-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Online Publikationen der Universitat Stuttgart

Institute of Software Technology
Department of Programming Languages and Compilers
University of Stuttgart

Universitatsstrafse 38
D-70569 Stuttgart

Master Thesis Nr. 3578

Analysis and Simulation of
Scheduling Techniques for
Real-Time Embedded Multi-core

Architectures

Sanjib Das

Course of Study: INFOTECH

Examiner: Prof. Dr. rer. nat./Harvard Univ. Erhard Plodereder

Supervisor: Dipl.-Inf. Mikhail Prokharau

Commenced: October 31, 2013

Completed: June 27, 2014

CR-Classification: C.1.4,D.4.7,D.4.8,1.6.6,1.6.7

https://core.ac.uk/display/147542973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this modern era of technological progress, multi-core processors have brought significant
and consequential improvements in the available processing potential to the world of real-time
embedded systems. These improvements impose a rapid increment of software complexity as
well as processing demand placed on the underlying hardware. As a consequence, the need for
efficient yet predictable multi-core scheduling techniques is on the rise.

As part of this thesis, in-depth research of currently available multi-core scheduling tech-
niques, belonging to both partitioned and global approaches, is done in the context of real-time
embedded systems. The emphasis is on the degree of their usability on hard real-time systems,
focusing on the scheduling techniques offering better processor affinity and the lower number of
context switching. Also, an extensive research of currently available real-time test-beds as well
as real-time operating systems is performed.

Finally, a subset of the analyzed multi-core scheduling techniques comprising PSN-EDF, GSN-
EDF, PD? and PD?* is simulated on the real-time test-bed LITMUSHT'

Acknowledgments

First and foremost, I offer my sincerest obligation to honorable Prof.Dr.rer.nat./Harvard Univ.
Erhard Plodereder for giving the opportunity to write my master’s thesis at Department of
Programming Languages and Compilers of the Institute of Software Technology at the University
of Stuttgart.

Moreover, I would like to show my humble gratitude to my supervisor Dipl.-Inf. Mikhail
Prokharau who has supported me throughout my thesis with his knowledge, cordial supervision,
valuable pieces of advice and patience while at the same time giving me the room to work in
my own way.

I am profoundly grateful to my parents Jatindra Nath Das and Shikha Das for their uncon-
ditional support and constant encouragement throughout my life.

In addition, it is my pleasure to express gratefulness to all the people who contributed, in
whatever manner, to the success of this work.

Contents

[Abbreviations| 1
(1__Introductionl 3
LI _Motivationl e e e 3
[1.2 Objective] e 3
1.3 Organization| e e 4
[2_Definitions| 7
2.1 A Real-Time System| 7
2.2 An Embedded System| 7
2.3 Multi-Core Systems| 7
2.4 Task Models|. o 8
RE Resourcd. oo 10
2.6 Scheduling Policy] 10
2.7 Schedulersl 11

|3 Terminology| 13
[3.1 Schedulability and Optimality of scheduling algorithm and Feasibility of tasksets| 13
8.2 Processor Demand Bound Function| 0L 13
3.3 Utilization Bound | 13
3.4 Resource Augmentation or Speedup Factor| 13

|4 Classification of Scheduling Algorithms for Multi-Core Systems| 15
|5 Related Work on Real-time Scheduling Techniques| 19
[b.1 Partitioned Approach| 19
[.1.1 Tasksets consist of Implicit Deadlines| 19

[5.1.2 Tasksets consist of Constrained and Arbitrary Deadlines| 21

5.2 Global Approach| 21
[5.2.1 Global Scheduling with Fixed Job Priority | 22

[5.2.2 Global Fixed Task Priority Scheduling| 22

[5.2.3 Global Dynamic Priority Schedulingl 24

5.3 Summary| e e 31

[6" Related Work on Real-time Scheduling Test-beds| 33
6.1 Tanux-kernell. e 34
6.2 Kernel Preemption| 34
6.3 RTTINUX o o e e e e e e e e 35
6.4 SHa.REKl e 36
6.5 MaRTE] e 36
6.6 RTATl. e 36
... 37
[6.8 XtratuM/PaRTiKle| 38
6.9 ChronOS| e 39
6.10 LITMUSRE |00 0o 40

vii

[6.11 Summary|

[Simulation

Experimental Task Sets|
Algorithm Implementation|
Experiment Results|

43
44
46
47
48
54

57

64

List of Figures

2.1 Real-Time Task Parameter Buttazzo| [2004) 8
2.2 Task State Diagram Buttazzo[[2004] 10
2.3 Task queue in Scheduler [Buttazzo ﬂzoﬁﬂ] 11
[4.1 Categories of real-time scheduling algorithms [Mohammadi and Akl 2005| 15
|5.1 A periodic task 7; containing 11 subtasks with U; = % representing the group |

| deadline of subtask 7; ; [Nelissen et al., 2014]| 27
[5.2" Pfair and BFair schedules of three tasks 79, 71 and 7 , where number of processors |

| is m = 2. The periods are 1o = 15,17 = 10,15 = 30, and the worst-case execution |

| times are Cp = 10,C; = 7,Co = 19, |Nelissen et al., 2014 30
6.1 RTLinux Architecture [Yigiao et al[2008] 35
6.2 RTATI Architecture [Yiqgiao et al. ;2008 37
6.3 Xenomai Architecture [Yigiao et al[2008] L. 38
6.4 XtratuM/PaRTiKle Architecture |Yigiao et al., 2008[[. 39
6.5 ChronOS Architecture [ChronOS[2013] 40
7.1 Plugin 48
7.2 Context switching (us) and scheduling overheads (us) of PD* as PFAIR and

| PD?* as PFAIR23 algorithms with very-light processor utilization distribution

| for tasksets with task number increasing from 5 to 100 in steps of 5|. 51
[7.3 Context switching (us) and scheduling overheads (us) of PD? as PFAIR and

| PD?* as PFAIR23 algorithms with full range processor utilization distribution for

| tasksets with task number increasing from 5 to 100 in steps of 5|. 52
[7.4 Context switching (us) and scheduling overhead (us) of PSN-EDF ,GSN-EDF,C- |

| EDF PFAIR,PFAIR23 algorithms for tasksets with tasks increasing from 5 to 100 |

| in steps of 5, utilization distribution: full range| 53
[7.5 Record loss rations (%) of PSN-EDF,GSN-EDF,C-EDF,PFAIR,PFAIR23 algo- |

| rithms for tasksets with tasks increasing from 5 to 100 in steps of 5, utilization |

| distribution: full range.| oo oo 54

List of Tables

[7.1 Simulation platform configuration of virtual and physical machines| 46
7.2 Uniform distribution of utilization used in task set generation| 46

7.3 Simulation data of PD? on QEMU emulator with uni-very-light processor utiliza- |
L tion distribution and 24 tasks| 49
[7.4 Simulation data of PD?* on QEMU emulator with uni-very-light processor uti- |
[Tization distribution and 24 tasksl 000000000 49
[7.5 Simulation data of PD? on physical machine with uni-very-light processor utiliza- |
L tion distribution and 24 tasks|o 50
[7.6 Simulation data of PD** on physical machine with uni-very-light processor uti- |
L lization distribution and 24 tasksl 50

: : 2 2%
tasks, both in QEMU emulator and on the physical machine| 50

xi

Abbreviations

CFS

DM
EDF-BF
EDF-FF
FPU
G-EDF
GSN-EDF
GUA
IPC
NMIs
NUMA
P-EDF
Pfair
POSIX
PSN-EDF
RMGT
RMS
RMST
RTOS
TSC
VFES
WCET

Completely Fair Scheduler

Deadline Monotonic Scheduling

Earliest Deadline First - Best Fit

Earliest Deadline First - First Fit
Floating-Point Unit

Global Earliest Deadline First

Global Suspendable Non-Preemptive EDF
Global Utility Accrual

Interposes communication

Non Maskable Interrupts

Non-uniform memory access

Partitioned Earliest Deadline First
Proportionate Fairness

Portable Operating System Interface
Partitioned EDF with synchronization support
Rate Monotonic Scheduler for General Task
Rate Monotonic Scheduler

Rate Monotonic Scheduler for Short Task
Real Time Operating System

Time Stamp Counter

Virtual File System

Worst Case Execution Time

1. Introduction

1.1 Motivation

These days embedded systems are sewn into our day-to-day life in various forms of visible
and invisible manner via many different application areas which include consumer electronics,
medical imaging, telecommunications, automotive electronics, avionics, space systems, etc. For
instance, the progress in use of multi-core platforms in embedded systems has already reached
our hands as a form of mobile phones and related devices with small form factor.

The main purpose of a real-time system is to produce the required result within strict time
constraints including computational correctness. In other words, in the physical world the
purpose is to construct a physical effect within a chosen time-frame |[Mohammadi and AKI,
2005]. There are a number of perspectives to classify real-time systems. Depending on the
system characteristics, a real-time system can be categorized as hard real-time or soft real-time
by considering factors inside the system and factors outside the system [Juvva, 1998§].

As many embedded systems are used in safety-critical applications, their correct functionality
in the whole system is imperative to avoid severe consequences. It is estimated that 99%
of produced microprocessors are integrated into embedded systems |[Burns and Wellings, 2001].
Furthermore, as a result of this abrupt technological progress, a significant increment in software
complexity and processing demands of real-time systems is seen [Davis and Burns, 2011]. To cope
with these processing demands, silicon vendors are concentrating on using multi-core platforms
for high-end real-time applications instead of incrementing processor clock speeds in uni-core
platforms. By the same token, scheduling research of multi-core architectures offers a broad
spectrum of significant opportunities for real-time system producers. |[Davis and Burns, 2011] .

Research of uni-core and multi-core real-time scheduling both originated back in late 1960s
and early 1970s, consequential advances were made in 1980s and 1990s [Davis and Burns, 2011].
Still, there is sufficient scope for research, although uni-core real-time scheduling is considered
reasonably mature to be in industrial practice [Burns and Wellings, |2001]. On the other hand,
many of well researched multi-core scheduling techniques are not mature enough to either be
applicable or optimal as much as currently available uni-core real-time scheduling techniques.

For this reason, reliable simulation platforms are required to augment the research of schedul-
ing techniques for real-time embedded multi-core architectures, which is also coupled with an-
alytical results that expect guaranteed real-time administration over the system by the most
effective use of the available processing capability through employing efficient scheduling poli-
cies placed on the underlying hardware.

1.2 Objective

The purpose of this work is to give an overview of currently available real-time embedded multi-
core scheduling techniques along with simulation test-beds while giving detailed comparison
of their advantages and limitations. Consequently simulate analyzed scheduling techniques on
suitable test-bed. The objectives are as categorized as follows:

1. Analysis of scheduling techniques for real-time embedded multi-core architectures

e In-depth analysis of currently available literature on multi-core scheduling in real-time
contexts.

1 Introduction

e Comparison of multi-core scheduling techniques, emphasizing the degree of their us-
ability on hard real-time embedded systems.

e Comparison of multi-core scheduling techniques by focusing on techniques offering
better processor affinity and the lower number of context switching. In-depth analysis,
considering above constraints, of the following scheduling policies:

— Partitioned approach (includes Partitioned-EDF)

x Tasksets with implicit deadlines including partitioned RMST, partitioned
RMGT, EDF-FF, EDF-BF

x Tasksets with constrained and arbitrary deadlines including EDF-FFID
— Global approach with
« Fixed-job priority including global EDF-US[¢],global EDF (k)

* Fixed-task priority including global RM, global RM-US[¢], global DM-DS,
global FP

+ Dynamic priority including Pfair, PF, ERfair, PD?, PD?**, BF, BF?, LLREF,
EDZL
2. Analysis of currently available simulation test-beds for scheduling techniques for real-time
embedded multi-core architectures.

e Analysis and comparison of existing real-time test-beds to evaluate scheduling tech-
niques including the following ones:

— RTLinux,

— S.Ha.R.K,

— MaRTE,

— RTAI,

Xenomai,

XtratuM /PaRTiKle,
ChronOS,

— LITMUSHT,

e Selection of suitable real-time test-bed for simulation of scheduling algorithms ana-
lyzed in the previous phase.

3. Simulation of analyzed scheduling techniques focusing on scheduling algorithm perfor-
mance as well as simulator performance, considering the baseline platforms below:

e Virtual machine (QEMU emulator): Genuinelntel 286_64, CPU(s):16, CPU MHz:2260.996,
Hypervisor vendor:KVM,

e Physical machine: Genuinelntel x86_64,CPU(s):4, CPU MHz:933.000.

1.3 Organization

The rest of this thesis is composed as follows: Chapters 2 and 3 provide the definitions and
terminology required to establish a common notation. Chapter 4 contains a brief classification
of available real-time scheduling algorithms. Chapter 5 contains analytical points of view and

1.3 Organization

detailed classification of currently available scheduling techniques for multi-core architectures
along with scheduling techniques for real-time embedded multi-core architecture followed by an
overview of currently existing simulation test-beds in Chapter 6. The architecture of simulation
platforms, the simulation strategies and the simulation results are described in chapter 7. The
thesis is concluded by a summary of this whole work and discussion of future work in chapter 8.

2. Definitions

Over the past decades, several scheduling algorithms for real-time systems have been proposed.
They evolved through research aimed at the improvement of the predictability of real-time
systems. In order to describe the consequences of this research in the next chapters, we describe
some basic concepts in the current chapter.

We take the first step with the most fundamental definition of a real-time system and em-
bedded system followed by multi-core architectures. Also, a very important software entity of
the operating system, the process is defined. Finally, resources, scheduling policy and scheduler
come into the focus. In this work, the keywords task and process are used as synonyms.

2.1 A Real-Time System

The concept of time is the principal characteristic which distinguishes real-time computing from
other types and comes in the form of the computation time. Where by the word time not only
the logical result of the system, but also at which point of time the outcome is formed, are
described as prerequisites of the system’s correctness. Furthermore, by the word real an obvious
occurrence of an external event as a reaction of the system is indicated during the system’s
evolution time. Where the system time and the time in a controlled environment are measured
using the same time scale [Buttazzo|, |2004]. Considering the deadline, which is the maximum
execution time of a real-time task, real-time systems can be categorized as hard real-time and
soft real-time[Buttazzo, 2004].

2.2 An Embedded System

An embedded system is an information processing system that is encapsulated in a fixed context,
built inside a larger system for the purposes of regulating and controlling the system with a
predefined functionality [Marwedel, 2006]. Examples can be drawn with information processing
systems embedded into enclosing products such as avionics, automobile, and communication
equipment. In most of the cases, these systems come with a large number of common real-time
constraints, as well as required dependability and efficiency characteristics.

2.3 Multi-Core Systems

A single computing component consisting of more than one autonomous processing unit is
called a multi-core processor, where multiprocessing is implemented in a single physical package.
Currently, the term core is much more preferable in research and production practice than the
term processor.

Taking the scheduling criterion into account, multi-core systems are described as follows [Davis
and Burns, 2011]:

1. Heterogeneous: Where the processors are different, on that account task execution rate is
dependent on the task and the processor.As a matter of fact, execution of all tasks will
not be held on available all processors.

2. Homogenous: Here all the processing cores are identical; henceforth execution rate for all
tasks is equivalent on each of them.

3. Uniform: Execution rate relies only on processor’s speed for a task. Hence a processor of
speed 2 will double the execution rate of all tasks with speed of 1.

2 Definitions

2.4 Task Models

Several processes run on a real-time system with timing constraints. Each of them is known as
task, which provides the functionality of the underlying real-time system. Number of invocation
for a task can be finite or infinite. Every single invocation is referred as a job [Holman| 2004].

Generaly, a real-time task J; is described by the parameters below:

e Arrival Time: Denoted as a;, represents the point in time, when a task becomes ready for
execution. It is also indicated by r;.

Computation Time: Denoted as C;, uninterrupted execution time of the task.

e Deadline: Represented as d;, is the time before which the task should finish execution to
avoid damage to the system.

