988 research outputs found

    Generalized Relation Learning with Semantic Correlation Awareness for Link Prediction

    Full text link
    Developing link prediction models to automatically complete knowledge graphs has recently been the focus of significant research interest. The current methods for the link prediction taskhavetwonaturalproblems:1)the relation distributions in KGs are usually unbalanced, and 2) there are many unseen relations that occur in practical situations. These two problems limit the training effectiveness and practical applications of the existing link prediction models. We advocate a holistic understanding of KGs and we propose in this work a unified Generalized Relation Learning framework GRL to address the above two problems, which can be plugged into existing link prediction models. GRL conducts a generalized relation learning, which is aware of semantic correlations between relations that serve as a bridge to connect semantically similar relations. After training with GRL, the closeness of semantically similar relations in vector space and the discrimination of dissimilar relations are improved. We perform comprehensive experiments on six benchmarks to demonstrate the superior capability of GRL in the link prediction task. In particular, GRL is found to enhance the existing link prediction models making them insensitive to unbalanced relation distributions and capable of learning unseen relations.Comment: Preprint of accepted AAAI2021 pape

    A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions

    Full text link
    Graphs represent interconnected structures prevalent in a myriad of real-world scenarios. Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data, underpinning various tasks including node classification and link prediction. However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce, thereby leading to biased learning outcomes. This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes. In this survey, we embark on a comprehensive review of the literature on imbalanced learning on graphs. We begin by providing a definitive understanding of the concept and related terminologies, establishing a strong foundational understanding for readers. Following this, we propose two comprehensive taxonomies: (1) the problem taxonomy, which describes the forms of imbalance we consider, the associated tasks, and potential solutions; (2) the technique taxonomy, which details key strategies for addressing these imbalances, and aids readers in their method selection process. Finally, we suggest prospective future directions for both problems and techniques within the sphere of imbalanced learning on graphs, fostering further innovation in this critical area.Comment: The collection of awesome literature on imbalanced learning on graphs: https://github.com/Xtra-Computing/Awesome-Literature-ILoG

    Inductive Entity Representations from Text via Link Prediction

    Get PDF
    Knowledge Graphs (KG) are of vital importance for multiple applications on the web, including information retrieval, recommender systems, and metadata annotation. Regardless of whether they are built manually by domain experts or with automatic pipelines, KGs are often incomplete. Recent work has begun to explore the use of textual descriptions available in knowledge graphs to learn vector representations of entities in order to preform link prediction. However, the extent to which these representations learned for link prediction generalize to other tasks is unclear. This is important given the cost of learning such representations. Ideally, we would prefer representations that do not need to be trained again when transferring to a different task, while retaining reasonable performance. In this work, we propose a holistic evaluation protocol for entity representations learned via a link prediction objective. We consider the inductive link prediction and entity classification tasks, which involve entities not seen during training. We also consider an information retrieval task for entity-oriented search. We evaluate an architecture based on a pretrained language model, that exhibits strong generalization to entities not observed during training, and outperforms related state-of-the-art methods (22% MRR improvement in link prediction on average). We further provide evidence that the learned representations transfer well to other tasks without fine-tuning. In the entity classification task we obtain an average improvement of 16% in accuracy compared with baselines that also employ pre-trained models. In the information retrieval task, we obtain significant improvements of up to 8.8% in NDCG@10 for natural language queries. We thus show that the learned representations are not limited KG-specific tasks, and have greater generalization properties than evaluated in previous work

