments also

hinted at modest improvements by phase selection in dynamic JIT environments. Correspondingly,

the GA-based ideal benchmark-wide and per-method optimization phase selection improves per-

formance significantly in a few instances, but the benefits are modest on average (6.2% and 4.3%

77

for per-method and whole-program phase selection customization respectively). This result is not

very surprising. To reduce compilation overhead, JIT compilers often only implement the more

conservative optimization phases, which results in fewer optimizations and reduced, and possibly

more predictable, phase interactions.

We also found that existing feature-vector based techniques used in dynamic compilers are

not yet powerful enough to attain the ideal performance. We conducted experiments that demon-

strate the directions for improving phase selection heuristics in the future. As part of this re-

search, we have developed the first open-source framework for optimization selection research in a

production-quality dynamic compilation environment. In the future, we expect this framework to

enable further research to understand and resolve optimization application issues in JIT compilers.

78

Chapter 4

A Framework for Application Guidance in

Virtual Memory Systems

This chapter proposes a collaborative approach in which applications can provide guidance to the

operating system regarding allocation and recycling of physical memory. The operating system in-

corporates this guidance to decide which physical page should be used to back a particular virtual

page. The key intuition behind this approach is that application software, as a generator of memory

accesses, is best equipped to inform the operating system about the relative access rates and over-

lapping patterns of usage of its own address space. It is also capable of steering its own algorithms

in order to keep its dynamic memory footprint under check when there is a need to reduce power

or to contain the spillover effects from bursts in demand. Application software, working cooper-

atively with the operating system, can therefore help the latter schedule memory more effectively

and efficiently than when the operating system is forced to act alone without such guidance. It

is particularly difficult to achieve power efficiency without application guidance since power ex-

pended in memory is a function not merely of the intensity with which memory is accessed in time

but also how many physical ranks are affected by an application’s memory usage.

Our framework introduces an abstraction called “colors” for the application to communicate its

intent to the operating system. We modify the operating system to receive this communication in an

79

efficient way, and to organize physical memory pages into intermediate level grouping structures

called “trays” which capture the physically independent access channels and self-refresh domains,

so that it can apply this guidance without entangling the application in lower level details of power

or bandwidth management. This chapter describes how we re-architect the memory management

of a recent Linux kernel to realize a three way collaboration between hardware, supervisory soft-

ware, and application tasks.

4.1 Introduction

Recent trends in computer systems include an increased focus on power and energy consumption

and the need to support multi-tenant use cases in which physical resources need to be multiplexed

efficiently without causing performance interference. When multiplexing CPU, network, and stor-

age facilities among multiple tasks a system level scheduling policy can perform fine-grained re-

assignments of the resources on a continuing basis to take into account task deadlines, shifting

throughput demands, load-balancing needs and supply constraints. Many recent works address

how best to allocate CPU time, and storage and network throughputs to meet competing service

quality objectives (Wang et al., 2012; Lu et al., 2011), and to reduce CPU power during periods of

low demand (Anagnostopoulou et al., 2012).

By comparison, it is very challenging to obtain precise control over distribution of memory ca-

pacity, bandwidth, or power, when virtualizing and multiplexing system memory. That is because

these effects intimately depend upon how an operating system binds virtual addresses to physical

addresses. An operating system uses heuristics that reclaim either the oldest, or the least recently

touched, or a least frequently used physical pages in order to fill demands. Over time, after repeated

allocations and reclaims, there is little guarantee that a collection of intensely accessed physical

pages would remain confined to a small number of memory modules (or DIMMs). Even if an ap-

plication reduces its dynamic memory footprint, its memory accesses can remain spread out across

sufficiently many memory ranks to keep the ranks from saving much power. The layout of each

80

application’s hot pages affects not just which memory modules can transition to lower power states

during intervals of low activity, but also how much one program’s activity in memory interferes

with the responsiveness that other programs experience. Thus a more discriminating approach than

is available in current systems for multiplexing of physical memory is highly desirable.

This chapter proposes a collaborative approach in which applications can provide guidance to

the operating system in allocation and recycling of physical memory. This guidance helps the oper-

ating system take into account several factors when choosing which physical page should be used

to back a particular virtual page. Thus, for example, an application whose high-intensity accesses

are concentrated among a small fraction of its total address space can achieve power-efficient per-

formance by guiding the operating system to co-locate the active pages among a small fraction of

DRAM banks. Recent studies show that memory consumes up to 40% of total system power in

enterprise servers (Lefurgy et al., 2003) making memory power a dominant factor in overall power

consumption. Conversely, an application that is very intensive in its memory accesses may pre-

fer that pages in its virtual address span are distributed as widely as possible among independent

memory channels; and it can guide the operating system accordingly.

In order to provide these hints without entangling applications into lower level memory man-

agement details, we introduce the concept of coloring. Application software or middleware uses

a number of colors to signal to the operating system a collection of hints. The operating system

takes these hints into account during physical page allocation. Colors are applied against applica-

tion selected ranges of virtual address space; a color is simply a concise way for an application to

indicate to the operating system that some common behavior or intention spans those pages, even

if the pages are not virtually contiguous. Colors can be applied at any time and can be changed as

well, and the OS makes the best effort possible to take them into account when performing mem-

ory allocation, recycling, or page migration decisions. In addition to specializing placement, colors

can also be used to signify memory priority or cache grouping, so that an OS can optionally sup-

port color-based displacement in order to implement software-guided affinitization of memory to

tasks. This is particularly useful in consolidated systems where memory provisioning is important

81

for ensuring performance quality-of-service (QoS) guarantees.

Once an application colors various portions of its range with a few distinct colors, it tells the

operating system what attributes (or combinations of attributes) it wants to associate with those

colors. Depending upon how sophisticated an operating system implementation is, or what de-

grees of freedom are available to it in a given hardware configuration, the operating system tunes

its allocation, displacement, migration, and power management decisions to take advantage of the

information. At the same time, system properties and statistics that are necessary for the applica-

tion to control its own behavior flow back from the OS, creating a closed feed-back loop between

the application and host. That applications can guide the OS at a fine grained level in allocation

and placement of pages is also an essential element of adapting applications to systems in which

all memory is not homogeneous: for example, NVDIMMs, slower but higher capacity DIMMs,

and secondary memory controllers may be used in an enterprise system to provide varying capabil-

ities and performance. Mobile platforms represent another potential application as system-on-chip

(SoC) designs are beginning to incorporate independently powered memory banks. The approach

proposed in this chapter takes a critical first step in meeting the need for a fine-grained, power-

aware, flexible provisioning of memory.

The physical arrangement of memory modules, and that of the channels connecting them to

processors, together with the power control domains are all opaque to applications in our ap-

proach. In line with what has come to be expected from modern computer systems, our approach

virtualizes memory and presents the illusion to every task that it has at its disposal a large array

of memory locations. By hiding the lower level physical details from applications we preserve

the benefits of modularity – applications do not need to become hardware aware in order to de-

liver memory management guidance to the operating system. Comparatively minor changes to the

operating system bring about the necessary three way collaboration between hardware, supervi-

sory software, and application tasks. We re-architect the memory management of a recent Linux

kernel in order to achieve this objective. The OS reads the memory hardware configuration and

constructs a software representation (called “trays”) of all the power manageable memory units.

82

We used Linux kernel version 2.6.32 as a vehicle upon which to implement trays. We modified

the kernel’s page management routines to perform allocation and recycling over trays. We created

application programming interfaces (APIs) and a suite of tools by which applications can monitor

memory resources in order to implement coloring and associating intents with colors.

Our framework is the first to provide a system-level implementation of flexible, application-

guided memory management. It supports such usage scenarios as prioritization of memory capac-

ity and memory bandwidth, and saving power by transitioning more memory ranks into self-refresh

states. It is easy to admit new scenarios such as application guided read-ahead or page prefill on

a subset of ranges, differential placement of pages between fast and slow memory, and aggressive

recycling of pages that applications can flag as transient. The major contributions of this work are:

• We describe in detail the design and implementation of our framework, which we believe is

the first to provide for three way collaboration between hardware, supervisory software, and

application tasks.

• We show how our framework can be used to achieve various objectives, including power

savings, capacity provisioning, performance optimization, etc.

The next section places the contributions of this work in the context of related work and is

followed by a description of relevant background information. We then describe the detailed de-

sign of our framework and present several experiments to showcase and evaluate potential use

cases of application-guided memory management. We finally discuss potential future work before

concluding the chapter.

4.2 Related Work

Researchers and engineers have proposed various power management schemes for memory sys-

tems. Bi et. al. (Bi et al., 2010) suggest predicting memory reference patterns to allow ranks to

transition into low power states. Delaluz et. al. (Delaluz et al., 2002) track memory bank usage

83

in the operating system and selectively turn banks on and off at context switch points to manage

DRAM energy consumption. Along these same lines, memory compaction has recently been inte-

grated into the Linux kernel (Corbet, 2010). This technique, which reduces external fragmentation,

is also used for power management because it allows memory scattered across banks to be com-

pacted into fewer banks, in a way that is transparent to the application. Fan et. al. (Fan et al.,

2003) employ petrinets to model and evaluate memory controller policies for manipulating multi-

ple power states. Lin et. al. (Lin et al., 2009) construct an adaptive thread grouping and scheduling

framework which assigns groups of threads to exclusive DRAM channels and ranks in order to

jointly manage memory performance, power, and thermal characteristics. While these techniques

employ additional hardware and system-level analysis to improve memory power management,

our framework achieves similar objectives by facilitating collaboration between the application

and host system.

Other works have explored integrating information at the application-level with the OS and

hardware to aid resource management. Some projects, such as Exokernel (Engler et al., 1995) and

Dune (Belay et al., 2012), attempt to give applications direct access to physical resources. In con-

trast to these works, our framework does not expose any physical structures or privileged instruc-

tions directly to applications. More similar to this work are approaches that enable applications to

share additional information about their memory usage with lower levels of memory management.

Prior system calls, such as madvise and vadvise, and various NUMA interfaces (Kleen, 2004) have

allowed applications to provide hints to the memory management system. Some API’s (such as

Android’s ashmem (Gonzalez, 2010) and Oracle’s Transcendent Memory (Magenheimer et al.,

2009)) allow the application or guest OS to allocate memory that may be freed by the host at any

time (for instance, to reduce memory pressure). Banga, et. al. (Banga et al., 1999) propose a model

and API that allows applications to communicate their resource requirements to the OS through

the use of resource containers. Brown and Mowry (Brown & Mowry, 2000) integrate a modified

SUIF compiler, which inserts release and prefetch hints using an extra analysis pass, with a runtime

layer and simple OS support to improve response time of interactive applications in the presence

84

of memory-intensive applications. While these works evince some of the benefits of increased col-

laboration between applications and the OS, the coloring API provided by our framework enables

a much broader spectrum of hints to be overlapped and provides a concise and powerful way to

say multiple things about a given range of pages.

Also related is the concept of cache coloring (Kessler & Hill, 1992), where the operating sys-

tem groups pages of physical memory (as the same color) if they map to the same location in

a physically indexed cache. Despite their similar names, coloring in our framework is different

than coloring in these systems. Cache coloring aims to reduce cache conflicts by exploiting spa-

tial or temporal locality when mapping virtual pages to physical pages of different colors, while

colors in our framework primarily serve to facilitate communication between the application and

system-level memory management.

Finally, prior work has also explored virtual memory techniques for energy efficiency. Lebeck

et. al. (Lebeck et al., 2000) propose several policies for making page allocation power aware.

Zhou et. al. (Zhou et al., 2004) track the page miss ratio curve, i.e. page miss rate vs. memory size

curve, as a performance-directed metric to determine the dynamic memory demands of applica-

tions. Petrov et. al. (Petrov & Orailoglu, 2003) propose virtual page tag reduction for low-power

translation look-aside buffers (TLBs). Huang et. al. (Huang et al., 2003) propose the concept of

power-aware virtual memory, which uses the power management features in RAMBUS memory

devices to put individual modules into low power modes dynamically under software control. All

of these works highlight the importance and advantages of power-awareness in the virtual memory

system – and explore the potential energy savings. In contrast to this work, however, these sys-

tems do not provide any sort of closed-loop feedback between application software and lower level

memory management, and thus, are vulnerable to learning inefficiencies as well as inefficiencies

resulting from the OS and application software working at cross purposes.

85

4.3 Background

In order to understand the design and intuition of our framework, we first describe how current

memory technologies are designed and viewed from each layer of the vertical execution stack,

from the hardware up to the application.

Modern server systems employ a Non-Uniform Memory Access (NUMA) architecture which

divides memory into separate regions (nodes) for each processor or set of processors. Within each

NUMA node, memory is spatially organized into channels. Each channel employs its own memory

controller and contains one or more DIMMs, which, in turn, each contain two or more ranks.

Ranks comprise the actual memory storage and typically range from 2GB to 8GB in capacity. The

memory hardware performs aggressive power management to transition from high power to low

power states when either all or some portion of the memory is not active. Ranks are the smallest

power manageable unit, which implies that transitioning between power states is performed at

the rank level. Thus, different memory allocation strategies must consider an important power-

performance tradeoff: distributing memory evenly across the ranks improves bandwidth which

leads to better performance, while minimizing the number of active ranks consume less power.

The BIOS is responsible for reading the memory hardware configuration and converting it into

physical address ranges used in the operating system. The BIOS provides several physical address

interleaving configurations, which control how the addresses are actually distributed among the

underlying memory hardware units. Different physical address interleaving configurations can

have significant power-performance implications. For example, systems tuned for performance

might configure the BIOS to fully interleave physical addresses so that consecutive addresses are

distributed across all the available ranks.

On boot, the operating system reads the physical address range for each NUMA node from the

BIOS and creates data structures to represent and manage physical memory. Nodes correspond

to the physical NUMA nodes in the hardware. Each node is divided into a number of blocks

called zones which represent distinct physical address ranges. Different zone types are suitable for

different types of usage (e.g. the lowest 16MB of physical memory, which certain devices require,

86

is placed in the DMA zone). Next, the operating system creates physical page frames (or simply,

pages) from the address range covered by each zone. Each page typically addresses 4KB of space.

The kernel’s physical memory management (allocation and recycling) operates on these pages,

which are stored and kept track of on various lists in each zone. For example, a set of lists of pages

in each zone called the free lists describes all of the physical memory available for allocation.

Finally, the operating system provides each process with its own virtual address space for man-

aging memory at the application level. Virtual memory relieves applications of the need to worry

about the size and availability of physical memory resources. Despite these benefits, virtualization

adds a layer of abstraction between the application and operating system which makes it impossi-

ble for the lower-level memory management routines to derive the purpose of a particular memory

allocation. Furthermore, even at the operating system level, many of the details of the underlying

memory hardware necessary for managing memory at the rank level have been abstracted away as

well. Thus, excessive virtualization makes it extremely difficult to design solutions for applications

which require more fine-grained controls over memory resource usage.