Start Time: Represented as s;, is the starting point of task execution.

Finishing Time: Reffered as f;, is the finishing point of task execution.

J, -

a. S. fi di

Figure 2.1: Real-Time Task Parameter |Buttazzo| [2004]

e Criticalness: Which relates the outcomes of a deadline miss.

e Value : The importance of a task with respect to others is represented by v;.

Figure contains an illustration of some of the task parameters.

Real-time applications are usually constructed based on multiple task sets with different crit-
icality level. Though deadline misses are not expected in real-time tasks, soft real-time tasks
could still work while missing some deadlines. On the other hand, hard real-time tasks will incur
a severe penalty for missing any deadline. Another variant of task sets are named firm real-time
tasks which gain reward based on their completion before the deadline.

Consider a task set T' = 71,79, 73....... Tn, where WCET of each task 7T is C; . A system
will be considered real-time if there exist at least one task 7;¢T" with the following properties
[Mohammadi and Akl [2005] :

1. Hard real-time task: Task 7; should be complete it’s execution by a given deadline D;;i.e.,C; <
D;, is a hard real-time task.

2. Soft real-time task: The task 7; has to pay a penalty depending on how late it has completed
its computation after a given deadline D;. A penalty function P(7;) is defined for the task.

2.4 Task Models

3. Firm real-time tasks: A task 7; gains reward depending on how much earlier it finishes the
computation before the given deadline D;. A reward function is defined as R(7;)

The deadline is one of the most roll playing parameter of real-time tasks, and for hard real-
time task its importance is inevitable. For a task T;, deadline D; is the time when the job of
the task musk accomplishes its execution.

Correlating with another parameter period or inter-arrival time, a deadline can be categorized
as below:

e Implicit Deadline: A task T; with period P; and deadline D;, is an implicit deadlined task
if D; = P;.

e (Constrained deadline: A task T; with period P; and deadline D;, is an constrained dead-
lined task if D; < P;.

o Arbitrary deadline: A task T; not constrained with deadline D;, is an arbitrary deadlined
task.

Considering the arrival behavior of tasks in a system, they can also be categorized into the
following types:

1. Periodic Task : Periodic tasks are released or activated at fixed rates(periods). Usually,
periodic tasks must execute once per period. For periodic tasks, the constraints are the
period P. Periodic tasks can be categorized as synchronous and asynchronous.

e Synchronous: When there is a specific point in time at which simultaneous activation
or arrival of the tasks occurs;

o Asynchronous: When task arrival times are not simultaneous and are separated by

fixed offsets [Davis and Burns| [2011];

2. Aperiodic Tasks: Aperiodic tasks are activated in an irregular manner at a possibly un-
bounded and unknown rate. For aperiodic tasks the constraints are the deadline D.

3. Sporadic Task : Sporadic tasks are activated irregularly at a bounded rate. The minimum
time interval between two successive activations is defined as the minimum inter-arrival pe-
riod which characterizes the bounded rate. Usually D, the deadline is the time constraints

for sporadic tasks.

Most of the scheduling research on multi-core real-time systems is focused on two types of
task model:

1. Periodic task model.
2. Sporadic task model.

In both cases, tasks have an infinite sequence of jobs (invocations). In either model, intratask
parallelism is not permitted. [Davis and Burns, 2011]

2 Definitions

2.5 Resource

Considering a process, a resource is any software architecture that can be used by the process.
Considering a core, a resource does not execute the instructions of the task. Nevertheless, in
both cases a resource is used for advancement of task instruction’s execution. Typical example
of a resource is, a main memory area, or a set of variables, or data structure.

A resource assigned to a specific process is known as private and for two or more processes
as a shared resource. Considering data consistency , a simultaneous access is not allowed by
many shared resources and mutual exclusion is required among competing tasks. These types
or resources are known as ezxclusive resources.

The section of the code executing under the mutual exclusion constraints is known as a
critical section. A synchronization mechanism is provided by the operating system to guarantee
the sequential access to exclusive resources, e.g., semaphores, which means, when number of
tasks is two or more with resource constraints, they have to be synchronized, in case of share
exclusive resources.

When a task is waiting to access an exclusive resource, it is defined as blocked for that specific
resource. All the tasks which are blocked for the same resource are stored into a queue used
with a semaphore. A running task enters into a waiting state after execution of a wait primitive
on a locked semaphore, and waits in the same state for signal primitive execution by another
task.

After leaving the waiting state, a task goes to the ready state rather than going to a running
state to make CPU assignment to a higher-priority task possible by a scheduling algorithm. A
state transition diagram depicted in Figure represents the scenario described above.

scheduling

activation

activation

preemption

wait on busy
resource

signal free
resource

Figure 2.2: Task State Diagram Buttazzo| [2004]

2.6 Scheduling Policy

Scheduling policy is the set of rules that are deployed to manage when and how to pick a new
process to run. In the case of running a set of concurrent tasks on a single core, there is a
possibility of CPU time overlapping. Using a scheduling policy tasks are allocated to the CPU
core according to a predefined rule, e.g., priority of the task, or value of the task.

10

2.7 Schedulers

2.7 Schedulers

Scheduler is a functional entity of an operating system, where the scheduling policies are im-
plemented. The main intention of the scheduler is to assign a CPU to a task by evaluating
predefined scheduling algorithms. These specific operations of allocating CPU to a task are
known as dispatching.

Termination

Activation dispatching

B &
>

scheduling

preepmtion

Figure 2.3: Task queue in Scheduler |Buttazzo| [2004]

In the Figure a basic schematic structure of a scheduler is shown.

11

3. Terminology

3.1 Schedulability and Optimality of scheduling algorithm and Feasibil-
ity of tasksets

e Feasibility: Feasibility of a taskset with respect to a given system is defined by the existence
of some scheduling algorithm which is able to schedule possible all combinations of jobs,
originated by the taskset without any deadline miss.

e Optimality: Optimality of a scheduling algorithm with respect to the task model and to
the system is defined by the ability to schedule all of the feasible tasksets satisfying the
task model.

o Schedulability:For a assigned scheduling policy, if a task executes without missing deadline,

then that task is referred to as schedulable under the assigned scheduling algorithm.

3.2 Processor Demand Bound Function

The term processor demand bound function, denoted by h(t), is used extensively in multipro-
cessor scheduling. It is the maximum amount of task executions and completion that can be
released in a time interval [0,¢) [Davis and Burns, 2011].

h(t) = gmax <0, V _TDJ + 1) Ci. (3.1)

Where the term processor load corresponds to the maximum of h(t) separated by the portion
of the time interval [Davis and Burns, [2011].

load(r) = max <h(”) (3.2)

Yt t

A simple necessary condition for taskset feasibility can be found from the processor load
Baruah and Fisher| [2005]:

load(T) < m, (3.3)

Where, the number of processors is m.

3.3 Utilization Bound

The utilization bound U, of a real-time scheduling algorithm A is described as the smallest
value of the entire utilization U of the task set 7 which is only just schedulable according to
the scheduling algorithm A, beyond which meeting deadlines is not guaranteed by all the jobs
released by the tasks in 7 [Davis and Burns| 2011].

3.4 Resource Augmentation or Speedup Factor

This is another way of performance comparison between any scheduling algorithm A and an
optimal one. For A which is determined by the minimum factor by which the speed of all m
processors might need to be raised to schedule all the feasible tasksets with the algorithm A

13

3 Terminology

[Davis and Burns, |2011]. They also consider that using the scheduling algorithm A, the taskset
7 is just schedulable on a system of m processors with individual speed f(7). Then the speedup
factor f4 is [Davis and Burns| 2011]:

fa = max (f(7)). (3.4)

Ym,NT

Therefore, f4 > 1 indicates more efficient algorithm and f4 = 1 an optimal algorithm.

14

4. Classification of Scheduling Algorithms for
Multi-Core Systems

As we often picture a tree or graph by the word taxonomy, in Figure we tried to summarize
an overview of the categories of real-time scheduling techniques given in a technical report by

[Mohammadi and AXkI, 2005].

r

{ Uniprocessor

[Real-time Scheduling]7
k.
4L Multiprocessor Jﬁ

k. 3

[Partitioning I [Global]
—b[Hybrid }7
¥

r

r

[Static-priority

1 [Dynamic-priority l

v

v

v ¥ ¥ v
{Preemptiue I { Non-preemptive] { Plan based } { Best effort }

Figure 4.1: Categories of real-time scheduling algorithms ﬂMohammadi and Ak1|, |2005ﬂ

As whole Figure also includes uni-processor along with multi-processor scheduling tech-
niques, one can see the vastness of real-time scheduling research area. Our actual interest in
this thesis is the branch dealing with multiprocessor real-time scheduling algorithms.

15

4 Classification of Scheduling Algorithms for Multi-Core Systems

Real-time scheduling theorists have individualized at least three different types of multi-core
architectures, described in section dealing with the development of scheduling techniques.
While deploying scheduling techniques along with the task allocation feasibility assessment,
change of task priority is also considered.

Thus, multi-core scheduling tries to solve two problems [Davis and Burns| [2011]:

1. The task allocation problem: Solves on which processing core a task will be assigned and
executed. Allocation problem is subdivided into the following categories:

e No migration: Each of the tasks is assigned to on a fixed processor and no migration
is allowed.

e Task level migration: In this case, jobs of a task may take place on different processors;
nevertheless, a single job only executes on a single one.

e Job level migration: Here migration and execution of a single job is allowed on dif-
ferent processors, but, still, a job is not permitted to execute in parallel.

2. The priority problem: Solves the order of the job’s execution with respect to other jobs.
Priority problem is subdivided into the following categories:

o [ized task priority: A particular and fixed priority is applied to all of the jobs of each
task.

e Fized job priority: In this case, the jobs may be applied with different priorities;
however, each identical job has an identical static priority.

e Dynamic priority: Here, it is possible for a job to have different priorities at different
points of time.

Taking into consideration the permission to migrate, multi-core scheduling algorithms fall into
two general categories:

e Global Scheduling Algorithms: In global scheduling algorithms, all the ready tasks are
queued in one queue which is shared among all available processors, where the one sin-
gle queue is referred to as global queue. In a system with m processors, at every time
point m highest priority tasks from the global queue are selected for execution on the m
processors employing preemption and migration if necessary. For instance, in the global
version of EDF refereed to as G-EDF, the m active jobs with the earliest deadlines are
executed on m processors of the underlying platform at any time ¢ [Mohammadi and Akl
2005|[Ramamritham et al., [1990].

e Partitioned Scheduling Algorithms: In partitioned scheduling algorithms, all the tasks are
grouped or partitioned as a set so that all the tasks in a set are assigned to the same
processor. However, tasks in the partitioned set are not allowed to migrate to another
processor that allows many uni-core scheduling algorithms to solve multi-core scheduling
problems. For example, in partitioned version of EDF, the EDF algorithm is executed on
each processor independently [Mohammadi and Akl, 2005]|[Ramamritham et al., [1990].

There is another category of multi-core scheduling algorithms, which is between partitioned

and global scheduling policies, known as Hybrid scheduling algorithms. Among those the follow-
ings are worth mentioning:

16

Semi-partitioned scheduling algorithms: In semi-partitioned scheduling algorithms the core
idea is the improvement of processor utilization bound of partitioned scheduling algorithms
by globally scheduling the tasks that cannot be assigned to only one processor due to the
limitations of the bin packing heuristics.

Restricted migration scheduling algorithms: In these types of algorithms, each job is as-
signed to only one processor while all the tasks can migrate between all the processors.
Here, instead of task level partitioning the job level partitioning is applied.

Hierarchical scheduling algorithms: In the hierarchical scheduling algorithms, depending
on a particular algorithm, the tasks are partitioned into super tasks and component tasks.
The super tasks are scheduled with multi-core scheduling algorithms while the component
tasks of each server are scheduled using uni-core scheduling algorithms[Ramamritham
et al., [1990].

Preemptive: At any time, tasks are allowed for preemption by another task with higher
priority.

Nonpreemptive: When a task is already executing, can not be preempted by other task,
even with higher priority one.

Cooperative: Preemption is only possible within execution, at defined scheduling points.

17

5. Related Work on Real-time Scheduling Tech-
niques

5.1 Partitioned Approach

In partition scheduling, the scheduler assigns tasks to available processors via partitioning. Thus,
when a task is assigned to a processor, it is always scheduled particularly on that processor.
As a result, the whole multi-core system turns into a set of uni-core system; where uni-core
scheduling algorithm executes on each core, to execute assigned task to the processing core. For
instance, a uni-core scheduling algorithm, earliest deadline first is used in multi-core scheduling
algorithm partitioned EDF (P-EDF).

Advantages of partitioned scheduling compared to global scheduling are the following:

e In the case of overrun of a task’s worst-execution time budget, it can only affect other
tasks on the same processing core.

e No migration cost because of the execution of a task on a single processing core.
e In partitioned approach, a separate run-queue per processing core is used.

Main disadvantage of partitioned approach to multi-core scheduling is the analogous behavior
of the allocation problem to the bin packing problem, which is recognized as NP-Hard [Garey
and Johnson, [1979]. Besides, this approach is not work-conserving, i.e., a core can be in the idle
state while there are still tasks to be scheduled on other cores that are possibly missing their
deadlines.

From an implementation perspective, the influential advantage of partitioned approach on
multi-core scheduling is: once the allocation of tasks to processing cores has been done, all the
techniques of real-time scheduling and analysis for single-core systems can be applied [Davis
and Burns| [2011]. Therefore, uni-core optimality results influence the research on partitioned
multi-core scheduling.

Liu and Layland [1973] proved the optimality of RM priority assignment policy, for syn-
chronous sporadic or periodic tasksets with implicit deadlines taking preemptive uni-core schedul-
ing with fixed-task priorities under consideration. Under the same consideration [Leung and
Whitehead [1982] proved that DM priority assignment is optimal for tasksets consists of con-
strained deadlines. On the other hand, taking preemptive uni-core fixed-job priorities into view,
Dertouzos [1974] showed that EDF (Earliest deadline first) is the optimal scheduling policy for
sporadic tasksets where tasksets are independent of deadline constraints.

5.1.1 Tasksets consist of Implicit Deadlines

The relevant research during 1990s was directed to determining the utilization bound as a func-
tion of Upeq, because of difficulties of allocating large utilization tasks by partitioned approach.
Earlier and during that time, research on partitioned multi-core scheduling took place by [Dhall
and Liu [1978],0h et al. [1993], (Oh and Son| [1995] and Burchard et al. [1995] using EDF or
RM priority assignment on each processing core. They also combined the following bin packing
heuristics:

e First Fit (FF),

19

5 Related Work on Real-time Scheduling Techniques

e Best Fit (BF),
e Next Fit (NF),
e Worst Fit (WF)

The maximum worst-case utilization bound of any partitioned algorithm for tasksets having
implicit deadlines is defined as [Andersson et al., 2001]:

Uopr = (m + 1)/2. (5.1)

Utilization bounds for RMST algorithm were presented by Burchard et al.| [1995]. This al-
gorithm is applicable for tasks with utilization < 1/2 and tries to assign tasks on the same
processor, for tasks having harmonics close to each other.

Urmst = (m — 2)(1 — tmayz) + 1 —In2. (5.2)

Utilization bounds for RMGT algorithm were also provided by [Burchard et al. [1995]. This
algorithm divides the tasks into two groups calculating whether their utilizations are above or
below 1/3.

