75 research outputs found

    Assessing the status of Airport Collaborative Decision Making (A-CDM) concept at European airports

    Get PDF
    In the last decades, air transport has become more accessible and the demand is increasingly growing over the years. Airports and airspace are becoming congested and have to handle a very high volume of flights, therefore facing the need to increase their capacity and constantly improve their operational system. The major challenge for airport stakeholders in those situations close to saturation is to achieve maximum operational efficiency and predictability, together with improved capacity and cost efficiencies. Nevertheless, airport partners often work in a divided and isolated manner, operating independent systems, and this lack of common situational awareness can lead to widespread dysfunctions and inefficiencies. Airport Collaborative Decision Making (A-CDM) is a solution within the SESAR (Single European Sky ATM Research) programme, promoted by EUROCONTROL, ACI-Europe, IATA and CANSO, that aims to improve the operational efficiency and predictability of airports, enhance traffic flow management and reduce congestion by making more efficient use of existing capacity and resources. These objectives are achieved by encouraging airport stakeholders to work together in a transparent and collaborative manner, through the exchange of timely and accurate information. This project aims to explain the A-CDM concept and its complete implementation process at an airport. Further, an assessment of the current status of A-CDM at Zurich and Amsterdam-Schiphol airports and an analysis of the implementation process has been conducted. Moreover, in order to evaluate the possibility of expanding the concept to nonEuropean airports, the case of Mexico City airport, where the implementation attempt was not successful, has been also analysed. Finally, the existing and future systems that complement or continue the implementation of the A-CDM has been studied. This study has been conducted on the basis of information provided by the Head of Flight OPS Engineering at Zurich airport, an interview with the A-CDM Process Manager at Amsterdam-Schiphol, and a series of interviews with a consultant who was in charge of the implementation at Mexico airport. The main conclusions drawn are that A-CDM brings many quantitative and qualitative benefits in managing the turnaround process, predictability, reduction of taxi time, emissions and delay reduction, among many others. Nevertheless, it is a complex process that requires a lot of collaboration and knowledge in procedures, and in some cases, a lot of time and investments. It is therefore very important to evaluate the decision of implementation taking into account the congestion and capacity levels of the airport. It has also been concluded that European airports have both technological and cultural advantages for CDM implementation, therefore, at present, they are the most favourable to be A-CDM airports. Furthermore, it was found that A-CDM, despite being a standardised Eurocontrol process, has a strong local factor and adapts to the conditions and needs of each particular airport

    Performance Evaluation of the Approaches and Algorithms for Hamburg Airport Operations

    Get PDF
    The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have been independently developing and testing their own concepts and tools for airport surface traffic management. Although these concepts and tools have been tested individually for European and US airports, they have never been compared or analyzed side-by-side. This paper presents the collaborative research devoted to the evaluation and analysis of two different surface management concepts. Hamburg Airport was used as a common test bed airport for the study. First, two independent simulations using the same traffic scenario were conducted: one by the DLR team using the Controller Assistance for Departure Optimization (CADEO) and the Taxi Routing for Aircraft: Creation and Controlling (TRACC) in a real-time simulation environment, and one by the NASA team based on the Spot and Runway Departure Advisor (SARDA) in a fast-time simulation environment. A set of common performance metrics was defined. The simulation results showed that both approaches produced operational benefits in efficiency, such as reducing taxi times, while maintaining runway throughput. Both approaches generated the gate pushback schedule to meet the runway schedule, such that the runway utilization was maximized. The conflict-free taxi guidance by TRACC helped avoid taxi conflicts and reduced taxiing stops, but the taxi benefit needed be assessed together with runway throughput to analyze the overall performance objective

    Space as a New Sphere of Future Information Warfare

    Get PDF
    Air power has seen constant development from the Wright Flyer’s first flight at Kitty Hawk on December 17, 1903 via the advent of the jet age with the service entry of the Messerschmitt Me 262 in 1942, to today’s multirole fighters (F-35 Joint Strike Fighter) and stealth aircraft (B-2 Spirit multi-role bomber). As a result of this evolution of one hundred years air power has emerged as a central component in power projection. As General William Mitchell said: ”Neither armies nor navies can exist unless the air is controlled over them.” (Mitchell 1925, xv)We have witnessed a corresponding development in space, albeit with a lag of nearly sixty years. The first satellite, the Sputnik, went in orbit on October 4, 1957 and the first manned spaceflight was accomplished on April 12, 1961 (by Yuri Gagarin). July 20, 1969 saw the first landing of man on the moon by Neil Armstrong; the first Space Shuttle launch was on April 12, 1981; and the International Space Station (ISS) has remained manned since November 2, 2000. Since 1961, more than 400 men and women have visited the realm of space. General Tommy Franks said:”The pieces of this operation (Iraqi Freedom) which have been successful would not have been so without space-based assets … it’s just simply a fact.”A major ingredient of success in modern warfare is the capability to collect and analyze information and then use it for the execution of command and control. Intelligence, surveillance, command and control, positioning, and targeting systems along with increasingly technical fire systems will have a key role in this area. Deliberate information warfare operations are conducted during times of crisis and war. They are planned based on of information obtained from intelligence and surveillance assets. The aim of the attacker in information operations is to produce a desired effect on targets by means of psychological warfare such as dissemination of information and other psychological operations; by using network attacks and deception along with other forms of information systems warfare; and by employing electronic warfare assets for jamming, and weapons to suppress the enemy’s intelligence, surveillance, and command and control systems.Space, the electromagnetic spectrum, virtual networks, the psychological domain, and media will occupy central roles in any future information warfare, and all these can be used in both defensive and offensive modes. The foregoing sums up as a concept of global information warfare. We already have space-based C4ISR, targeting, and positioning systems. The successful execution of operations in future wars depends on the gaining and maintaining of space supremacy. Space is in the process of becoming a new dimension in information warfare

