7 research outputs found

    A Roadmap Toward a Unified Space Communication Architecture

    Get PDF
    In recent years, the number of space exploration missions has multiplied. Such an increase raises the question of effective communication between the multitude of human-made objects spread across our solar system. An efficient and scalable communication architecture presents multiple challenges, including the distance between planetary entities, their motion and potential obstruction, the limited available payload on satellites, and the high mission cost. This paper brings together recent relevant specifications, standards, mission demonstrations, and the most recent proposals to develop a unified architecture for deep-space internetworked communication. After characterizing the transmission medium and its unique challenges, we explore the available communication technologies and frameworks to establish a reliable communication architecture across the solar system. We then draw an evolutive roadmap for establishing a scalable communication architecture. This roadmap builds upon the mission-centric communication architectures in the upcoming years towards a fully interconnected network or InterPlanetary Internet (IPN). We finally discuss the tools available to develop such an architecture in the short, medium, and long terms. The resulting architecture cross-supports space agencies on the solar system-scale while significantly decreasing space communication costs. Through this analysis, we derive the critical research questions remaining for creating the IPN regarding the considerable challenges of space communication.Peer reviewe

    Application of Machine Learning Techniques to Delay Tolerant Network Routing

    Get PDF
    This dissertation discusses several machine learning techniques to improve routing in delay tolerant networks (DTNs). These are networks in which there may be long one-way trip times, asymmetric links, high error rates, and deterministic as well as non-deterministic loss of contact between network nodes, such as interplanetary satellite networks, mobile ad hoc networks and wireless sensor networks. This work uses historical network statistics to train a multi-label classifier to predict reliable paths through the network. In addition, a clustering technique is used to predict future mobile node locations. Both of these techniques are used to reduce the consumption of resources such as network bandwidth, memory and data storage that is required by replication routing methods often used in opportunistic DTN environments. Thesis contributions include: an emulation tool chain developed to create a DTN test bed for machine learning, the network and software architecture for a machine learning based routing method, the development and implementation of classification and clustering techniques and performance evaluation in terms of machine learning and routing metrics

    Routing in the Space Internet: A contact graph routing tutorial

    Get PDF
    A Space Internet is possible, as long as the delay and disruption challenges imposed by the space environment are properly tackled. Because these conditions are not well addressed by terrestrial Internet, more capable Delay-Tolerant Networking (DTN) protocols and algorithms are being developed. In particular, the principles and techniques for routing among ground elements and spacecraft in near-Earth orbit and deep-space are enacted in the Contact Graph Routing (CGR) framework. CGR blends a set of non-trivial algorithm adaptations, space operations concepts, time-dynamic scheduling, and specific graph models. The complexity of that framework suggests a need for a focused discussion to facilitate its direct and correct apprehension. To this end, we present an in-depth tutorial that collects and organizes first-hand experience on researching, developing, implementing, and standardizing CGR. Content is laid out in a structure that considers the planning, route search and management, and forwarding phases bridging ground and space domains. We rely on intuitive graphical examples, supporting code material, and references to flight-grade CGR implementations details where pertinent. We hope this tutorial will serve as a valuable resource for engineers and that researchers can also apply the insights presented here to topics in DTN research.Fil: Fraire, Juan Andres. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universitat Saarland; AlemaniaFil: De Jonckère, Olivier. Technische Universität Dresden; AlemaniaFil: Burleigh, Scott C.. California Institute of Technology; Estados Unido

    Marshall Space Flight Center Faculty Fellowship Program

    Get PDF
    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College

    Space programs summary no. 37-51, volume 3 for the period April 1 to May 31, 1968. Supporting research and advanced development

    Get PDF
    Space Programs Summary - supporting research and advanced developmen
    corecore