1 5 1
Urmar = B (m -3 In2+ 3) ~ 0.5(m — 1.42). (5.3)

Utilization bounds of the RM-FFDU algorithm were presented by |Oh and Bakker| [199§]:

UrMm—FFDU = m(21/2 —1) = 0.41m. (5.4)

Utilization bounds of partitioned algorithms with fixed-task priority were also presented by
Oh and Bakker| [1998]:

Uopr(rrp) < (m+1)/(1+ 2/ D), (5.5)

Andersson and Jonsson [2003] presented the utilization bound of the RBOUND-MP-NFR
algorithm which is:

URBOUND—-MP—-NFR = m/2. (5.6)

Any algorithm with reasonable allocation the lowest utilization and highest utilization bounds
were described by [Lopez et al. [2000], employing EDF:

Lra=m—(m — 1)umaz- (5.7)

Hpa = (11/tmaz] m +1)

([ttmae] T 1) (5:8)

20

5.2 Global Approach

(Assuming n > m/(|1/Umaz])-)

Here, reasonable allocation represents the one that only fails to allocate a task when there
is no processing core on which the task will fit. It is observable that u,,,, = 1, the highest
limit given by becomes the same as Thus, they are also “optimal” in a limited sense,
and utilization bounds of EDF-FF and EDF-BF are as large as any other optimal partitioning
algorithm. Moreover, EDF-FF and RMST results reasonably high utilization bounds |[Davis and
Burns|, 2011].

5.1.2 Tasksets consist of Constrained and Arbitrary Deadlines

Based on task ordering in increasing order EDF-FFID algorithm was developed by |Baruah and
Fisher| [2005,20062,2007]. Their schedulability was defined by a linear upper bound for processor
demand bound function by conducting a sufficient test. They also presented that EDF-FFID is
application for scheduling any sporadic taskset with constrained deadlines, that provides:

2load(T) — Omax
> . .
m > < 6) (5.9)

And, for arbitrary deadlines:

lOCLd(T) — 5mag; Usum — Umazx

o 1 — dmaz 1 — Umaz

(5.10)

5.2 Global Approach

In this section, we will point out the main features and fundamental research outcomes in
global multi-core scheduling techniques. As we have previously discussed, in multi-core global
scheduling tasks are allowed to migrate from one core to another core if necessary.

Compared to partitioned multi-core scheduling, global scheduling has advantages stated below:

e Lower number of context switching or preemption, as the scheduler only has to preempt
a task when there are no idle processors left |[Andersson and Jonsson| 2000a].

e When the actual execution time of a task is less than its worst-case execution time, spare
capacity is created which can be utilized by all other tasks.

e This scheduling algorithm is more suitable for open systems, where load balancing/ task
allocation is not necessary with the change of taskset.

Disadvantages: The main disadvantage of global scheduling is that it uses a global single
queue for ready tasks. As the queue length is long, queue access time gets longer accordingly.

In a seminal work by Dhall and Liu [197§|, for global scheduling of periodic tasksets with
implicit deadlines on m processors, they showed that the utilization bound is 1 + € for global
EDF, where € is considered arbitrarily small. As a result of this Dhall effect, throughout almost
one decade in 1980s and 1990s, a general view of inferiority of global scheduling compared
to partitioned scheduling was accepted, and thus, the majority of research was focused on
partitioned approaches.

21

5 Related Work on Real-time Scheduling Techniques

5.2.1 Global Scheduling with Fixed Job Priority

Tasksets consist of Implicit Deadlines:Utilization bounds for periodic tasksets were consid-
ered by |/Andersson et al.| [2001]. They presented the maximum utilization bound for any global
fixed job priority algorithm |[Andersson et al. 2001], which is:

Uopr = (m+1)/2 (5.11)

In EDF-USJ[s] algorithm proposed by |Srinivasan and Baruah [2002] tasks with utilization
greater than the threshold ¢ have the highest priority, where ties are broken arbitrarily. Resultant
utilization bound is independent of ,4,. With the threshold value m(2m—1) gives the following
result [Davis and Burns| [2011]:

Uppr—usim/(2m—1)] = m*/(2m — 1). (5.12)

Another derivation of utilization bound for global EDF with periodic tasksets, was given by
Goossens et al.| [2003]:

Ugpr =m/(m — 1)umaq. (5.13)

Baker| [2005] presented the following maximum possible utilization bound for global EDF
algorithms with the threshold value to 1/2 in EDF-US[¢] :

Uepr-usp 2 = (m+1)/2. (5.14)

A variant of EDF(x) named EDF(kp,) was proposed by Baker| [2005] where Ky is the
minimum value of . Also the utilization bound of EDF (k) was presented Baker| [2005]:

Tasksets consist of Constrained and Arbitrary Deadlines: The utilization bound given
by |Goossens et al| [2003] for sporadic tasksets with constrained deadlines was extended by
Bertogna et al.| [2005] and extended for the arbitrary deadline case by Baker and Baruah| [2007]
providing the sufficient schedulability test on the basis of task density stated below:

dsum <m— (m —1)dmaz (5.16)

The utilization separation approach of EDF-US was adopted by [Bertognal [2007] to develop
EDF-US[¢] algorithm for sporadic tasksets with constrained and arbitrary deadlines. Here, a
task with greater density than the threshold ¢ gets the highest priority. Schedulability according
to EDF-DS[1/2] for sporadic tasksets was provided by [Bertognal [2007] :

Osum < (m+1)/2 (5.17)

5.2.2 Global Fixed Task Priority Scheduling

Tasksets consist of Implicit Deadlines: As we have discussed before, Dhall and Liu| [1978]
considered global scheduling for periodic tasksets with implicit deadlines on m processing cores.
They presented the utilization bound for global RM scheduling of 1 4 €, where € is arbitrarily

22

5.2 Global Approach

small [Davis and Burns, [2011]. Which is known as the Dhall effect.

TkC priority assignment policy was developed by |Andersson and Jonsson [2000a] to avoid the
Dhall effect. Here, priority is assigned based on the period of a task 7; minus « times its WECT
C;, given below |Davis and Burns, 2011]:

- m—14+v5m?2 —6m+ 1

& 2m

(5.18)

where £ is computed based on the number of processing cores, which is a real value. |[Andersson
and Jonsson| [2000a] have done an empirical investigation to show the effectiveness of TkC as
priority assignment policy for periodic tasksets consist of implicit deadlines.

For any periodic tasksets having implicit deadlines, Andersson et al. [2001] showed that those
are employing global RM scheduling and also provided the utilization bound

Umaz < M/ (3m — 2) and vgym < m?/(3m — 1). (5.19)
Baruah and Goossens [2003] also presented this result, but in a another form
Umaz < 1/3 and wgym < m/3. (5.20)

RM-US[¢] was proposed by |Andersson et al.| [2001], where tasks with utilization greater than
the threshold ¢ get the highest priority, and for the rest the priority is assigned in RM order.
Utilization bound for RM-US[m/(3m — 2)] was also shown by |Andersson et al.| [2001], which is

Urm—us[3/(3m—2) = m*/(3m — 1). (5.21)

For periodic tasksets with implicit deadlines, Andersson and Jonsson| [2003] presented the
maximum utilization bound and the WCET is

Uopr < (V2 —1)m ~ 0.41m. (5.22)

And the priorities are defined as a scale-invariant function of task periods [Davis and Burns,
2011]. This bound was tightened by [Bertogna et al.| [2006] for global RM scheduling to

m
Umax S 5(1 - umax) + Umazx- (523)
Tasksets with constrained and arbitrary deadlines: A response time upper bound R¥?,

was presented by |[Andersson and Jonsson| [2000b| for sporadic tasksets with constrained deadline
scheduling using fixed priority. Though it was pessimistic, it was simple.

. 1 Rub
Rkb%ck+5zqzﬂci+ci>. (5.24)

i<k

which effectively assumes that the time for executing carried-in and carried-out jobs in an interval
is equal to the entire WCET of the task.

For global DM scheduling of sporadic tasksets with constrained deadlines the following density
bound was proven by [Bertogna et al.| [2006]

23

5 Related Work on Real-time Scheduling Techniques

(5sum S

SE

(1 = Smaz) + Omaz- (5.25)

Here, 0,4 represents the maximum density of any task in the taskset and sy, represents
taskset density (sum of task densities).

For DM-DSJ[1/3] the following sufficient test was proven by |Bertogna et al.| [2006] :

1
Ssum < % (5.26)

Assuming intratask parallelism, a sufficient test for global DM scheduling of sporadic tasksets
with arbitrary deadlines was derived by Baruah and Fisher| [2006b]. For each task 7; this
sufficient test is as follows:

1
load(T, k) <
(k) L+ 2(maxjepp) (Dj/ Dk))

(m — (m —1)(Cx/Dy)). (5.27)

Here, load(T, k) represents the processor load, which is higher than or equal to k because of all
tasks’ priority.

An alternative sufficient test was derived by Baruah [2007] for global DM scheduling of spo-
radic tasksets with constrained deadlines which was based on the similar approach as [Baruah
and Fisher| [2006b]. For each task 7; this sufficient test is as follows:

load(t, k) < —(m — (m —1)Cy /Dy, — Cx(k)/Dy,). (5.28)

DN =

Here, Cx.(k) is the total of the m largest worst-case execution times of the tasks with the
priority of k or higher.

5.2.3 Global Dynamic Priority Scheduling

There are a number of global dynamic priority scheduling algorithms known as optimal for
periodic tasksets with implicit deadlines, such as Pfair and variants of Pfair PD, PD?, ERfair,
SA and LLREF. Though, [Fisher| [2007] proved the non-existence of optimal online algorithm
for preemptive scheduling of sporadic tasksets on multiprocessor. Research shows that global
dynamic priority algorithms monopolize over all the other classes of algorithms. Nonetheless,
their practical implementation can be ambiguous due to significantly high overhead caused by
frequent migration and preemption |[Davis and Burns| 2011].

The Proportionate and Early-Release Fairness Algorithm:

The idea of fairness was first introduced by Baruah et al. [1996]. As the name implies, the
fundamental idea is to distribute the total computational capacity of the platform among the
tasks. Therefore, at any time point ¢, each task 7; is executed on the processing platform for a
time proportional to its utilization which goes in the direction of fluid scheduling defined below:

Theorem 5.2.1 (Fluid Scheduling by Baruah et al. [1996]). A schedule is said to be fluid if
and only if at any time t > 0, the active job (if any) of every task 7; arrived at time a;(t) has
been executed for exactly U; x (t — a;(t)) time units.

24

5.2 Global Approach

As the systems in the real world are based on discrete time or are clock pulse based, the tasks
are always measured in an integer number of system time units. Therefore, the task execution
might deviate from fluid schedule throughout the system lifespan. The measurement of this
deviation from the fluid schedule is denoted as allocation error or lag of a task, which is defined
by Baruah et al. [1996] as follows:

Definition 1 (Allocation Error (lag) by Baruah et al|[|1996]). The lag of a task 7; at time t
is the difference between the amount of work exec;(a;(t),t) executed by the active job of T; until
time t in the actual schedule, and the amount of work that it would have executed in the fluid
schedule by the same instant t. That is,

lag; = Ui x (t —a;i(t)) — execi(a;(t),t)

with a;(t) being the arrival time of the active job of t.

In Fair scheduling, this lag is constrained to bound the deviation from fluid scheduling. In
Proportionate Fair scheduler, this allocation error of those tasks is always bounded by smaller
than one system time units [Baruah et al., [1996].

Definition 2 (Proportionate Fair schedule by Baruah et al|[1996]). A schedule is said to
be proportionate fair (or PFair) if and only if,

V1€ T,Vt >0 |lagi(t)| <1

On the contrary, for Early-Release Fair (ERFair) scheduler, tasks are allowed to be ahead
more than one time unit, but never be late by more than one time unit. Definition by |[Anderson
and Srinivasan| [2001] is the following:

Definition 3 (FEarly-Release fair schedule by Anderson and Srinivasan| [2001]). A schedule
is said to be Early-Release fair (or PFair) if and only if,

V1 € T,Vt >0 : lagi(t) < 1

In the rest of this report, the following terms will be used to determine the state of a task at
time t.

o Task is behind at time ¢: if actual execution time for the task is less than in the corre-
sponding fluid schedule until time ¢. Another representation is: lag;(t) > 0.

e Task is punctual at time t: if actual execution time for the task is exactly the same as in
the corresponding fluid schedule until time ¢. Another representation is: lag;(t) = 0.

e Task is ahead at time t: if actual execution time for the task is more than in the corre-
sponding fluid schedule until time ¢. Another representation is: lag;(t) < 0.

The PF Scheduling algorithm:

The PF algorithm is the first optimal schedule generation algorithm presented by |Baruah et al.
[1996]. It is designed for periodic tasksets with implicit deadlines. In the early development
stage, the scheduling decision taken by PF was based on characteristic string. Since then this
procedure was refined by introducing the notion of pseudo-deadline by [Anderson and Srinivasan
[1999], we will continue with the refined version.

25

5 Related Work on Real-time Scheduling Techniques

In proportional fair scheduling, a task 7; is divided into an infinite sequence of subtasks which
are basically the time slots. Each of the subtasks has an execution time of one unit and j; ;
represents the jth subtask of a task 7; where j < 1 and a job J;, consists of C; consecutive
subtasks 7 ;.

Each subtask 7; ; of a job J; ;, must execute in an associated window to keep the lag of a task
7; smaller than 1 and greater than -1. The span of this window is from pseudo-release pr(; j) to
pseudo-deadline pd(; j). For periodic tasks released at time 0 |Anderson and Srinivasan| [1999]
defined pr(7; ;) and pd(r; ;) as follows:

def |J—1
pr(tig) = | =

and)
def |]

d(r;) = | =—1|.

p (TJ) [Uz—‘

Srinivasan and Anderson| [2002] presented a more simplified version of the definition of a
pseudo-deadline of a subtask 7; ; as follows:

pd(7i ;) = pr(rij) + Lﬂ B VI;;J '

here the pt* subtask has to execute in a job Jiq given by following equation:

d p
pd(Ti,j) ;f Qi q+ ’VU-‘ . (5.29)
i

where a; 4 represents the arrival time of job J;,. As there are C; consecutive subtasks in any
job J; 4, the equation states that g = [é—‘ and p=j—(¢g—1) xC;.

For each time t, PF determines which subtasks are eligible for scheduling. At any time ¢,
a subtask 7;; of task 7 is eligible under PF scheduling algorithm if it respects the following
definition:

Theorem 5.2.2. A subtask 7;; of task 7 is eligible to be scheduled at time t if, the subtask
Tij—1 has already been executed prior to t and pr(7; ;) < pd(7;;),i.e.,t lies within the execution
window of T; ;.

An active subtask with earlier pseudo-deadlines gets the highest priority in PF algorithm. If
any two subtasks have the same pseudo-deadline, an additional successor bit is used to handle
this situation. A successor bit of a subtask 7; ; is denoted by b(7; ;), which equals to 1 if and
only if 7; ;’s window overlaps 7; j4+1’s window, otherwise b(7; ;) is zero. The following Equation
was proven based on the definitions of pseudo-deadline and pseudo-release:

ot [Tl e

Prioritization Rule 5.2.1. Hence, with PF, a subtask 7; ; can achieve higher priority than a
subtask Ty, (where T; ; = Ty) iff:

1. pd(7j) < pd(Tp,) or

2. pd(7; ;) = pd(T,1) N b(Ti ;) > b(i) or

26

5.2 Global Approach

3. pd(7ij) = pd(Trg) ANb(Tiz) = b(Thy) = LA Tij41 = Thys

Noticeable is that the third recursion of the prioritization rules always ends. Also, it
was proven by |Anderson and Srinivasan [1999] that b(7; ;) = 0 at least at the deadline of a job.

The PD? scheduling algorithm:

Due to the third recursive prioritization rule the algorithm PF performs very poorly.
This pitfall was detected by Baruah et al|[1995], and as the solution they proposed a new PFair
scheduling algorithm PD by replacing the third tie breaking rule by additional three tie breaking
rules.

'Anderson and Srinivasan| [1999] improved the PD scheduling algorithm. In their proposal,
they proved the three additional tie breaking rules can be replaced by one value which is called
group deadline.

An extension of Pfair and a variant of PD were extended by Anderson and Srinivasan| [2000]
and named EPDF (Earliest Pseudo Deadline First). They showed the optimality of this algo-
rithm for sporadic tasksets with implicit deadlines assigned to two processors. But this algorithm
is optimal only for two processors and not more than that.