    Neural recommender models for sparse and skewed behavioral data

    Get PDF
    Modern online platforms offer recommendations and personalized search and services to a large and diverse user base while still aiming to acquaint users with the broader community on the platform. Prior work backed by large volumes of user data has shown that user retention is reliant on catering to their specific eccentric tastes, in addition to providing them popular services or content on the platform. Long-tailed distributions are a fundamental characteristic of human activity, owing to the bursty nature of human attention. As a result, we often observe skew in data facets that involve human interaction. While there are superficial similarities to Zipf's law in textual data and other domains, the challenges with user data extend further. Individual words may have skewed frequencies in the corpus, but the long-tail words by themselves do not significantly impact downstream text-mining tasks. On the contrary, while sparse users (a majority on most online platforms) contribute little to the training data, they are equally crucial at inference time. Perhaps more so, since they are likely to churn. In this thesis, we study platforms and applications that elicit user participation in rich social settings incorporating user-generated content, user-user interaction, and other modalities of user participation and data generation. For instance, users on the Yelp review platform participate in a follower-followee network and also create and interact with review text (two modalities of user data). Similarly, community question-answer (CQA) platforms incorporate user interaction and collaboratively authored content over diverse domains and discussion threads. Since user participation is multimodal, we develop generalizable abstractions beyond any single data modality. Specifically, we aim to address the distributional mismatch that occurs with user data independent of dataset specifics; While a minority of the users generates most training samples, it is insufficient only to learn the preferences of this subset of users. As a result, the data's overall skew and individual users' sparsity are closely interlinked: sparse users with uncommon preferences are under-represented. Thus, we propose to treat these problems jointly with a skew-aware grouping mechanism that iteratively sharpens the identification of preference groups within the user population. As a result, we improve user characterization; content recommendation and activity prediction (+6-22% AUC, +6-43% AUC, +12-25% RMSE over state-of-the-art baselines), primarily for users with sparse activity. The size of the item or content inventories compounds the skew problem. Recommendation models can achieve very high aggregate performance while recommending only a tiny proportion of the inventory (as little as 5%) to users. We propose a data-driven solution guided by the aggregate co-occurrence information across items in the dataset. We specifically note that different co-occurrences are not equally significant; For example, some co-occurring items are easily substituted while others are not. We develop a self-supervised learning framework where the aggregate co-occurrences guide the recommendation problem while providing room to learn these variations among the item associations. As a result, we improve coverage to ~100% (up from 5%) of the inventory and increase long-tail item recall up to 25%. We also note that the skew and sparsity problems repeat across data modalities. For instance, social interactions and review content both exhibit aggregate skew, although individual users who actively generate reviews may not participate socially and vice-versa. It is necessary to differentially weight and merge different data sources for each user towards inference tasks in such cases. We show that the problem is inherently adversarial since the user participation modalities compete to describe a user accurately. We develop a framework to unify these representations while algorithmically tackling mode collapse, a well-known pitfall with adversarial models. A more challenging but important instantiation of sparsity is the few-shot setting or cross-domain setting. We may only have a single or a few interactions for users or items in the sparse domains or partitions. We show that contextualizing user-item interactions helps us infer behavioral invariants in the dense domain, allowing us to correlate sparse participants to their active counterparts (resulting in 3x faster training, ~19% recall gains in multi-domain settings). Finally, we consider the multi-task setting, where the platform incorporates multiple distinct recommendations and prediction tasks for each user. A single-user representation is insufficient for users who exhibit different preferences along each dimension. At the same time, it is counter-productive to handle correlated prediction or inference tasks in isolation. We develop a multi-faceted representation approach grounded on residual learning with heterogeneous knowledge graph representations, which provides us an expressive data representation for specialized domains and applications with multimodal user data. We achieve knowledge sharing by unifying task-independent and task-specific representations of each entity with a unified knowledge graph framework. In each chapter, we also discuss and demonstrate how the proposed frameworks directly incorporate a wide range of gradient-optimizable recommendation and behavior models, maximizing their applicability and pertinence to user-centered inference tasks and platforms

    Effects of Mediation on Employee Efficiency in Human Services Centers and in Other Organizations that Serve Vulnerable Populations

    Get PDF
    Social workers and other professionals who offer caring services to vulnerable populations are oftentimes exposed to stressful environments. Employee burnout, vicarious traumas, and other stressors jeopardize worker’s efficiency. According to previously conducted research studies, organizational and interpersonal conflicts may be effectively addressed through mediation. However, the studies do not address the use of mediation for the resolution of workplace disputes in centers of human services. This study explores effects of mediation on worker’s efficiency in such centers, and this study proposes that mediation positively affects worker’s efficiency. The proposed methodology for testing this proposition involves a single case study with the mixed method design that entails quantitative and qualitative methods of studying documentation and the qualitative analysis of interviews. The goal of this dissertation is to enhance the understanding of the mediation potential in human services; thusly, advancing worker’s improvement in human services. The findings of the quantitative study demonstrate visible declining tendencies of work stoppages with the continuous use of mediation. However, significant correlations are only recorded between four out of ten studied variables; causality may not be concluded. The findings of the analysis of three subcases show the connection between mediation and workplace performance. The findings of the interview analysis demonstrate positive effects of mediation but warn that other variables should be considered. This researcher intends for the findings to advance the knowledge of mediation for caring professionals

    Integrating Distributional, Compositional, and Relational Approaches to Neural Word Representations

    Get PDF
    When the field of natural language processing (NLP) entered the era of deep neural networks, the task of representing basic units of language, an inherently sparse and symbolic medium, using low-dimensional dense real-valued vectors, or embeddings, became crucial. The dominant technique to perform this task has for years been to segment input text sequences into space-delimited words, for which embeddings are trained over a large corpus by means of leveraging distributional information: a word is reducible to the set of contexts it appears in. This approach is powerful but imperfect; words not seen during the embedding learning phase, known as out-of-vocabulary words (OOVs), emerge in any plausible application where embeddings are used. One approach applied in order to combat this and other shortcomings is the incorporation of compositional information obtained from the surface form of words, enabling the representation of morphological regularities and increasing robustness to typographical errors. Another approach leverages word-sense information and relations curated in large semantic graph resources, offering a supervised signal for embedding space structure and improving representations for domain-specific rare words. In this dissertation, I offer several analyses and remedies for the OOV problem based on the utilization of character-level compositional information in multiple languages and the structure of semantic knowledge in English. In addition, I provide two novel datasets for the continued exploration of vocabulary expansion in English: one with a taxonomic emphasis on novel word formation, and the other generated by a real-world data-driven use case in the entity graph domain. Finally, recognizing the recent shift in NLP towards contextualized representations of subword tokens, I describe the form in which the OOV problem still appears in these methods, and apply an integrative compositional model to address it.Ph.D
    • …
    corecore