4.4 Application-Guided Memory Management

This section describes the design and implementation of our framework. Enabling applications to

guide management of memory hardware resources requires two major components:

1. An interface for communicating to the operating system information about how applications

intend to use memory resources (usage patterns), and

2. An operating system with the ability to keep track of which memory hardware units (DIMMs,

ranks) host which physical pages, and to use this detail in tailoring memory allocation to us-

age patterns

We address the first component in the next subsection, which describes our memory coloring

framework for providing hints to the operating system about how applications intend to use mem-

87

ory resources. Next, we describe the architectural modifications we made to the system-level

memory management software to enable management of individual memory hardware units.

4.4.1 Expressing Application Intent through Colors

A color is an abstraction which allows the application to communicate to the OS hints about how

it is going to use memory resources. Colors are sufficiently general as to allow the application to

provide different types of performance or power related usage hints. In using colors, application

software can be entirely agnostic about how virtual addresses map to physical addresses and how

those physical addresses are distributed among memory modules. By coloring any N different

virtual pages with the same color, an application communicates to the OS that those N virtual

pages are alike in some significant respect, and by associating one or more attributes with that

color, the application invites the OS to apply any discretion it may have in selecting the physical

page frames for those N virtual pages. As one rather extreme but trivial example, suppose that the

application writer uses one color for N virtual pages and then binds with that color a guidance to

"use no more than 1 physical page frame" for that color. The OS, if it so chooses, can satisfy a

demand fault against any of those N page addresses simply by recycling one physical page frame

by reclaiming it from one mapping and using it for another. Or, more practically, the OS may

simply interpret such a guidance to allocate normally but then track any page frames so allocated,

and reclaim aggressively so that those particular page frames are unlikely to remain mapped for

long. A scan-resistant buffer-pool manager at the application level may benefit from this kind of

guidance to the operating system.

More generally, an application can use colors to divide its virtual pages into groups. Each color

can be used to convey one or more characteristics that the pages with that color share. Contiguous

virtual pages may or may not have the same color. In this way an application provides a usage

map to the OS, and the OS consults this usage map in selecting an appropriate physical memory

scheduling strategy for those virtual pages. An application that uses no colors and therefore pro-

vides no guidance is treated normally– that is, the OS applies some default strategy. And even

88

when an application provides extensive guidance through coloring, depending on the particular

version of the operating system, the machine configuration (such as how much memory and how

finely interleaved it is), and other prevailing run time conditions in the machine, the OS may veer

little or a lot from a default strategy. The specializations that an OS may support need not be

confined just to selection of physical pages to be allocated or removed from the application’s res-

ident set, and they may include such other options as whether or not to fault-ahead or to perform

read-aheads or flushing writes; whether or not to undertake migration of active pages from one set

of memory banks to another in order to squeeze the active footprint into fewest physical memory

modules. In this way, an OS can achieve performance, power, I/O, or capacity efficiencies based

on guidance that application tier furnishes through coloring.

Using colors to specify intents instead of specifying intents directly (through a system call such

as madvise) is motivated by three considerations- (a) efficiency through conciseness – an appli-

cation can create the desired mosaic of colors and share it with the OS, instead of having to specify

it a chunk at a time, and (b) the ability to give hints that say something horizontal across a collec-

tion of pages with the same color, such as, "it is desirable to perform physical page re-circulation

among this group of virtual addresses", or, "it is desirable to co-locate the physical pages that hap-

pen to bind to this set of virtual addresses", etc., and (c) modularity – the capabilities supported

by a particular version of an OS or a particular choice of hardware and system configuration may

not support the full generality of hints that another version or configuration can support. An appli-

cation developer or deployer, or some software tool, can bind colors to the menu of hints at load

time or run time. This flexibility also means that even at run time, colors can be altered on the

basis of feedback from the OS or guidance from a performance or power tuning assistant. In our

prototype implementation, colors are bound to hints by a combination of configuration files and

library software. A custom system call actually applies colors to virtual address ranges.

Let us illustrate the use of colors and hints with a simple example. Suppose we have an appli-

cation that has one or more address space extents in which memory references are expected to be

relatively infrequent (or uniformly distributed, with low aggregate probability of reference). The

89

application uses a color, say blue to color these extents. At the same time, suppose the application

has a particular small collection of pages in which it hosts some frequently accessed data struc-

tures, and the application colors this collection red. The coloring intent is to allow the operating

system to manage these sets of pages more efficiently – perhaps it can do so by co-locating the blue

pages on separately power-managed units from those where red pages are located, or, co-locating

red pages separately on their own power-managed units, or both. A possible second intent is to

let the operating system page the blue ranges more aggressively, while allowing pages in the red

ranges an extended residency time. By locating blue and red pages among a compact group of

memory ranks, an operating system can increase the likelihood that memory ranks holding the

blue pages can transition more quickly into self-refresh, and that the activity in red pages does not

spill over into those ranks. (Other possible tuning options may be desirable as well – for example,

allowing a higher clock frequency for one set of memory ranks and reducing clock frequency on

others, if that is supported by the particular OS-hardware mix). Since many usage scenarios can be

identified to the operating system, we define “intents” and specify them using configuration files.

A configuration file with intents labeled MEM-INTENSITY and MEM-CAPACITY can capture two

intentions: (a) that red pages are hot and blue pages are cold, and (b) that about 5% of application’s

dynamic resident set size (RSS) should fall into red pages, while, even though there are many blue

pages, their low probability of access is indicated by their 3% share of the RSS.

1. Alignment to one of a set of standard intents:

INTENT MEM-INTENSITY

2. Further specification for containing total spread:

INTENT MEM-CAPACITY

3. Mapping to a set of colors:

MEM-INTENSITY RED 0 //hot pages

90

MEM-CAPACITY RED 5 //hint- 5% of RSS

MEM-INTENSITY BLUE 1 //cold pages

MEM-CAPACITY BLUE 3 //hint- 3% of RSS

Next let us give an overview of the approach we have taken in implementing a prototype mem-

ory management system for receiving and acting upon such guidance. In our implementation, we

have organized memory into power-management domains that are closely related to the underly-

ing hardware. We call these management units trays, and we map colors to trays and tray based

memory allocation and reclaim policies, as described in the following section.

4.4.2 Memory Containerization with Trays

We introduce a new abstraction called “trays” to organize and facilitate memory management in

our framework. A tray is a software structure which contains sets of pages that reside on the same

power-manageable memory unit. Each zone contains a set of trays and all the lists used to manage

pages on the zone are replaced with corresponding lists in each tray. Figure 4.1 shows how our

custom kernel organizes its representation of physical memory with trays in relation to the actual

memory hardware.1

We have used Linux kernel version 2.6.32 as the baseline upon which to implement trays.

The kernel’s page management routines, which operate on lists of pages at the zone level were

modified quite easily no operate over the same lists, but at a subsidiary level of trays. That is,

zones are subdivided into trays, and page allocation, scanning, recycling are all performed at the

tray level. While most of these changes are straightforward, the breadth of routines that require

modification make the size of our patch substantial. (On last accounting, our kernel patch included

modifications to approximately 1,800 lines of code over 34 files). This approach has the advantage

that trays are defined as objects with attributes on each zone, which we find easier to reason about

and maintain than another approach we considered: implicitly defining a “tray dimension” on

1The page interleaving shown in Figure 1 is for pictorial simplicity and is not a restriction.

91

Node 0

Zone NormalZone DMA

Tray 1
free LRU

Tray 0
free LRU

Tray 1
free LRU

Tray 2
free LRU

Tray 3
free LRU

Node 1

Zone Normal

Tray 5
free LRU

Tray 6
free LRU

Tray 7
free LRU

Tray 4
free LRU

R
a

n
k
 0

R
a

n
k
 1

Memory controller

Channel 0

R
a

n
k
 2

R
a

n
k
 3

Memory controller

Channel 1

R
a

n
k
 0

R
a

n
k
 1

Memory controller

Channel 0

R
a

n
k
 2

R
a

n
k
 3

Memory controller

Channel 1

NUMA Node 0 NUMA Node 1

Memory

Hardware

Operating System

Figure 4.1: Physical memory representation in the Linux kernel with trays as it relates to the

system’s memory hardware.

each of the memory manager’s lists of pages. Finally, this design requires less additional space

overhead compared to other approaches. In contrast to the memory region approach proposed by

A. Garg (http://lwn.net/Articles/445045/, 2011), which duplicates the entire zone structure for each

memory hardware unit, the only structures we duplicate are pointers to list heads for each list of

pages in each tray.

Assigning pages to the appropriate tray requires a mapping from the physical addresses served

up by the BIOS to the individual memory hardware units. The ACPI 5.0 specification defines a

memory power state table (MPST) which exposes this mapping in the operating system (http://www.acpi.info/spec.htm,

2011). Unfortunately, at the time of this writing, ACPI 5.0 has only been recently released, and

we are not able to obtain a system conforming to this specification. Therefore, as a temporary

measure, in our prototype implementation we construct the mapping manually from a knowledge

of the size and configuration of memory hardware in our experimental system. Specifically, we

know that each memory hardware unit stores the same amount of physical memory (2GB, in our

case). We can also configure the BIOS to serve up physical addresses sequentially (as opposed

to interleaving addresses across memory hardware units). Now, we can compute physical address

92

boundaries for each tray in our system statically using the size of our memory hardware units.

Finally, at runtime, we simply map each page into the appropriate tray via the page’s physical

address. Note that, while, in our system, this mapping is simple enough that it does not require

any additional per-page storage, a more complex mapping might require storage of tray informa-

tion on each page after computing it once during initialization. Our immediate future work will

be to rebase the implementation on an ACPI 5.0 compliant kernel that has the MPST information

available to the Linux kernel at the point of handoff from BIOS.

4.5 Experimental Setup

This work presents several experiments to showcase and evaluate our framework’s capabilities. In

this section, we describe our experimental platform as well as the tools and methodology we use

to conduct our experiments, including how we measure power and performance.

4.5.1 Platform

All of the experiments in this chapter were run on an Intel 2600CP server system with two Intel

Xeon E5-2680 sockets (codename “Sandy Bridge”). Each socket has 8 2.7GHz cores with hyper-

threading enabled and 16 GB of DDR3 memory (for a total of 32 threads and 32 GB of memory).

Memory is organized into four channels per socket and each channel contains exactly one DIMM

(with two 2 GB ranks each). We install 64-bit SUSE Linux Enterprise Server 11 SP 1 and se-

lect a recent Linux kernel (version 2.6.32.59) as our default operating system. The source code

of this Linux kernel (available at kernel.org) provides the basis of our framework’s kernel

modifications.

4.5.2 The HotSpot Java Virtual Machine

Several of our experiments use Sun/Oracle’s HotSpot Java Virtual Machine (build 1.6.0_24) (Paleczny

et al., 2001). The latest development code for the HotSpot VM is available through Sun’s OpenJDK

93

initiative. The HotSpot VM provides a large selection of command-line options, such as various

JIT compilation schemes and different garbage collection algorithms, as well as many configurable

parameters to tune the VM for a particular machine or application. For all of our experiments with

HotSpot, we select the default configuration for server-class machines (http://www.oracle.com/technetwork/java/jav

whitepaper 150215.pdf, 2006). We conduct our HotSpot VM experiments over benchmarks se-

lected from two suites of applications: SPECjvm2008 (SPEC2008, 2008) and DaCapo-9.12-bach (Black-

burn et al., 2006). Each suite employs a harness program to load and iterate the benchmark appli-

cations multiple times in the same run. The SPECjvm2008 harness continuously iterates several

benchmark operations for each run, starting a new operation as soon as a previous operation com-

pletes. Each run includes a warmup period of two minutes (which is not counted towards the run

score) and an iteration period of at least four minutes. The score for each run is the average time

it takes to complete one operation during the iteration period. Similarly, the DaCapo harness ex-

ecutes each benchmark operation a specified number of iterations per run. For these applications,

we execute the benchmark a total of 31 iterations per run and take the median runtime of the final

30 iterations as the score for each run. For all of our experiments, we report the average score of ten

runs as the final score for the benchmark. We discuss the particular applications we use as well as

further details about the HotSpot VM relevant to each experiment in the subsequent experimental

sections.

4.5.3 Application Tools for Monitoring Resources

We designed several tools based on custom files in the /proc filesystem to provide applications

with memory resource usage information. These tools provide an “on-demand” view of the sys-

tem’s memory configuration as well as an estimate of the total and available memory for each

memory hardware unit (rank). Additionally, we have written tools to map specific regions of a

process’ virtual address space to the memory units backing these regions. These tools are essential

for applications which require feedback from the OS to control their own memory usage.

94

4.5.4 DRAM Power Measurement

In addition to basic timing for performance measurements, many of our experiments read various

activity counters (registers) to measure the impact of our framework with additional metrics, such

as power consumption. We estimate DRAM power consumption with Intel’s power governor

library. The power governor framework employs sampling of energy status counters as the basis

of its power model. The accuracy of the model, which is based on proprietary formulae, varies

based on the DRAM components used. For our experiments, we run a separate instance of a power

governor based-tool during each run to compute a DRAM power estimate (in Watts) every 100ms.

We report the mean average of these estimates as the average DRAM power consumption over the

entire run.

4.6 Emulating the NUMA API

Modern server systems represent and manage memory resources at the level of individual NUMA

nodes. These systems typically provide a library and/or set of tools for applications to control

how their memory usage is allocated across NUMA nodes. In contrast, our framework enables the

operating system to manage resources at the more fine-grained level of individual hardware units.

While our system provides more precise control, it is also powerful enough to emulate the func-

tionality of tools designed specifically for managing memory at the level of NUMA node. In this

section, we demonstrate that our framework effectively emulates the NUMA API by implementing

a NUMA optimization in the HotSpot JVM with our framework.

4.6.1 Exploiting HotSpot’s Memory Manager to improve NUMA Locality

The HotSpot JVM employs garbage collection (GC) to automatically manage the application’s

memory resources. The HotSpot memory manager allocates space for the application heap during

initialization. As the application runs, objects created by the application are stored in this space.

Periodically, when the space becomes full or reaches a preset capacity threshold, the VM runs a

95

collection algorithm to free up space occupied by objects that are no longer reachable. The HotSpot

garbage collector is generational, meaning that HotSpot divides the heap into two different areas

according to the age of the data. Newly created objects are placed in an area called the eden space,

which is part of the younger generation. Objects that survive some number of young generation

collections are eventually promoted, or tenured, to the old generation.