Yet another variant of PFair named PD? was also proposed by |Andersson et al. [2001], here
efficiency of Pfair was improved by separating tasks into groups of heavy(u; < 0.5) and light.

Thar o .
t 6D{(7;) fie >
Tio
Tia) i
Tiz R
T |
(s)
T,
P2 Pt)
Tia
priti) pd(T;)
AU N N N N N N N N N N N N N N AN
] 1 2 3 4 5 5] 7 g 9 10 11 12 13 14 15 16

Time

Figure 5.1: A periodic task 7; containing 11 subtasks with U; = 1% representing the group

deadline of subtask 7; ; [Nelissen et al., 2014]

To make further details more understandable the definition of a group deadline is given below:

Definition 4 (Group Deadline). A group deadline of any subtask 7; ; belonging to a task ;

such that U; < 0.5 (i.e., a light task), is GD(T; ;) déf).

The group deadline GD(7; ;) of a subtask 7;; belonging to a heavy task 7;(i.e., Uy > 0.5), is
the earliest time t, where t > pd(7;;), such that either (t = pd(7;r) A b(1ix) = 0) or (t =
pd(Tik) + 1A (pd(7i k1) — pd(Tik)) > 2) for some subtask 7; j of task ; such that k > j.

27

5 Related Work on Real-time Scheduling Techniques

Therefore, in case of a heavy task, GD(7; ;) is the earliest time instant greater than or equal
to pd(7; ;) that finishes a succession of pseudo-deadlines separated by only one time unit or were
the task 7; becomes punctual.

If a subtask 7; ; is scheduled in the last slot of its window, all the next subtasks of the sequence
are forced to be scheduled in the last slot of their window. For an instance, subtask 7; 3 to 7; 5 in
Figure If subtask 7; 3 is scheduled at the fourth time unit then subtask 7; 4 and 7; 5 have to
be scheduled at the 5t and 6" time units respectively. By the definition |4 the group deadline
of 7;3 in Figure is thereby GD(7;3) = 8.

Employing the group deadline concept the prioritization rules of PD? are as follows:

Prioritization Rule 5.2.2. A subtask 7; ; has a higher priority than a subtask 13, under PD?
(denoted Tij ™ Tk,l) Zﬁ

1. pd(7j) < pd(Tk,) or
2. pd(7; ;) = pd(T,1) N b(Ti ;) > b(7i) or
3. pd(’i‘m') = pd(’l’kl) AN b(’]’i,j) = b(Tk’l> =1A GD(TZ'J') > GD(T]CJ)

Again, if neither 7; ; > 7;; nor 7,; > 7;; holds, then ties can be broken arbitrarily by the
scheduler.

While implementing Pfair on symmetric multiprocessor, [Holman and Anderson| [2005] noticed
that, the synchronized rescheduling of all processing cores each time quanta produced significant
bus contention because of data reloading into cache. Addressing this problem, Holman and
Anderson| [2005] proposed another variant of Pfair with staggered time quanta, which reduces
the bus contention and also the schedulability.

The ERfair scheduling algorithm:

In ERFair, a variant of Pfair scheduling class proposed by |Anderson and Srinivasan| [2000],
the constraint that lag must be bigger than -1 was omitted. Also,

lag;(t) < 1,Vt (5.31)

instead of
llag;(t)| < 1,Vt.

Through this, ERFair allows quanta of a job to execute before the execution completion in-
formation is provided by the previous Pfair scheduling window. This turns ERFair into a
work-conserving algorithm, while Pfair is not.

The BF scheduling algorithm:

A concept of Boundary Fair (BF) was introduced by |Zhu et al.| [2003]. [Zhu et al. [2003] found
that tasks with implicit deadlines only miss their deadlines at times that are their period bound-
aries. The Boundary Fair algorithm is analogous to Pfair except it only takes the scheduling

decisions at the period boundaries. This concept makes BF less fair than Pfair.
If we denote the boundaries found in the scheudle by B def bo, b1, ba, .. with by < bgy1 and

bo = 0, then a boundary fair schedule is defined as follows:

Definition 5 (Boundary Fair Schedule by Zhu et al|[2003]). A schedule is said to be boundary
fair if and only if, at any boundary by € B, it holds for every t; € T that lag;(bx) < 1.

28

5.2 Global Approach

Here, by, represents the k" time-instance at which point the scheduler is invoked. And bound-
aries at k' time-slice are b and by, (also denoted by T'S*).

As a boundary fair scheduler is invoked at every boundary by and computes the scheduling
decisions for the total time slice from by to the next boundary by, 1, the invocation of boundary
fair algorithm can be splited into the following steps:

1. Determining the next boundary b1, and computation of mandatory execution time units
and optional execution times. [Zhu et al., 2003] showed that the mandatory time unit
denoted mand;(by, br11) can be computed using the following equation:

de
mand;(bg, bg+1) lef max {0, [lag;(br + (bx+1 — bx) x U;) |} (5.32)

2. If all the available time units have not been allotted in step 1, then distribute remaining
time units as optional time units. For an m processor system, the total number of available
time units in the time interval [bg, bg41) is given by [Zhu et al., [2003]:

m X (bg41 — by).

Thus, the number of remaining time units RU (by, by+1) is as follows :

RU (by, bpy1) = m X (bpsr — b) — > mand;(be, bp41) (5.33)

T ET

3. Generation of a schedule, which avoids intra-job parallelism within the interval [by, bg+1),
is based on the number of mandatory and optional time unit allotted to each task [Zhu
et al., 2003].

It is worth noting that the algorithms PFair and ERFair are also boundary fair, but the
opposite is not necessarily true.

In Figure task 7y requires 4 preemptions using BFair instead of 11 using PFair. Which
shows that it is possible to deduct the number of preemptions and migrations of corresponding
tasks by only regrouping all the time units of the same task within a time slice T'S*,

Using empirical evaluation Zhu et al. [2003] showed that BF is also an optimal algorithm for
periodic tasksets with implicit deadlines. And also the number of scheduling points is 25-50%
of the number for a PD algorithm.

Another boundary fair scheduling algorithm PL was proposed by Kim and Cho [2011]. It was
designed for a set of synchronous periodic tasks. PL stands for pseudo laxity. The PL algorithm
uses prioritization rules of PD? to distribute the optimal time units and rather than utilizing
McNaughton’s wrap around algorithm, utilizes LLF (Least Laxity First) algorithm to generate
the schedule within each time slices. The PL algorithm was also proven optimal for synchronous
periodic tasks with implicit deadlines by |Kim and Chol [2011].

The BF? scheduling algorithm:

The scheduling algorithm BF? is proposed by [Nelissen et al.[[2014]. It is based on BFair schedul-
ing algorithm. But, there is a significant difference between BF algorithm proposed by |Zhu et al.

29

5 Related Work on Real-time Scheduling Techniques

PFair schedule

0 4 8 12 16 20 24 28
m,|0|2|0|0|2|0|0|1|0|0O|1|0|0|1|0O|2|1|0|Of1|0|j0O|1|0|0O|1|0|O|O|1
m|lj1lj2|1|1j2|1|1|2]|1 2/1|2|1|2|2|1|0)2|1|2|2|1|2|2]|1|1]|2]|2

by ¢——TS° — b, TS! b, TS? b, TS3

Figure 5.2: Pfair and BFair schedules of three tasks 7y, 7 and 7 , where number of processors
is m = 2. The periods are Ty = 15,7} = 10,75 = 30, and the worst-case execution
times are Cy = 10,1 = 7,Cy = 19, |Nelissen et al., [2014]

[2003] and BF2. The algorithm BF is optimal only for periodic tasks while achieving full system
utilization, but cannot handle sporadic tasks because of their inherent irregular and unpre-
dictable job release pattern. By the same token, BF? is an optimal algorithm for sporadic
tasks. [Nelissen et al., [2014] also showed that their proposed algorithm BF? outperforms the
state-of-the-art optimal scheduler PD? by benefiting from less scheduling overhead.

The PD?* scheduling algorithm:

Previously we described that PD? defines the group deadline GD(7; ;) as light tasks (i.e., tasks
with U; < 0.5) and heavy tasks (i.e., tasks with U; > 0.5). In particular, the group deadline is
defined in PD?* not in the same way as it is in PD?. In PD?* for light tasks GD(7; ;) is always 0
and for heavy tasks defined by the earliest time instant after or at the pseudo-deadline pd(7; ;)
following a succession of pseudo-deadlines separated by only one time unit |[Nelissen et al., [2014].
Therefore, group deadlines for all the tasks are identical. This new algorithm PD?* is proposed
by Nelissen et al.| [2014]. It is a slight variation of PD?.

The generalized group deadline is denoted by GD*(7; ;) and defined as follows [Nelissen et al.,
2014]: The generalized group deadline GD*(7; ;) of any subtask 7; ; of a task 7;, is the earliest
time ¢, where ¢ > pd(7;;), such that either (t = pd(r;x) A br,, = 0) or (t = pd(7;x) + 1 A
(pd(7; g+1) — pd(Tix)) > 2) for a subtask 7; 5 of 7; such that £ > j [Nelissen et al. 2014].

And the prioritization rules are given by the same authors are as follows:

Prioritization Rule 5.2.3. A subtask 7; ; has a higher priority than a subtask T, ; under PD*

iff:
1. pd(Tm‘) < Pd(Tk,l)
2. pd(7i;) = pd(Tra) Ab(Tiz) > b(Th,)

3. pd(7;5) = pd(T1) Nb(Ti5) = b(mi) = 1 ANGD*(735) > GD*(71,1)

30

5.3 Summary

Though this proposed algorithm is a modified version of PD?, the authors [Nelissen et al.,
2014] proved the optimality of PD?* for sporadic task sets as well as intra-sporadic and dynamic
tasksets under a PFair or ERFair policy.

The LLREF scheduling algorithm:

LLREF is introduced by |Cho et al.|[2006]. It is based on fluid scheduling model employing L-T
plane abstraction, it is also an optimal algorithm for periodic tasksets with implicit deadlines.
In LLREF, scheduling timeline is separated into sections by normal scheduling events. At the
beginning of each start section, selection of m task is done for execution based on largest local
remaining execution time first (LLREF) [Davis and Burns, 2011]. The local remaining execution
time decreases during task execution in the section.

The LLREF approach was extended by Funaoka et al.| [2008] as a work-conserving algorithm
by distributing the unused processing time among the tasks and combining the processing time
after completion of a task earlier than expected. Funaoka et al. [2008] showed that with this
approach the resultant preemption is significantly less than in the case of LLREF when taskset
utilization is below 100%.

Another extension of LLREF was done by [Funk| [2010] and is known as LRE-TL. Funk [2010]
noticed that a task selection is not necessary for the execution based on the largest local remain-
ing execution time within each execution. Funk|[2010] also represented that LRE-TL algorithm
could be applicable to sporadic tasksets and also proved the optimality with utilization bound
of 100% for sporadic tasksets with implicit deadlines [Davis and Burns, 2011].

The EDZL scheduling algorithm:

EDZL stands for Earliest Deadline until Zero Laxity. It was introduced by |Lee [1994]. With
this algorithm [Lee [1994] showed that it dominates global EDF scheduling. |Lee| [1994] also
presented that for two processing cores EDZL is suboptimal. Here the meaning of suboptimal
is defined by the notion that EDZL can “schedule any feasible set of ready tasks” [Davis and
Burns, [2011].

A variant of EDZL, introduced by Kato and Yamasaki| [2008] is Earliest Deadline until Critical
Laxity. This algorithm increases the job priority based on critical laxity at release time or
completion time of a job. This technique reduces the minimum number of context switches to
two per job which is achieved by slightly inferior schedulability compared to EDZL [Davis and
Burns, [2011].

5.3 Summary

A performance measurement of partitioned, clustered, and global scheduling approaches was
conducted by Brandenburg et al.| [2008] using EDF and Pfair algorithms on LITMUS?? test-bed
on the Sun UltraSPRAC Niagra multi-core platform with 32 logical processors (four hardware
threads running on each of eight CPUs). It was observed in their experiment that in the
context of overhead, staggered Pfair performed much better that pure Pfair, in other words, pure
Pfair performed very poorly. Another poor performance was found for Global EDF scheduling
algorithm due to the overhead caused by manipulation of a lengthy global queue accessible to
all processors. For hard real-time tasksets, Partitioned EDF works best except when the tasks
had high individual utilization. In contrast to that, staggered Pfair was the best.

Another performance measurement experiment was conducted by Nelissen et al. [2014]. They
explored fair scheduling approaches using pure Pfair, i.e., PD?, partially Pfair BF? algorithms

31

5 Related Work on Real-time Scheduling Techniques

on Linux kernel version 2.6.34 on the multi-core platform of Lenovo ThinkStation having two
Xeon E5405 Intel chips, where each chip has four cores of 2 GHz. Though, their machine was
composed of eight identical cores, only six of them were used to run the real-time tasks and the
rest of the CPUs were utilized for debugging and monitoring purposes. BF? was implemented
using work conserving technique and PD? was implemented in its early-release version. It was
the best performing implementation of PD? according to Anderson and Srinivasan| [2000]. It is
worth mentioning that the ERfair version of PD? is also work conserving. It was observed in
their experiment that for BF? the number of preemptions, migrations, and scheduling points
barely depends on the system time units when these values increase linearly with time resolution
of the system running PD?. Also confirming the same conclusion of Brandenburg et al.| [2008],
they showed that in their experiment BF? performed better than PD? in terms of overhead. In
their report, they also mentioned that in terms of preemption and migration the results of PD?*
would be similar to PD2. On the other hand, its scheduling overhead would be worse [Nelissen
et al., 2014].

In this thesis work, performance measurement is done using PD?* proposed by Nelissen et al.
[2014] as a new slight variation of PD? already described in this chapter.

32

6. Related Work on Real-time Scheduling Test-
beds

A drastic expansion of interest in real-time task scheduling for multi-core systems inevitably led
to increased interest in multi-core architectures. In recent time, a significant amount of efforts
has been devoted to this field by the academic community, focusing extensively on theoretical
issues [Dellinger et al., |2012].

For analyzing temporal constraints of tasks in a real-time application/system a number of tools
have been developed which include graphical editors and frameworks providing classical real-time
scheduling/feasibility algorithms/tests, both in commercial and free distribution, e.g. STORM,
Harmless (Hardware Architecture Modeling Language for Embedded Software Simulation) and
YARTISS based on Java for comparing user-customized algorithms. The latter can also simulate
tasksets considering energy consumption as a scheduling parameter in the same manner as Worst
Case Execution Time (WCET). Another tool Cheddar is based on Ada, it includes a graphical
editor made using GtkAda. Cheddar is compatible with Solaris, Linux, and win32 systems and
GNAT/GtkAda supported platforms. It also supports AADL, STOOD, TOPCASED plug-ins.

Though research of algorithms is fundamental for the advances in multiprocessor real-time
scheduling, in particular on platforms with a large number of cores, the effects of system overhead
on scalability of existing schedulers are not explicit [Dellinger et al., 2012]. In other words, a
simulation test-bed has to be real-time by itself, in the context of both logical and first of all
physical functionality.

Also worth mentioning is the development of an optimal multiprocessor Real-Time Operating
System (RTOS), while test-bed specific trade-offs of computational efficiency of the processing
architecture should also be evaluated. That includes the architectures for general purpose micro-
processors and powerful DSP kernels up to optimally tailored Application Specific Instruction
set Processors (ASIPs).

In general, task scheduling is implemented in the operating system kernel. Therefore, a
variety of kernel/kernel-level components have been developed as testing platforms of real-time
scheduling on the Linux kernel as this approach has a few definite advantages such as the
availability of libraries, software development tools and software packages for a wide variety of
purposes.

For enabling implementation for small systems, POSIX1.3 is defined as RT-POSIX|Buttazzo),
2004] [iee, 2004][MARTE, |2011].

