465 research outputs found

    Analysis and simulation of scheduling techniques for real-time embedded multi-core architectures

    Get PDF
    In this modern era of technological progress, multi-core processors have brought significant and consequential improvements in the available processing potential to the world of real-time embedded systems. These improvements impose a rapid increment of software complexity as well as processing demand placed on the underlying hardware. As a consequence, the need for efficient yet predictable multi-core scheduling techniques is on the rise. As part of this thesis, in-depth research of currently available multi-core scheduling techniques, belonging to both partitioned and global approaches, is done in the context of real-time embedded systems. The emphasis is on the degree of their usability on hard real-time systems, focusing on the scheduling techniques offering better processor affinity and the lower number of context switching. Also, an extensive research of currently available real-time test-beds as well as real-time operating systems is performed. Finally, a subset of the analyzed multi-core scheduling techniques comprising PSN-EDF, GSN-EDF, PD2^{2} and PD2∗^{2*} is simulated on the real-time test-bed LITMUSRT^{RT}

    A survey of offline algorithms for energy minimization under deadline constraints

    Get PDF
    Modern computers allow software to adjust power management settings like speed and sleep modes to decrease the power consumption, possibly at the price of a decreased performance. The impact of these techniques mainly depends on the schedule of the tasks. In this article, a survey on underlying theoretical results on power management, as well as offline scheduling algorithms that aim at minimizing the energy consumption under real-time constraints, is given

    An efficient task mapping algorithm with power-aware optimization for network on chip

    Get PDF
    More and more cores are integrated onto a single chip to improve the performance and reduce the power consumption of CPU without the increased frequency. The cores are connected by lines and organized as a network, which is called network on chip (NOC) as the promising paradigm of the processor design. However, it is still a challenge to enhance performance with lower power consumption. The core issue is how to map the tasks to the different cores to take full advantages of the on-chip network. In this paper, we proposed a novel mapping algorithm with power-aware optimization for NOC. The traffic of the tasks will be analyzed. The tasks of the same application with high communication with the others will be mapped to the on-chip network as neighborhoods. And then the tasks of different applications are mapped to the cores step by step. The mapping of the tasks and the cores is computed at run-time dynamically and implement online. The experimental results showed that this proposed algorithm can reduce the power consumption in communication and the performance enhanced

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    MAC Aspects of Millimeter-Wave Cellular Networks

    Get PDF
    The current demands for extremely high data rate wireless services and the spectrum scarcity at the sub-6 GHz bands are forcefully motivating the use of the millimeter-wave (mmWave) frequencies. MmWave communications are characterized by severe attenuation, sparse-scattering environment, large bandwidth, high penetration loss, beamforming with massive antenna arrays, and possible noise-limited operation. These characteristics imply a major difference with respect to legacy communication technologies, primarily designed for the sub-6 GHz bands, and are posing major design challenges on medium access control (MAC) layer. This book chapter discusses key MAC layer issues at the initial access and mobility management (e.g., synchronization, random access, and handover) as well as resource allocation (interference management, scheduling, and association). The chapter provides an integrated view on MAC layer issues for cellular networks and reviews the main challenges and trade-offs and the state-of-the-art proposals to address them
    • …
    corecore