On NUMA systems, this generational organization of memory can be exploited to improve

DRAM access locality. The critical observation is thus: newer objects are more likely to be ac-

cessed by the thread that created them. Therefore, binding new objects to the same NUMA node as

the thread that created them should reduce the proportion of memory accesses on remote NUMA

nodes, and consequently, improve performance. In order to implement this optimization, HotSpot

employs the NUMA API distributed with Linux. During initialization, HotSpot divides the eden

space into separate virtual memory areas and informs the OS to back each area with physical

memory on a particular NUMA node via the numa_tonode_memory library call. As the appli-

cation runs, HotSpot keeps track of which areas are bound to which NUMA node and ensures that

allocations from each thread are created in the appropriate area.

To implement the NUMA optimization in our framework, we create separate node affinitization

colors for each NUMA node in the system. Next, we simply replace each call to numa_tonode_memory

in HotSpot with a call to color each eden space area with the appropriate node affinitization color.

The OS interprets this color as a hint to bind allocation for the colored pages to the set of trays

corresponding to memory hardware units on a particular NUMA node. In this way, the node affini-

tization colors emulate the behavior of the numa_tonode_memory library call.

4.6.2 Experimental Results

We conduct a series of experiments to verify that our framework effectively implements the NUMA

optimization in HotSpot. For these experiments, we select the SciMark 2.0 subset of the SPECjvm2008

benchmarks with the large input size. This benchmark set includes five computational kernels com-

mon in scientific and engineering calculations and is designed to address the performance of the

96

0

0.2

0.4

0.6

0.8

1

1.2

fft lu sor sparse monte_carlo geomean

P
e

rf
o

rm
a

n
ce

 o
f

N
U

M
A

o
p

ti
m

.
re

la
ti

v
e

 t
o

 d
e

fa
u

lt

Benchmarks

NUMA API mem. color API

0

20

40

60

80

100

fft lu sor sparse monte_carlo geomean%
 m

e
m

o
ry

 r
e

a
d

s
sa

ti
sf

ie
d

b
y

 l
o

ca
l

D
R

A
M

Benchmarks

default NUMA API mem. color API

(a) (b)

Figure 4.2: Comparison of implementing the HotSpot NUMA optimization with the default

NUMA API vs. our memory coloring framework (a) shows the performance of each implementa-

tion relative to the default HotSpot performance. (b) shows the % of NUMA-local memory reads

with each configuration.

memory subsystem with out-of-cache problem sizes (SPEC2008, 2008). We found that enabling

the HotSpot NUMA optimization significantly affects the performance of several of these bench-

marks, making them good candidates for these experiments. We use the methodology described

in Section 4.5.2 to measure each benchmark’s performance. We also employ activity counters to

measure the ratio of memory accesses satisfied by NUMA-local vs. NUMA-remote DRAM during

each run.

Figure 4.2(a) shows the performance of each implementation of the NUMA optimization rel-

ative to the default configuration’s performance of each benchmark. In Figure 4.2(a), lower bars

imply better performance (e.g., the lu benchmark runs about 15% faster with the NUMA optimiza-

tion enabled compared to the default HotSpot configuration). Also, for each result, we plot 95%

confidence intervals using the methods described by Georges et. al. (Georges et al., 2007), and

the rightmost bar displays the average (geometric mean) of all the benchmarks. It can be observed

that the NUMA optimization improves performance for three of the five SciMark benchmarks,

yielding about a 9% average improvement. More importantly, the performance results for each

implementation of the NUMA optimization are very similar across all the benchmarks, with the

differences between each implementation always within the margin of error. On average, the two

implementations perform exactly the same. Similarly, Figure 4.2(b) plots the percentage of total

memory accesses satisfied by NUMA-local memory for each configuration. As expected, the op-

97

timization increases the proportion of memory accesses satisfied by local DRAM for most of the

benchmarks. Interestingly, the percentage of local memory accesses for one benchmark (fft) actu-

ally reduces with the optimization enabled. However, in terms of emulating the NUMA API, while

these results show slightly more variation between the two implementations, the differences, again,

are always within the margin of error. Thus, our framework provides an effective implementation

of the NUMA optimization in HotSpot. Furthermore, this experiment shows that our design is

flexible enough to supersede tools which exert control over memory at the level of NUMA nodes.

4.7 Memory Priority for Applications

Our framework provides the architectural infrastructure to enable applications to guide memory

management policies for all or a portion of their own memory resources. In this section, we

present a “first-of-its-kind” tool which utilizes this infrastructure to enable memory prioritization

for applications. Our tool, called memnice, allows applications to prioritize their access to mem-

ory resources by requesting alternate management policies for low priority memory. Later, we

showcase an example of using memnice to prioritize the memory usage of a Linux kernel compile.

4.7.1 memnice

Operating systems have long had the ability to prioritize access to the CPU for important threads

and applications. In Unix systems, processes set their own priority relative to other processes via

the nice system call, and the process scheduler uses each process’ nice value to prioritize access to

the CPU. Prioritizing access to memory resources is much more difficult due to the varying time

and space requirements for memory resources and the layers of abstraction between the application

and memory hardware. Our framework facilitates solutions for each of these issues enabling us to

create the first-ever tool for prioritizing access to memory resources: memnice.

In our initial implementation, memnice accomplishes memory prioritization by limiting the

98

fraction of physical memory against which allocations can happen2. Consider a scenario in which

several low-priority applications and one high-priority application compete over the same pool of

memory. If left alone, the low-priority applications can expand their memory footprint contending

with memory allocations of a higher-priority application, and forcing premature reclaims against a

higher-priority application’s pages.

In order to ensure the high-priority application runs smoothly, we can restrict the low-priority

applications from using certain portions of memory using memnice. To implement this scheme

in our framework, we enable applications to color portions of their address spaces to reflect the

urgency with which pages must be stolen from elsewhere to meet demand fills. In the operating

system, we restrict low-priority allocations to only search for free pages from an allowed set of

trays. In this way, the low-priority applications are constrained to a smaller fraction of the system’s

memory, and the high-priority application can call upon larger fractions of system’s memory during

demand fills.

We showcase our implementation by running several Linux kernel compilations with different

memory priority settings. Kernel compilation, unless restricted, can allocate and keep a large

number of pages busy, as it proceeds through reading, creating, and writing, a lot of files, including

temporary files, from each of a number of threads that run in parallel. For each experiment, we use

the memnice utility, which is implemented as a simple command-line wrapper, to set the memory

priority for the entire address space of the compilation process. We also configured our framework

so that children of the root compilation process would inherit its memory priority and apply it to

their own address spaces. We run all of our compilations on one node of the system described in

Section 4.5.1. For each compilation, we employ four different memory priority configuration to

restrict the compilation to a different set of memory resources in each run. These configurations

restrict the compilation to use either 1 tray, 2 tray, 4 tray, or all 8 tray of memory on the node.

Finally, during each run, we sampled (at a rate of once per second) the proc filesystem to estimate

2We chose a simple way to force prioritization. In a more refined implementation we would use colors to signal to

the operating system that it should force a colored set to do color-local recycling subject to a minimum length of time

for which pages are kept mapped before being recycled, to prevent thrashing

99

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400 1600

F
re

e
 m

e
m

.
o

n
 n

o
d

e
 (

in
 G

B
)

Time

1 rank

2 ranks

4 ranks

8 ranks

Figure 4.3: Free memory available during kernel compilations with different memory priorities

the amount of free memory available on the node.

4.7.2 Using memnice with Kernel Compilation

Each line in Figure 4.3 shows the free memory available on the node during kernel compilations

with differing memory priorities. As we can see, each compilation proceeds at first using the same

amount of memory resources. However, at around the 200th sample, the compilation restricted to

use memory from only 1 tray is constrained from growing its memory footprint any larger than

2GB (recall that our system contains 2GB trays). Similarly, the compilation restricted to two trays

stops growing after its footprint reaches about 4GB. The compilations restricted to 4 and 8 trays

proceed in pretty much the same way for the entire run, presumably because kernel compilation

does not require more than 8GB of memory. Finally, as expected, compilations restricted to use

fewer memory resources take much longer to complete. Thus, memnice properly constrains the set

of memory resources available for each application and is an effective tool for providing efficient,

on-demand prioritization of memory resources.

4.8 Reducing DRAM Power Consumption

Memory power management in current systems occurs under the aegis of a hardware memory

controller which transitions memory ranks into low power states (such as "self-refresh") during

100

periods of low activity. To amplify its effectiveness, it is desirable that pages that are very lightly

accessed are not mixed up with pages that are accessed often within the same memory ranks. In

this section, we show how our framework can bring about periods of low activity more consciously

at a memory rank level, instead of relying on such an effect resulting from just happenstance.

For all the experiments in this section, we use a utility that we call memory scrambler to

simulate memory state on a long-running system. As its name suggests, the“memory scrambler” is

designed to keep trays from being wholly free or wholly allocated – it allocates chunks of memory

until it exhausts memory, then frees the chunks in random order until a desired amount of memory

is freed up (holding down some memory), effectively occupying portions of memory randomly

across the physical address space. We perform the experiments described in this section using

16GB of memory from one socket of the server. Before each experiment, we run the scrambler,

configured such that it holds down 4GB of memory after it finishes execution.

4.8.1 Potential of Containerized Memory Management to Reduce DRAM

Power Consumption

The default Linux kernel views memory as a large contiguous array of physical pages, sometimes

divided into NUMA nodes. That this array is actually a collection of independent power-managed

ranks at the hardware level is abstracted away at the point that the kernel takes control of managing

the page cache. Over time, as pages become allocated and reclaimed for one purpose after another,

it is nearly impossible to keep pages that are infrequently accessed from getting mixed up with

pages that are frequently accessed in the same memory banks. Thus, even if only a small fraction

of pages are actively accessed, the likelihood remains high that they are scattered widely across all

ranks in the system.

The use of trays in our customization of the default kernel makes it possible to reduce this

dispersion. Trays complement coloring– the application guides the kernel so that virtual pages

that are frequently accessed can be mapped to physical pages from one set of trays, while those

that are not, can be mapped to physical pages from the remaining trays. If performance demand is

101

such that very high degree of interleaving is requested by an application, the operating system may

need to spread out page allocation among more trays; but if that is not necessary then the operating

system can keep page allocation biased against such a spread-out. In order to demonstrate the

power-saving potential of our framework, we designed a “power-efficient” memory management

configuration. We opt, when allocating a page, to choose a tray that has furnished another page

for similar use. In this way we reduce the number of additional memory ranks that need to stay

powered up.

To keep the first experiment simple, we have used a simplified workload. In this workload, we

don’t need application coloring because the workload simply allocates increasing amounts of mem-

ory in stages, so that in each stage it just allocates enough additional memory to fit in exactly one

power-manageable unit. This unit is 2GB, in our case. In each stage, the workload continuously

reads and writes the space it has allocated, together with all of the space it allocated in previous

stages, for a period of 100 seconds. During each stage, we use power governor (Section 4.5.4) to

measure the average DRAM power consumption.

We compare our custom kernel running the staged workload to the default kernel with two con-

figurations: one with physical addresses interleaved across the memory hardware units (the default

in systems tuned for performance) and another with physical addresses served up sequentially by

the BIOS. Recall that our custom kernel requires that physical addresses are served up sequentially

in order to correctly map trays onto power-manageable units.

Figure 4.4 shows the average DRAM power consumption during each stage for each system

configuration. Thus, during stages when only a fraction of the total system memory is active,

our custom kernel consumes much less power than the default kernel. Specifically, during the first

stage, the custom kernel consumes about 55% less DRAM power than the default kernel with phys-

ical address interleaving enabled and 48% less than the default kernel with interleaving disabled.

This is because, with no other processes actively allocating resources, the containerized kernel is

able to satisfy the early stage allocations one memory unit at a time. The default kernel, how-

ever, has no way to represent power-manageable memory units and will activate memory on every

102

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

A
v

g
.

D
R

A
M

 p
o

w
e

r

co
n

su
m

p
ti

o
n

 (
in

 W
)

Memory activated by scale_mem (in GB)

Default kernel (interleaving enabled)

Default kernel (interleaving disabled)

Power efficient custom kernel

Figure 4.4: Relationship between memory utilization and power consumption on three different

configurations

hardware unit during the first stage. As the workload activates more memory, the custom kernel

activates more memory hardware units to accommodate the additional resources and eventually

consumes as much DRAM power as the default kernel (with interleaving disabled).

In sum, these experiments show that our framework is able to perform memory manage-

ment over power-manageable units and that this approach has the potential to significantly reduce

DRAM power consumption.

4.8.2 Localized Allocation and Recycling to Reduce DRAM Power Con-

sumption

In this section, we show that basic capabilities of our framework can be used to reduce DRAM

power consumption over a set of benchmark applications. We create colors to enable applications

to restrict their memory allocation and recycling to a population of pages that become allocated to

each color (i.e., the OS performs color-local recycling). By restricting allocations of a given color

to a subset of memory ranks, the operating system can translate color-confinement into confine-

ment of the active memory footprints to the corresponding groups of ranks. We then measure the

impact on power and performance from such confinements.

For these experiments, we selected five Java benchmarks from the DaCapo-9.12-bach bench-

mark suite for their varying memory usage characteristics. The h2, tradebeans, and tradesoap

103

0

0.2

0.4

0.6

0.8

1

1.2

fop h2 luindex tradebeans tradesoap geomean

A
vg

.
D

R
A

M
 p

o
w

e
r

re
la

ti
ve

to
 d

e
fa

u
lt

 k
e

rn
e

l
(w

/
il

v.
)

Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

fop h2 luindex tradebeans tradesoap geomean

A
v

g
.

D
R

A
M

 p
o

w
e

r
re

la
ti

v
e

to
 c

u
st

o
m

 k
e

rn
e

l

Benchmarks

(a) (b)

Figure 4.5: Local allocation and recycling reduces DRAM power consumption. (a) shows DRAM

power relative to the default kernel (with interleaving enabled) and (b) shows the results relative to

the custom kernel without local allocation and recycling.

applications execute thousands of transactions over an in-memory database and require relatively

large memory footprints with non-uniform access patterns. In contrast, fop, which converts files

to PDF format, and luindex, which indexes documents using the lucene library, require smaller

footprints with more uniform access patterns.

We employ an experimental setup similar to the setup we use in the previous section. All

experiments are run on one node of our server system and we again employ the memory scrambling

tool to occupy random portions of the physical address space during each run. Each benchmark

is run within the HotSpot JVM and we record performance and DRAM power measurements as

described in Section 4.5. Each of the selected benchmarks requires no more than 4GB of total

memory resources and we run the benchmarks one at a time. Thus, for each experimental run,

we color the entire virtual address space of each benchmark to bind all memory allocation and

recycling to a single 4GB DIMM.