1. PSE51: Minimum Real-time System Profile

2. PSE52: Real-time Controller Profile

3. PSE53: Dedicated Real-time System Profile

4. PSE54: Multi-purpose Real-Time System Profile

The interest of using Linux as underlying operating system for embedded applications has also
been actively pursued by the industry. This selection also provides the ability of hosting both
real-time and best-effort tasks on the same CPU [Betz et al., 2009]. Moreover, some real-time
extensions of Linux provided competitive results against commercial ones[Barbalace et al., 2008]
[RTAL [2014][Xenomai, 2014]. Therefore, we will avoid detailed discussions about commercial
real-time systems with simulation features such as VxWORKS, OSE, ONX NEUTRIO.

33

6 Related Work on Real-time Scheduling Test-beds

6.1 Linux-kernel

Kernel is a program which constitutes the core of the operating system, acquiring the complete
control over the operating system. A well known kernel for a Unix-like operating system is Linux
kernel released under GNU GPL2 license. Linux kernels can be categorized considering their
architecture.

e Monolithic kernel: A very large number of Linux variants use the monolithic kernel. Com-
pared to others it is large, and each of the kernel layers is unified with the whole kernel
program. In support of the current process, it runs in Kernel Mode [Bovet and Cesati,
2001]. In a monolithic kernel architecture, the entire operating system is in the kernel space
and executing entirely in supervisor mode for all process scheduling subsystem memory
management, IPC, virtual files, network. That directly opposes a microkernel architecture.

e Microkernel: Compared to the monolithic kernel, microkernel based operating systems
require a tiny set of functions from the kernel which includes a few synchronization prim-
itives, a scheduler, and an IPC mechanism [Bovet and Cesati, |2001]. A kernel module is
such an object file which can be linked and unlinked to the kernel at runtime. To utilize the
advantage of microkernels, Linux kernel offers modularized approach. Therefore, relevant
data structures can be accessible by well defined interfaces [Bovet and Cesati, 2001].

e Hybrid kernel: A hybrid kernel architecture is built with flavour of both of microkernel
and monolithic kernel architectures. The main goal behind this combined approach is to
provide a kernel structure as microkernel in a monolithic kernel implementation method-

ology.

Almost all the operating services as basic IPC, virtual memory, scheduling techniques
including application IPC and device drivers are in kernel space, which avoids performance
overhead for context switching and message passing between the kernel mode and user
mode. From the architectural point of view, integration of application IPC and device
drivers are different in hybrid kernel from the others.

6.2 Kernel Preemption

A kernel is considered to be a preemptive kernel if process switch is possible in Kernel Mode.
In the case of non-preemptive process switching, the switch is called planned process switch. In
contrast, in case of preemptive switching the switch is called forced process switch. The main
feature of a preemptive kernel is the process switching in Kernel Mode. This can also be seen
when in the middle of a kernel function a running process in Kernel Mode can be preempted
and replaced by another one.[Bovet and Cesati, [2001]

Apart from supporting a variety of kernels, the SMP offers features which are significantly
relevant for designing RTOS on multi-core architectures. From version 2.6 Linux kernel supports
SMP with different memory models including NUMA.

Moreover, the first appearance of multiprocessor RTOS implementation in a hard real-time
form for Linux is found during the 1990s and is also known as dual kernel [Lehrbaum and
Rick|, 2000][Bicer et al., [2006]. Generally multiprocessor RTOSs insert a thin layer between the
hardware and general purpose operating system for taking over the interrupts and also have
their own scheduler, where Linux kernel is running with low priority and only gets CPU as well
as resources when there are no real-time tasks available. Unlike multithreaded process, with
its own scheduler, in fact, a hardware abstraction layer is added between the hardware and

34

6.3 RTLinux

the operating system. Most of RTOSs are already used and proved that they can satisfy hard
real-time requirements in some industrial projects while reserving the Linux resource.

Apart from industrial purposes, Linux based multiprocessor RTOSs are also developed for
research purposes. These are more focused on desired algorithm integration and simulation fa-
cilities, data acquisition tools along with visualization tools. Though most of them support hard
and soft real-time features for algorithm specific simulation, the discontinuation of the develop-
ment process and unstable releases may cause unexpected time delays when the development is
stalled on inclusion of up-to-date features of the baseline platform.

In the following section, we outlined currently available Linux based multiprocessor RT'OSs
which are used as multiprocessor scheduling algorithm simulation test-beds as well as in indus-
trial projects.

6.3 RTLinux

RTLinux (RealTime Application Interface) is a hard realtime RTOS. RTLinux is developed
as dual kernel operating system, and the architecture is transparent, moduler and extensible.
Considered as the first generation of multi-core RTOS. RTLinux supports i386, PPC including
ARM architecture [Yigiao et al. 2008]. RTLinux is considered one of the hard real-time vari-
ants of Linux, employed manufacturing plants, inside control robots, data acquisition systems,
and other time-sensitive machines and instruments [Yodaiken, |1999]. A schematic diagram of
RTLimux architecture is drawn in Figure [6.1

RT Thread Linux Thread RT Thread Linux Thread

‘ Linux

/ \/—\K—\

RT linux modules

Non-RT
RT linux device
e core driver

‘ Hardware

Figure 6.1: RTLinux Architecture [Yiqgiao et al., |2008]

35

6 Related Work on Real-time Scheduling Test-beds

A clock structure is implemented as timer module for scheduler. Interrupts are divided into
global and local interrupts. Where local interrupts come from the local processor and global
interrupts come from shared devices [Kairui et al., 2006]. The integrated scheduler in RTLinux
is purely priority driven. Prioritization is done by the Rate Monotonic algorithm.

Though RTLinux was first developed at FSMLabs, it was later on continued as a commercial
product which was acquired by Wind River System in February 2007. The commercial support
effectively ended through discontinuation of Wind Rivers Real-Time Core Product line. Being
a transparent, modular, and extensible system are the key objectives of RTLinux. During the
development phase of RTLinux, the maximization of the advantages of having Linux and its
powerful capabilities available were considered foremost [RTLinux} [1999].

6.4 S.Ha.R.K

S.Ha.R.K. stands for Soft Hard Real-time Kernel which is designed to support soft, hard, and
also non real-time applications with interchangeable scheduling algorithms with a configurable
kernel architecture |Gai et al.l 2001] [Abeni and Buttazzo, 2000]. This soft, hard real-time kernel
consists of two types of modules:

e First, Scheduling Modules which implement

1. Scheduling Algorithms (POSIX, RM, EDF, EDFACT, RR, RRSOFT, RR2, SLSH
and Hierarchical Scheduling) and

2. Aperiodic Servers (PS, DS, SS, CBS, CASH and CBS_FT) [S.Ha.R.K} 2008],

e Second, Resource Modules and also Shared Resource Access protocols (NOP, NOPM, PI,
PC, SRP, NPP and SEM) [S.Ha.R.K, [2008]

A Java tracer named JTracer is provided as graphical visualization tool to show the trace files
generated by S.Ha.R.K [S.Ha.R.K|, 2008].

6.5 MaRTE

A Minimal Real-Time Operating System for Embedded Applications, MaRTE follows POSIX.13
subsets. Which is based on the AdaCore GNU tool-chain, supports the development of Multi-
Thread Real-Time applications and has Time measurements framework as utility. Also provides
MAST: “Modeling and Analysis Suite for Real-Time Applications” [MARTE, 2011], with an
automatic schedulability analysis can be incorporated in a UML design environment for designing
real-time applications, while representing requirements and the real-time behavior along with
the design structure [MARTE, [2011]. Another important feature, emulation support, is also
provided as QEMU image and BOCHS image.

6.6 RTAI

RTAI stands for Real Time Application Interface and is focused on Real Time Distributed
Control Systems. Developed by “Dipartimento di Ingegneria Aerospaziale del Politecnico di
Milano” (DIAPM) in 1996 or 1997 [Cloutier et al., [2000] [Mantegazza et al., 2000]. A set of
modified functions put into one module called Real-Time Hardware Abstraction Layer (RTHAL)
is an interface to Linux and RTAI [Yiqiao et al. 2008]. It allows writing a program with strict
timing constraints on Linux. In RTAI, a group of loadable modules, RTAI interfaces, LXRT,
IPC is implemented. RTAI is mentioned as true community project where developers interact

36

6.7 Xenomai

with each other a lot. Built upon a Linux kernel-patch, it also includes a broad variety of services
[RTAL 2014]. A schematic diagram of RTAI architecture is depicted in Figure
Architectures supported by RTAI are:

x86 with and without FPU and TSC

x86_64

PowerPC

ARM architectures with ARMT: clps711x-family, CS89712, Cirrus Logic EP7xxx
e m68k : both NOMMU and MMU cpus

4 N O N

LINUX RTAI Modules

- /N 4

RTHAL

Hardware

Figure 6.2: RTAI Architecture [Yiqgiao et al., [2008]

It is important to mention that, for operational facility on various targets, RTAI distribution
comes with a tool chain named RTAI-Lab that converts block diagrams into RTAI executa-
bles. Development of a block diagram can be done both on commercial and free tools like
Matlab/Simulink/RTW and Scilab/Scicos respectively [RTAL [2014].

6.7 Xenomai

Xenomai |Gerum), 2004] was developed with the aim of being a framework that supports tradi-
tional real-time operating system APIs and also provides portability of other industrial applica-
tions from other real-time operating systems to a Linux-based environment while guaranteeing

37

6 Related Work on Real-time Scheduling Test-beds

the hard real-time properties. A schematic diagram of Xenomai architecture is depicted in Fig-
ure In Xenomai, an abstract real-time nucleus is implemented to support the traditional
real-time APIs. The pseudo APIs for other different modules are also implemented and named
skins. The proposed skin concept is a set of APIs that are a simulation of a traditional real-time

operating system. [Yigiao et al., [2008].

Y

™~
/

Xenomai skins

. B

\—/-

LINUX

=
.

Figure 6.3: Xenomai Architecture |Yiqiao et al.l |2008ﬂ

6.8 XtratuM/PaRTiKle

XtratuM is different from the others. XtratuM is a virtual machine or a Hypervisor for a real-
time system developed focusing on better RTLinux visualization [Masmano et al 2005]. One of
the most significant characteristics of XtratuM is that it provides segmented memory space for
the domain running upon it, which makes the system more robust and PaRTiKle (a real-time
extension) runs on XtratuM (utilizing POSIX PSE51 interface) which is runnable as a stand-
alone system too . A schematic diagram of XtratuM architecture is depicted in
Figure [6.4]

XtratuM supports the following features:

e Interrupts
o Timer

e Virtual Memory

38

6.9 ChronOS

Linux PaRTiKle PaRTiKle

Xtratum

Hardware

Figure 6.4: XtratuM/PaRTiKle Architecture |Yigiao et al., 2008]

More specifically, PaRTiKle is an embedded RTOS, has its own kernel space and also user space
that interact using system calls between each other [Yiqgiao et al., [2008]. Moreover, PaRTiKle
is featured with following functionality:

e Provides a simple RM scheduler
e Memory management for physical memory
e Management mechanism for Timer and clock with several different virtual timers

e A minimal C library as kernel library

6.9 ChronOS

ChronOS was created at Virginia Tech (by the Systems Software Research Group) aiming at
providing a test-bed based on Linux for resource management research and real-time scheduling
on multi-core platforms. The latest version of ChronOS is based on Linux kernel version 3.0.24
and the CONFIG_.PREEMPT _RT patch. ChronOS Linux focuses on a best-effort real-time
Linux kernel for chip multiprocessors, addressing three problem spaces:

1. OS support to obtain best-effort timing assurances
2. Real-time Linux kernel augmentation with the PREEMPT_RT patch

3. OS support for chip-multiprocessor-aware real-time scheduling

39

6 Related Work on Real-time Scheduling Test-beds

ChronOS architecture is presented in Figure [6.5

DT Application ‘
Real-time

Application

DT Services ‘

Middleware APls J

D

a N

DT Manager Chron0S Scheduler
‘ DASA ‘ ‘ EDF ‘
‘ TPR ‘ ‘ HUA ‘
‘ G-EDF ‘ ‘ G-EDF ‘

\ Linux Kernel

Figure 6.5: ChronOS Architecture [ChronOS} 2013]

Linux G(1) Scheduler

Currently, a suite of schedulers has already been implemented in ChronOS that includes
GEDF, G-NP-EDF, P-EDF, P-DASA, and GUA [Dellinger et al., [2011].

6.10 LITMUSHT

LITMUS®T stands for LInux Testbed for MUItiprocessor Scheduling in Real-Time systems.
Constructed by UNC(The University of North Carolina at Chapel Hill) research group for com-
parison of various multi-core scheduling algorithms and approaches|Calandrino et al., 2006]. The
latest release is built on current stable Linux version (3.10.5). Their first goal is to “provide
a useful experimental platform for applied real-time systems research” [LITMUS?!| 2013] and
the second one is to serve as a “proof of concept” [LITMUS| |2013]. Apart from these goals,
a non-goal is also mentioned, which is not to provide reasonable stable and tested platform
[LITMUS®T| 12013]. It also provides prototyping support for multi-core real-time scheduling al-
gorithms [LITMUS??| 2013]. A number of real-time algorithms have already been implemented,
among them PSN-EDF, GSN-EDF, C-EDF, P-FP and PD? are worth mentioning.

Apart from them, there are also a number of open-source microkernel and kernel extensions
are available, such as SCHED _DEADLINE, AQUOSA, Quest and ERIKA Enterprise which are
also popular among researchers.

40

6.11 Summary

6.11 Summary

It is almost been more than one decade since the simulation platforms and RTOSs started to
evolve using new features. The selection of multi-core scheduling algorithms depends on the
physical architecture of the multi-core system and real-time constraints. The selection of a
simulation test-bed plays a vital role in achieving a scalable result for scheduling algorithms
by merging the gap between theoretical output and output from a physical system that has
overheads. In such a case, measurement or acquisition of system data to analyze real-time
constraints plays a key role. Taking that into consideration, researchers prefer microkernel based
operating systems for their explicit message passing between kernel layers, though microkernel
based operating systems are slower than the monolithic ones. As a consequence of choosing
microkernels, the rest of the system becomes modularized. On the other hand, when the field
of research is scheduling algorithms, scheduling techniques of the operating system and its
operations of task processing and its operating architecture also require extensive study before
selecting a RTOS as a simulation test-bed.

A categorization can simply be made of the current real-time test-beds only by considering
which type of kernel or kernel extension is used. A number of simulation platforms use Lin-
ux/PREEMPT_RT Kernel, focused on implementing different types of scheduling algorithms.

Considering the programming language support for RTOS development, most RTOSs use
C. Among them, PaRTiKle is worth mentioning, since it supports Ada, C, C++ and Java.
Also, MaRTE uses AdaCore GNU tool-chain. In the context of simulation tools support,
S.Ha.R.K. provides JTracer as a graphical visualization tool. RTAI is augmented by tools like
Matlab/Simulink/RTW and Scilab/Scicos while MaRTE provides MAST.

Selection of a RTOS as a test-bed can also be done by comparing which types of multi-core
scheduling algorithms are already implemented and which resource sharing protocols are being
used.

ChronOS is created focusing on solving best-effort scheduling and scheduling on CMPs (Cheap
Multiprocessors) using Linux/PREEMPT _RT Kernel while taking into account Alpha OS |Jensen
and Northcutt, 1990] that is a non-Linux based operating system. Though RED-Linux [Wang
and Lin, [1999]and LITMUS?? [Brandenburg et al., |2007] are Linux based, none of them uses
Linux/PREEMPT_RT Kernel [Dellinger et al. [2011]. As ChronOS is using a preemptive kernel,
it has significantly lower worst-case latencies [Dellinger et al., 2012].

