
An Efficient Task Scheduling Algorithm with Power-Aware Optimization for Network on Chip
(Full Paper: https://doi.org/10.1016/j.sysarc.2016.04.006)

Wei Hu1,2,*, Qingsong Shi3, Yonghao Wang4, Kai Zhang1,2, Jun Liu1,2, Xiaoming Liu1,2, Hong
Guo1,2

1College of Computer Science and Technology,Wuhan University of Science and Technology,
Wuhan, Hubei, China, 430065

2Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial
System, Wuhan, Hubei, China, 430065

3College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, China, 310027
4Centre of Digital Media Technology, Faculty of Computing, Engineering and the Built

Environment, Birmingham City University, United Kingdom
*Corresponding Author: huwei@wust.edu.cn

Abstract: More and more cores are integrated onto a single chip to improve the performance and
reduce the power consumption of CPU without the increased frequency. The cores are connected by
lines and organized as a network, which is called network on chip (NOC) as the promising paradigm
of the processor design. However, it is still a challenge to enhance performance with lower power
consumption. The core issue is how to schedule the tasks to the different cores to take full
advantages of the on-chip network. In this paper, we proposed a novel scheduling algorithm with
power-aware optimization for NOC. The traffic of the tasks will be analyzed. The tasks of the same
program with high communication with the others will be mapped to the on-chip network as
neighborhoods. And then the tasks of different programs are mapped to the cores step by step. The
mapping of the tasks and the cores is computed at run-time dynamically and implement the online
scheduling. The experimental results showed that this proposed algorithm can reduce the power
consumption in communication with the performance enhanced.
Keywords: power consumption; scheduling algorithm; communication; network on chip
1. Introduction

With the development of semiconductor technology, more and more transistors can be
integrated onto a single chip. However, it also has a big problem to increase the frequency of the
single processor core for the faster growth of power-consuming[1]. The hardware manufacturers
have begun to focus on the development of on-chip systems with more than one core. More
processor cores are integrated onto the CPU, which is called Chip MultiProcessor(CMP). The
multiple processor cores enhance the performance of the system without increasing the frequency
of CPU. Bus-based communication is the traditional architecture to connect the on-chip devices,
which is faster but needs more on-chip size. If more cores have the communication requirements,
the bus itself will be the bottleneck of the CPU performance both in power-consuming and the
transmission speed. It results in system performance degradation. Network on chip (NOC) is
proposed as the promising diagram to solve this problem[2-4]. Typical NOC has an on-chip network
to connect the processor cores, the processing units, memory blocks or the other on-chip devices[5].
The processor cores on NOC are distributed on the chip via the lines not the traditional buses[6-7].
The on-chip network makes NOC more scalable in communication. On-chip cores can communicate
with each other through the network via on-chip routers for high efficiency. The design of NOC is
communication-centric, not computation-centric[8]. When more and more processor cores are
integrated onto a single chip, the communication will be more important than the computation.

The applications are divided into a plurality of parts in the system for running simultaneously

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/141206797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on the multiple cores in NOC. The tasks from the partitioning is very important to improve the
efficiency for the multi-core processors. They have to communication with each other according to
their relationship to complete the target of the applications. The different applications have different
traffic characteristics, which are the necessary requirements for NOC. When the traffic is heavy, the
long latency from ends to ends will affect the system performance seriously and the power
consumed by such traffic will be the main portion of the system power consumption[9]. When there
are many tasks, the on-chip distribution of these tasks has great impact on the performance and
power consumption. It plays an important role in performance enhancing and power saving to
schedule the tasks to the cores for less traffic. In this paper, a novel online scheduling approach is
proposed to provide the task scheduling with high efficiency for NOC. The communication between
the tasks are analyzed. And the scheduling algorithm re-maps the tasks according to the analysis
results.

This paper is organized as the follows. Section 2 describes the related works. Section 3
describes the system model of NOC. Section 4 presents the design of the algorithm. The experiments
and results are described and discussed in Section 5. And at last, we give the conclusions and future
work in Section 6.

2. Related Work

NOC has new hardware structure and it has caused the changes in the communication patterns.
The communication is distributed on the network according to the requirements from the tasks. The
structures of NOC itself are optimized to provide better support from the infrastructure of the on-
chip network[10-13]. Compared with the traditional bus structures, the communication on lines will
consume more time. The delay on lines may be the bottleneck of the performance. How to map the
tasks to the cores is one of the key paths to solve the above problem. There are existing works on
this problem to provide better solutions. The mapping algorithms are proposed first including the
heuristic mapping algorithm[14], genetic algorithm based approaches[15], the algorithms with
QoS[16] and Mesh oriented multi-target algorithms[17]. In such algorithms, the mapping process is
determined before the operation of the system. It is an advantage that the mapping can be optimized
and has good performance. However, such mapping cannot be adjusted according to the specific
situations at run-time. As the changes occur, the mappings have to be re-computed. This is a very
frustrating and time-consuming process.