Figure 4.5(a) shows the ratio of DRAM power consumed for each benchmark, between when

it is run with local allocation and recycling and when it is run on the default kernel. As the figure

shows, the local allocation and recycling consumes significantly less DRAM power than the default

kernel configuration; indeed, DRAM power reduces by no less than 20% for each benchmark and

the average savings are about 27%. It turns out, however, there are overlapping factors contributing

to these power savings. The default configuration interleaves physical addresses across memory

hardware units, which typically consumes more power than the alternative of non-interleaved ad-

104

dresses employed by our custom kernel configuration. Additionally, the custom kernel’s tray based

allocation may help by itself if the application’s overall footprint is small enough. In order to iso-

late the effect of color-based allocation and recycling, we compare the average DRAM power con-

sumed with and without color guidance with our custom kernel configuration (Figure 4.5(b)). We

find that the database benchmarks are able to reduce power consumption based on color guidance,

while the benchmarks with smaller memory footprints do not improve. This is because, without

local allocation and recycling enabled, the database benchmarks scatter memory accesses across

many power-manageable units, while the memory footprints of fop and luindex are small enough

to require only one or two power-manageable units. Finally, it also appears that the potential re-

duction in memory bandwidth from localizing allocation and recycling to a single DIMM has very

little impact on the performance of these benchmarks. We find that there is virtually no difference

in performance between any of the configurations, including when compared to the default Linux

kernel.

4.8.3 Exploiting Generational Garbage Collection

While it is useful to apply coarse-grained coloring over an application’s entire virtual address

space, let us use this section to describe the potential from using finer-grained control over portions

of an application’s address space, by evaluating in reality a proposal that has been previously

explored through simulation.

The technique we evaluate in this section was first proposed and simulated by Velasco et.

al. (Velasco et al., 2012) as a way to reduce DRAM power consumption in systems which em-

ploy generational garbage collection. Section 4.6.1 contained a description of the HotSpot garbage

collector. The optimization (Velasco et al., 2012) exploits the observation that during young gen-

eration collection, only objects within the young generation are accessed. Thus, if objects in the

tenured generation reside on an isolated set of power-manageable units (i.e. no other type of mem-

ory resides on them), then these units will power down during young generation collection. It is

important to note that this optimization also relies on the assumption that the system “stops the

105

4

4.5

5

5.5

6

6.5

7

7.5

8

0 2 4 6 8 10

D
R

A
M

 p
o

w
e

r
(W

)

Time (s)

default color-aware

Figure 4.6: Raw power governor samples with and without “tenured generation optimization”

applied

world” (i.e. does not allow application threads to run) during garbage collection to ensure that ap-

plication threads do not access the tenured generation objects during young generation collection.

In order to implement this optimization in our framework, we arrange to house the tenured gen-

eration in a different set of power managed memory units than that allocated to the remainder, by

modifying the HotSpot VM to color the tenured generation. When the operating system attempts

to allocate resources for a virtual address colored as the tenured generation, it only searches for

free memory from a subset of trays that it has earmarked for that color.

We ran the derby benchmark from the SPECjvm2008 benchmark suite for evaluation. derby

is a database benchmark which spends a fair portion of its runtime doing garbage collection. We

use the same machine and memory scrambler configuration that we use in the previous subsections

and we measure performance and DRAM power consumption as described in Section 4.5.

Figure 4.6 plots the raw samples collected by the power governor tool during a portion of an

experimental run with and without the optimization applied. Each dip corresponds to a separate

invocation of the garbage collector. As we can see, the optimized configuration consumes slightly

less power during garbage collection. Overall, the optimization reduces DRAM power by almost

9% and does not affect performance on our custom kernel. Thus, isolating the tenured generation

memory in HotSpot on its own set of power-manageable units has a small but measurable impact

on DRAM power consumption.

106

4.9 Future Work

Our current implementation of trays uses memory topology information that we provide to the

operating system during its boot-up. This is a temporary measure; an immediate next task is to

build upon MPST information that would be available in a Linux kernel that implements ACPI

5.0. Simultaneously we will implement color awareness in selected open source database, web

server, and J2EE software packages, so that we can exercise complex, multi-tier workloads at the

realistic scale of server systems with memory outlays reaching into hundreds of gigabytes. In these

systems, memory power can reach nearly half of the total machine power draw, and therefore they

provide an opportunity to explore dramatic power and energy savings from application-engaged

containment of memory activities.

The experiments we reported in this chapter were on a small scale, in a system with just 16

or 32 gigabytes of memory as our first phase intent was to demonstrate the concept of application

influenced virtualization of memory. In the next phase of this work, in addition to exploring the

saving of power on a non-trivial scale of a terabyte data or web application services, we plan to

explore memory management algorithms that permit applications to maximize performance by

biasing placement of high value data so that pages in which performance critical data resides are

distributed widely across memory channels. Another element of optimization we plan to explore is

application guided read-ahead and/or fault-ahead for those virtual ranges of applications in which

there is reason to expect sequential access patterns. We also plan to implement a greater variety of

page recycling policies in order to take advantage of color hints from applications; for instance, we

would like to create the possibility that trays implement such algorithm options as (a) minimum

residency time– where a page is not reclaimed unless it has been mapped for a certain threshold

duration, (b) capacity allocation – where, physical pages allocated to different color groups are

recycled on an accelerated basis as needed in order to keep the time-averaged allocation in line

with application guided capacities, (c) reserve capacities – in which a certain minimum number of

pages are set aside in order to provide a reserve buffer capacity for certain critical usages, etc. We

envision that as we bring our studies to large scale software such as a complex database, we will

107

inevitably find new usage cases in which applications can guide the operating system with greater

nuance about how certain pages should be treated differently from others. Finally, one avenue of

considerable new work that remains is the development of tools for instrumentation, analysis, and

control, so that we can facilitate the generation and application of memory usage guidance between

application software and operating system.

4.10 Conclusion

This chapter presents a framework for application-guided memory management. We create ab-

stractions called colors and trays to enable three-way collaboration between the application tasks,

operating system software, and hardware. Using a re-architected Linux kernel, and detailed mea-

surements of performance, power, and memory usage, we demonstrate several use cases for our

framework, including emulation of NUMA APIs, enabling memory priority for applications, and

power-efficiency for important applications. Hence, by providing an empirical evaluation that

demonstrates the value of application-guided memory management, we have shown that our frame-

work is a critical first step in meeting the need for a fine-grained, power-aware, flexible provision-

ing of memory.

108

Chapter 5

Automatic Cross-Layer Memory

Management to Reduce DRAM Power

Consumption

Energy efficiency has become a major concern in a wide range of computing domains. It is difficult

to achieve power efficiency in memory because the power expended in memory is not only a func-

tion of the intensity with which memory is accessed in time, but also how many physical memory

devices (i.e. DRAM ranks) that are affected by an application’s memory usage. To improve en-

ergy efficiency in the memory subsystem, we build a novel, collaborative, cross-layer, framework

that employs object profiling and management at the application layer to enable power-efficient

distribution of objects in the DRAM hardware. Our framework, based on Oracle’s HotSpot Java

Virtual Machine and the Linux operating system, automatically classifies and organizes program

objects into separate heap regions based on their expected usage. The VM communicates the re-

gion boundaries and expected usage behavior to our modified Linux kernel, which incorporates

this information during memory management to organize physical memory in a power-efficient

way.

In this chapter, we describe the design and implementation of our framework, which is the first

109

to integrate object profiling and analysis at the application layer with fine-grained management of

memory hardware resources in the operating system. We use a custom memory-intensive workload

to demonstrate the potential of our approach. Next, we develop a new profiling-based analysis and

code generator in the HotSpot VM to automatically determine and control the placement of hot

and cold objects in a partitioned VM heap. This information is communicated to the operating

system, which uses it to map the logical application pages to the appropriate DRAM ranks. We

evaluate our framework and find that it achieves significant DRAM energy savings across a variety

of workloads in the SPECjvm2008 benchmark suite, without any source code modifications or

recompilations.

5.1 Introduction

Recent trends in computing include an increased focus on energy efficiency. Computer systems

are becoming more power hungry, and researchers are actively searching for better ways to man-

age system power. At the platform level (individual node or server), most effort has focused on

reducing power consumption in the CPU. However, recent research suggests that power consump-

tion in memory has become a dominant factor for many server systems (Lefurgy et al., 2003).

Not surprisingly, it is very challenging to obtain precise control over the distribution and usage

of memory power or bandwidth when virtualizing system memory. These effects depend upon

the assignment of virtual addresses to the application’s data objects, the OS binding of virtual to

physical addresses, and the mapping of physical pages to hardware DRAM devices.

To overcome these challenges, the previous chapter proposes a framework to facilitate commu-

nication across multiple layers of the vertical execution stack during memory management. This

framework enables applications to communicate guidance to the OS about how they intend to use

portions of the virtual address space. The operating system can then incorporate this guidance

when deciding which physical page should be used to back a particular virtual page.

While this framework provides a powerful tool for communicating information from the ap-

110

plications to the OS during memory management, it suffers from some severe limitations: (a) For

many complex applications and workloads, it will be infeasible to manually determine the set of

memory usage guidance to provide to the OS, and (b) All memory usage guidance must be manu-

ally inserted into source code, and modified applications must be recompiled.

This chapter aims to address the limitations of such OS-level frameworks by integrating them

with an automated mechanism to determine and convey memory access and usage information

from the application to the OS at run-time without any additional recompilations. Our work,

implemented in the standard HotSpot Java Virtual Machine (JVM), divides the application’s heap

into separate regions for objects with different (expected) usage patterns. At application run-time,

we use profiling information in our custom JVM to automatically partition and allocate the heap

objects into separate regions and communicate with the OS to guide memory management.

To motivate our approach, we design a custom benchmark that uses static program types to

distinguish objects with different usage activity. We conduct a series of experiments and present

detailed analysis that shows that controlling the placement of program objects yields DRAM en-

ergy savings of up to 30% with this memory-intensive workload. We then evaluate our fully au-

tomated profiling-based approach on the entire set of SPECjvm2008 benchmarks, and report our

observations. This work makes the following important contributions:

1. We develop, implement, and evaluate a framework to automatically partition application data

objects into distinct classes based on their usage patterns,

2. We design a custom benchmark to effectively demonstrate the potential and tradeoffs of

memory power saving with program speed and program bandwidth requirements,

3. We build an exhaustive profiling framework in the HotSpot JVM to determine program mem-

ory usage patterns at run-time, and

4. We provide detailed experimental results and performance analysis of our cross-layer frame-

work for memory management.

111

5.2 Related Work

Several researchers have explored the effect of object layouts on program performance. Hirzel (Hirzel,

2007) conducted an extensive evaluation to demonstrate the importance of data layout for program

performance. Zhang and Hirzel (Zhang & Hirzel, 2008) employ layout auditing to automatically

select data layouts that perform well. Jula and Rauchwerger (Jula & Rauchwerger, 2009) propose

two memory allocators that use automatically provided allocation hints to improve spatial locality.

Hirzel et. al. (Hirzel et al., 2003) and Guyer and Mckinley (Guyer & McKinley, 2004) manipu-

late object layout to implement optimizations in the garbage collector. In contrast to these works,

which only affect object layout in the virtual address space, our framework controls the physical

location of objects in memory as well.

Other works have explored integrating information at the application-level with the OS and

hardware to aid resource management. Projects, such as Exokernel (Engler et al., 1995) and

Dune (Belay et al., 2012), attempt to give applications direct access to physical resources. In

contrast, our framework does not use or expose any physical structures or privileged instructions

directly to applications. Banga, et. al. (Banga et al., 1999) propose a model and API that allows

applications to communicate their resource requirements to the OS through the use of resource con-

tainers. Brown and Mowry (Brown & Mowry, 2000) integrate a modified SUIF compiler, which

inserts release and prefetch hints using an extra analysis pass, with a runtime layer and simple OS

support to improve response time of interactive applications in the presence of memory-intensive

applications.

Also related is the concept of cache coloring (Kessler & Hill, 1992), where the operating sys-

tem groups pages of physical memory (as the same color) if they map to the same location in a

physically indexed cache. Despite their similar names, coloring in our framework is different than

coloring in these systems. Cache coloring aims to reduce cache conflicts by exploiting spatial or

temporal locality when mapping virtual pages to physical pages of different colors, while colors in

our framework primarily serve to signal usage intents from the JVM to the operating system.

Prior work has also explored virtual memory techniques for energy efficiency. Lebeck et.

112

al. (Lebeck et al., 2000) propose several policies for making page allocation power aware. Zhou

et. al. (Zhou et al., 2004) track the page miss ratio curve, i.e. page miss rate vs. memory size

curve, as a performance-directed metric to determine the dynamic memory demands of applica-

tions. Petrov et. al. (Petrov & Orailoglu, 2003) propose virtual page tag reduction for low-power

translation look-aside buffers (TLBs). Huang et. al. (Huang et al., 2003) propose the concept of

power-aware virtual memory, which uses the power management features in RAMBUS memory

devices to put individual modules into low power modes dynamically under software control. All

of these works highlight the importance and advantages of power-awareness in the virtual memory

system – and explore the potential energy savings. In contrast to our work, these systems do not

employ integration between upper- and lower-level memory management, and thus, are vulnerable

to learning inefficiencies as well as those resulting from the OS and application software working

at cross purposes.

5.3 Background

In order to effectively improve memory power-efficiency, it is important to understand how mem-

ory devices are designed and used in modern computing systems. In this section, we present

an overview of how memory hardware is organized in a typical server machine, discuss factors

contributing to DRAM power consumption, as well as describe how memory is represented and

managed by the operating system and applications.

5.3.1 Overview of DRAM Structure

In modern server systems, memory is spatially organized into channels. Each channel employs

its own memory controller and contains one or more DIMMs, which, in turn, each contain two or

more ranks. Ranks comprise the actual memory storage and typically range from 2GB to 8GB in

capacity.

113

5.3.2 DRAM Power Consumption

DRAM power consumption can be divided into two main components: operation power, which is

the power required for active memory operations, and background power, which accounts for all

other power in the memory system1 Operation power is primarily driven by the number of memory

accesses to each device, while background power depends solely on the operating frequency and

the current power-down state of the memory devices. Modern memory devices perform aggressive

power management to automatically transition from high power to low power states when either all

or some portion of the memory is not active. Ranks are the smallest power manageable unit, which

implies that transitioning between power states is performed at the rank level. As with any power-

management technique, turning off a portion of the device in a power-down state incurs a wakeup

penalty the next time that portion of the device is accessed. Current DDR3 technology supports

multiple power-down states, each of which poses a different tradeoff between power savings and

wakeup latency. Table 3 in (David et al., 2011) provides a summary of power requirements and

wakeup latencies for the various power-down states for a typical DDR3 device. Thus, controlling

memory power consumption requires understanding how memory accesses are distributed across

memory devices. Configurations tuned to maximize performance attempt to distribute accesses

evenly across the ranks and channels to improve bandwidth and reduce wakeup latencies, while

low-power configurations attempt to minimize the number of active memory devices.