On the other hand, LITMUS®T is known as a real-time test-bed for empirical evaluation of
multi-core scheduling algorithms|Calandrino et al., |2006], also integrating Hard/Soft real-time
jobs aiming to improve the response time of best effort jobs [Brandenburg and Anderson, 2007].
Apart from support of a number of multi-core scheduling algorithm, LITMUS®T is the first to
implement mixed-criticality scheduling algorithms on multi-core platforms [Herman et al.,2012].
In LITMUS®? scheduling policies are implemented as scheduler plug-ins and an API providing
system calls for interaction with then kernel. In Linux, scheduler task scheduling is done by
traversing a list of scheduling classes. In decreasing order POSIX RT, CFS, and IDLE classes
are available in stock Linux. To achieve a higher priority than the other classes, LITMUSH”
scheduling classes are inserted on top of the ones in stock Linux [Brandenburg et al., 2008].

In this thesis work, we chose LITMUS®T as our simulation platform for the performance
measurement of PD?* scheduling algorithm. The logic behind this selection is that LITMUS?”
has already implemented the variants of scheduling algorithms like P-EDF, G-EDF and Pfair on
which we are focusing in this thesis work. Also, it provides a number of modifiable open-source
tools for schedulability analyses, taskset generation, experimental data acquisition, and even for
data conversion. In the next chapter, all of these tools and their use are described in more detail.

41

7. Simulation

In the previous chapter we gave a brief idea about our selected multi-core scheduling algorithm
simulation test-bed which is LITMUST release version 2013.1, released in August 2013 version
3.10.5. To use LITMUS®T the following open source tools are required for scheduling algorithm
simulation and analysis:

e litmus-rt: LITMUS?T is developed by modifying Linux kernel and creating user-space
library. As development of LITMUS?” is focused on real-time scheduling, most of the
kernel modification is done in scheduler and timer-interrupt code. The kernel modification
is divided into the following three components:

1.

2.
3.

Core infrastructure: consist of modification of scheduler, scheduler support structure
and services, i.e. tracing.

Scheduler plugins: here scheduling policies are implemented.

System calls: To interact real-time tasks with the kernel through API.

In stock Linux, three classes are available; they are POSIX, RT, CFS and IDLE, where
scheduler selects a task to be scheduled using traversal over a list of scheduling classes
and by choosing the task with highest-priority. In LITMUS®T | a LITMUS?? scheduling
class is integrated as the very top of scheduling class to achieve higher priority for the jobs
scheduled by LITMUS#T

e liblitmus: This is the user space library that provides the LITMUS?? API. It provides
the following tools:

1.
2.

w

o N ot

setsched: Selects active scheduler.
showsched: Prints the name of the currently active scheduler.

rt_launch: Launches the program as a real-time task provisioned with the given worst-
case execution time and period.

rtspin: A simple spin loop for emulating purely CPU-bound workloads.
release_ts: Releases the task system.

measure_syscall: Measures the cost of a system call.

cycles: Displays cycles per time interval.

setsched: Selects active scheduler.

e feather-trace-tools: There are three tracing mechanisms available in LITMUS??. They
are implemented as three sets of device files:

1.

3.

litmus_log : captures the text messages created with the TRACE() macro, exported
as /dev/litmus/log .

. ft_traceX : contains binary-encoded time stamps used for overhead tracing, exported

as /dev/litmus/ft_trace0, /dev/litmus/ft_tracel, etc.

sched_traceX: contains binary-encoded scheduling event information, e.g. whenever
a task got scheduled, a job was released, a job completed, etc., exported as /dev/lit-
mus/sched_trace0, /dev/litmus/sched_tracel, etc.

43

7 Simulation

Automated process of enabling events and retrieving trace records is performed by ftcat,
which is part of the ft_tools package. Events can be specified by their ID as follows
[LITMUSHT] 2013]:

1. SCHED_START, SCHED_END: To measure the time spent to make a scheduling
decision.

2. CXS_START, CXS_END: To record the time spent to make a context switch .

3. SCHED2_START, SCHED2_END: To measure the time spent to perform post-context-
switch cleanup and management activities.

4. TICK_.START, TICK_END: To measure the overhead by Linux’s periodic system
tick.

5. RELEASE_START, RELEASE_END: To measure the time spent to enqueue a newly-
released job in a ready queue .

6. RELEASE_LATENCY: To measure the difference between when a timer should have
fired, and when it actually did fire, unlike the others this ID is measured in nanosec-
onds.

e experiment-scripts: There are Python scripts which provide a simpler way for creating,
running, parsing, and plotting experiments:

— gen_exps.py: To create sets of experiments.

— run_exps.py: To run and trace experiments.

— parse_exps.py: To parse LITMUSH” trace data.

— plot_exps.py: To plot directories of csv data generated by parse_exps.py.

e schedcat: Schedcat stands for Schedcat: the **sched**ulability test **c**ollection **a**nd
*Eg**oolkit, developed by |[Brandenburg, 2011]. It is a Python/C++ library useful for
schedulability experiments which contains a number of schedulability tests for real-time
schedulers including partitioned and global EDF, Pfair, etc.. More significant provided fea-
tures are partitioning heuristics and blocking term analysis for real-time locking protocols.
In addition to several spinlock types, i.e., the OMLP family, the FMLP and FMLP+, the
MPCP, and the DPCP. Also provided are overhead accounting methods Schedcat| [2011].

7.1 Baseline Platform

We have conducted our experiment in implementing LITMUS®T on both a physical machine
and QEMU emulator with the same tasksets and scheduling algorithms. We used QEMU em-
ulator which is also a virtualizer. When running a target architecture that is the same as the
host architecture, QEMU can make use of KVM (Kernel Virtual Machine). In our case, the
architectures are gemu-system-z86_64 and x86_64. These are the main reasons behind choosing
QEMU as emulator. Also, an externally built Linux kernel can be loaded over an existing one
which helps developers to save a huge amount of time by avoiding multiple compilation pro-
cedures. Also advantageous from the development perspective is that it supports GDB (NU
Project Debugger).

Our desired simulation test-bed on QEMU emulator was initiated by the following command
to achieve the following multiprocessor platform configuration shown in Table

44

7.1 Baseline Platform

sudo gemu—system—x86_64 —enable—kvm —cpu host —smp 16 —hda /home/
sdas/iso /ubuntu.backing.qcow2.img —m 8192 —nographic —kernel /home
/sdas/litmus13/litmus—rt /arch/x86_64/boot /bzImage —append ”console
=ttyS0,115200 _root=/dev/hdal_rootfstype=ext4_nmi_watchdog=0" —gdb
tcp::12345 —net nic —net tap,ifname=tap0,script=no —net user,
hostfwd=tcp::2222 —:22

By the same token LITMUS?” was installed on the physical machine using the following
shell script which might include some irrelevant drivers and modules provided with the default
operating system ISO by Kubuntu:

make include/config/kernel.release

VER=‘cat include/config/kernel.release *

CC=gcc

THREADS=‘cat /proc/cpuinfo | grep processor | wc —1°¢

echo 7" Building._kernel .${VER}_with_${CC}_on_${THREADS} _threads”

if [$(/usr/bin/id —u) —ne 0 |; then
echo ”Please_run_this_script._as_.root.”
exit 2

fi

check_errors () {
Function. Parameter 1 is the return code
Para. 2 is text to display on failure.
if [7${1}” —ne 70”]; then
echo "ERROR. #_${1}_:_%{2}”
as a bonus, make our script exit with the right
error code.
exit ${1}
fi
¥
make —j$THREADS bzImage CC=$CC
check_errors $?7 ”"make_bzlmage._failed”
make —j$THREADS modules CC=$CC
check_errors $?7 ”"make_modules.failed”
sudo make modules_install
check_errors $?7 "make_.modules_install_failed”
sudo make headers_install INSTALL HDR PATH=/usr/src/linux—headers—"
$VER”
check_errors $7 "make_headers_install_failed”
sudo make install
check_errors $7 "make_install_failed”
sudo update—grub
check_errors $? ”grub_update_failed”

Both of the multiprocessor simulation test-bed configurations are shown in Table

45

7 Simulation

QEMU emulator configuration | Physical machine configuration
Architecture x86_64 x86_64
CPU op-mode(s) 32-bit, 64-bit 32-bit, 64-bit
Byte Order Little Endian Little Endian
CPU(s) 16 4
On-line CPU(s) list 0-15 0-3
Thread(s) per core 1 2
Core(s) per socket 1 2
CPU socket(s) 16 1
NUMA node(s): 1
Vendor ID Genuinelntel Genuinelntel
CPU family 6 6
Model 37 37
Stepping 2 2
CPU MHz 2260.996 2260.835
BogoMIPS 4521.99 4521.67
Virtualization VT-x VT-x
Hypervisor vendor KVM
Virtualization type full
L1d cache 32K 32K
L1i cache 32K 32K
L2 cache 4096K 256K
L3 cache: 3072K
NUMA node0 CPU(s): 0-3

Table 7.1: Simulation platform configuration of virtual and physical machines

7.2 Experimental Task Sets

We used an open source tool experiment-scripts to generate our experiment tasksets. As our
selected algorithm is PD?*, it actually differs from PD? in the context of grouping the tasks
as heavy and light based on their utilization > .5 or < .5 respectively. Along with provided
uniform distribution we have added another uniform utilization bound [0.1,0.9] (uni-range).
[0.0001, 0.001] (uni-very-light) to analyze the performance of simulated algorithms in the context
of tasksets with very low individual overhead. The ranges for the uniform distributions are uni-

very-light, uni-light, uni-medium, uni-heavy, uni-mixed, uni-range presented in Table

46

Utilization Type Range
uni-very-light 0.0001, 0.001
uni-light 0.001, 0.1
uni-medium 0.1, 0.4
uni-heavy 0.5, 0.9
uni-mixed 0.1, 4
uni-range 0.1, 0.9

Table 7.2: Uniform distribution of utilization used in task set generation

7.3 Algorithm Implementation

As we have already discussed that, experiment-scripts come with the functionality of running
the simulation and parsing the simulated data and also converting the data from the binary
format to CSV format. We have extended this experiment-scripts to achieve compatibility with
our new implemented scheduler plug-in.

In this thesis work, we have simulated multi-core scheduling algorithms in several combina-
tions.

1. For both PD? and PD?*, we have simulated tasksets consisting of randomly generated 24
tasks for each of the uniform distributions presented in generated using experiment-

script. In total, the number of tasksets in the experiment is 2 x 6 = 12. Also, we
have simulated tasksets described above both in the QEMU emulator and on the physical
machine.

2. Again, for both PD? and PD?*, we have simulated a sequence of randomly generated 20
tasksets for each of the uniform distributions presented in where task numbers in
tasksets were from 5 to 100 in steps of 5, generated using experiment-script. In total, the
number of tasksets in the experiment is 40 x 6 = 240.

3. We organized another simulation for all of the schedulers in LITMUS?? which are GSN-
EDF, PSN-EDF, C-EDF, PD? as PFAIR and PD?* as PFAIR23. In this case we consider
a sequence of 20 tasksets where utilization distributions are uni-light, uni-heavy and uni-
rang. In total, the number of tasksets in the experiment is 100 x 3 = 300.

7.3 Algorithm Implementation

In Chapter |5, we have discussed both the Pfair variants PD? and PD?*. As PD?* proposed
by Nelissen et al.| [2014] is a generalized version of PD?, the whole structure of PD?* does not
differ from PD? very much, except for the group deadline parameters and functionality. Though
PD?* is only slightly different from PD?, in order to run a number of simulations simultaneously
we have to implement PD?* as separate scheduler plugin to LITMUS®? with the support of
existing data structures for PFAIR. In existing LITMUS®" PD?* is named PFAIR, to keep our
implementation simple we named PD?* PFAIR23.

To make PFAIR23 available in the kernel configuration, we extended the existing Kconfig
with the following configuration:

config PLUGIN_PFAIR23
bool ”"PFAIR23”
depends on HIGH_RES_TIMERS && HZ_PERIODIC && HZ = ”1000”
default y
help
Include the PFAIR23 plugin (i.e., the PD"2% scheduler) in
the kernel.
The PFAIR23 plugin requires high resolution timers (for
staggered
quanta) and also requires HZPERIODIC (i.e., periodic timer
ticks
even if a processor is idle, as quanta could be missed
otherwise) .
Further , the PFAIR23 plugin uses the system tick and thus
requires

47

7 Simulation

HZ=1000 to achive reasonable granularity.

If unsure, say Yes.

After this extension of the kernel configuration, our PFAIR23 became visible in the Scheduling
plugin option in LITMUS®T as below:

[*] Clustered-EDF

[*] PFAIR

[*] PFAIRZ23

[*] Release-master Support

Panic on suspected migration deadlock

Figure 7.1: Plugin

7.4 Experiment Results

Before continuing with the simulation data, it is worth mentioning that all overhead such as
context switching, scheduling, releases, etc. is measured in microseconds, only release latency
is measured in nanoseconds. The parse scripts from the experiment-script scale from processor
cycles (feather trace traces events in terms of cycles) to microseconds LITMUSH | [2013].

Execution of experiments was done by run_exps.py to simulate tasksets and trace the over-
heads. It follows the state sequence below:

1

2.

© ®» N

10.
11.
12.
13.

14.

48

Loading experiment [NUMBER] of [TOTAL NUMBER OF EXPERIMENT].
Enabling Overhead Trace.

Enabling Sched Trace.

Enabling Trace-cmd / Kernelshark.

Enabling Logger.

Writing 1 proc entries.

Starting 3 regular tracers; Overhead Trace, Sched Trace and Trace-cmd.
Switching to [ACTIVATED SCHEDULER PLUGIN].

Starting [NUMBER] tasks in the selected experiment taskset.

Sleeping until tasks are ready for release... .

Starting 1 released tracers.

Releasing [NUMBER OF TASKS] tasks in the selected experiment taskset.
Waiting for program to finish... .

Stopping exact tracers.

7.4 Experiment Results

15. Saving results in [LOCATION TO SAVE ALL TRACE DATA].

16. Stopping regular tracers.

17. Switching back to Linux scheduler.

18. Experiment done!/interrupted.

Out of the resulting six pairs of results of our first set of simulation based on processor
utilization distribution described in Table we presented the result of one pair with very
light utilization scale. Also for both QEMU emulator and physical machine the details are

found in the following tables:

e For QEMU emulator with very light processor utilization distribution, the results of PD?
are presented in Table and PD?* in Table

e For physical machine with processor utilization distribution, the results of PD? are pre-
sented in Table [.5] and of PD?* in Table [7.6]

Avg Max Min Var
CXS 3.500 1976.344 | 0.687 | 99.953
RELEASE 7.152 11317.965 | 0.922 | 40382.454
RELEASE_LATENCY | 1181.014 | 18275.324 | 4.300 | 3451880.861
SCHED 24.676 29250.326 | 2.837 | 163587.753
SCHED2 5.401 182.545 2.165 | 9.907
TICK 9.709 41742.031 | 0.717 | 45000.009
record-loss 0.931 0.981 0.816 | 0.002

Table 7.3: Simulation data of PD? on QEMU emulator with uni-very-light processor utilization
distribution and 24 tasks

Avg Max Min | Var
CXS 3.450 202.267 0.692 | 7.939
RELEASE 2.662 626.708 0.935 | 60.690
RELEASE_LATENCY | 1216.406 | 27254.463 | 4.649 | 3743596.048
SCHED 19.238 14295.758 | 2.924 | 25519.474
SCHED2 5.397 138.003 2.179 | 8.132
TICK 10.897 69877.859 | 0.812 | 132953.676
record-loss 0.933 0.987 0.825 | 0.002

Table 7.4: Simulation data of PD?* on QEMU emulator with uni-very-light processor utilization
distribution and 24 tasks

Using feather-trace-tools the number of context switches is calculated for both PD? and PD?*
as listed in Table [7.7]

49

7 Simulation

Avg Max Min | Var

CXS 1.063 15.747 0.281 | 0.131
RELEASE 0.658 1.659 0.294 | 0.072
RELEASE_LATENCY | 1099.309 | 8408.448 | 0.296 | 6413152.000
SCHED 9.322 69.452 1.963 | 14.204
SCHED2 2.913 15.369 1.611 | 0.391

TICK 12.496 28.488 0.428 | 42.608
record-loss 0.912 1.000 0.510 | 0.022

Table 7.5: Simulation data of PD? on physical machine with uni-very-light processor utilization
distribution and 24 tasks

Avg Max Min | Var

CXS 1.089 | 46.780 | 0.273 | 0.189
RELEASE 0.756 | 1.775 | 0.329 | 0.067
RELEASE_LATENCY | 12.166 | 36.162 | 0.297 | 176.488
SCHED 9.361 | 77.735 | 1.966 | 18.022
SCHED2 2.924 | 15.425 | 1.596 | 0.532
TICK 12.384 | 34.526 | 0.384 | 43.661
record-loss 0.845 1.000 | 0.505 | 0.026

Table 7.6: Simulation data of PD?* on physical machine with uni-very-light processor utilization
distribution and 24 tasks

QEMU emulator Physical Machine
Number of CXS start | PD? PD* PD? PD*
Total 1166427 | 1171742 | 900336 | 936803
Skipped 3 3 3 3
Avoided 0 0 0 0
Complete 9452 9499 82078 | 82079
Incomplete 326 353 2207 1922
Non RT 43226 43465 22917 | 28248
Interleaved 0 0 0 0
Interrupted 9 15 35 103

Table 7.7: Number of context switches incurred for PD? and PD?* with the taskset of 24 tasks,
both in QEMU emulator and on the physical machine

Our second set of simulation runs is based on processor utilization distribution described in
Table where the task number in the taskset increased from 5 to 100 in steps of 5, generated
approximately 28 GB of raw data. Consequently parsed CSV’s are also populated with huge
amounts of data which led us to represent the results in the form of plots. The objective of
this simulation was to observe the behavior of PD? and PD?* with all the individual utilization
scales listed in Table Among the generated plot diagrams coming from the simulation data,
CXS_task_Avg_Avg represents the average of average context switch overhead measured for each
tested taskset.