Online scheduling is also an important research area. Run-time mapping is similar to the
scheduling in traditional operating system. The tasks will be mapped dynamically according to the
run-time environments. [18] focused on the resource allocation and thread immigration at run-time
from the network characteristics of NOC. [19] proposed task predication and allocation based on
the common task sequence constructed through the user habits as the reference impact. [20] assumed
the cores had different power consumption level. And it proposed that the power consumption could
be reduced by allocating tasks to the cores with lower power-consuming as much as possible.
Scenario based mapping was provided in [21]. The scenarios were taken as state machine and the
scenario transitions were the task scheduling. Common tasks were separated from the tasks in
operating system in [22]. They were mapped to different cores independently to reduce the
interferences of such tasks. DVS/DVFS was also used in task scheduling for power saving[23-25].
In such approaches, the frequency or voltage of the cores might be adjusted according to the run-
time analysis. The frequency or voltage scaled down could reduce the power consumption of the

whole system.
The tasks running on NOC have the communication requirements to achieve the target. The

scheduling of the tasks on the network determines the traffic density. The related works shows that
the scheduling algorithm was important for the performance of NOC. Optimized scheduling
algorithm can also reduce the power consumption. In this paper, a dynamic online scheduling
algorithm is proposed. It relies on the analysis of the traffic in the on-chip network at run-time. This
algorithm can reduce the power consumption of NOC and have good impact on the performance.

3. System Model

NOC has new features and different designs. In this section, the system model is introduced
including the on-chip network topology, the routing policy, task model and the energy model. They
are the basis of the scheduling algorithm.

3.1 On-Chip Network Topology
NOC is a novel design diagram of system on chip (SOC), which has many advantages over

bus-based communication. The on-chip network connects the on-chip devices and provides better
performance. Various network topologies have been proposed for NOC architecture such as Ring,
Mesh and Torus[26]. Mesh is the typical mainstream choice of NOC design. The mesh-based NOC
architecture is shown in Fig.1.

Mesh has similar structure to matrix. The wires are used to connect the tiles as shown in Fig. 1
(a). Tiles are the nodes of the on-chip network. Each tile has the following components including
routers, input/output interfaces, processor cores and on-chip memory(cache/SPM) as shown in Fig.
1 (b) as shown in Fig. 1 (a). The routers and input/output interfaces are responsible for the data
forwarding and the communication between the cores. The tile may have non-conventional process
core. There are probably processing elements (PE) for special purposes in tiles. Cache/SPM is local
memory for the cores or PEs.

Tile

Tile

Tile

Tile Tile

Tile

Tile

Tile

Tile

(a) Network-on-Chip (b) Tile structure

Tile

CoreRouter Input/Output
Interface

Cache/SPM

Fig. 1 Mesh Based Network on Chip

Tile

Tile

Tile

Tile Tile

Tile

Tile

Tile

Tile

X

Y

Fig. 2 X-Y Routing

3.2 Routing Policy
Routing policy provides the mechanism to determine the paths from source nodes to

destinations. A routing algorithm is designed to improve the performance of on-chip communication
and solve the problems such as deadlock and congestions. The routing algorithms can be classified
into two types including deterministic routing and adaptive routing [8]. If a deterministic routing
algorithm is used, the traversal paths are determined of all packets transmitted from the source node
to destination node in the network. Adaptive routing chooses the routing direction according to the
run-time environments dynamically. Such adaptive routing has strict requirements on router design
which causes the complex router design.

X-Y routing is deterministic routing algorithm for mesh-based NOC[27]. In X-Y routing, the
mesh structure is marked as X direction and Y direction. The routing is first along the X direction
to forward the packets and then the Y direction as shown in Fig. 2. For a given destination, X-Y
routing can reach it without deadlock. It has high simplicity and is easy to implement. In this paper,
X-Y routing is chosen as the on-chip routing algorithm for the least impact by routing algorithm
itself.

Switching mode is important for data transferring on NOC. Wormhole switching is packet
based switching mode and it is one of the primary switching mechanisms currently [29]. The packets
are splited into several small segments called flits. These flits are transferred through the network.
If there are enough buffers for one flit, this flit can be buffered and forwarded by the router. Such
method has reduced the network latency and saved the buffer. If the flits are blocked, the following
flits can be forwarded by the other routers, which enhances the throughput of the network. In this
paper, the wormhole switching is adopted as the switching mode. The disadvantage of wormhole
routing is the latency may increase significantly when the traffic is heavy. Such situations are rare
according to our setup and have few impact on the achievements.

3.3 Task Model
Application Control Graph (ACG) is used to present an application program, which is similar

to the offline analysis in [16]. A typical ACG is shown in Fig. 3. An application program can be
presented as G(V, R), in which V is the vertices set and R is the directed edge set between the
vertices. Each Vi represents a task in program G. The tasks of G cannot be partitioned into smaller
units. Each Rij represents the connection between Vi and Vj. F(Rij), which is the number of flits
between Vi and Vj, is the weight for the traffic between the two tasks. CETA method[30] is used to

obtain the ACG of an application program and SIMICS[31] is used as the platform to obtain the
real-time traffic of the tasks inside the program.