5.3.3 Operating System View of Physical Memory

During system initialization, the BIOS reads the memory hardware configuration and converts it

into physical address ranges provided to the operating system. Many vendors provide options to

control (prior to boot) how physical addresses are distributed among the underlying memory hard-

ware units. For example, options to enable channel and rank interleaving ensure that consecutive

physical addresses are distributed across the system’s memory devices. At boot time, the operating

1For a full accounting of the various factors that contribute to DRAM power consumption, see Section 3 in (David

et al., 2011).

114

system reads the physical address range for each NUMA node from the BIOS and creates data

structures to represent and manage physical memory. Nodes correspond to the physical NUMA

nodes in the hardware. Each node is divided into a number of blocks called zones which repre-

sent distinct physical address ranges. Next, the operating system creates physical page frames (or

simply, pages) from the address range covered by each zone. Page size varies depending on the

system architecture and configuration, but in a typical x86 machine, each page addresses 4KB of

memory. The kernel’s physical memory management (allocation and recycling) operates on these

pages, which are stored and kept track of on various lists in each zone. For example, a set of

lists of pages in each zone called the free lists describes all of the physical memory available for

allocation. Most current systems do not have any view of how physical pages map to the under-

lying memory topology (i.e. the actual layout of DRAM ranks and channels in hardware) during

memory management.

5.3.4 Automatic Heap Management in Managed Language Runtimes

The operating system provides each process with its own virtual address space for using memory

at the application level. Native applications use system calls (e.g. brk and mmap) to request and

manage virtual memory resources. Programs written in managed languages (such as Java) do not

interact directly with the operating system, but rather, execute inside a process virtual machine

(VM) (also called runtime system). In addition to enabling portability, the VM provides various

services, including garbage collection (GC), for developer convenience and to facilitate safer and

more efficient computation. On initialization, the VM allocates a large virtual address space for

use as the application’s heap. When the application allocates an object (e.g. using Java’s new

instruction), the VM updates a pointer in the application’s heap area to reserve space for the new

object. Periodically, the heap area will fill with objects created by the application, triggering a

garbage collection. During GC, the VM frees up space associated with the dead (unreachable)

objects, and possibly shrinks or expands the virtual memory space depending on the current need.

In this way, the VM automatically manages several aspects of the application’s memory resources,

115

including the size of the application’s heap and where program objects are located in the virtual

memory space.

5.4 Cross-Layer Memory Management

Controlling the placement of program objects/data in memory to reduce memory power consump-

tion requires collaboration between multiple layers of the vertical execution stack, including the

application, operating system, and DRAM hardware. Our modified HotSpot JVM divides its appli-

cation heap into separate regions for objects with different expected usage patterns. We integrate

our modified JVM with the OS-based framework described in the previous chapter that provides

two major components: (a) An application programming interface (API) for communicating to

the OS information about how applications intend to use memory resources (usage patterns), and

(b) An operating system with the ability to keep track of which memory hardware units (DIMMs,

ranks) host which physical pages, and to use this detail in tailoring memory allocation to usage

patterns.

Incorporating application guidance during memory management can enable the OS to achieve

more efficient memory bandwidth, power, and/or capacity distributions. While the existing OS

framework facilitates communication between the applications and operating system, it has some

serious limitations:

1. It requires developers to manually determine the set of colors or coloring hints that will be

most useful, which may be tedious or difficult for many applications, and

2. It requires all colors and coloring hints to be manually inserted into source code, and all

colored applications must be recompiled.

This work aims to address these limitations by integrating application guidance with a custom

Java virtual machine that automatically partitions program objects into separately colored regions.

Our custom JVM divides the application’s heap into multiple distinct regions, each of which is

116

colored to indicate how the application intends to use objects within the region. For example, in

our initial implementation, we divide the application’s heap into two regions: one for objects that

are accessed relatively frequently (i.e. hot objects), and another for objects that are relatively cold.

Colors are applied to each space during initialization and whenever region boundaries change due

to heap resizing. As the application runs, the OS interprets colors supplied by the VM and attempts

to select physical memory scheduling strategies tailored to the expected usage behavior of each re-

gion. The VM is free to allocate and move objects among the colored spaces, but it makes every

effort possible to ensure that the objects reside in the appropriate space. Depending on the chosen

coloring, this might require additional profiling and/or analysis of object usage patterns or program

instructions in order to be effective. Fortunately, the VM provides a convenient environment for

monitoring application behavior. Several VM tasks (such as selective compilation, code optimiza-

tion, and heap resizing) already use profile feedback to help guide optimization decisions (Arnold

et al., 2005).

We employ Oracle’s HotSpot JVM to implement our framework. Details about our specific

HotSpot version and how it is configured are provided in Section 5.6.3. The default garbage collec-

tor in HotSpot is generational, meaning that the GC divides the heap into different areas according

to the age of the data. Newly created objects are placed in an area called the eden space, which

is part of the younger generation. The survivor space holds objects that have survived at least one

young generation collection, while objects that have survived a number of young generation GC’s

are eventually promoted, or tenured, to the older generation.

Figure 5.1 shows how our custom JVM framework organizes the application heap into separate

spaces for hot and cold objects. Each space within each generation is divided into two equal-sized

regions: one colored orange for hot (frequently accessed) objects and the other colored blue for

cold objects. As the application executes, the VM attempts to allocate and move program objects

into the appropriate colored space. For our initial implementation, we conduct a profile run to

gather information about object access patterns and program allocation points that we use to guide

object coloring decisions in the current run. We describe our profiling framework in Section 5.7.1.

117

Figure 5.1: Colored spaces in our JVM framework. Dotted lines indicate possible paths for objects

to move from one colored space to another.

The VM consults this profiling information at each object allocation point to determine which color

to assign the new object. Periodically, perhaps at every garbage collection cycle, the VM may also

re-assign colors for live objects depending on object profiling information and / or program phase

behavior. Note, however, that while our framework is capable of dynamically reassigning colors

for live objects, for all of the experiments in this work, object colors assigned at object allocation

time are kept static throughout the entire program run.

5.5 Potential of Cross-Layer Framework to Reduce DRAM En-

ergy Consumption

Memory power management in current systems occurs under the aegis of a hardware memory con-

troller that transitions memory ranks into low power states (such as “self-refresh”) during periods

of low activity. To amplify its effectiveness, it is desirable that pages that are very lightly accessed

are not located on the same memory ranks with pages that are accessed often. In this section, we

demonstrate the potential of our framework to reduce DRAM energy consumption by controlling

the placement of hot and cold objects across memory ranks. The experimental platform and tools

we use to collect timing, DRAM bandwidth and power measurements are described in Section 5.6.

118

5.5.1 The MemBench Benchmark

To demonstrate the power-saving potential of our framework we construct a custom benchmark

(called MemBench) that differentiates hot and cold objects statically by declaring objects with

distinctive program types in its source code. The MemBench benchmark creates two main types

of objects: HotObject and ColdObject. Each object contains an array of integers (comprising

about 1MB of space per object) which represent the objects’ memory resources. On initialization,

MemBench allocates a large number of such objects and stores them in a single, large, in-memory

array. A certain portion of the objects (about 15% for these experiments) are allocated as the

HotObject type, while the remaining objects are allocated as the ColdObject type. The order

of object allocations is randomized so that HotObjects and ColdObjects are stored intermittently

throughout the object array. For each of our experiments, we configure MemBench to allocate

27GB of program objects (or approximately 90% of the free memory on our server node).

After MemBench is done allocating the hot and cold objects, the object array is divided into

16 roughly equal parts (one for each hardware thread on our server node) that are each passed to

their own software thread. The threads (simultaneously) iterate over their own portion of the object

array for some specified number of iterations, passing over the cold objects, and only accessing

memory associated with the hot objects. When a hot object is reached, the thread performs a linear

scan over the object’s associated integer array, storing a new value into each cell as it walks the

array. The benchmark completes when all threads have finished iterating over their portion of the

object array. For these experiments, we select a large enough number of iterations so that each

scanning thread runs for at least 100 seconds.

Additionally, in order to allow experiments with different memory bandwidth requirements,

MemBench provides an optional delay parameter that can be configured to slow down the rate

at which memory accesses occur. The delay is implemented by inserting additional computation

between stores to the integer array associated with each hot object. Specifically, the delay mech-

anism iteratively computes a Fibonacci number between integer stores. Thus, computing a larger

Fibonacci number imposes a longer delay between memory accesses, which reduces the average

119

Table 5.1: Allocation Time for the MemBench Benchmark.

Configuration Time (s)

default 88.4

tray-based kernel 103.0

hot/cold organize 118.1

bandwidth requirements for the workload.

5.5.2 Experimental Evaluation

We constructed three configurations to evaluate our cross-layer framework with the MemBench

benchmark. The default configuration employs the unmodified Linux kernel with the default

HotSpot JVM. The tray-based kernel configuration runs MemBench with the unmodified HotSpot

on the custom kernel framework Since the JVM in the tray-based kernel configuration does not

provide any memory usage guidance, the kernel applies a default strategy to fill memory demands.

Our final configuration, called hot/cold organize, uses the custom kernel with our custom JVM that

divides the application’s heap into two separate colored spaces: one space colored orange for hot

objects and the other colored blue for cold objects. Using the memory coloring API, we configure

our framework so that, whenever possible, demands from different colored spaces are filled with

physical pages from trays corresponding to different DIMMs. We also modify HotSpot’s object

allocator to recognize objects of the ColdObject type and assign them to the space colored blue.

Alternatively, HotObjects, as well as any other objects created by the MemBench workload, are

allocated to the orange space. Thus, the effect of the hot/cold organize configuration is to ensure

that, of the four 8GB DIMMs in our node, three of the DIMMs are occupied with pages that back

ColdObjects, while the other DIMM is used for the rest of the MemBench memory, including the

HotObjects.

We ran the MemBench benchmark with each of our three configurations and with different

delay parameters to vary the bandwidth requirements for the workload. Our results in this section

report the average over ten runs for each configuration / delay pair.

Execution of the MemBench benchmark occurs in two phases: the allocation phase and the

120

(a) (b)

(c) (d)

Figure 5.2: Performance (a), bandwidth (b), average DRAM power (c), and DRAM energy (d) for

the MemBench benchmark.

scan phase. We first consider the potential slowdown in the allocation phase due to overheads in

our custom kernel and JVM framework. Table 5.1 presents the time required to allocate the object

array in each configuration. Thus, allocating pages over tray structures with the custom kernel

takes about 15 seconds longer (a 16% slowdown) compared to the default kernel. The hot/cold

organize configuration incurs an additional slowdown because the JVM is required to distinguish

hot and cold objects at each allocation point.

Next, we examine the performance and energy characteristics of the MemBench workload

during the scan phase when threads are scanning and accessing the object array. Figure 5.2(a)

compares the performance (runtime) of the tray-based kernel and hot/cold organize configurations

to the default performance with the same delay factor. To estimate the degree of variability in

our performance and energy results, we compute 95% confidence intervals for the difference be-

tween the means (Georges et al., 2007), and plot these intervals as error bars in Figures 5.2(a) and

121

5.2(d). Thus, we can see that the tray-based kernel configuration performs about the same as the

default configuration regardless of delay factor. The hot/cold organize configuration exhibits rel-

atively poor performance when there is little delay between memory accesses, but performs more

like the default configuration as the delay is increased. Interestingly, we find this observed perfor-

mance difference is directly related to bandwidth of the memory controller. Figure 5.2(b) shows

the average read/write bandwidth (in GB/s) for MemBench with each configuration at varying de-

lays. Notice that the default and tray-based kernel configurations actually produce much higher

memory bandwidth than hot/cold organize when the delay factor is low. With very little delay be-

tween memory accesses, MemBench requires very high memory bandwidth to achieve good per-

formance. The default and tray-based kernel configurations both distribute hot objects across the

system’s memory devices, allowing the system to exploit rank and channel parallelism to achieve

higher bandwidths. Alternatively, the hot/cold organize configuration co-locates all the hot objects

onto a single DIMM that is connected to a single channel. Consequently, this configuration cannot

attain the bandwidth required to achieve good performance when the delay is low. Increasing the

delay between memory accesses reduces the bandwidth requirements for the workload, and thus,

enables hot/cold organize to achieve performance similar to the other configurations.

While co-locating the hot objects onto a single DIMM restricts bandwidth, this organization

consumes much less power, on average, than distributing accesses across all the memory devices.

Figure 5.2(c) plots the average power consumption (in W) for MemBench with each configura-

tion at varying delays. In the experiments with little delay between memory accesses, hot/cold

organize consumes less power, in part, because it cannot handle the high bandwidth requirements,

and so, actually accesses memory at a slower rate than the other configurations. However, we

find that significant power differences persist even when the bandwidth requirements are reduced.

This effect occurs because most of the DIMMs in the hot/cold organize configuration are occupied

with objects that are rarely accessed, which allows the memory controller to transition them to low

power states more often. Therefore, there is a significant potential for DRAM energy savings with

this configuration. Figure 5.2(d) compares the total DRAM energy consumed during the entire

122

program run with the tray-based kernel and hot/cold organize configurations to the DRAM energy

consumed by the default performance with the same delay factor. Thus, in experiments with low

delay, the hot-cold organize configuration actually requires more DRAM energy than the default

configuration due to its relatively poor performance. However, our custom JVM framework en-

ables significant energy savings for workloads that do not require as much memory bandwidth. At

a maximum, we achieve 30% DRAM energy savings (with delay=250). We also find that, reduc-

ing the workload’s bandwidth requirements beyond a certain point (about 5GB/s on our system),

results in diminished DRAM energy savings.

5.6 Experimental Framework

In this section, we describe our experimental platform as well as the tools and methodology we

use to conduct our experiments, including how we measure power and performance.

5.6.1 Platform

All of the experiments in this paper were run on a single socket of a four-socket Intel S2600CP

server system with an Intel Xeon E5-2600 series processor (codename “Sandy Bridge”). The

socket we use has 8 2.3GHz cores with hyperthreading enabled (for a total of 16 hardware threads)

and 4 8GB DIMMs of Samsung DDR3 memory (part #: M393B1K70CH0-CK0). Each DIMM is

connected to its own channel and is comprised of two 4GB ranks. We install 64-bit SUSE Linux

Enterprise Server 11 SP1 and select a recent Linux kernel (version 2.6.32) as our default operating

system. For all of the experiments in this work, we configure the BIOS to disable interleaving of

physical addresses across rank and channel boundaries.