50

7.4 Experiment Results

Results with very-light utilization and full range utilization are presented in the following
Figure and Figure|7.3] which represent the average of average context switch and scheduling
overheads for tasksets mentioned above:

Cxs by tasks (Avg, Avg)

> — scheduler:PFAIR
- scheduler:PFAIR23
41+
3 L
w0
X
o
2 L
1_
0
0 20 40 60 80 100
tasks
(a) CXS for tasksets with very-light utilization
100 Sched by tasks (Avg, Avg)
' | T — scheduler:PFAIR
- scheduler:PFAIR23
80
60
o
w
T
@}
(2]
401
20
0 L L L L
0 20 40 60 80 100

tasks

(b) SCHED for tasksets with very-light utilization

Figure 7.2: Context switching (us) and scheduling overheads (us) of PD? as PFAIR and PD?*
as PFAIR23 algorithms with very-light processor utilization distribution for tasksets
with task number increasing from 5 to 100 in steps of 5

ol

7 Simulation

Cxs by tasks (Avg, Avg)

— scheduler:PFAIR
- scheduler:PFAIR23

0 20 40 60 80 100
tasks

(a) CXS for tasksets with full range utilization

Sched by tasks (Avg, Avg)

200 T j — scheduler:PFAIR
---- scheduler:PFAIR23
150f
o
w
T 100
]
0
50
0 L L L L
0 20 40 60 80 100

tasks

(b) SCHED for tasksets with full range utilization

Figure 7.3: Context switching (us) and scheduling overheads (us) of PD? as PFAIR and PD*
as PFAIR23 algorithms with full range processor utilization distribution for tasksets
with task number increasing from 5 to 100 in steps of 5

Following in the footsteps of the previous results, our third simulation also generated a large
amount of raw data which consist of tasksets with the task number increasing from 5 to 100 in
steps of 5 and includes all the scheduler plug-ins. This simulation was conducted to compare
the scheduler behavior for all of the tasksets. Results are plotted in Figure [7.4] and Figure
for uniform distribution of full range tasks.

52

7.4 Experiment Results

Cxs by tasks (Avg, Avg)

6 — scheduler:C-EDF
— scheduler:GSN-EDF
— scheduler:PFAIR
51 — scheduler:PFAIR23
—— scheduler:PSN-EDF
4 -
2
5 3
2 - .
1_ .
0 Il Il Il Il
0 20 40 60 80 100
tasks
(a) CXS for tasksets with full range utilization
2500 Sched by tasks (Avg, Avg)
‘ ‘ — scheduler:C-EDF
— scheduler:GSN-EDF
— scheduler:PFAIR
— scheduler:PFAIR23
2000} — scheduler:PSN-EDF
1500
[a)]
L
T
Q
n
1000
500
.
o~ —
0 1 Il Il Il
0 20 40 60 80 100
tasks

(b) SCHED for tasksets with full range utilization

Figure 7.4: Context switching (us) and scheduling overhead (us) of PSN-EDF,GSN-EDF,C-
EDF,PFAIR,PFAIR23 algorithms for tasksets with tasks increasing from 5 to 100 in
steps of 5, utilization distribution: full range

93

7 Simulation

Record-loss by tasks (Avg, Avg)

10 ‘ — scheduler:C-EDF
— scheduler:GSN-EDF
— scheduler:PFAIR
— scheduler:PFAIR23
0.8f — scheduler:PSN-EDF
n 0.6
%)
o
oS
—
o
(9]
g
0.4
0.2
0.0 - :
0 20 40 60 80 100

tasks

(a) RECORD LOSS for tasksets with full range utilization

Figure 7.5: Record loss rations (%) of PSN-EDF ,GSN-EDF,C-EDF ,PFAIR,PFAIR23 algorithms
for tasksets with tasks increasing from 5 to 100 in steps of 5, utilization distribution:
full range.

7.5 Summary

In our simulation, we confirmed relevance of the previous research results presented in |Branden-
burg et al.|[2008|, proposed by Nelissen et al. [2014] as discussed in Chapter [5| which validates
our implementation. Considering the form factor of the simulation platform formerly used by
researchers like Sun UltraSPRAC Niagra multi-core platform or multiple Intel chip based Xeon
E5405 multi-core platform, we have to restrict our number of experiments. All worst-case over-
heads must be known in advance to satisfy the definition of hard real-time which is not possible
in currently available Linux. Many sources of unpredictability are present, i.e., interrupt han-
dlers and priority inversions within the kernel. Furthermore, the lack of determinism is also
caused by the hardware platforms on which Linux runs where cache contention, bus , and bus
locking and atomic operations are different in each specific case [Brandenburg et al., [2008].

In our first simualtion attempt with a taskset consisting of 24 tasks using the utilization
distributions shown in we found different results for context switching overhead for PD?
and PD?* when utilization was very light. The simulation result shows that PD?* has lower
context switching overhead than PD? for very light utilization distribution. As our first attempt
was also conducted both in QEMU emulator and on the physical machine, we also have a
different result for the total number of context switching. Though the total number of context
switches observed on the physical machine was less than in QEMU emulator, the number of non
real-time context switches in QEMU emulator was greater than on the physical machine. Also,
the total number of interrupted context switches in QEMU emulator is less than on the physical
machine. This led us to run our further simulation experiments in QEMU emulator.

Our second simulation attempt concentrated on both PD? and PD?* where task number in

o4

7.5 Summary

a taskset increased from 5 to 100 in steps of 5. As a consequence of this simulation, we found
that for PD? and PD?* in case of a large number of tasks in a taskset, total context switching
overheads of PD?* are almost similar to those of PD%*, and total scheduling overhead is higher
for PD?* than that for PD?. This is consistent with the results proposed by |[Nelissen et al.
[2014].

The third simulation attempt concentrated on all the available schedulers including our in-
tegrated one, PD?* where the task number in a taskset was similar to the second attempt and
increased from 5 to 100 in steps of 5. In this simulation we found that, as expected context
switching overheads for both of the schedulers PD? and PD?* are higher than the others, although
the individual context switching overheads of PD?* are higher than those of PD?* compared to
the previous simulation. By giving a closer look to Figure (b) and Figure (b), we found
that the for taskset with more than 25 tasks (app.) scheduling overhead for PD?* was higher
than PD? compared to scheduling overhead measured in our third attempt simulation, where
scheduling overhead for PD?* and for PD? was interchanged by the variation of the number of
tasks in taskset in our second attempt simulation, which correlates the variation in simulation
results in our current simulation attempt. Considering scheduling analysis focused on global
and partitioned approaches, apart from the higher percentage of record loss PSN-EDF was
more effective than others. From the scheduling point of view, scheduling overhead of GSN-EDF
is very high. Furthermore, C-EDF was also highly effective. This confirms the measurement
presented by Brandenburg et al.| [2008]

95

8. Conclusion and Future Work

This thesis work is an effort combining both analysis and simulation of scheduling techniques
for multi-core scheduling embedded architectures. The analysis of scheduling techniques is
augmented by simulation results while the analysis of simulation test-beds concentrates on the
possibility of simulating the analyzed techniques.

In our analysis of scheduling techniques, we confirmed the performance measurement con-
ducted by Brandenburg et al. [2008]. It was observed that from the point of view of overhead
staggered Pfair performed much better that pure Pfair. Our result also showed that the Global
EDF scheduling algorithm performed poorly due to the overhead incurred by the manipulation
of a lengthy global queue accessed by all processors. Furthermore, for hard real-time tasksets
Partitioned EDF performed best except when the tasks had high individual utilization. In a
performance measurement experiment by Nelissen et al.|[2014], confirming the same conclusion
of Brandenburg et al.| [2008], it was shown that BF? performed better than PD? in terms of
overhead. It was also mentioned that in terms of preemption and migration the results of PD?*
were similar to PD?, though its scheduling overhead was worse, PD?* being a slight variation
of PD? [Nelissen et al., [2014]. In our work, we organized the performance measurement and
comparison of PD?* based on the proposal of Nelissen et al.|[2014]. Consequently, the need to
organize performance measurement led us to analyze and compare available multi-core real-time
test-beds as well as real-time operating systems for multi-core embedded architectures while
searching for a suitable one.

In our analysis of real-time test-beds, we found that there are two basic categories of test-beds
available based on their application: simulation test-beds for industrial purposes and simulation
test-beds for research purposes. Both types have advantages and disadvantages considering their
architectural implementation, provided APIs, affiliated tools and user support, as discussed
in the Chapter @ To simulate our selected multi-core scheduling algorithm PD?*, we chose
LITMUS®T as the simulation test-bed.

Though PD?* is rather similar to PD?, we had to implement the algorithm proposed by
Nelissen et al. [2014] as a new plug-in on LITMUS®? to be able to simulate it along with other
scheduling algorithms. To implement this algorithm, we created a new plug-in named PFAIR23
while adopting the structures and functions of the existing PD? plug-in named PFAIR. This was
made possible by virtue of its being FOSS (Free Open Source Software). Also, for acquisition
and analysis of simulation data, we extended the user space tools provided by LITMUS®T to
make the new plug-in compatible with the existing simulation test-bed.

To see the difference in behavior of scheduling algorithms based on the distinction between
system architectures, we executed our simulation test cases in both QEMU emulator and on
the physical machine. We observed that scheduling algorithms return different results for dif-
ferent platforms. Possible reasons might be the cache size of the system or, for the global
approach, from which cache level processors are accessing data. Also, hardware interrupts like
NMI (non-maskable interrupts) or system management interrupts may play a role. This obser-
vation prioritizes the reliability of simulation data produced on the real physical machine that
is needed before utilizing any scheduling algorithm on any particular platform for industrial
purposes, specifically on hard real-time embedded systems.

In our second simulation attempt, the total context switching overheads of PD?* are almost
similar to those of PD? while the total scheduling overhead is higher for PD?*, which is consistent
with the results proposed by Nelissen et al. [2014]. In our third simulation we found that, as

o7

8 Conclusion and Future Work

expected, context switching overheads for both of the schedulers PD? and PD?* are higher than
for those of other algorithms, which corresponds to the result proposed by [Nelissen et al. [2014].
Also, the scheduling overhead of GSN-EDF is very high. Furthermore, C-EDF was also highly
efficient, which also confirms the measurement presented by [Brandenburg et al.| [2008].

In real-time simulation, the simulation data is also produced in real-time. Thus, efficient stor-
ing of simulation data comes into consideration for reduction of the entire load of the simulator.
For instance, the simulation process runs much faster when the generated data is stored into
system swap memory rather than in VFS (Virtual File System). Depending on the tasksets to
be simulated, if the generated data is stored in the network file system, the total simulation
overhead is much higher than that in any of the previous cases. As a consequence of this simu-
lation overhead, simulation data might be lost, which leads to the variation of the actual result
from the expected one.

There are numerous directions for future work. In particular, given our investigation of
the scheduling algorithms, scheduling algorithms BF and BF? could be implemented on both
conventional SMPs, i.e., multi-core x86 machine, as well as a multi-core embedded platform,
i.e., multi-core ARM architecture. Also, the enhancement of the simulation test-bed with more
convenient data structure that could help generate simulation data of much smaller size would
allow to conduct simulation on systems with much smaller form factor, thus facilitating the
ongoing research on multi-core scheduling techniques on embedded architectures.

o8

Bibliography

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications, 2nd ed. Springer, 2004.

A. Mohammadi and S. G. Akl, “Technical report no. 2005-499 scheduling algorithms for real-
time systems ,” 2005.

Nelissen, Geoffrey, Su, Hang, Guo, Yifeng, Zhu, Dakai, Nélis, Vincent, Goossens, and Joél, “An
optimal boundary fair scheduling,” Real-Time Systems, pp. 1-53, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11241-014-9201-0

P. Yiqiao, Z. Qingguo, S. Kairui, and W. Zhangjin, “Various freed multi-cores rtos based linux,”
in IT in Medicine and Education, 2008. ITME 2008. IEEE International Symposium on, Dec
2008, pp. 900-905.

ChronOS, “Chronos real-time linux,” 2013. [Online]. Available: http://chronoslinux.org/wiki/
Main_Page

K. Juvva, “Real-time systems ,” 1998. [Online|. Available: http://www.ece.cmu.edu/
~koopman /des_s99 /real time/

A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Ada 95, real-time
Java and real-time POSIX, 3rd ed. Harlow, UK: Addison-Wesley, 2001.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM Comput. Surv., vol. 43, no. 4, pp. 35:1-35:44, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978802.1978814

P. Marwedel, “Embedded system design,” Dordrecht, The Netherlands, 2006.

P. L. Holman, “On the implementation of pfair-scheduled multiprocessor systems,” Ph.D. dis-
sertation, 2004, aAI3140333.

S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of sporadic task systems,”
in Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, Dec 2005, pp.
9 pp.—329.

K. Ramamritham, J. Stankovic, and P.-F. Shiah, “Efficient scheduling algorithms for real-time
multiprocessor systems,” Parallel and Distributed Systems, IEEE Transactions on, vol. 1,
no. 2, pp. 184-194, Apr 1990.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment,” J. ACM, vol. 20, no. 1, pp. 46-61, Jan. 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

J. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic real-time
tasks,” Performance Evaluation, Vol. 2, No. 4, pp. 237—250, December 1982.

99

http://dx.doi.org/10.1007/s11241-014-9201-0
http://chronoslinux.org/wiki/Main_Page
http://chronoslinux.org/wiki/Main_Page
http://www.ece.cmu.edu/~koopman/des_s99/real_time/
http://www.ece.cmu.edu/~koopman/des_s99/real_time/
http://doi.acm.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/321738.321743

Bibliography

M. L. Dertouzos, “Control robotics: The procedural control of physical processes,” in In Pro-
ceedings of the International Federation for Information Processing Working Conference on
Data Semantics.807-813., 1974.

S. Dhall and C. Liu, “On a real-time scheduling problem. ; 26: 127-140.” Operations Research
; 26, 1, 127-140, 1978.

Oh, Yingfeng, Son, and S. H., “Tight performance bounds of heuristics for a real-time scheduling
problem,” Charlottesville, VA, USA, Tech. Rep., 1993.