A0

t0 t1

t2

R01
F(R01)=10

t3R23
F(R23)=10

t4 t5

t6

R45
F(R45)=10

A1

Fig. 3 An Example of ACGs

For all of the application programs in the system, there is a program set A={A0, A1, A2,…, Am}.
Each Ai has different Num(Ai) tasks. The system task model is represented as T={T0, T1, T2, …,
Tn}, where Num(T) = ∑ ௠௜ୀ଴(௜ܣ)݉ݑܰ . T is naturally partitioned into different sub task sets
according to each Ai in set A.

3.4 Energy Model
NOC has many processor cores or processing units on chip. And the tasks communication with

each other through the on-chip lines. Cores/Pes have computation tasks and consume the energy.
Such energy consumed is computation energy. When the flits are transferred via lines and forwarded
by routers, they also consume energy. Such energy consumed is communication energy. This paper
focuses on the communication energy.

All of the flit transferred in NOC consists of many digital bits, which is the basic unit
transferred. Bit energy is defined as the energy consumed by one bit transferred in the network. For
a given program, Eb(Rij) is the energy consumed by one bit in communication of task Ti and Tj: ܧ௕൫ܴ௜௝൯ = ோ௕(ܴ௜௝)ܧ + ௅௕(ܴ௜௝) (1)ܧ

ERb is the energy consumed by the routers and ELb is the energy consumed by the lines for one
bit. The basic topology of on-chip network is represented as a coordinate system as shown in Fig. 4
to obtain the detail of energy consumed. Each tile has its corresponding coordinates to represent its
position. For example, the tile with core C1 is represented as C1(1,0). For a given tile with core Ci,
its coordinate is Ci(X, Y). XCi and YCi are horizontal coordinate and longitudinal coordinate
respectively.

C0
(0,0)

C3
(0,1)

C6
(0,2)

C1
(1,0)

C2
(2,0)

C4
(1,1)

C7
(1,2)

C5
(2,1)

C8
(2,2)

X

Fig. 4 On-Chip Network with Coordinates

And then Manhattan Distance is used to measure the distance of the cores/PEs: D൫ܥ௜௝൯ = |(ܺ஼௝ − ܺ஼௜) + (஼ܻ௝ − ܺ஼௜)| (2)
Elink is the energy consumed by one bit on one unit of Manhattan distance. ERouter is the energy

consumed by one bit in a single router. Thus ERb(Rij) can be obtained as the follows: ܧோ௕(ܴ௜௝) = ௜௝൯ܥ൫ܦ) + 1) ∗ ோ௢௨௧௘௥ (3)ܧ
ELb(Rij) is: ܧ௅௕൫ܴ௜௝൯ = ௜௝൯ܥ൫ܦ ∗ ௅௜௡௞ (4)ܧ
According to (1), the total energy consumed by one bit is: ܧ௕൫ܴ௜௝൯ = ௜௝൯ܥ൫ܦ) + 1) ∗ ோ௢௨௧௘௥ܧ + ௜௝൯ܥ൫ܦ ∗ ௅௜௡௞ (5)ܧ
Num(flit) is the number of data bits in one file. For one application program Ak, its total energy

consumed E(Ak) is: ܧ(ܣ௄) = ∑ ൫ܴ௜௝൯ܨ ∗ (ݐ݈݂݅)݉ݑܰ ∗ (൫ܦ൫ܥ௜௝൯ + 1൯ ∗ ோ௢௨௧௘௥ܧ + ௜௝൯ܥ൫ܦ ∗ ௅௜௡௞)∀ோ೔ೕ∈ீ ௢௙ ொܧ

(6)
Set A={A0, A1, A2,…, Am} has all of the active programs of the system, during the given time

slot S(0, t). And then the total energy consumed by the system is: ܧ஺ = ∑ ௠௜ୀ଴(௜ܣ)ܧ (7)
(6) and (7) shows that the following factors have impacts on the total energy including the

number of flits, the Manhattan distance, the energy consumed by router and line. The number of
flits is determined by the communication requirements and the retransmission mechanism. The
energy consumed by router and line is assumed as constants in this paper. Thus how to reduce the
distance of the tasks is the main focus.

4. Algorithm Design

In this section, the details of the scheduling algorithm are discussed. Firstly, the algorithm for
a single program is presented, which maps tasks of the same program to the computational units on
chip. And then the optimized algorithm for multiple programs is described. At last the online
scheduling is discussed.

4.1 Algorithm Design for Single Program
The application program has more than one task partitioned in current system. The multiple

tasks can provide higher parallelism on NOC than traditional single-core chip. These tasks should
also be assigned to the cores on chip for the performance. One of the simplest scheduling algorithm
for single program is X-Y first fit mapping(XYFF) for the program Ak, which is similar to the X-Y
routing. When there is a task unmapped, this algorithm looks for an idle core in X direction first and
then in Y direction if there is no suitable core in X direction. The mapping starts at C0(0, 0). This
algorithm is simple and easy to implement. However the disadvantage is also obvious for the larger
amount of communication.