5.6.2 Memory Power and Bandwidth Measurement

We employ Intel’s Performance Counter Monitor (PCM) tool (http://www.intel.com/software/pcm,

2012) to estimate DRAM power and bandwidth. PCM is a sampling-based tool that reads various

123

activity counters (registers) to provide details about how internal resources are used by Intel pro-

cessors. At every sample, PCM reports an estimate of the DRAM energy consumed (in J) and

average read/write bandwidth on the memory controller (in MB/s) since the previous interval. The

DRAM power model used by PCM is based on proprietary formulae, and its accuracy depends

on the set of DRAM components used. Additionally, the tool estimates the percentage of time

each rank resides in a low-power state by counting the number of cycles with the CKE signal

de-asserted during the previous interval. During each experiment, we employ PCM to collect sam-

ples of DRAM power, bandwidth, and CKE off residencies every two seconds. We aggregate the

collected samples during post-processing to provide an estimate of each metric for the entire run.

5.6.3 HotSpot Java Virtual Machine

Oracle’s HotSpot Java Virtual Machine (build 1.6.0_24) (Paleczny et al., 2001) provides the base

for our JVM implementation. For this work, we used the default HotSpot configuration for server-

class applications (http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper

150215.pdf, 2006). This configuration uses the “parallel scavenge” garbage collector (PS-GC),

which is a “stop-the-world” collector (i.e. application threads do not run during GC) that is capa-

ble of spawning multiple concurrent scavenging threads during GC. Our current implementation

makes a few low-level, structural modifications to the HotSpot JVM’s object allocation and collec-

tion policies to simplify our engineering effort.

HotSpot attempts to automatically configure the size of the heap at startup and dynamically

at run-time. After every major collection, the PS-GC collector in HotSpot re-assigns generation

boundaries to fit the compacted heap. To avoid having to dynamically re-compute colored space

boundaries in our implementation, we configure HotSpot to use a static heap size for each exper-

imental run. For each benchmark, we execute a trial run in which we allow HotSpot to configure

heap sizes automatically. Then, for each experimental run, we use command line options to set the

eden, survivor, and tenured space sizes according to the boundaries used when the heap was at its

maximum size during the trial run. We further adjust the young generation sizes to eliminate the

124

Table 5.2: Benchmarks from SPECjvm2008

Benchmark Abrv. Description GB

compiler.compiler com Java compiler (compiles javac) 8.92

compiler.sunflow csf Java compiler (compiles sunflow) 11.15

compress cmp Lempel-Ziv compression 18.9

crypto.aes aes encrypt / decrypt with AES 23.87

crypto.rsa rsa encrypt / decrypt with RSA 1.09

crypto.signverify svf sign and verify w/ various protocols 22.61

serial ser serialize / deserialize objects 23.95

derby drb Java database 14.11

sunflow sun graphics visualization 10.23

mpegaudio mpg mp3 decoding 14.48

xml.transform xtr applies style sheets to XML docs 23.16

xml.validation xva validates XML docs 9.26

scimark.fft fft Fast Fourier Transform 18.05

scimark.lu lu LU matrix factorization 14.61

scimark.sor sor Jacobi Successive Over-relaxation 4.28

scimark.sparse spa sparse matrix multiply 9.4

scimark.monte_carlo mco Monte Carlo to approximate π 0.52

need for major GC’s. In this way, our custom JVM avoids resizing the heap during experimental

runs.

Additionally, our current implementation disables an object allocation optimization known as

thread local allocation buffers (TLABs). HotSpot generates optimized assembly code for TLAB

allocations, which speeds up allocations, but makes it difficult to modify the allocation path. Thus,

for our current implementation, we disable TLABs and force allocations through a slower path in

the VM. Note that these implementation choices are not due to any restriction with our design, but

only to alleviate our initial implementation effort. In the future, we will enable heap re-sizing and

add TLAB support to our JVM framework.

5.6.4 Benchmarks

We evaluate our framework using all of the benchmarks from the SPECjvm2008 suite of appli-

cations (SPEC2008, 2008). Table 5.2 lists each of our benchmark applications, along with an

abbreviation for presenting results, a short description, and the peak resident set size (in GB) with

our default configuration. The SPECjvm2008 suite employs a harness program to continuously

iterate the workload for each run, starting a new operation as soon as a previous operation com-

pletes. Each run includes a warmup period of one minute and an iteration period of at least four

125

Figure 5.3: Performance of our baseline configuration with the custom kernel compared to the

default configuration with the unmodified Linux kernel.

minutes. The score for each run is the average time it takes to complete one operation during the

iteration period. For all of our performance and energy measurements, we report the average result

of five runs as the final score for the benchmark.

5.6.5 Baseline Configuration Performance

Our framework employs a custom Linux kernel that has been modified to interpret and apply mem-

ory usage guidance from the application layer. In our later experiments, we compare our custom

JVM configuration to a baseline configuration with the default (unmodified) HotSpot JVM running

on the same custom kernel. In this way, we are able to directly evaluate the performance and energy

effects of our custom JVM framework. It is important to note that the custom kernel configura-

tion we use as our baseline affects the performance of some of our benchmarks. For our baseline

configuration, we opt for a default allocation strategy that selects pages from trays in a round-

robin fashion. The effect of this strategy is to increase rank and channel parallelism by allocating

pages across as many memory devices as possible. Figure 5.3 displays the performance of each

benchmark when run with the baseline configuration with the custom kernel compared to a default

configuration with an unmodified Linux kernel. Thus, most of the benchmarks exhibit about the

same performance with the default kernel as with our custom kernel configuration. However, the

126

compiler and xml pairs of benchmarks show significant performance degradations (of about 40%)

when compared to performance with the default kernel. One possible explanation is that these

workloads allocate memory objects at a very fast rate, and thus, the overhead required to allocate

pages over tray structures is more significant. Additionally, we find that the performance of some

benchmarks, most notably fft, actually improves with the custom kernel configuration. This effect

is likely due to the custom kernel improving rank and channel parallelism with its default alloca-

tion policy. On average, the custom kernel configuration performs about 5% worse than the default

kernel with our set of benchmarks.

5.7 Automatic Cross-Layer Memory Management

In this section, we describe and evaluate our profiling-based approach for automatically partition-

ing hot and cold objects at runtime.

5.7.1 Profiling for Hot and Cold Allocation Points

We employ a two-step approach for automatically partitioning the application’s hot and cold ob-

jects. First, we conduct an offline profile run to gather information about how the application allo-

cates and uses objects in memory. We then analyze the memory profiling information to partition

the application’s allocation points into two sets according to the memory usage activity (hotness

or coldness) of the objects created at each point. In the next run, the JVM loads the hot/cold clas-

sification of the program’s allocation points, and uses it to assign new objects to separate colored

spaces.

We first describe our custom framework for profiling memory usage activity related to each

program allocation point. Our profiling framework instruments the HotSpot bytecode interpreter to

construct a hash table containing information about each program allocation point. The hash table

is indexed by program allocation points (identified by method and bytecode index) and values are

a list of records describing the size and access count of each object created at that point. During

127

the run, whenever the VM interprets a _new instruction (or one of its variants), it creates a record

in the global hash table to indicate that a new object was created at that point. Then, whenever an

object is accessed using one of the object reference bytecodes (getfield, putfield, etc.), the

VM increments its access count.

After collecting the application’s memory profile, the next step is to assign colors to the al-

location points according to the memory usage activity of the objects created at each point. For

this analysis, we are interested in maximizing the size of the cold space because a larger space of

cold objects ensures that a larger portion of DRAM devices will be able to reside in a low power

state. We can express this problem as an instance of the classical 0/1 knapsack optimization prob-

lem. In this formulation, each allocation point is an item, which has a value equal to the total size

of the objects created at that point, and a weight equal to the sum of the access counts for those

objects. We assume some maximum number of object accesses is the capacity of the knapsack.

The optimization problem then is to select items (allocation points) such that the combined value

(object size) is maximized without the combined weight (access counts) exceeding the capacity of

the knapsack. We employ a popular dynamic programming algorithm to approximate a solution to

the NP-complete knapsack problem that (nearly) maximize the size of the cold space (Martello &

Toth, 1990).

To compare colorings across different workloads, we select knapsack capacities as a percent-

age of the the total number of accesses in the profile run. For example, with a knapsack capacity of

5%, our technique selects allocation points that account for no more than 5% of the total number

of object accesses in the profile run. For the chosen knapsack capacity, we compute a partitioning

of the program’s allocation points using the approach described above and store the result to a file

on disk. Then, at the start of the next program run, the VM loads the partitioning information

into a global structure in memory. Whenever the application allocates an object, the VM looks up

whether the allocation point has a known color, and if so, assigns the new object to the correspond-

ing colored space. Otherwise, the object is simply assigned to some default colored space (in our

experiments, we opt to assign objects created at unknown allocation points to the orange, or hot,

128

space).

5.7.2 Experimental Evaluation

We conducted a series of experiments to evaluate the performance and effectiveness of our JVM

framework with different coloring configurations. For each of the benchmarks in Table 5.2, we

collect a profile of the benchmark’s memory activity using a small version of the workload. Next,

we partition each application’s profiled allocation points into different colored sets as described

in the previous subsection using knapsack capacities of 2%, 5%, and 10%. We then conduct

experiments that use each allocation point partitioning to guide the object coloring in a larger run

of each benchmark.

5.7.2.1 Memory Profile Analysis

We use different configurations for our profiling and actual evaluation runs. For SPECjvm2008

benchmarks that are shipped with multiple input sizes (scimark kernels, with the exception of

monte_carlo), we use the small size for our profile runs, and the large size for the guided runs.

Most of our selected benchmarks include only one input size for each application. Fortunately, all

our benchmarks are multi-threaded, and the SPECjvm2008 harness scales the workload according

to the number of benchmark application threads used in the run. Thus, for our profile runs, we

configure the harness to only use one benchmark thread per application. While for the guided runs,

the harness automatically selects the number of threads to use based on our machine configuration

(which, for our platform, is always at least 16 threads).

Table 5.3 presents the predicted size of cold objects in the profile run and the actual observed

size of objects allocated in the cold space during the guided run (normalized by the total size of

all objects) for each benchmark and each knapsack coloring. For example, with compiler.compiler

(com in Table 5.3), the 2% knapsack coloring found a set of allocation points that accounts for

14.9% of the total heap size in the profile run (and about 2% of the object accesses), and 14.5% of

the total heap size in the larger guided run. We can make a few observations from these results:

129

Table 5.3: Cold Size / Total Size in profile and guided runs

Bench
2% Knapsack 5% Knapsack 10% Knapsack

Profile Guided Profile Guided Profile Guided

com 0.149 0.145 0.289 0.301 0.480 0.484

csf 0.152 0.151 0.302 0.291 0.487 0.463

cmp 0.581 0.014 0.811 0.022 0.917 0.458

aes 0.296 0.154 0.531 0.436 0.882 0.859

rsa 0.768 0.413 0.894 0.627 0.960 0.781

svf 0.392 0.040 0.924 0.964 0.982 0.992

ser 0.217 0.193 0.434 0.403 0.686 0.470

drb 0.238 0.411 0.434 0.774 0.528 0.926

sun 0.194 0.078 0.309 0.140 0.340 0.176

mpg 0.946 0.979 0.996 0.995 0.998 0.996

xtr 0.250 0.131 0.468 0.301 0.698 0.458

xva 0.240 0.212 0.475 0.474 0.719 0.632

fft 0.868 0.813 0.996 0.814 0.996 0.814

lu 0.627 0.502 0.719 0.503 0.719 0.503

sor 0.988 0.027 0.990 0.027 0.990 0.027

spa 0.729 0.004 0.737 0.004 0.737 0.005

mco 0.999 0.959 0.999 0.959 0.999 0.958

avg 0.508 0.307 0.665 0.473 0.772 0.588

1. For some benchmarks (e.g. fft, lu), and mpg) a relatively large portion of the objects are very

cold in both the profile and guided runs. This result indicates that, if the object access counts

are accurate, then there is significant potential to reduce DRAM energy consumption with

these workloads because a larger portion of the application’s memory can be co-located onto

DIMMs that often transition to low power states.

2. Increasing the knapsack capacity increases the cold space size for the profile and guided

runs.

3. For several of the benchmarks (e.g. com, mpg, and mco), it seems that the cold space size

in the profile run accurately predicts the cold space size in the guided run for several of the

benchmarks. However, as expected, for several of the other benchmarks (e.g. cmp, sor, and

spa), the cold space size in the profile run does not seem to be correlated with the proportion

of cold memory in the guided run.

5.7.3 Controlling the Power State of DRAM Ranks

Table 5.4 shows the CKE off residencies collected for each two second interval and then averaged

over the entire program runtime for our baseline configuration. Thus, the CKE off residency values

130

Table 5.4: Average CKE OFF Residencies: Default Configuration

BM
Channel 0 Channel 1 Channel 2 Channel 3

RK0 RK1 RK0 RK1 RK0 RK1 RK0 RK1

com 84 84.11 83.98 84 77.42 84.09 84.2 84.11

csf 84.24 83.87 83.94 83.99 76.83 84.37 84.53 84.46

cmp 65.91 66.08 66.15 66.06 64.08 66.04 65.66 65.55

aes 87.82 87.86 87.8 87.64 87.43 86.05 87.48 87.87

rsa 93.52 93.54 93.07 92.88 92.06 93.51 93.49 93.48

svf 80.74 80.8 81.11 81.43 80.37 79.9 81.35 81.28

ser 91.47 91.46 91.39 91.62 90.82 91.19 91.57 91.87

drb 91.38 91.12 91.11 91.12 92.42 87.97 91.22 91.3

sun 91.78 91.59 91.78 92.29 89.9 92.54 92.15 91.63

mpg 91.36 91.68 92.05 92.04 89.34 91.97 91.89 91.4

xtr 89.87 89.61 89.5 89.29 87.43 88.07 89.63 89.93

xva 88.42 88.2 87.58 87.67 85.63 88.37 88.15 88.46

fft 2.01 1.95 1.96 1.86 1.67 1.93 2.04 1.95

lu 1.76 1.75 1.73 1.71 1.5 1.74 1.81 1.81

sor 1.37 1.34 1.29 1.26 1.13 1.32 1.42 1.39

spa 3.7 3.51 3.37 3.34 2.74 3.56 3.77 3.75

mco 99.82 99.82 99.43 99.1 96.01 97.15 99.45 99.61

avg 67.6 67.55 67.48 67.49 65.69 67.05 67.64 67.64

Table 5.5: Average CKE OFF Residencies: 2% Knapsack Coloring

Cold DIMMs Hot DIMMs

BM
Channel 0 Channel 1 Channel 2 Channel 3

RK0 RK1 RK0 RK1 RK0 RK1 RK0 RK1

com 89.75 97.07 98.27 98.23 67.03 73.16 73.22 73.19

csf 87.42 97.2 98.81 98.82 66.92 73.05 73.19 73.35

cmp 97.81 98.01 99.69 99.45 54.56 43.29 48.6 48.57

aes 90.62 97.44 98.03 97.95 81.15 81.47 82.1 82.1

rsa 86.03 96.88 98.76 99.3 92.27 92.9 92.91 92.92

svf 93.18 97.58 100 100 66.83 69.23 68.75 68.75

ser 86.72 97.27 99.36 99.3 81.78 84.2 84.03 83.94

drb 70.59 97.58 98.83 98.94 84.85 73.76 80.1 80.16

sun 93.73 97.58 99.63 99.34 84.56 87.15 87.2 87.24

mpg 91.38 91.87 98.1 98.77 89.45 92.41 92.09 91.8

xtr 86.37 97.58 100 100 76.91 80.17 80.23 80.26

xva 77.37 97.58 100 100 69.53 72.28 72.26 72.37

fft 96.45 98.54 98.2 98.19 0.86 0.92 0.93 0.94

lu 96.71 97.24 99.04 98.64 0.81 0.87 0.86 0.86

sor 98.25 98.25 98.89 99.35 0.29 0.3 0.3 0.29

spa 98.73 98.73 98.66 98.65 0.97 1.05 1.04 1.07

mco 99.67 99.7 100 100 96.44 97.17 98.75 99.27

avg 90.63 97.42 99.07 99.11 59.72 60.2 60.97 61

show the percentage of runtime each DRAM rank in our machine was in a low power state during

the program run. We find that many of the benchmarks in our set do not access memory very

frequently. For these workloads (such as monte_carlo), the memory controller is able to transition

the ranks to low power states for most (> 90%) of the benchmark run. On the other hand, high

performance scientific workloads such as the scimark kernels keep the memory ranks in an active

state for almost the entire run, and thus consume a large amount of energy. Also note that memory

usage activity is distributed evenly across the ranks. This is an effect of the baseline configuration’s

physical page allocation policy, which attempts to distribute allocations across ranks to increase

rank and channel parallelism.

