181 research outputs found

    Effect of thermo-hydro-mechanical coupling on the evolution of stress in the concrete liner of an underground drift in the Cigéo project

    Get PDF
    The French National Radioactive Waste Management Agency (Andra) is in charge of studying the disposal of high-level and intermediate-level long-lived waste (HLW and ILW-LL) in a deep geological repository (Cigéo project) within the host formation is the Callovo-Oxfordian claystone (COx). The heat emitted from waste packages induces a thermo-hydro-mechanical (THM) coupling within the structural elements and the host rock. This study focuses on the behavior of the concrete lining of an ILW-LL cell subjected to THM loading during its construction and operational phases. The mechanical behavior of the host rock is represented by an elasto-visco-plastic model taking into account the anisotropies in stiffness and strength. The coupled THM formulation is based on the Biot theory. Different simulations including full THM coupling and HM coupling with or without creep behavior of COx claystone have been performed to show the effect of the thermal load (generated by the waste packages), of the water seepage and of the creep strain of the host rock on the stress evolution in the concrete liner. The results show the preponderant role of the creep strain of COx claystone on the stress state of the liner during the operational phase, while the effect of the heat loading is moderate and that of the seepage is not significant.Postprint (published version

    Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems

    Get PDF
     In order to alleviate the environmental crisis and improve energy structure, countries from all over the world have focused on the hot dry rock geothermal resources with great potential and with little pollution. The geothermal heat production from Enhanced Geothermal System (EGS) comes with complex multi-field coupling process, and it is of great significance to study the temporal and spatial evolution of geothermal reservoir. In this work, a practical numerical model is established to simulate the heat production process in EGS, and the comparison of thermal-hydraulic (TH), thermal-hydraulic-mechanical (THM) and thermal-hydraulic-mechanical-chemical (THMC) coupling in geothermal reservoir is analyzed. The results show that the stable production stage of the three cases is approximately 5 years; however, compared with TH and THMC coupling, the service-life for THM coupling decreased by 1140 days and 332 days, respectively. The mechanical enhanced effects are offset by the chemical precipitation, and the precipitation from SiO2 is much larger than the dissolution of calcite.Cited as: Chen, S., Ding, B., Gong, L., Huang, Z., Yu, B., Sun, S. Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems. Advances in Geo-Energy Research, 2019, 3(4): 396-409, doi: 10.26804/ager.2019.04.0

    Heat transport with advection in fractured rock

    Get PDF
    In the transport of heat in porous media, diffusion generally dominates over advection due to slow fluid velocities imposed by low permeability. This is the reason why standard Galerkin formulation leading to extra non-symmetric matrix terms may be still used successfully. However, in the presence of fractures the situation may be different. Fractures constitute preferential flow paths where fluid velocities may be significant and advection may become dominant over diffusion (“large advection” with PĂ©clet number >1). This paper focuses on the formulation, numerical implementation and verification of a model to solve the steady-state heat transport problem with large advection along geomechanical discontinuities represented by zero-thickness interface elements. The fluid velocity field is considered as known input data (no hydraulic coupling). The existing SUPG method is modified for its application to zero-thickness interface elements, and the resulting formulation is implemented in an existing FE geomechanical code. An example of application is presented with large advection along a discontinuity crossing a low permeability domain. The results show that the proposed approach leads to stable results, in contrast to standard Galerkin

    Wave propagation and strain localization in a fully saturated softening porous medium under the non-isothermal conditions

    Get PDF
    The (THM) coupling effects on the dynamic wave propagation and strain localization in a fully saturated softening porous medium are analyzed. The characteristic polynomial corresponding to the governing equations of the THM system is derived, and the stability analysis is conducted to determine the necessary conditions for stability in both non-isothermal and adiabatic cases. The result from the dispersion analysis based on the Abel–Ruffini theorem reveals that the roots of the characteristic polynomial for the THM problem cannot be expressed algebraically. Meanwhile, the dispersion analysis on the adiabatic case leads to a new analytical expression of the internal length scale. Our limit analysis on the phase velocity for the non-isothermal case indicates that the internal length scale for the non-isothermal THM system may vanish at the short wavelength limit. This result leads to the conclusion that the rate-dependence introduced by multiphysical coupling may not regularize the THM governing equations when softening occurs. Numerical experiments are used to verify the results from the stability and dispersion analyses

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of results

    Get PDF
    11 pagesInternational audienceGeological disposal of the spent nuclear fuel often uses the concept of multiple barrier systems. In order to predict the performance of these barriers, mathematical models have been developed, verified and validated against analytical solutions, laboratory tests and field experiments within the international DECOVALEX III project. These models in general consider the full coupling of thermal (T), hydraulic (H) and mechanical (M) processes that would prevail in the geological media around the repository. For Bench Mark Test no. 1 (BMT1) of the DECOVALEX III project, seven multinational research teams studied the implications of coupled THM processes on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three accompanying papers in this issue. This paper is the first of the three companion papers, which provides the conceptualization and characterization of the BMT1 as well as some general conclusions based on the findings of the numerical studies. It also shows the process of building confidence in the mathematical models by calibration with a reference T–H–M experiment with realistic rock mass conditions and bentonite properties and measured outputs of thermal, hydraulic and mechanical variables

    Double structure THM analysis of a heating test in a fractured tuff incorporating intrinsic permeability variations

    Get PDF
    This paper presents thermo-hydro-mechanical (THM) analyses simulating the Drift Scale Test (DST) performed at Yucca Mountain. A double structure approach based on two superimposed domains is adopted. Intrinsic permeability changes with deformations imply full THM coupling. Temperatures and gas permeabilities were measured during 4 years and are used to validate the model. Measured gas permeability variations show patterns that are successfully explained by the model calculations. These gas permeability variations may be attributed to thermo-hydraulic effects, and also to mechanical effects. Different cases of intrinsic permeability variations have been considered in the model and their influence on the calculated temperatures, degree of saturations and gas permeabilities are presented. Volumetric deformation, in contraction or dilatancy, implies changes in the aperture of rock fractures that in turn lead to changes in intrinsic permeability. Dilatancy, caused by shear stresses, increases intrinsic permeability. Consideration of this factor contributes significantly to improve the agreement of calculated gas permeability with the measured values obtained during the DST experiment

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 2: Effects of THM coupling in continuous and homogeneous rocks

    Get PDF
    14 pagesInternational audienceAn evaluation of the importance of the thermo-hydro-mechanical couplings (THM) on the performance assessment of a deep underground radioactive waste repository has been made as a part of the international DECOVALEX III project. It is a numerical study that simulates a generic repository configuration in the near field in a continuous and homogeneous hard rock. A periodic repository configuration comprises a single vertical borehole, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery. The thermo-hydro-mechanical evolution of the whole configuration is simulated over a period of 100 years. The importance of the rock mass's intrinsic permeability has been investigated through scoping calculations with three values: 10−17, 10−18 and 10−19 m2. Comparison of the results predicted by fully coupled THM analysis as well as partially coupled TH, TM and HM analyses, in terms of several predefined indicators of importance for performance assessment, enables us to identify the effects of the different combinations of couplings, which play a crucial role with respect to safety issues. The results demonstrate that temperature is hardly affected by the couplings. In contrast, the influence of the couplings on the mechanical stresses is considerable
    • 

    corecore