As an optimization, the tasks can be mapped to the nearest cores according to their Manhattan
distance. This is the nearest fit mapping (NF). There is no determined direction in this algorithm.
The first task is still mapped to C0(0, 0). The next task will be mapped to the core with the smallest
Manhattan distance with C0(0, 0). The following tasks are mapped to the cores with the smallest
Manhattan distance with the previous mapped core. This algorithm will map the tasks to the cores
as a cluster. It can reduce the traffic by shortening the total Manhattan distance. However, NF still
has its disadvantage. The mapping in NF can achieve the optimization in the nearest two tasks for

each mapping. But it cannot map the tasks to reduce the total communication energy.
The total Manhattan distance should be reduced further. Energy saving mapping(ES) aims to

achieve this target. The tasks with the heaviest traffic should be mapped nearly according to the
analysis in energy model. The traffic of a task can be obtained as the follows: ݂ܶܿ݅݅ܽݎ(௜ܶ) = ∑ ோ೔ೕ∈஺ೖ∀(௜௝ܴ)ܨ (8)

The task with heaviest traffic is mapped first to C0(0, 0). The next task to be mapped is the task
with heavy traffic with the previous being mapped task on C0(0, 0) and this task is mapped to the
core with smallest Manhattan distance to C0(0, 0). The candidate cores are C1(0, 1) and C3(1, 0).
After mapping, the following tasks are mapped according to the same method until all the tasks are
mapped to the cores. However, C0(0, 0) is not the best start point. If the task with heaviest traffic
communicates with more than two tasks, the Manhattan Distance of the extra tasks and start task
increases according to the mapping mechanism. The improvement can be got through the following
method. Assuming Num(Ak) is the number of tasks in Ak, the center of a region which has Num(Ak)
cores is found to use as the start point of the mapping.

T0

T3

T1 T2

(a) on-chip Network (b) XYFF Mapping

T0 T1 T2

T3

(c) NF Mapping

T3

T1

T0

T2

(d) ES Mapping
Fig. 5 An Example: Algorithm Design for Single Program

Fig. 5 shows an example for the above algorithms by using the tasks of A0 shown in Fig. 3.
XYFF, NF and ES mapping have maximum hops for three, three and two respectively. The average
hops of the three algorithms are 1.67, 1.67 and 1.33. The total energy consumed by the three
algorithms is shown in the following. ܧ௑௒ிி = (ݐ݈݂݅)݉ݑ175ܰ ∗ ோ௢௨௧௘௥ܧ + (ݐ݈݂݅)݉ݑ110ܰ ∗ ேிܧ ௅௜௡௞ܧ = (ݐ݈݂݅)݉ݑ155ܰ ∗ ோ௢௨௧௘௥ܧ + (ݐ݈݂݅)݉ݑ90ܰ ∗ ாௌܧ ௅௜௡௞ܧ = (ݐ݈݂݅)݉ݑ150ܰ ∗ ோ௢௨௧௘௥ܧ + (ݐ݈݂݅)݉ݑ85ܰ ∗ ௅௜௡௞ܧ

Though the maximum hops and average hops of NF are same to XYFF, the shortened
Manhattan Distance reduces the energy consumed. ES has the best performance. It has reduced the
maximum hops and average hops. This makes ES be able to enhance the communication efficiency.
And ES has consumed fewer energy according the above computation.

4.2 Algorithm Design for Multiple Programs
When there are more programs in the system, more tasks should be mapped to the network. As

the analysis in Section 4.1, ES will gather the tasks of the same program as a cluster. ES can be used
as the basis for the scheduling of multiple tasks. As mentioned in Section 3.3, the task set T={T0,
T1, T2, …, Tn}, where n = ∑ ௠௜ୀ଴(௜ܣ)݉ݑܰ . Each Ai has corresponding tasks and constructs a natural
task set partition as represented as T(Ai).

For on-chip network N, it is presented as N (C, P). C is the set of processor core and C={C0,
C1, C2, …, Cp}. Num(C) is the number of all the cores in C. P is the set of paths Pij, in which Pij
represents one path from the processor core Ci to the processor core Cj. s = ௜ܥ| → ௝| (9)ܥ

s means that the number of routers on NOC from the processor core Ci to the processor core
Cj.

h(Ci) represents the number of the processor cores in all directions which are directly connected
to the processor core Ci; C(Ci) represents the set of the processor cores which are directly connected
to the processor core Ci.