Tables 5.5, 5.6, and 5.7 show the same information as Table 5.4, but for our guided runs with

knapsack capacities 2%, 5%, and 10%, respectively. For each of our guided runs, we configure

131

Table 5.6: Average CKE OFF Residencies: 5% Knapsack Coloring

Cold DIMMs Hot DIMMs

BM
Channel 0 Channel 1 Channel 2 Channel 3

RK0 RK1 RK0 RK1 RK0 RK1 RK0 RK1

com 76.7 97.58 100 100 63.11 69.84 69.79 69.78

csf 73.46 97.2 98.74 98.85 63.56 70.68 70.73 70.47

cmp 39.41 97.39 100 100 58.3 59.06 59.27 58.93

aes 91.14 90.98 97.69 99.5 83.62 83.16 83.84 83.78

rsa 84.03 97.58 99 98.31 92.8 94.08 94.47 94.48

svf 67.98 66.5 95.55 97.34 92.31 96.57 96.59 96.58

ser 71.82 96.98 100 100 79 82.03 82.02 82.08

drb 73.4 93 98.57 99.01 93.45 87.53 91.23 91.35

sun 90.47 97.2 98.74 98.74 84.4 87.11 87.33 87.49

mpg 88.63 89.41 95.09 97.3 92.21 96.3 96.34 96.32

xtr 63.02 97.01 98.01 98 67.84 73.09 73.13 73.1

xva 41.25 96.92 99.15 99.52 69.2 73.21 73.19 73.01

fft 94.76 96.96 99.88 99.93 0.87 0.93 0.93 0.93

lu 96.68 97.36 99.32 99.4 0.91 0.96 0.95 0.96

sor 99.86 99.89 99.52 99.14 0.79 0.81 0.81 0.81

spa 98.9 99.05 100 100 0.71 0.78 0.77 0.79

mco 97.66 98.05 100 100 97.85 98.61 98.98 98.27

avg 79.36 94.65 98.78 99.12 61.23 63.22 63.55 63.48

Table 5.7: Average CKE OFF Residencies: 10% Knapsack Coloring

Cold DIMMs Hot DIMMs

BM
Channel 0 Channel 1 Channel 2 Channel 3

RK0 RK1 RK0 RK1 RK0 RK1 RK0 RK1

com 59.15 81.41 97.77 97.9 50.62 59.48 59.63 59.61

csf 48.57 84.66 98.43 98.25 50.76 60.28 60.68 60.63

cmp 35.16 81.24 66.15 97.87 77.4 79.87 80.06 79.88

aes 87.26 85.82 88.67 98.97 93.36 95.53 95.63 94.96

rsa 82.91 97.58 100 100 94.66 94.92 94.99 95.27

svf 67.72 66.98 95.88 96.89 92.56 97.18 97.25 97.25

ser 73.26 96.43 99.09 99 82.29 85.36 85.33 85.04

drb 74.03 93.26 99.21 99.49 95.32 90.3 93.75 93.89

sun 88.22 97.58 99.33 99.1 84.62 86.98 86.86 87.21

mpg 87.67 87.57 97.57 98.36 92.92 96.6 96.62 96.31

xtr 64.85 81.37 100 100 68.79 74.51 74.53 74.16

xva 39.94 96.54 100 100 76.21 80.06 80.05 80.54

fft 95.55 98.17 100 100 0.8 0.86 0.86 0.87

lu 96.45 97.27 98.56 99.03 0.61 0.65 0.67 0.67

sor 98.5 98.47 99.27 99.58 0.37 0.38 0.39 0.38

spa 98.71 98.72 98.66 98.65 1.18 1.27 1.27 1.3

mco 98.07 98.84 100 100 97.44 98.63 98.14 97.78

avg 76.24 90.7 96.39 99.01 62.35 64.87 65.1 65.04

our framework to co-locate pages from the hot and cold spaces onto different sets of DIMMs.

Thus, Tables 5.5–5.7 contain an extra row to distinguish ranks that are used for hot objects from

ranks that are used for cold objects. In addition to controlling object placement, our framework

enables each colored space to select its own allocation strategy to maximize efficiency. The cold

space strategy attempts to only select pages from trays that have already furnished another page

for similar use. In this way, the strategy for the cold space attempts to minimize the number of

memory devices that need to stay powered up. The hot space uses the same strategy we use for our

baseline configuration, only applied over a smaller set of devices.

We find that the cold space allocation strategy is very effective at keeping most of the cold

ranks in a low power state. This result is expected because most of the guided runs do not allocate

enough memory in the cold space to affect more than two ranks. The accuracy of our framework

132

Figure 5.4: Perf. with each colored configuration compared to default.

for distinguishing hot and cold objects is more mixed. There are some benchmarks, such as fft and

lu, that contain a set of very hot objects, and the guided run is able to distinguish these objects

from the majority of memory, which is actually cold. On the other hand, guided runs of some of

the other benchmarks, such as svf and mpg, have ranks used by the cold space that reside in a

low-power state less often than ranks used by the hot space. Despite this result, the overall trend

shows that guided runs are effective at distinguishing hot and cold objects. There is also a clear

trend of increasing cold space memory activity as the capacity for the knapsack coloring used to

guide the run is increased.

5.7.4 Performance and Energy Evaluation

Figures 5.4 and 5.5 compare the performance and DRAM energy consumption of our guided run

configurations to our baseline for all benchmarks. Similar to our approach for Figures 5.2(a) and

5.2(d), we compute 95% confidence intervals for the difference between the means to estimate the

degree of variability in these results. We find that variability is low for both sets of results. The

maximum length interval for performance is ±7.4% and for energy ±6.7% (both for derby), while

the vast majority of intervals are <±3%.

As expected, the performance of some of the workloads with the guided run configurations,

such as the scimark benchmarks, degrades when compared to the default configuration. The base-

133

Figure 5.5: DRAM energy consumed with each colored configuration compared to default.

line configuration enables more rank and channel parallelism than the guided run configurations,

and thus, workloads with high bandwidth requirements do not perform as well with the guided

runs. In the worst case (lu), this effect causes a performance loss of over 70%. Surprisingly,

several of the SPECjvm2008 benchmarks actually improve performance with the custom JVM

framework. We believe this effect is caused by more favorable object location (on a page) and

page placement produced by the coloring scheme, which has been reported to have a significant

impact on performance (Hirzel et al., 2003; Guyer & McKinley, 2004; Hirzel, 2007).

Most significantly, we find that our approach is able to substantially reduce DRAM energy

savings over the baseline. On average, the guided run configurations produce DRAM energy

savings of 19%, 23%, and 26% for configurations with knapsack capacities of 2%, 5%, and 10%,

respectively. While some large energy savings correspond to guided runs that also show large

performance improvements, workloads that degrade performance also yield significant DRAM

energy savings with our guided run configurations.

5.8 Future Work

Our immediate future plan is to make our framework compatible with HotSpot’s thread-local allo-

cation buffers and heap resizing. We have already implemented mechanisms to replace our existing

134

offline profiling approach with online profiling in the HotSpot VM. An online profiling scheme is

advantageous since it allows the objects to adaptively move between heap partitions in response to

program phase changes. Unfortunately, our online profiling scheme currently involves very high

run-time overhead. In the future, we will explore ways to make online profiling schemes practical.

Our experiments in this work revealed the importance of appropriate data object location on a

page, and placement of a page in physical memory. We plan to explore and effectively resolve this

issue in the future.

5.9 Conclusion

Energy efficiency has become a first-class constraint in a wide range of computing domains. We

contend that energy efficiency cannot be achieved by either the operating system (OS) or the archi-

tecture acting alone, but needs guidance from the application and communication with the hard-

ware to ideally allocate and recycle physical memory. In this work, we design the first application

level framework to automatically partition program memory based on profiled data object usage

patterns, which is then communicated to the OS. Existing OS frameworks can then use this guid-

ance to decide virtual–physical page mappings.

We use our framework to show that memory power saving is correlated with the program’s

bandwidth requirement and performance. Our results indicate that a significant portion of the

memory allocated by many programs is cold. Co-allocating such cold objects on a single memory

module can result in significant energy savings. Overall, our cross-layer framework shows good

potential to reduce DRAM energy usage, which may come at the cost of performance for programs

with high bandwidth requirements.

135

Chapter 6

Conclusion

Although managed languages have been widely popular for more than a decade, researchers con-

tinue to explore the opportunities and challenges posed by virtual machine architectures to improve

program efficiency. In this dissertation, we conduct a series of detailed studies using the industry-

standard HotSpot Java Virtual Machine to extend and advance these efforts. Our first study ex-

tensively explores single-tier and multi-tier JIT compilation policies in order to find strategies that

realize the best program performance for existing and future machines. We find that the most effec-

tive JIT compilation strategy depends on several factors, such as the availability of free computing

resources and the compiling speed and quality of generated code by the compiler(s) employed,

and we provide policy recommendations for available single/multi-core and future many-core ma-

chines. Our next study constructs a robust, production-quality framework for dynamic compiler

phase selection exploration. Using this framework, we find that, customized phase selections can

significantly improve program performance in many cases, but current heuristics are unlikely to

attain these benefits. Our third study describes the design and implementation of an innovative

memory management framework that enables applications to provide guidance to the operating

system during memory management. In this work, we empirically demonstrate that application

guidance can be used to achieve various objectives, including power savings, capacity provision-

ing, and performance optimization. Our final study integrates the application guidance framework

136

with the HotSpot JVM to provide automatic cross-layer memory management, and presents de-

tailed experimental and performance analysis that demonstrates the energy-saving potential of this

approach.

137

References

Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M. F. P., Thomson, J., Tous-

saint, M., & Williams, C. K. I. (2006). Using machine learning to focus iterative optimization. In

CGO ’06: Proceedings of the International Symposium on Code Generation and Optimization

(pp. 295–305). Washington, DC, USA: IEEE Computer Society.

Almagor, L., Cooper, K. D., Grosul, A., Harvey, T. J., Reeves, S. W., Subramanian, D., Torczon,

L., & Waterman, T. (2004). Finding effective compilation sequences. In LCTES ’04: Proceed-

ings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for

Embedded Systems (pp. 231–239). New York, NY, USA: ACM Press.

Anagnostopoulou, V., Dimitrov, M., & Doshi, K. A. (2012). Sla-guided energy savings for en-

terprise servers. In IEEE International Symposium on Performance Analysis of Systems and

Software (pp. 120–121).

Arnold, M., Fink, S., Grove, D., Hind, M., & Sweeney, P. F. (2000a). Adaptive optimization in

the jalapeno jvm. In Proceedings of the 15th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications (pp. 47–65).

Arnold, M., Fink, S., Grove, D., Hind, M., & Sweeney, P. F. (2000b). Adaptive optimization in the

Jalapeño JVM: The controller’s analytical model. In Proceedings of the 3rd ACM Workshop on

Feedback Directed and Dynamic Optimization (FDDO ’00).

Arnold, M., Fink, S., Grove, D., Hind, M., & Sweeney, P. F. (2005). A survey of adaptive opti-

mization in virtual machines. Proceedings of the IEEE, 92(2), 449–466.

138

Arnold, M., Hind, M., & Ryder, B. G. (2002). Online feedback-directed optimization of Java.

SIGPLAN Not., 37(11), 111–129.

Banga, G., Druschel, P., & Mogul, J. C. (1999). Resource containers: a new facility for resource

management in server systems. In Proceedings of the third symposium on Operating systems

design and implementation, OSDI ’99 (pp. 45–58).: USENIX Association.

Belay, A., Bittau, A., Mashtizadeh, A., Terei, D., Mazières, D., & Kozyrakis, C. (2012). Dune:

safe user-level access to privileged cpu features. In Proceedings of the 10th USENIX confer-

ence on Operating Systems Design and Implementation, OSDI’12 (pp. 335–348).: USENIX

Association.

Bi, M., Duan, R., & Gniady, C. (2010). Delay-Hiding energy management mechanisms for

DRAM. In International Symposium on High Performance Computer Architecture (pp. 1–10).

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York, NY, USA: Oxford

University Press, Inc.

Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R., Diwan,

A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H.,

Moss, J. E. B., Moss, B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D.,

& Wiedermann, B. (2006). The DaCapo benchmarks: Java benchmarking development and

analysis. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, OOPSLA ’06 (pp. 169–190).

Böhm, I., Edler von Koch, T. J., Kyle, S. C., Franke, B., & Topham, N. (2011). Generalized just-in-

time trace compilation using a parallel task farm in a dynamic binary translator. In Proceedings

of the 32nd ACM SIGPLAN conference on Programming language design and implementation,

PLDI ’11 (pp. 74–85).

