1,064 research outputs found

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Consumer choice in competitive location models: Formulations and heuristics

    Get PDF
    A new direction of research in Competitive Location theory incorporates theories of Consumer Choice Behavior in its models. Following this direction, this paper studies the importance of consumer behavior with respect to distance or transportation costs in the optimality of locations obtained by traditional Competitive Location models. To do this, it considers different ways of defining a key parameter in the basic Maximum Capture model (MAXCAP). This parameter will reflect various ways of taking into account distance based on several Consumer Choice Behavior theories. The optimal locations and the deviation in demand captured when the optimal locations of the other models are used instead of the true ones, are computed for each model. A metaheuristic based on GRASP and Tabu search procedure is presented to solve all the models. Computational experience and an application to 55-node network are also presented.Distance, competitive location models, consumer choice behavior, GRASP, tabu

    A Literature Review On Combining Heuristics and Exact Algorithms in Combinatorial Optimization

    Get PDF
    There are several approaches for solving hard optimization problems. Mathematical programming techniques such as (integer) linear programming-based methods and metaheuristic approaches are two extremely effective streams for combinatorial problems. Different research streams, more or less in isolation from one another, created these two. Only several years ago, many scholars noticed the advantages and enormous potential of building hybrids of combining mathematical programming methodologies and metaheuristics. In reality, many problems can be solved much better by exploiting synergies between these approaches than by “pure” classical algorithms. The key question is how to integrate mathematical programming methods and metaheuristics to achieve such benefits. This paper reviews existing techniques for such combinations and provides examples of using them for vehicle routing problems

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions

    Comparison of Emergency Medical Services Delivery Performance using Maximal Covering Location and Gradual Cover Location Problems

    Get PDF
    Ambulance location is one of the critical factors that determine the efficiency of emergency medical services delivery. Maximal Covering Location Problem is one of the widely used ambulance location models. However, its coverage function is considered unrealistic because of its ability to abruptly change from fully covered to uncovered. On the contrary, Gradual Cover Location Problem coverage is considered more realistic compared to Maximal Cover Location Problem because the coverage decreases over distance. This paper examines the delivery of Emergency Medical Services under the models of Maximal Covering Location Problem and Gradual Cover Location Problem. The results show that the latter model is superior, especially when the Maximal Covering Location Problem has been deemed fully covered

    Network Flexibility for Recourse Considerations in Bi-Criteria Facility Location

    Get PDF
    What is the best set of facility location decisions for the establishment of a logistics network when it is uncertain how a company’s distribution strategy will evolve? What is the best configuration of a distribution network that will most likely have to be altered in the future? Today’s business environment is turbulent, and operating conditions for firms can take a turn for the worse at any moment. This fact can and often does influence companies to occasionally expand or contract their distribution networks. For most companies operating in this chaotic business environment, there is a continuous struggle between staying cost efficient and supplying adequate service. Establishing a distribution network which is flexible or easily adaptable is the key to survival under these conditions. This research begins to address the problem of locating facilities in a logistics network in the face of an evolving strategic focus through the implicit consideration of the uncertainty of parameters. The trade-off of cost and customer service is thoroughly examined in a series of multi-criteria location problems. Modeling techniques for incorporating service restrictions for facility location in strategic network design are investigated. A flexibility metric is derived for the purposes of quantifying the similarity of a set of non-dominated solutions in strategic network design. Finally, a multi-objective greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-criteria, multi-level facility location problems
    • …
    corecore