The partitioning of the on-chip network is based on the number of the programs. If Num(C) ≥ ∑ ௠௜ୀ଴(௜ܣ)݉ݑܰ , it means all of the tasks in set T can be assigned to the network. The
partitioning can start at once. If Num(C) < ∑ ௠௜ୀ଴(௜ܣ)݉ݑܰ , it means there are not enough cores for
all of the tasks. Before the partitioning, some tasks should be removed from the task set T’ to be
scheduled. First, all of the tasks after Tp in T is removed from the task set T’. Second, the program
Ak is found, which contains task Tp. And then Ak is checked to find out whether task Tp is the last
task in Ak. If it is, can be assigned to the network. Otherwise, all the tasks in Ak are removed from
the task set T’. And Ak+1 will be checked. If Num(ܣ௞ାଵ) < |Num(C) − Num(Tᇱ)|, the tasks in
Ak+1 is moved to T’. Otherwise the next program will be checked until all of the programs are
checked. If ∀ܣ௜ ∉ ܶᇱ, Num(ܣ௜) < |Num(C) − Num(Tᇱ)|, T’ is stable for the scheduling. For the
simplicity of the algorithm description, it is assumed Num(C) ≥ ∑ ௠௜ୀ଴(௜ܣ)݉ݑܰ .

The enhanced ES algorithm for multiple programs (MES) is designed to map the tasks in T’ to
the cores in C. Our method is using ES described in Section 4.1 for all the tasks. Each Ai is mapped
to the cores via ES algorithm. When the tasks in A0 is mapped, the on-chip network will be a non-
standard mesh based network. C(Ci) is modified for the mapped cores. The corresponding cores are
removed from the direct connection sets. Thus the mapped cores will not be mapped again. Such
method can improve the map of the tasks according to the traffic analysis of the tasks in each Ai.
The on-chip network is partitioned into different regions as a region set D={D0, D1, D2, …, Ds}.
Num(D) is the number of regions. Num(Di) is the number of cores in region Di. The partitioned
regions are satisfied to the following two conditions: ∑ (௜ܦ)݉ݑܰ ≥௦௜ୀ଴ Num(ܶ′) (10) ܰ݉ݑ(ܦ௜) = ,(௜ܣ)݉ݑܰ ௜ܣ∀ ⊆ ܶ′ (11)

Fig. 6 shows an example for MES algorithm by using the tasks of A0 and A1 shown in Fig. 3.
The tasks in A0 is mapped firstly. T2 has the heaviest traffic and it is mapped first. The other three
tasks are mapped in order. The mapping result of A0 is shown in Fig. 6(a). The tasks in A1 is mapped
to the cores next. T4 has the heaviest traffic and it is mapped first. And then the other two tasks are
mapped too. The result of the mapping is shown in Fig. 6(b).

T3

T1

T0

T2

T3

T1

T0

T2

T6

T5

T4

(a) Mapping of A0 (b) Mapping of A1
Fig. 6 An Example: Algorithm Design for Multiple Programs using MES

The mapping can be finished from another point of view. The on-chip network is partitioned
into different regions. Each Ai is mapped to the corresponding region Di. Each region Di has a task
set Ai. The tasks from the same Ai will be mapped by using ES algorithm. This method (called ESR)
is simple and easy to implement. All the tasks can be mapped to some core in C. The difference
between ES and ESR is that more cores may be unmapped ones in ES and ESR has the possibility
to contain more tasks. For example, if there are only A0 and A1 in A as shown in Fig. 3, ES and ESR
have the same mapping results. However, if there is another A2 which has two tasks T7 and T8, these
extra tasks can be mapped to the cores using ESR. But the separate two cores in ES as shown in Fig.
7(a) are isolated from each other and they cannot be allocated. When ES is used to schedule the
tasks, the energy saving is the first factor. ES can be seen as energy saving first algorithm. On the
contrary, how to map all of the tasks is the first factor. Thus ESR can be seen as the task mapping
first algorithm.

T3

T1

T0

T2

T8

T4

T6

T3

T1

T7

T0 T5

T2

T6

T5

T4

(a) Mapping by ES (b) Mapping by ESR
Fig. 7 Comparison of Mapping by ES and ESR

4.3 Online Scheduling
The scheduling described above is based on the traffic on chip known in advance. However,

the exact communication overhead can only be obtained at run-time in a system. Though the traffic
on chip can be profiled through the static analysis, the profiling information cannot guarantee the
correct and the offline scheduling has no scalability when there are more available resources. The
online scheduling is based on the profiling of the tasks at run-time. The tasks in the same region will
be re-mapped if major changes occurred in the distribution of traffic. The online scheduling (OES)
is shown in Fig. 8.

ES Mapping

Profiling at Run-Time

Analysis of Traffic Distribution

Re-Mapping Based on ES

Regions Requiring Re-Mapping

Fig. 8 Online Mapping Methodology

The traffic of the tasks is analyzed through the static profiling. This is the starting point of the
scheduling. The tasks are mapped to the cores according to the ES method first. The on-chip network
is partitioned into different regions. Each region has some tasks. The profiling information is
collected at run-time. The traffic distribution is analyzed through CETA analysis. If major changes
occur inside a region, the task in this region will be re-mapped according to ES.