Brown, A. D. & Mowry, T. C. (2000). Taming the memory hogs: using compiler-inserted releases

139

to manage physical memory intelligently. In Proceedings of the 4th conference on Symposium

on Operating System Design & Implementation - Volume 4, OSDI’00: USENIX Association.

Bruening, D. & Duesterwald, E. (2000). Exploring optimal compilation unit shapes for an em-

bedded just-in-time compiler. In 3rd ACM Workshop on Feedback-Directed and Dynamic Opti-

mization (pp. 13–20).

Cavazos, J. & O’Boyle, M. F. P. (2006). Method-specific dynamic compilation using logistic

regression. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on

Object-oriented programming systems, languages, and applications (pp. 229–240). New York,

NY, USA: ACM.

Chang, P. P., Mahlke, S. A., & mei W. Hwu, W. (1991). Using profile information to assist classic

code optimizations. Software Practice and Experience, 21, 1301–1321.

Chow, K. & Wu, Y. (1999). Feedback-directed selection and characterization of compiler opti-

mizatons. Proc. 2nd Workshop on Feedback Directed Optimization.

Cooper, K. D., Schielke, P. J., & Subramanian, D. (1999). Optimizing for reduced code space using

genetic algorithms. In Workshop on Languages, Compilers, and Tools for Embedded Systems

(pp. 1–9).

Corbet, J. (2010). Memory Compaction.

David, H., Fallin, C., Gorbatov, E., Hanebutte, U. R., & Mutlu, O. (2011). Memory power man-

agement via dynamic voltage/frequency scaling. In Proceedings of the 8th ACM International

Conference on Autonomic Computing, ICAC ’11 (pp. 31–40).

Delaluz, V., Sivasubramaniam, A., Kandemir, M., Vijaykrishnan, N., & Irwin, M. (2002).

Scheduler-based dram energy management. In Design Automation Conference (pp. 697–702).

Deutsch, L. P. & Schiffman, A. M. (1984). Efficient implementation of the smalltalk-80 system.

140

In POPL ’84: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages (pp. 297–302). New York, NY, USA: ACM.

Engler, D. R., Kaashoek, M. F., & O’Toole, Jr., J. (1995). Exokernel: an operating system archi-

tecture for application-level resource management. SIGOPS Oper. Syst. Rev., 29(5), 251–266.

Esmaeilzadeh, H., Cao, T., Xi, Y., Blackburn, S. M., & McKinley, K. S. (2011). Looking back

on the language and hardware revolutions: measured power, performance, and scaling. In Pro-

ceedings of the sixteenth international conference on Architectural support for programming

languages and operating systems, ASPLOS XVI (pp. 319–332). New York, NY, USA: ACM.

Fan, X., Ellis, C., & Lebeck, A. (2003). Modeling of dram power control policies using determin-

istic and stochastic petri nets. In Power-Aware Computer Systems (pp. 37–41).

Fursin, G., Kashnikov, Y., Memon, A., Chamski, Z., Temam, O., Namolaru, M., Yom-Tov, E.,

Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard, P., Ashton, E., Bonilla, E., Thomson,

J., Williams, C., & O’Boyle, M. (2011). Milepost gcc: Machine learning enabled self-tuning

compiler. International Journal of Parallel Programming, 39, 296–327.

Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically rigorous java performance evalu-

ation. In Proceedings of the conference on Object-oriented programming systems and applica-

tions, OOPSLA ’07 (pp. 57–76).

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st edition.

Gonzalez, A. (2010). Android Linux Kernel Additions.

Gosling, J., Joy, B., Steele, G., & Bracha, G. (2005). The Java(TM) Language Specification (3rd

Edition). Prentice Hall, third edition.

Graham, S. L., Kessler, P. B., & Mckusick, M. K. (1982). Gprof: A call graph execution profiler.

SIGPLAN Notices, 17(6), 120–126.

141

Grcevski, N., Kielstra, A., Stoodley, K., Stoodley, M., & Sundaresan, V. (2004). Java just-in-time

compiler and virtual machine improvements for server and middleware applications. In Pro-

ceedings of the conference on Virtual Machine Research And Technology Symposium (pp.1̃2).

Gu, D. & Verbrugge, C. (2008). Phase-based adaptive recompilation in a jvm. In Proceedings of

the 6th IEEE/ACM symposium on Code generation and optimization, CGO ’08 (pp. 24–34).

Guyer, S. Z. & McKinley, K. S. (2004). Finding your cronies: Static analysis for dynamic object

colocation. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’04 (pp. 237–250).

Haneda, M., Knijnenburg, P. M. W., & Wijshoff, H. A. G. (2005a). Generating new general com-

piler optimization settings. In ICS ’05: Proceedings of the 19th Annual International Conference

on Supercomputing (pp. 161–168).

Haneda, M., Knijnenburg, P. M. W., & Wijshoff, H. A. G. (2005b). Optimizing general purpose

compiler optimization. In Proceedings of the 2nd conference on Computing frontiers, CF ’05

(pp. 180–188). New York, NY, USA: ACM.

Hansen, G. J. (1974). Adaptive systems for the dynamic run-time optimization of programs. PhD

thesis, Carnegie-Mellon Univ., Pittsburgh, PA.

Harris, T. (1998). Controlling run-time compilation. In IEEE Workshop on Programming Lan-

guages for Real-Time Industrial Applications (pp. 75–84).

Hazelwood, K. & Grove, D. (2003). Adaptive online context-sensitive inlining. In CGO ’03:

Proceedings of the international symposium on Code generation and optimization (pp. 253–

264). Washington, DC, USA: IEEE Computer Society.

Hirzel, M. (2007). Data layouts for object-oriented programs. In Proceedings of the 2007 ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,

SIGMETRICS ’07 (pp. 265–276).

142

Hirzel, M., Diwan, A., & Hertz, M. (2003). Connectivity-based garbage collection. In Proceed-

ings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programing, Systems,

Languages, and Applications, OOPSLA ’03 (pp. 359–373).

Hölzle, U. & Ungar, D. (1996). Reconciling responsiveness with performance in pure object-

oriented languages. ACM Transactions on Programming Language Systems, 18(4), 355–400.

Hoste, K. & Eeckhout, L. (2008). Cole: compiler optimization level exploration. In Proceedings

of the 6th annual IEEE/ACM international symposium on Code generation and optimization,

CGO ’08 (pp. 165–174). New York, NY, USA.

http://lwn.net/Articles/445045/ (2011). Ankita Garg: Linux VM Infrastructure to support Memory

Power Management.

http://www.acpi.info/spec.htm (2011). Advanced Configuration and Power Interface Specification.

http://www.intel.com/software/pcm (2012). Intel Performance Counter Monitor.

http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper 150215.pdf

(2006). Memory Management in the Java HotSpot Virtual Machine.

Huang, H., Pillai, P., & Shin, K. (2003). Design and Implementation of Power-aware Virtual

Memory. In USENIX Annual Technical Conference.

Ishizaki, K., Kawahito, M., Yasue, T., Takeuchi, M., Ogasawara, T., Suganuma, T., Onodera, T.,

Komatsu, H., & Nakatani, T. (1999). Design, implementation, and evaluation of optimizations

in a just-in-time compiler. In Proceedings of the ACM 1999 conference on Java Grande, JAVA

’99 (pp. 119–128).

Ishizaki, K., Takeuchi, M., Kawachiya, K., Suganuma, T., Gohda, O., Inagaki, T., Koseki, A.,

Ogata, K., Kawahito, M., Yasue, T., Ogasawara, T., Onodera, T., Komatsu, H., & Nakatani,

T. (2003). Effectiveness of cross-platform optimizations for a java just-in-time compiler. In

143

Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented programing,

systems, languages, and applications (pp. 187–204).

Jula, A. & Rauchwerger, L. (2009). Two memory allocators that use hints to improve locality.

In Proceedings of the 2009 International Symposium on Memory Management, ISMM ’09 (pp.

109–118).

Kessler, R. E. & Hill, M. D. (1992). Page placement algorithms for large real-indexed caches.

ACM Trans. Comput. Syst., 10(4), 338–359.

Kleen, A. (2004). A numa api for linux. SUSE Labs white paper.

Knuth, D. E. (1971). An empirical study of fortran programs. Software: Practice and Experience,

1(2), 105–133.

Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., & Cox, D. (2008). Design

of the Java hotspotTMclient compiler for Java 6. ACM Trans. Archit. Code Optim., 5(1), 1–32.

Krintz, C. (2003). Coupling on-line and off-line profile information to improve program perfor-

mance. In CGO ’03: Proceedings of the international symposium on Code generation and

optimization (pp. 69–78). Washington, DC, USA.

Krintz, C. & Calder, B. (2001). Using annotations to reduce dynamic optimization time. In

Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and im-

plementation (pp. 156–167).

Krintz, C., Grove, D., Sarkar, V., & Calder, B. (2000). Reducing the overhead of dynamic compi-

lation. Software: Practice and Experience, 31(8), 717–738.

Kulkarni, P., Arnold, M., & Hind, M. (2007a). Dynamic compilation: the benefits of early in-

vesting. In VEE ’07: Proceedings of the 3rd international conference on Virtual execution

environments (pp. 94–104).

144

Kulkarni, P. A. (2011). Jit compilation policy for modern machines. In Proceedings of the 2011

ACM international conference on Object oriented programming systems languages and appli-

cations, OOPSLA ’11 (pp. 773–788).

Kulkarni, P. A. & Fuller, J. (2011). Jit compilation policy on single-core and multi-core machines.

In Interaction between Compilers and Computer Architectures (INTERACT), 2011 15th Work-

shop on (pp. 54–62).

Kulkarni, P. A., Jantz, M. R., & Whalley, D. B. (2010). Improving both the performance ben-

efits and speed of optimization phase sequence searches. In Proceedings of the ACM SIG-

PLAN/SIGBED 2010 conference on Languages, compilers, and tools for embedded systems,

LCTES ’10 (pp. 95–104).

Kulkarni, P. A., Whalley, D. B., & Tyson, G. S. (2007b). Evaluating heuristic optimization phase

order search algorithms. In CGO ’07: Proceedings of the International Symposium on Code

Generation and Optimization (pp. 157–169). Washington, DC, USA: IEEE Computer Society.

Kulkarni, S. & Cavazos, J. (2012). Mitigating the compiler optimization phase-ordering problem

using machine learning. In Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, OOPSLA ’12 (pp. 147–162).: ACM.

Lebeck, A. R., Fan, X., Zeng, H., & Ellis, C. (2000). Power aware page allocation. ACM SIGOPS

Operating Systems Review, 34(5), 105–116.

Lee, H., von Dincklage, D., Diwan, A., & Moss, J. E. B. (2006). Understanding the behavior of

compiler optimizations. Software Practice & Experience, 36(8), 835–844.

Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., & Keller, T. W. (2003). Energy

management for commercial servers. Computer, 36(12), 39–48.

Lin, C.-H., Yang, C.-L., & King, K.-J. (2009). Ppt: joint performance/power/thermal management

145

of dram memory for multi-core systems. In ACM/IEEE International Symposium on Low Power

Electronics and Design (pp. 93–98).

Lu, L., Varman, P., & Doshi, K. (2011). Decomposing workload bursts for efficient storage re-

source management. IEEE Transactions on Parallel and Distributed Systems, 22(5), 860 –873.

Magenheimer, D., Mason, C., McCracken, D., & Hackel, K. (2009). Transcendent memory and

linux. In Ottawa Linux Symposium (pp. 191–200).

Martello, S. & Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations.

New York, NY, USA: John Wiley & Sons, Inc.

Microsoft (2001). Microsoft C# Language Specifications. Microsoft Press, first edition.

Namjoshi, M. A. & Kulkarni, P. A. (2010). Novel online profiling for virtual machines. In VEE ’10:

Proceedings of the 6th ACM SIGPLAN/SIGOPS international conference on Virtual execution

environments (pp. 133–144).

Paleczny, M., Vick, C., & Click, C. (2001). The Java hotspottm server compiler. In JVM’01: Pro-

ceedings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Sympo-

sium (pp. 1–12). Berkeley, CA, USA: USENIX Association.

Pan, Z. & Eigenmann, R. (2008). PEAK: a fast and effective performance tuning system via

compiler optimization orchestration. ACM Trans. Program. Lang. Syst., 30, 17:1–17:43.

Petrov, P. & Orailoglu, A. (2003). Virtual page tag reduction for low-power tlbs. In IEEE Interna-

tional Conference on Computer Design (pp. 371–374).

Sanchez, R., Amaral, J., Szafron, D., Pirvu, M., & Stoodley, M. (2011). Using machines to learn

method-specific compilation strategies. In Code Generation and Optimization (CGO), 2011 9th

Annual IEEE/ACM International Symposium on (pp. 257 –266).

146

Smith, J. & Nair, R. (2005). Virtual Machines: Versatile Platforms for Systems and Processes (The

Morgan Kaufmann Series in Computer Architecture and Design). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

SPEC2008 (2008). Specjvm2008 benchmarks. http://www.spec.org/jvm2008/.

SPEC98 (1998). Specjvm98 benchmarks. http://www.spec.org/jvm98/.

Sundaresan, V., Maier, D., Ramarao, P., & Stoodley, M. (2006). Experiences with multi-threading

and dynamic class loading in a Java just-in-time compiler. In Proceedings of the International

Symposium on Code Generation and Optimization, CGO ’06 (pp. 87–97).

Triantafyllis, S., Vachharajani, M., Vachharajani N., & August, D. I. (2003). Compiler

optimization-space exploration. In Proceedings of the International Symposium on Code Gen-

eration and Optimization (pp. 204–215).: IEEE Computer Society.

Velasco, J. M., Atienza, D., & Olcoz, K. (2012). Memory power optimization of java-based

embedded systems exploiting garbage collection information. Journal of Systems Architecture -

Embedded Systems Design, 58(2), 61–72.

Wang, H., Doshi, K., & Varman, P. (2012). Nested qos: Adaptive burst decomposition for slo

guarantees in virtualized servers. Intel Technology Journal.

Whitfield, D. L. & Soffa, M. L. (1997). An approach for exploring code improving transformations.

ACM Transactions on Programming Languages and Systems, 19(6), 1053–1084.

Zhang, C. & Hirzel, M. (2008). Online phase-adaptive data layout selection. In Proceedings of the

22Nd European Conference on Object-Oriented Programming, ECOOP ’08 (pp. 309–334).

Zhou, P., Pandey, V., Sundaresan, J., Raghuraman, A., Zhou, Y., & Kumar, S. (2004). Dynamic

tracking of page miss ratio curve for memory management. In Proceedings of the 11th interna-

tional conference on Architectural support for programming languages and operating systems,

ASPLOS XI (pp. 177–188).: ACM.

147