Y. Oh and S. H. Son, “Allocating fixed-priority periodic tasks on multiprocessor
systems,” Real-Time Syst., vol. 9, no. 3, pp. 207-239, Nov. 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF01088806

A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for assigning real-time tasks to
multiprocessor systems,” Computers, IEEE Transactions on, vol. 44, no. 12, pp. 1429-1442,
Dec 1995.

B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on multiprocessors,” in
Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE, Dec 2001, pp.
193-202.

D.-I. Oh and T. P. Bakker, “Utilization bounds for n-processor rate monotonescheduling
with static processor assignment,” Real-Time Syst., vol. 15, no. 2, pp. 183-192, Sep. 1998.
[Online|. Available: http://dx.doi.org/10.1023/A:1008098013753

B. Andersson and J. Jonsson, “The utilization bounds of partitioned and pfair static-priority
scheduling on multiprocessors are 50%,” in Real-Time Systems, 2003. Proceedings. 15th FEu-
romicro Conference on, July 2003, pp. 33—40.

J. Lopez, M. Garcia, J. Diaz, and D. Garcia, “Worst-case utilization bound for edf scheduling on
real-time multiprocessor systems,” in Real-Time Systems, 2000. Euromicro RTS 2000. 12th
Euromicro Conference on, 2000, pp. 25-33.

S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of deadline-constrained
sporadic task systems,” Computers, IEEE Transactions on, vol. 55, no. 7, pp. 918-923, July
2006.

S. K. Baruah and N. W. Fisher, “The partitioned dynamic-priority scheduling of sporadic
task systems,” Real-Time Syst., vol. 36, no. 3, pp. 199-226, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11241-007-9022-5

B. Andersson and J. Jonsson, “Fixed-priority preemptive multiprocessor scheduling: to partition
or not to partition,” in Real-Time Computing Systems and Applications, 2000. Proceedings.
Seventh International Conference on, 2000, pp. 337-346.

A. Srinivasan and S. Baruah, “Deadline-based scheduling of periodic task systems on
multiprocessors,” Information Processing Letters, vol. 84, no. 2, pp. 93 — 98, 2002. [Online].
Available: http://www.sciencedirect.com /science/article/pii/S0020019002002314

J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of periodic task systems on
multiprocessors,” Real-Time Systems, vol. 25, no. 2-3, pp. 187-205, 2003. [Online|. Available:
http://dx.doi.org/10.1023/A%3A1025120124771

60

http://dx.doi.org/10.1007/BF01088806
http://dx.doi.org/10.1023/A:1008098013753
http://dx.doi.org/10.1007/s11241-007-9022-5
http://www.sciencedirect.com/science/article/pii/S0020019002002314
http://dx.doi.org/10.1023/A%3A1025120124771

Bibliography

T. Baker, “An analysis of edf schedulability on a multiprocessor,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 16, no. 8, pp. 760-768, Aug 2005.

M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability analysis of edf on multipro-
cessor platforms,” in Real-Time Systems, 2005. (ECRTS 2005). Proceedings. 17th Euromicro
Conference on, July 2005, pp. 209-218.

T. P. Baker and S. K. Baruah, “Schedulability analysis of multiprocessor sporadic task systems,”
in Handbook of Realtime and Embedded Systems. CRC Press, 2007.

M. Bertogna, “Real-time scheduling analysis for multiprocessor platforms,” Ph.D. dissertation,
Scuola Superiore Sant’Anna, Pisa, Italy, 2007.

S. Baruah and J. Goossens, “Rate-monotonic scheduling on uniform multiprocessors,” in Dis-
tributed Computing Systems, 2003. Proceedings. 23rd International Conference on, May 2003,
pp- 360-366.

M. Bertogna, M. Cirinei, and G. Lipari, “New schedulability tests for real-time task
sets scheduled by deadline monotonic on multiprocessors,” in Proceedings of the
9th International Conference on Principles of Distributed Systems, ser. OPODIS’05.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 306-321. [Online]. Available: http:
//dx.doi.org/10.1007/11795490_24

B. Andersson and J. Jonsson, “Some insights on fixed-priority preemptive non-partitioned mul-
tiprocessor scheduling,” in Proceedings of the 21st IEEE Real-Time Systems Symposium —
Work-in-Progress session, Orlando, Florida, November 29, 2000, s. 53-56, 2000.

S. Baruah and N. Fisher, “Global static-priority scheduling of sporadic task systems on multipro-
cessor platforms.” In Proceedings of the International Conference on Parallel and Distributed
Computing and Systems., 2006.

S. K. Baruah, “Schedulability analysis of global deadline monotonic scheduling,” Tech. rep.,
University of North Carolina, Chapel Hill, NC.http://www.cs.unc.edu/ baruah/Pubs.shtml,
Tech. Rep., 2007.

N. Fisher, “The multiprocessor real-time scheduling of general task systems,” Ph.D. dissertation,
Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, 2007.

S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate progress: A notion of fairness
in resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600-625, 1996. [Online]. Available:
http://dx.doi.org/10.1007/BF01940883

J. Anderson and A. Srinivasan, “Mixed pfair/erfair scheduling of asynchronous periodic tasks,”
in Real-Time Systems, 13th Furomicro Conference on, 2001., 2001, pp. 76-85.

J. H. Anderson and A. Srinivasan, “A new look at pfair priorities,” Technical Report TR0O0-

023,Departement of Computer Science, University of North Carolina, Tech. Rep., September
1999.

61

http://dx.doi.org/10.1007/11795490_24
http://dx.doi.org/10.1007/11795490_24
http://dx.doi.org/10.1007/BF01940883

Bibliography

A. Srinivasan and J. H. Anderson, “Optimal rate-based scheduling on multiprocessors,”
in Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,
ser. STOC ’02. New York, NY, USA: ACM, 2002, pp. 189-198. [Online|. Available:
http://doi.acm.org/10.1145/509907.509938

S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of periodic tasks on multiple resources,”
in Parallel Processing Symposium, 1995. Proceedings., 9th International, Apr 1995, pp. 280—
288.

J. Anderson and A. Srinivasan, “Early-release fair scheduling,” in Real-Time Systems, 2000.
Euromicro RTS 2000. 12th Euromicro Conference on, 2000, pp. 35—43.

P. Holman and J. H. Anderson, “Adapting pfair scheduling for symmetric multiprocessors,”
J. Embedded Comput., vol. 1, mno. 4, pp. 543-564, Dec. 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1233791.1233800

D. Zhu, D. Mosse, and R. Melhem, “Multiple-resource periodic scheduling problem: how much
fairness is necessary?” in Real-Time Systems Symposium, 2003. RTSS 2003. 2/th IEEFE, Dec
2003, pp. 142-151.

H. Kim and Y. Cho, “A new fair scheduling algorithm for periodic tasks on multiprocessors,”
Information Processing Letters, vol. 111, no. 7, pp. 301 — 309, 2011. [Online]. Available:
http://www.sciencedirect.com /science/article /pii/S0020019010003996

H. Cho, B. Ravindran, and E. Jensen, “An optimal real-time scheduling algorithm for multipro-
cessors,” in Real-Time Systems Symposium, 2006. RTSS ’06. 27th IEEE International, Dec
2006, pp. 101-110.

K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal real-time scheduling on
multiprocessors,” in Real-Time Systems, 2008. ECRTS ’08. Euromicro Conference on, July
2008, pp. 13-22.

S. Funk, “Lre-tl: An optimal multiprocessor algorithm for sporadic task sets with unconstrained
deadlines,” Real-Time Syst., vol. 46, no. 3, pp. 332-359, Dec. 2010. [Online|. Available:
http://dx.doi.org/10.1007/s11241-010-9109-2

S. K. Lee, “On-line multiprocessor scheduling algorithms for real-time tasks,” in TENCON ’94.
IEEE Region 10’s Ninth Annual International Conference. Theme: Frontiers of Computer
Technology. Proceedings of 1994, Aug 1994, pp. 607-611 vol.2.

S. Kato and N. Yamasaki, “Global edf-based scheduling with efficient priority promotion,” in
Embedded and Real-Time Computing Systems and Applications, 2008. RTCSA ’08. 1/th IEEE
International Conference on, Aug 2008, pp. 197-206.

B. Brandenburg, J. Calandrino, and J. Anderson, “On the scalability of real-time scheduling
algorithms on multicore platforms: A case study,” in Real-Time Systems Symposium, 2008,
Nov 2008, pp. 157-169.

M. Dellinger, A. Lindsay, and B. Ravindran, “An experimental evaluation of the
scalability of real-time scheduling algorithms on large-scale multicore platforms,”
J. Exp. Algorithmics, vol. 17, pp. 4.3:4.1-4.3:4.22, Oct. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2133803.2345677

62

http://doi.acm.org/10.1145/509907.509938
http://dl.acm.org/citation.cfm?id=1233791.1233800
http://www.sciencedirect.com/science/article/pii/S0020019010003996
http://dx.doi.org/10.1007/s11241-010-9109-2
http://doi.acm.org/10.1145/2133803.2345677

Bibliography

“Teee standard for information technology- standardized application environment profile (aep)-
posix realtime and embedded application support,” pp. i-164, 2004.

MARTE, “Marte,” 2011. [Online]. Available: http://marte.unican.es/

W. Betz, M. Cereia, and 1. Bertolotti, “Experimental evaluation of the linux rt patch for real-
time applications,” in Emerging Technologies Factory Automation, 2009. ETFA 2009. IEEE
Conference on, Sept 2009, pp. 1-4.

A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio, “Performance
comparison of vxworks, linux, rtai, and xenomai in a hard real-time application,” Nuclear
Science, IEEE Transactions on, vol. 55, no. 1, pp. 435-439, Feb 2008.

RTAI, “Rtai home page,” 2014. [Online]. Available: https://www.rtai.org/
Xenomai, “Xenomai home page,” 2014. [Online]. Available: http://www.xenomai.org/

D. P. Bovet and M. Cesati, Understanding the Linuz Kernel. Beijing: O’Reilly, 2001. [Online].
Available: http://swbplus.bsz-bw.de/bsz088883213cov.htm

Lehrbaum and Rick, “Using linux in embedded and real-time systems,” Linux J., vol. 2000, no.
75es, Jul. 2000. [Online|. Available: http://dl.acm.org/citation.cfm?id=349516.349542

S. Bicer, F. Pilhofer, G. Bardouleau, and J. Smith, “Nextgeneration hard real-time on posix-
based linux,” 2006.

V. Yodaiken, “The rtlinux manifesto,” in In Proc. of The 5th Linux Ezpo, 1999.

S. Kairui, B. Shuwei, Z. Qingguo, N. Mc, and L. Lian, “Analyzing rtlinux/gpl source code for
education,” 8th Real Time Linux Workshop, 2006.

RTLinux, “Rtlinux,” 1999. [Online]. Available: http://en.wikipedia.org/wiki/RTLinux

P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A new kernel approach for modular real-time
systems development,” in Real-Time Systems, 13th Euromicro Conference on, 2001., 2001,
pp. 199-206.

L. Abeni and G. Buttazzo, “Support for dynamic qos in the hartik kernel,” in Real- Time Com-
puting Systems and Applications, 2000. Proceedings. Seventh International Conference on,
2000, pp. 65-72.

S.Ha.R.K, “Shark.: Soft hard real-time kernel,” 2008. [Online]. Available: http:
/ /shark.sssup.it/

P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes, S. Hughes, and K. Yaghmour,
“Diapm-rtai position pape,” 2nd Real Time Linux Workshop, Orlando, FL, November 2000.

P. Mantegazza, E. L. Dozio, and S. Papacharalambous, “Rtai: Real time application
interface,” Linuz J., vol. 2000, mno. 72es, Apr. 2000. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=348554.348564

P. Gerum, “Xenomai - implementing a rtos emulation framework on gnu/linux,” 2004. [Online].
Available: http://www.xenomai.org/

63

http://marte.unican.es/
https://www.rtai.org/
http://www.xenomai.org/
http://swbplus.bsz-bw.de/bsz088883213cov.htm
http://dl.acm.org/citation.cfm?id=349516.349542
http://en.wikipedia.org/wiki/RTLinux
http://shark.sssup.it/
http://shark.sssup.it/
http://dl.acm.org/citation.cfm?id=348554.348564
http://dl.acm.org/citation.cfm?id=348554.348564
http://www.xenomai.org/

M. Masmano, I. Ripoll, and A. Crespo, “An overview of the xtratum nanokernel,” in Workshop
on Operating Systems Platforms for Embedded Real-Time applications, 2005.

P. S., M. M., R. Ismael, and C. A., “Partikle os, a replacement of the core of rtlinux,” in 9th
Real-Time Linux Workshop, 2007.

M. Dellinger, P. Garyali, and B. Ravindran, “Chronos linux: A best-effort real-time multiproces-
sor linux kernel,” in Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE,
June 2011, pp. 474-479.

J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson, “Litmus’’ : A testbed for em-
pirically comparing real-time multiprocessor schedulers,” in Real-Time Systems Symposium,
2006. RTSS °06. 27th IEEE International, Dec 2006, pp. 111-126.

LITMUSHRT | “Litmus®” : Testbed for multiprocessor scheduling in real-time system,” 2013.
[Online]. Available: http://www.litmus-rt.org/

E. Jensen and J. Northcutt, “Alpha: a nonproprietary os for large, complex, distributed real-
time systems,” in Ezxperimental Distributed Systems, 1990. Proceedings., IEEE Workshop on,
Oct 1990, pp. 35-41.

Y.-C. Wang and K.-J. Lin, “Implementing a general real-time scheduling framework in the red-
linux real-time kernel,” in Real- Time Systems Symposium, 1999. Proceedings. The 20th IEEE,
1999, pp. 246-255.

B. B. Brandenburg, A. D. Block, J. M. Calandrino, U. Devi, H. Leontyev, and J. H. Anderson,
“Litmus rt: A status report,” 2007.

B. Brandenburg and J. Anderson, “Integrating hard/soft real-time tasks and best-effort jobs on
multiprocessors,” in Real-Time Systems, 2007. ECRTS ’07. 19th Euromicro Conference on,
July 2007, pp. 61-70.

J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, “Rtos support for multicore
mixed-criticality systems,” in Real-Time and Embedded Technology and Applications Sympo-
stum (RTAS), 2012 IEEE 18th, April 2012, pp. 197-208.

B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time operating systems,”
Ph.D. dissertation, The University of North Carolina at Chapel Hill, 2011.

Schedcat, “The schedulability test collection and toolkit,” 2011. [Online]. Available:
http://www.litmus-rt.org/

http://www.litmus-rt.org/
http://www.litmus-rt.org/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	Abbreviations
	Introduction
	Motivation
	Objective
	Organization

	Definitions
	A Real-Time System
	An Embedded System
	Multi-Core Systems
	Task Models
	Resource
	Scheduling Policy
	Schedulers

	Terminology
	Schedulability and Optimality of scheduling algorithm and Feasibility of tasksets
	Processor Demand Bound Function
	Utilization Bound
	Resource Augmentation or Speedup Factor

	Classification of Scheduling Algorithms for Multi-Core Systems
	Related Work on Real-time Scheduling Techniques
	Partitioned Approach
	Tasksets consist of Implicit Deadlines
	Tasksets consist of Constrained and Arbitrary Deadlines

	Global Approach
	Global Scheduling with Fixed Job Priority
	Global Fixed Task Priority Scheduling
	Global Dynamic Priority Scheduling

	Summary

	Related Work on Real-time Scheduling Test-beds
	Linux-kernel
	Kernel Preemption
	RTLinux
	S.Ha.R.K
	MaRTE
	RTAI
	Xenomai
	XtratuM/PaRTiKle
	ChronOS
	LITMUSRT
	Summary

	Simulation
	Baseline Platform
	Experimental Task Sets
	Algorithm Implementation
	Experiment Results
	Summary

	Conclusion and Future Work
	Bibliography