A0

t0 t1

t2

R01
F(R01)=10

t3R23
F(R23)=10

A0

t0 t1

t2

R01
F(R01)=35

t3R23
F(R23)=15

(a) Traffic at Time Tim0 (b) Traffic at Time Tim1

T3

T1

T0

T2

(c) Mapping of A0 at Time Tim0

T3

T2

T1

T0

(d) Mapping of A0 at Time Tim1

Fig. 9 Online Scheduling of A0

For the given task set A0, the traffic at time Tim0 is shown in Fig. 9 (a). Task t2 is the center of
the traffic and mapped first at time Tim0. The mapping result is shown in Fig. 9 (c). The traffic at
time Tim1 is shown in Fig. 9 (b). The traffic distribution has changed after execution from Tim0 to
Tim1. Now task t0 is the center of the traffic and this task becomes the starting point of the re-
mapping. And then all the tasks in the same region are re-mapped according to ES method. The re-
mapping result is shown in Fig. 9 (d). EES and E’ES are the energy consumed without re-mapping
and after re-mapping as shown in the follows: ܧாௌ = (ݐ݈݂݅)݉ݑ265ܰ ∗ ோ௢௨௧௘௥ܧ + (ݐ݈݂݅)݉ݑ150ܰ ∗ ாௌ′ܧ ௅௜௡௞ܧ = (ݐ݈݂݅)݉ݑ250ܰ ∗ ோ௢௨௧௘௥ܧ + (ݐ݈݂݅)݉ݑ135ܰ ∗ ௅௜௡௞ܧ

Online scheduling has reduced the energy consumption for the mapping of A0 as shown above
for the re-mapping cuts down the hops of the total communication. The reduced hops can also
improve the performance of the systems.

5. Experimental Results and Analysis

5.1 Experiment Setup
The proposed algorithm has been tested based on the simulation. SIMICS is used to obtain the

traffic of the tasks. They are used as the injection data to the on-chip network. The settings of
SIMICS is shown in Table 1.

Table 1. SIMICS Configuration
Parameter Configuration
CPU Number 16
Freq_mhz 60
Cache Size 32KB
Disk Size 4 GB
Memory Size 512 MB
Operating System Linux 2.6.20

Noxim[33] is used as the basic NOC simulator. This platform provides the communication
status on chip, the profiling information of the system performance and the energy consumed. The
settings of Noxim is shown in Table 2.

Table 2. Parameter Settings of Noxim
Parameter Settings
-mesh_dim_x 4 nodes
-mesh_dim_y 4 nodes
-buffer_depth 4
-max_packet_size 10 flits
-routing_algorithm X-Y routing
-stats_warm_up_time 1000 cycles

The benchmarks are the following programs including Barnes, FFM_3, MPGdec, MPGenc,
ocean_contiguous_partitions(Ocean), and Water_spatial(Waters). The traffic of these programs is
obtained using CETA. The original cycles of the program are too large for the analysis and ECycle
is used to record the cycles. One ECycle equals to 10000 original cycles. The basic parameters of
these programs are shown in Table 3.

Table 3. Basic Parameters of Benchmarks
Program Task Number ECycles
Barnes 10 181
FFM 5 18
MPGdec 16 23
MPGenc 6 46
Ocean 6 137
Waters 9 63

Noxim is used to simulate the on-chip network. The computation of the tasks cannot be
simulated for the cores cannot be simulated in Noxim. The communication overhead of the task
migration is taken into account. ES algorithm has low complexity with O(Num(C) ∗

LogNum(C) + Num(T) ∗ LogNum(T)) . The time cost of task migration does not need to be
considered as the main impact.

5.2 Results and Analysis
XYFF, NF, ES and OES are implemented and used in the experiments. Each program has

different run-time features including the run-time traffic. The experimental results are normalized
for the analysis with XYFF as the baseline.

Fig. 10 shows the average traffic on chip by counting the flits flowing through the routers. ES
and OES can reduce the amount of flits transmitted through the on-chip network. The tasks of each
program are gathered in one region according to their communication relationship. The tasks with
intensive communication are mapped as neighbors as much as possible. The flits will pass through
fewer routers and this can reduce the total amount of on-chip traffic. The proposed algorithm can
reduce 57% (ES) and 64% (OES) of the total flits. This is the basis of the optimization for the energy
saving and performance improvement.

Fig. 10 Average Traffic

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Barnes FFM MPGdec MPGenc Ocean Waters

Average Traffic (Flits)

XYFF NF ES OES

Fig. 11 Total Energy Consumption
The energy consumption is shown in Fig. 11. As shown in (6) and (7), the reduced traffic can

save more energy. The total energy consumption is basically consistent with the average traffic. As
Fig. 11 shows, OES cannot provide significant improvement by OES compared with ES. The
possible reason is that MPGenc and Ocean has small number of tasks and these tasks have the
balanced communication. The re-mapping by EOS cannot reduce more transmitted flits. And it
results in the very limited improvement in energy consumption.

OES can re-map the tasks according to the profiling information at run-time. It provides more
flexibility for the system as online scheduling. However, online scheduling needs to gather the
information and re-map the tasks. Such operations will bring some extra loss for the system. The
overhead of OES is shown in Fig. 12. The maximum overhead is 2.4% and the average overhead is
1.67%. The overhead is acceptable.