    Influences on aircraft target off-block time prediction accuracy

    Get PDF
    With Airport Collaborative Decision Making (A-CDM) as a generic concept of working together of all airport partners, the main aim of this research project was to increase the understanding of the Influences on the Target Off-Block Time (TOBT) Prediction Accuracy during A-CDM. Predicting the TOBT accurately is important, because all airport partners use it as a reference time for the departure of the flights after the aircraft turn-round. Understanding such influencing factors is therefore not only required for finding measures to counteract inaccurate TOBT predictions, but also for establishing a more efficient A-CDM turn-round process. The research method chosen comprises a number of steps. Firstly, within the framework of a Cognitive Work Analysis, the sub-processes as well as the information requirements during turn-round were analysed. Secondly, a survey approach aimed at finding and describing situations during turn-round that are critical for TOBT adherence was pursued. The problems identified here were then investigated in field observations at different airlines’ operation control rooms. Based on the findings from these previous steps, small-scale human-in-the-loop experiments were designed aimed at testing hypotheses about data/information availability that influence TOBT predictability. A turn-round monitoring tool was developed for the experiments. As a result of this project, the critical chain of turn-round events and the decisions necessary during all stages of the turn-round were identified. It was concluded that information required but not shared among participants can result in TOBT inaccuracy swings. In addition, TOBT predictability was shown to depend on the location of the TOBT turn-round controller who assigns the TOBT: More reliable TOBT predictions were observed when the turn-round controller was physically present at the aircraft. During the experiments, TOBT prediction could be improved by eight minutes, if available information was cooperatively shared ten minutes prior turn-round start between air crews and turn-round controller; TOBT prediction could be improved by 15 minutes, if additional information was provided by ramp agents five minutes after turnround start

    A cost-effectiveness analysis of tactical satellites, high-altitude long-endurance airships, and high and medium altitude unmanned aerial systems for ISR and communication missions

    Get PDF
    Before 1991, the United States military's demand for additional communications bandwidth and timely intelligence was rising rapidly. Since then, with the advent of the Global War on Terrorism, it has increased substantially. To address this growing need, the Department of Defense has focused its acquisition and procurement efforts on obtaining new communications and intelligence, surveillance, and reconnaissance (ISR) platforms that can help lessen shortfalls and possibly exploit new, untapped resources. Recently, there has been an increasing focus on new technology, such as tactical satellites or high-altitude long-endurance airships, as a way to increase communications and intelligence collection capacities. Likewise, advances in the capabilities of medium-altitude and high-altitude unmanned aerial systems have resulted in a more prominent role for them on today's battlefield. Each of these vehicles has a unique niche in today's military, but the increasing capabilities of each are beginning to create some overlap in their uses. This study will conduct a cost-effectiveness analysis on these systems for use as a persistent communications and ISR platform. In particular, it will measure the effectiveness of each for comparison, and will offer possibilities to increase the overall effective use of the three together to maximize performance and cost.http://archive.org/details/acosteffectivene109453934US Army (USA) author.Approved for public release; distribution is unlimited

    Shared control strategies for automated vehicles

    Get PDF
    188 p.Los vehículos automatizados (AVs) han surgido como una solución tecnológica para compensar las deficiencias de la conducción manual. Sin embargo, esta tecnología aún no está lo suficientemente madura para reemplazar completamente al conductor, ya que esto plantea problemas técnicos, sociales y legales. Sin embargo, los accidentes siguen ocurriendo y se necesitan nuevas soluciones tecnológicas para mejorar la seguridad vial. En este contexto, el enfoque de control compartido, en el que el conductor permanece en el bucle de control y, junto con la automatización, forma un equipo bien coordinado que colabora continuamente en los niveles táctico y de control de la tarea de conducción, es una solución prometedora para mejorar el rendimiento de la conducción manual aprovechando los últimos avances en tecnología de conducción automatizada. Esta estrategia tiene como objetivo promover el desarrollo de sistemas de asistencia al conductor más avanzados y con mayor grade de cooperatición en comparación con los disponibles en los vehículos comerciales. En este sentido, los vehículos automatizados serán los supervisores que necesitan los conductores, y no al revés. La presente tesis aborda en profundidad el tema del control compartido en vehículos automatizados, tanto desde una perspectiva teórica como práctica. En primer lugar, se proporciona una revisión exhaustiva del estado del arte para brindar una descripción general de los conceptos y aplicaciones en los que los investigadores han estado trabajando durante lasúltimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo de un controlador para ayudar al conductor en el control lateral del vehículo. Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje) se integrarán en el marco general de conducción automatizada y se validarán en una plataforma de simulación con conductores reales. Finalmente, el controlador desarrollado se aplica a dos sistemas. El primero para asistir a un conductor distraído y el otro en la implementación de una función de seguridad para realizar maniobras de adelantamiento en carreteras de doble sentido. Al finalizar, se presentan las conclusiones más relevantes y las perspectivas de investigación futuras para el control compartido en la conducción automatizada