Fig. 12 Overhead of OES

Fig. 13 and Fig. 14 show the maximum latency and average latency of different algorithms
respectively. The maximum latency may not be reduced according to Fig. 13. The reduced total flits

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Barnes FFM MPGdec MPGenc Ocean Waters

Total Energy Consumption

XYFF NF ES OES

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Barnes FFM MPGdec MPGenc Ocean Waters

Overhead

do not mean that the maximum latency will be reduced. ES and OES may map the tasks without
intensive communication to the cores with long Manhattan Distance. The efficiency of tasks with
intensive communication is guaranteed first. Thus such tasks can communication with each other
with fewer hops in ES and OES. The average latency is reduced about 22% and 29% in ES and OES
respectively as shown in Fig. 14.

Fig. 13 Maximum Latency

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Barnes FFM MPGdec MPGenc Ocean Waters

Maximum Latency

XYFF NF ES OES

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Barnes FFM MPGdec MPGenc Ocean Waters

Average Latency

XYFF NF ES OES

Fig. 14 Average Latency
According to the experimental results, OES is the best optimization algorithm for online

scheduling for NOC based many-core system. This algorithm can schedule the tasks without
obtaining the traffic in advance. Though there is also some overhead, OES can improve the
performance and reduce the power consumption.

6. Conclusions and Future Work

More transistors are integrated onto a sing die for the advances in semiconductor technology.
NOC is proposed as a promising diagram to break through the bottleneck of on-chip communication.
The processor cores are connected by lines and organized as an on-chip network. The network traffic
brings a new challenge to NOC in both the performance and the energy consumption. The
communication characteristics of the different programs have great impact on the on-chip network.
The key issue is how to map the tasks of the programs to the network. In this article, an optimized
scheduling algorithm is proposed for NOC-based many-core system. The basic idea is that
communication is the center of NOC architecture. An energy saving scheduling algorithm is
proposed first to map the tasks to the cores according to the communication-intensive by using static
analysis of the on-chip traffic. And then this algorithm is extended to online one based on the
profiling information obtained at run-time. It re-maps the tasks for better performance and energy
saving. The experimental results show that online analysis and remapping can save 29% energy in
average with reduced latency compared with the off-line analysis.

More work needs to be done in the future. The algorithm proposed in this paper does not take
the migration cost as account. When there are more tasks in the system, the migration may occur
frequent. The cost will increase. Secondly, the global re-mapping should be taken as a design factor
for the further improvement. And at last, this algorithm should be extended for the heterogeneous
NoC.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Granted No.
61100055 and 31201121).

References
[1] M.S. Khaira. Micro-2010: lead performance microprocessor of the year 2010-myth or reality.

In Proc. 12th International Conference on VLSI Design (VLSID99), 1999, 157-163.
[2] L.Benini and G.D.Micheli. Networks on chips:A New SoC Paradigm. IEEE Computer, 2002,

70-78.
[3] A. Ivanov and G.D.Micheli. The Network-on-Chip Paradigm in Practice and Research. IEEE

Design and Test of Computer, 2005, 399-403.
[4] B. Vermeulen, J. Dielissen, K. Goossens and C. Ciordas. Bringing Communication Networks

on a Chip: Test and Verification Implications. IEEE Commun. Magazine, 2003, 74-81.
[5] T. Mak, P.Y. Cheung, W. Luk and K. Lam, “A DP-network for optimal dynamic routing in

network-on-chip”, Proc. the 7th IEEE/ACM international Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS 09), ACM, New York, NY, Oct. 2009, pp. 119-
128.

[6] C. Liu, E. Cota, H. Sharif and D. Pradhan. Test Scheduling for Network-on-Chip with BIST

and Precedence Constraints. In Proc. ITC, 2004, 1369-1378.
[7] M.B. Taylor and W. Lee. Scalar Operand Networks. IEEE Transactions on Parallel and

Distributed Systems, Feb. 2005, vol.16, no. 2, 145-162.
[8] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-on-chip”,

ACM Comput. Surv., vol. 38, issue 1, Jun. 2006, Article No. 1.
[9] K. Chang, J. Shen and T. Chen, “Tailoring circuit-switched network-on-chip to application-

specific system-on-chip by two optimization schemes”, ACM Trans. Des. Autom. Electron.
Syst., vol, 13, issue 1 , Jan. 2008, pp. 1-31.

[10] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson and K. Chung. The Case for a Single-
Chip Multiprocessor. ACM SIGOPS Operating Systems Review, vol 30, issue 5, 1996, 2-11.

[11] J. Meindl. Gigascale Integration: Is the Sky the Limit?. IEEE Circuits and Devices Maganize,
vol 12, issue 6, 1996, 19-24.

[12] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection networks. In Proc.
the 38th Conference on Design Automation (DAC 01), 2001, 684-689.

[13] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini and G. De Micheli.
NoC Synthesis Flow for Customized Domain Specific Multiprocessor Systems-on-Chip. IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 2, 2011, 113-129.

[14] W. H. Ho and T. M. Pinkston. A Methodology for Designing Efficient On-Chip Interconnects
on Well-Behaved Communication Patterns. In Proc. the 9th Intl. Symp. on High-Performance
Computer Architecture, 2003, 377.

[15] K. Srinivasan and K.S. Chatha. ISIS: a genetic algorithm based technique for custom on-chip
interconnection network synthesis. Proc. 18th Intl. Conf. on VLSI Design, 2005, 623-628.

[16] S. Murali, L. Benini and G. de Micheli. Mapping and physical planning of networks-on-chip
architectures with quality-of-service guarantees. In Proc. Conf. on 2005 Asia and South Pacific
Design Automation Conf., 2005, 27-32.

[17] G. Ascia, V. Catania, M. Palesi. Multi-objective mapping for mesh-based NoC architectures.
In Proc. 2004 Intl. Conf. Hardware/Software Codesign and System Synthesis, 2004, 182-187.

[18] D. Barcelos, E. W. Brião, F. R. Wagner. “A hybrid memory organization to enhance task
migration and dynamic task allocation in NoC-based MPSoCs”, Proc. of the 20th annual
conference on Integrated circuits and systems design, pp.282-287, 2007.

[19] C. Chou, R. Marculescu. “User-aware dynamic task allocation in networks-on-chip”, Proc. of
the Conf. on Design, automation and test in Europe, pp.1232-1237, 2008.

[20] J. Hu and R. Marculescu, “Energy-Aware Communication and Task Scheduling for Network-
on-Chip Architectures under Real-Time Constraints”, Proc. of the Conf. on Design, automation
and test in Europe - Volume 1, pp.10234, 2004.

[21] L. Schor, I. Bacivarov and D. Rai et al. “Scenario-based design flow for mapping streaming
applications onto on-chip many-core systems”, Proc. 2012 Intl. Conf. Compilers, architectures
and synthesis for embedded systems (CASES '12). ACM, New York, NY, USA, pp. 71-80.

[22] P.C. Hsiu, D.N. Lee and T.W. Kuo. “Task synchronization and allocation for many-core real-
time systems”. Proc. ninth ACM Intl. Conf. on Embedded software (EMSOFT '11). ACM, New
York, NY, USA, pp. 79-88.

[23] . Wang, H. Liu and Z.W. Qin et al. “Overhead-aware energy optimization for real-time
streaming applications on multiprocessor System-on-Chip”, ACM Trans. Des. Autom.
Electron. Syst. Vol. 16, issue 2, Article 14, 32 pages, April 2011.

[24] D.S. Zhang, D.K. Guo and F.Y. Chen et al. “TL-plane-based multi-core energy-efficient real-
time scheduling algorithm for sporadic tasks”, ACM Trans. Archit. Code Optim. Vol. 8, issue
4, Article 47, 20 pages, January 2012.

[25] C. Liu, J. Li and J. Rubio et al. “Power-efficient time-sensitive mapping in heterogeneous
systems”, Proc. the 21st Intl. Conf. on Parallel architectures and compilation techniques (PACT
'12), ACM, New York, NY, USA, pp. 23-32.

[26] H. Wang, L. Peh and S. Malik, “A Technology-Aware and Energy-Oriented Topology
Exploration for On-Chip Networks”, Proc. the Conference on Design, Automation and Test in
Europe (DATE 05), Mar. 2005, vol.2, pp. 1238-1243, doi: 10.1109/DATE.2005.40.

[27] J. Wu, “A deterministic fault-tolerant and deadlock-free routing protocol in 2-D meshes based
on odd-even turn model”, Proce. the 16th international Conference on Supercomputing (ICS
02), Jun. 2002, pp. 67-76, doi: 10.1145/514191.514204.

[28] M. Pastrnak, P.H.N. de With, S. Stuijk and J. van Meerbergen, “Parallel implementation of
arbitrary-shaped MPEG-4 decoder for multiprocessor Systems”, Proc. Visual Comm. and
Image Processing (PWSM 06), San Jose, CA, Jan. 2006.

[29] S. Taktak, J. Desbarbieux and E. Encrenaz, “A tool for automatic detection of deadlock in
wormhole networks on chip”, ACM Trans. Des. Autom. Electron. Syst., vol. 13, issue 1, Jan.
2008, pp. 1-22, doi: 10.1145/1297666.1297672.

[30] A.H. Liu and R.p. Dick, “Automatic run-time extraction of communication graphs from
multithreaded applications”, Proc. the 4th IEEE/ACM international Conference on
Hardware/Software Codesign and System Synthesis (ODES+ISSS 06), Oct. 2006, pp. 46 – 51.

[31] Virtutech Simics, http://www.virtutech.com/products/.
[32] T.T. Ye, G.D. Micheli and L. Benini, “Analysis of power consumption on switch fabrics in

network routers”, Proc. the 39th Annual Design Automation Conference (DAC 02), Jun. 2002,
pp. 524-529, doi: 10.1145/513918.514051.

[33] Noxim: Network-on-Chip simulator, available: http://sourceforge. net/projects/noxim