    Standard concepts for performance improvements in the airport operations areas: global interoprability

    Get PDF
    Because of the exponential growth of air traffic and its importance of integration of countries, the implementation of improvements in the Global ATM system is becoming increasingly necessary. Within this scope, ICAO brings, within its Global Air Navigation Plan (GANP), an easily understood methodology called: “Aviation System Blocks Upgrade” (ASBU). It defines a language with a programmatic and flexible approach, aiming at performance improvements in the systems. And one of the sectors where one of these performance improvements is sought, as recommended in the ASBU, is the Airport Operations Area. In this area is the Airport Collaborative Decision Making (A-CDM) process. This research aimed to review and improve the A-CDM method to enable its use in airports with lower disbursement capacity. It is based on regulations issued by the International Civil Aviation Organization (ICAO) and academic papers. Theoretically, it went deeper into the various global air navigation systems, such as the processes employed by the European Organization for the Safety of Air Navigation (EUROCONTROL) and the Federal Aviation Administration (FAA). Positions from entities such as the International Air Transport Association (IATA) and the Civil Air Navigation Services Organization (CANSO) were also researched. Subsequently, case studies of airports and interviews with international experts with knowledge on the subject were carried out. Finally, a survey was conducted with members of the Air Sector from around the world. Always focused on seeking compatibilities and opportunities for improvement in the process, mainly in economic gains. According to the sequential strategy exposed above, a scenario analysis is done based on the results obtained at the end of the work. Then, a conclusion is presented, which aims to to apply the referred system, not only in countries with high capacity disbursement but mainly to deliver a solution that allows its application in countries and airports with medium to low financial resources. This solution presented is the goal sought in the research.Tendo em vista o crescimento exponencial do tráfego aéreo e a sua importância na integração dos países, a implantação de melhorias no sistema ATM Global torna-se cada vez mais necessária. Neste sentido a ICAO preconiza, dentro do seu Global Air Navigation Plan (GANP), uma metodologia de fácil entendimento chamada: “Aviation System Blocks Upgrade” (ASBU). Tal metodologia define uma linguagem com abordagem programática, e flexível, visando melhorias de desempenho nos sistemas. E um dos setores onde é procurada uma dessas melhorias de desempenho, conforme preconizado no ASBU, é a área de Operações Aeroportuárias e, em particular, o processo de Airport Colaborative Decision Making (A-CDM). Esta investigação visou realizar uma revisão do método A-CDM, com base em regulamentos e trabalhos acadêmicos sobre o assunto. Aprofundando teoricamente com base nos diversos sistemas de navegação aérea globais, como os processos empregados pela European Organisation for the Safety of Air Navigation (EUROCONTROL) e pela Federal Aviation Administration (FAA). Também foram pesquisados os posicionamentos a respeito do tema de entidades associativas, como da Airports Council International (ACI), da International Air Transport Association (IATA) e da Civil Air Navigation Services Organisation (CANSO). De forma subsequente realizaram-se estudos de caso de aeroportos e foram realizadas entrevistas com especialistas internacionais conhecedores do assunto. Finalmente realizou-se um inquérito com integrantes do Setor Aéreo de todo o mundo. Sempre com o foco de buscar compatibilidades e oportunidades de melhoria no referido processo, principalmente em termos de ganhos econômicos. Ao final do trabalho, de acordo com a estratégia sequencial acima exposta, e com base no resultados colhidos, é feita uma análise de cenário e apresentada uma conclusão, a qual visa que o referido sistema possa ser aplicado, não somente em países de grande capacidade de investimento mas também, e principalmente, apresentar uma solução que permita sua aplicação em países, e aeroportos, com médios a baixos recursos financeiros. Sendo este o resultado buscado na pesquisa

    D3.1 High-level modelling requirements

    Get PDF
    This document provides all the necessary high-level modelling requirements needed for the proper development of the BEACON project. Firstly, it defines an assessment framework for the performance evaluation of the different flight prioritisations mechanisms selected. The suggested framework is based on a combination of desk research and consultation with different air traffic management (ATM) stakeholder representatives. Secondly, it provides a detailed and exhaustive review of the flight prioritisation and trajectory allocation mechanisms proposed in the literature, ultimately identifying and selecting a final set of promising concepts to improve the performance of the ATM system in situations of demand-capacity constraints, to be included in BEACON simulations. Finally, it describes the different variables and parameters that are part of the possible simulation scenarios and selects the potentially most interesting combinations to measure the performance of the proposed prioritisation mechanisms
    corecore